
Text Analytics
with Python

A Practitioner’s Guide to
Natural Language Processing
—
Second Edition
—
Dipanjan Sarkar

Text Analytics with Python
A Practitioner’s Guide to Natural

Language Processing

Second Edition

Dipanjan Sarkar

Text Analytics with Python

ISBN-13 (pbk): 978-1-4842-4353-4 ISBN-13 (electronic): 978-1-4842-4354-1
https://doi.org/10.1007/978-1-4842-4354-1

Copyright © 2019 by Dipanjan Sarkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4353-4. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dipanjan Sarkar
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-4354-1

This book is dedicated to my dear readers, partner,
pets, friends, family, and well-wishers.

—Dipanjan Sarkar

v

About the Author ���xv

About the Technical Reviewer ���xvii

Foreword ��xix

Acknowledgments ��xxi

Introduction ��xxiii

Table of Contents

Chapter 1: Natural Language Processing Basics �� 1

Natural Language �� 3

What Is Natural Language? ��� 3

The Philosophy of Language�� 3

Language Acquisition and Usage �� 6

Linguistics ��� 10

Language Syntax and Structure �� 13

Words �� 15

Phrases �� 17

Clauses �� 20

Grammar �� 21

Word-Order Typology ��� 33

Language Semantics �� 35

Lexical Semantic Relations ��� 35

Semantic Networks and Models �� 39

Representation of Semantics �� 41

Text Corpora �� 51

Corpora Annotation and Utilities �� 52

Popular Corpora ��� 53

Accessing Text Corpora ��� 55

vi

Natural Language Processing ��� 62

Machine Translation �� 62

Speech Recognition Systems �� 63

Question Answering Systems �� 64

Contextual Recognition and Resolution ��� 64

Text Summarization ��� 65

Text Categorization �� 65

Text Analytics �� 66

Machine Learning ��� 67

Deep Learning ��� 68

Summary��� 68

Chapter 2: Python for Natural Language Processing �� 69

Getting to Know Python ��� 70

The Zen of Python ��� 71

Applications: When Should You Use Python? �� 73

Drawbacks: When Should You Not Use Python? ��� 75

Python Implementations and Versions �� 76

Setting Up a Robust Python Environment ��� 78

Which Python Version? �� 78

Which Operating System? ��� 79

Integrated Development Environments ��� 79

Environment Setup �� 80

Package Management ��� 84

Virtual Environments ��� 85

Python Syntax and Structure �� 88

Working with Text Data ��� 89

String Literals �� 89

Representing Strings ��� 91

String Operations and Methods ��� 93

Table of ConTenTs

vii

Basic Text Processing and Analysis: Putting It All Together �� 106

Natural Language Processing Frameworks �� 111

Summary��� 113

Chapter 3: Processing and Understanding Text �� 115

Text Preprocessing and Wrangling �� 117

Removing HTML Tags �� 117

Text Tokenization ��� 119

Removing Accented Characters��� 135

Expanding Contractions ��� 136

Removing Special Characters�� 138

Case Conversions �� 138

Text Correction��� 139

Stemming �� 148

Lemmatization ��� 152

Removing Stopwords��� 154

Bringing It All Together—Building a Text Normalizer �� 155

Understanding Text Syntax and Structure ��� 157

Installing Necessary Dependencies��� 159

Important Machine Learning Concepts�� 162

Parts of Speech Tagging �� 163

Shallow Parsing or Chunking �� 172

Dependency Parsing �� 183

Constituency Parsing ��� 190

Summary��� 199

Chapter 4: Feature Engineering for Text Representation �������������������������������������� 201

Understanding Text Data ��� 202

Building a Text Corpus �� 203

Preprocessing Our Text Corpus ��� 205

Traditional Feature Engineering Models�� 208

Bag of Words Model��� 208

Table of ConTenTs

viii

Bag of N-Grams Model �� 210

TF-IDF Model ��� 211

Extracting Features for New Documents ��� 220

Document Similarity �� 220

Topic Models �� 226

Advanced Feature Engineering Models ��� 231

Loading the Bible Corpus��� 233

Word2Vec Model �� 234

Robust Word2Vec Models with Gensim ��� 255

Applying Word2Vec Features for Machine Learning Tasks �� 258

The GloVe Model �� 263

Applying GloVe Features for Machine Learning Tasks ��� 265

The FastText Model�� 269

Applying FastText Features to Machine Learning Tasks �� 270

Summary��� 273

Chapter 5: Text Classification ��� 275

What Is Text Classification? �� 277

Formal Definition ��� 277

Major Text Classification Variants �� 278

Automated Text Classification ��� 279

Formal Definition ��� 281

Text Classification Task Variants �� 282

Text Classification Blueprint �� 282

Data Retrieval�� 285

Data Preprocessing and Normalization ��� 287

Building Train and Test Datasets ��� 292

Feature Engineering Techniques ��� 293

Traditional Feature Engineering Models �� 294

Advanced Feature Engineering Models ��� 295

Table of ConTenTs

ix

Classification Models �� 296

Multinomial Naïve Bayes ��� 298

Logistic Regression ��� 301

Support Vector Machines��� 303

Ensemble Models �� 306

Random Forest �� 307

Gradient Boosting Machines �� 308

Evaluating Classification Models �� 309

Confusion Matrix ��� 310

Building and Evaluating Our Text Classifier ��� 315

Bag of Words Features with Classification Models�� 315

TF-IDF Features with Classification Models �� 319

Comparative Model Performance Evaluation �� 322

Word2Vec Embeddings with Classification Models ��� 323

GloVe Embeddings with Classification Models �� 326

FastText Embeddings with Classification Models �� 327

Model Tuning ��� 328

Model Performance Evaluation �� 334

Applications �� 341

Summary��� 341

Chapter 6: Text Summarization and Topic Models ��� 343

Text Summarization and Information Extraction ��� 344

Keyphrase Extraction ��� 346

Topic Modeling �� 346

Automated Document Summarization ��� 346

Important Concepts ��� 347

Keyphrase Extraction �� 350

Collocations ��� 351

Weighted Tag-Based Phrase Extraction ��� 357

Table of ConTenTs

x

Topic Modeling �� 362

Topic Modeling on Research Papers ��� 364

The Main Objective �� 364

Data Retrieval �� 365

Load and View Dataset �� 366

Basic Text Wrangling ��� 367

Topic Models with Gensim �� 368

Text Representation with Feature Engineering �� 369

Latent Semantic Indexing �� 372

Implementing LSI Topic Models from Scratch ��� 382

Latent Dirichlet Allocation�� 389

LDA Models with MALLET �� 399

LDA Tuning: Finding the Optimal Number of Topics ��� 402

Interpreting Topic Model Results ��� 409

Predicting Topics for New Research Papers �� 415

Topic Models with Scikit-Learn ��� 418

Text Representation with Feature Engineering �� 419

Latent Semantic Indexing �� 419

Latent Dirichlet Allocation�� 425

Non-Negative Matrix Factorization �� 428

Predicting Topics for New Research Papers �� 432

Visualizing Topic Models �� 434

Automated Document Summarization �� 435

Text Wrangling ��� 439

Text Representation with Feature Engineering �� 440

Latent Semantic Analysis �� 441

TextRank �� 445

Summary��� 450

Table of ConTenTs

xi

Chapter 7: Text Similarity and Clustering ��� 453

Essential Concepts �� 455

Information Retrieval (IR) ��� 455

Feature Engineering �� 455

Similarity Measures ��� 456

Unsupervised Machine Learning Algorithms ��� 457

Text Similarity ��� 457

Analyzing Term Similarity �� 458

Hamming Distance �� 461

Manhattan Distance �� 462

Euclidean Distance �� 464

Levenshtein Edit Distance ��� 465

Cosine Distance and Similarity �� 471

Analyzing Document Similarity ��� 475

Building a Movie Recommender ��� 476

Load and View Dataset �� 477

Text Preprocessing �� 480

Extract TF-IDF Features ��� 481

Cosine Similarity for Pairwise Document Similarity �� 482

Find Top Similar Movies for a Sample Movie ��� 483

Build a Movie Recommender ��� 484

Get a List of Popular Movies �� 485

Okapi BM25 Ranking for Pairwise Document Similarity�� 488

Document Clustering �� 497

Clustering Movies ��� 500

Feature Engineering �� 500

K-Means Clustering ��� 501

Affinity Propagation ��� 508

Ward’s Agglomerative Hierarchical Clustering �� 512

Summary��� 517

Table of ConTenTs

xii

Chapter 8: Semantic Analysis ��� 519

Semantic Analysis ��� 520

Exploring WordNet �� 521

Understanding Synsets �� 522

Analyzing Lexical Semantic Relationships �� 523

Word Sense Disambiguation ��� 533

Named Entity Recognition ��� 536

Building an NER Tagger from Scratch ��� 544

Building an End-to-End NER Tagger with Our Trained NER Model �� 554

Analyzing Semantic Representations ��� 558

Propositional Logic �� 558

First Order Logic �� 560

Summary��� 566

Chapter 9: Sentiment Analysis ��� 567

Problem Statement ��� 568

Setting Up Dependencies �� 569

Getting the Data �� 569

Text Preprocessing and Normalization �� 570

Unsupervised Lexicon-Based Models ��� 572

Bing Liu’s Lexicon �� 574

MPQA Subjectivity Lexicon �� 574

Pattern Lexicon �� 575

TextBlob Lexicon �� 575

AFINN Lexicon ��� 578

SentiWordNet Lexicon ��� 580

VADER Lexicon ��� 584

Classifying Sentiment with Supervised Learning ��� 587

Traditional Supervised Machine Learning Models �� 590

Newer Supervised Deep Learning Models �� 593

Advanced Supervised Deep Learning Models ��� 602

Table of ConTenTs

xiii

Analyzing Sentiment Causation �� 614

Interpreting Predictive Models �� 614

Analyzing Topic Models ��� 622

Summary��� 629

Chapter 10: The Promise of Deep Learning �� 631

Why Are We Crazy for Embeddings? ��� 633

Trends in Word-Embedding Models �� 635

Trends in Universal Sentence-Embedding Models �� 636

Understanding Our Text Classification Problem �� 642

Universal Sentence Embeddings in Action �� 643

Load Up Dependencies �� 643

Load and View the Dataset �� 644

Building Train, Validation, and Test Datasets ��� 645

Basic Text Wrangling ��� 645

Build Data Ingestion Functions �� 647

Build Deep Learning Model with Universal Sentence Encoder �� 648

Model Training ��� 649

Model Evaluation ��� 651

Bonus: Transfer Learning with Different Universal Sentence Embeddings ������������������������������� 652

Summary and Future Scope ��� 659

Index ��� 661

Table of ConTenTs

xv

About the Author

Dipanjan Sarkar is a Data Scientist at Red Hat, a published

author, and a consultant and trainer. He has consulted

and worked with several startups as well as Fortune 500

companies like Intel. He primarily works on leveraging

data science, advanced analytics, machine learning, and

deep learning to build large-scale intelligent systems. He

holds a master of technology degree with specializations

in data science and software engineering. He is also an

avid supporter of self-learning and massive open online

courses. He has recently ventured into the world of open source products to improve the

productivity of developers across the world.

Dipanjan has been an analytics practitioner for several years now, specializing in

machine learning, natural language processing, statistical methods, and deep learning.

Having a passion for data science and education, he also acts as an AI consultant and

mentor at various organizations like Springboard, where he helps people build their

skills on areas like data science and machine learning. He also acts as a key contributor

and editor for Towards Data Science, a leading online journal focusing on artificial

intelligence and data science. Dipanjan has also authored several books on R, Python,

machine learning, social media analytics, natural language processing, and deep

learning.

Dipanjan’s interests include learning about new technology, financial markets,

disruptive start-ups, data science, artificial intelligence, and deep learning. In his spare

time, he loves reading, gaming, watching popular sitcoms and football, and writing

interesting articles on https://medium.com/@dipanzan.sarkar and https://www.

linkedin.com/in/dipanzan. He is also a strong supporter of open source and publishes

his code and analyses from his books and articles on GitHub at https://github.com/

dipanjanS.

https://medium.com/@dipanzan.sarkar
https://www.linkedin.com/in/dipanzan
https://www.linkedin.com/in/dipanzan
https://github.com/dipanjanS
https://github.com/dipanjanS

xvii

About the Technical Reviewer

Santanu Pattanayak currently works at GE, Digital as a

Staff Data Scientist and is the author of the deep learning

book Pro Deep Learning with TensorFlow: A Mathematical

Approach to Advanced Artificial Intelligence in Python.

He has around 12 years of overall work experience with

eight of years of experience in the data analytics/data

science field. He also has a background in development

and database technologies. Prior to joining GE, Santanu

worked in companies such as RBS, Capgemini, and IBM.

He graduated with a degree in electrical engineering from

Jadavpur University, Kolkata and is an avid math enthusiast.

Santanu is currently pursuing a master’s degree in data science from Indian Institute of

Technology (IIT), Hyderabad. He also devotes his time to data science hackathons and

Kaggle competitions where he ranks within the top 500 across the globe. Santanu was

born and brought up in West Bengal, India and currently resides in Bangalore, India with

his wife.

xix

The power of text analytics and natural language processing is beginning to live up to its

promise, thanks to contemporary developments in machine learning.

If you have read Dipanjan Sarkar’s Text Analytics with Python: A Practical Real-World

Approach to Gaining Actionable Insights from your Data, then you probably already have

some sense that this is true. Released in 2016, this book has quickly become a staple in the

natural language processing community. Yet, in the world of technology, 2 years can seem

like a lifetime, and so welcome to the updated second edition of Text Analytics with Python!

While the core of the first edition’s original material has been preserved, there

are a number of updates and changes throughout. Of note, text classification and

sentiment analysis have been expanded to include both traditional machine learning

and deep learning models, important as neural networks become increasingly central in

approaches to natural language processing. Additionally, topic modeling, a collection of

techniques for abstract topic discovery, has been further developed to include a number

of complementary methods, and to leverage additional Python libraries.

There is also an entire new chapter on feature engineering – which plays an

especially central role in natural language processing and text data – where both

traditional and neural network-based methods are covered. In addition, as much as

deep learning is discussed in terms of natural language processing these days, there

is a palpable sense that it is only the beginning; to that end, an entire new chapter is

dedicated to the promise of deep learning for natural language processing.

Why Text Analytics with Python? Not only does this book cover the ideas and

intuitions behind various cutting-edge text analytics and natural language processing

tasks, it thoroughly presents practical approaches and Python code to cement these

ideas, in order for the reader to put them to use for themselves. Since Sarkar has already

proven the worth of his knowledge and instruction on text analytics, having a look at the

second edition, expanded and updated throughout, can be classified as a great idea.

—Matthew Mayo

Editor, KDnuggets

@mattmayo13

Foreword

xxi

Acknowledgments

This book would have definitely not been a reality without the help and support from

some excellent people and organizations that have helped us along this journey. First

and foremost, a big thank you to all our readers for not only reading our books but also

supporting us with valuable feedback and insights. Truly, I have learned a lot from all of

you and still continue to do so. You have helped us make the new edition of this book a

reality with your feedback! I would also like to acknowledge the entire team at Apress for

working tirelessly behind the scenes to create and publish quality content for everyone.

A big shout-out goes to the entire Python developer community, especially to

the developers of frameworks like NumPy, SciPy, Scikit-Learn, spaCy, NLTK, Pandas,

Gensim, Keras, TextBlob, and TensorFlow. Kudos to organizations like Anaconda, for

making the lives of data scientists easier and for fostering an amazing ecosystem around

data science, artificial intelligence, and natural language processing that has been

growing exponentially with time.

I also thank my friends, colleagues, teachers, managers, and well-wishers for

supporting me with excellent challenges, strong motivation, and good thoughts.

A lot of the content in this book wouldn’t have been possible without the help from

several people and some excellent resources. We would like to thank Christopher

Olah, for providing some excellent depictions and explanations for LSTM models

(http://colah.github.io); Pramit Choudhary, for helping us cover a lot of ground

in model interpretation with Skater; François Chollet, for creating Keras and writing

an excellent book on deep learning; Raghav Bali, who has co-authored several books

with me and helped me reframe a lot of the content from this book; Srdjan Santic, for

being an excellent spokesman of this book and giving me a lot of valuable feedback;

Matthew Mayo, for being so kind in gracing us with writing the foreword for this book

and publishing amazing content on KDnuggets; and my entire team at Towards Data

Science, Springboard, and Red Hat for helping me learn and grow every day. Also thanks

to industry experts, including Kirk Borne, Tarry Singh, Favio Vazquez, Dat Tran, Matt

Dancho, Kate Strachnyi, Kristen Kehrer, Kunal Jain, Sudalai Rajkumar, Beau Walker,

David Langer, Andreas Kretz and many others for helping me learn more everyday and

for keeping me motivated.

http://colah.github.io/

xxii

I would also like to acknowledge and express my gratitude to my parents, Digbijoy

and Sampa, my partner Durba, my pets, family, and well-wishers for their constant love,

support, and encouragement, which drives me to strive to achieve more. Finally, once

again I would like to thank the entire team at Apress, especially Welmoed Spahr, Aditee

Mirashi, Celestin John, our editors, and Santanu Pattanayak for being a part of this

wonderful journey.

—Dipanjan Sarkar

aCknowledgmenTs

xxiii

Introduction

Data is the new oil and unstructured data—especially text, images, and videos—contains

a wealth of information. However, due to the inherent complexity in processing and

analyzing this data, people often refrain from spending extra time and effort venturing

out from structured datasets to analyze these unstructured sources of data, which can

be a potential gold mine. Natural language processing (NLP) is all about leveraging

tools, techniques, and algorithms to process and understand natural language-based

data, which is usually unstructured like text, speech, and so on. In this book, we will be

looking at tried and tested strategies—techniques and workflows—that can be leveraged

by practitioners and data scientists to extract useful insights from text data.

Being specialized in domains like computer vision and natural language processing

is no longer a luxury but a necessity expected of any data scientist in today’s fast-paced

world! Text Analytics with Python is a practitioner’s guide to learning and applying

NLP techniques to extract actionable insights from noisy and unstructured text data.

This book helps its readers understand essential concepts in NLP along with extensive

case studies and hands-on examples to master state-of-the-art tools, techniques, and

frameworks for actually applying NLP to solve real-world problems. We leverage Python

3 and the latest and best state-of-the-art frameworks, including NLTK, Gensim, spaCy,

Scikit-Learn, TextBlob, Keras, and TensorFlow, to showcase the examples in the book.

You can find all the examples used in the book on GitHub at https://github.com/

dipanjanS/text-analytics-with-python.

In my journey in this field so far, I have struggled with various problems, faced

many challenges, and learned various lessons over time. This book contains a major

chunk of the knowledge I’ve gained in the world of text analytics and natural language

processing, where building a fancy word cloud from a bunch of text documents is not

enough anymore. Perhaps the biggest problem with regard to learning text analytics is

not a lack of information but too much information, often called information overload.

There are so many resources, documentation, papers, books, and journals containing

so much content that they often overwhelm someone new to the field. You might have

had questions like, “What is the right technique to solve a problem?,” “How does text

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

xxiv

summarization really work?,” and “Which frameworks are best for solving multi-class

text categorization?,” among many others! By combining mathematical and theoretical

concepts with practical implementations of real-world case studies using Python, this

book tries to address this problem and help readers avoid the pressing issues I’ve faced

in my journey so far.

This book follows a comprehensive and structured approach. First it tackles the

basics of natural language understanding and Python for handling text data in the initial

chapters. Once you’re familiar with the basics, we cover text processing, parsing, and

understanding. Then, we address interesting problems in text analytics in each of the

remaining chapters, including text classification, clustering and similarity analysis, text

summarization and topic models, semantic analysis and named entity recognition, and

sentiment analysis and model interpretation. The last chapter is an interesting chapter

on the recent advancements made in NLP thanks to deep learning and transfer learning

and we cover an example of text classification with universal sentence embeddings.

The idea of this book is to give you a flavor of the vast landscape of text analytics

and NLP and to arm you with the necessary tools, techniques, and knowledge to tackle

your own problems. I hope you find this book helpful and wish you the very best in your

journey through the world of text analytics and NLP!

InTroduCTIon

1
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_1

CHAPTER 1

Natural Language
Processing Basics
We have ushered in the age of Big Data, where organizations and businesses are

having difficulty managing all the data generated by various systems, processes, and

transactions. However, the term Big Data is misused a lot due to the vague definition

of the 3Vs of data—volume, variety, and velocity. It is sometimes difficult to quantify

what data is “big”. Some might think a billion records in a database is “Big Data,”

but that number seems small compared to the petabytes of data being generated by

various sensors or by social media. One common characteristic is the large volume of

unstructured textual data that’s present across all organizations, irrespective of their

domain. As an example, we have vast amounts of data in the form of tweets, status

messages, hash tags, articles, blogs, wikis, and much more on social media. Even retail

and ecommerce stores generate a lot of textual data, from new product information and

metadata to customer reviews and feedback.

The main challenges associated with textual data are two-fold. The first challenge

deals with effective storage and management of this data. Textual data is usually

unstructured and does not adhere to any specific predefined data model or schema

followed by relational databases. However, based on the data semantics, you can

store it in SQL-based database management systems like SQL Server and MySQL, in

NoSQL- based systems like MongoDB and CouchDB, and more recently in information

retrieval- based data stores like ElasticSearch and Solr.

Organizations with enormous amounts of textual datasets often resort to warehouses

and file-based systems like Hadoop, where they dump all the data in the Hadoop

Distributed File System (HDFS) and access it as needed. This is one of the main

principles of a data lake.

2

The second challenge is with regard to analyzing this data and trying to extract

meaningful patterns and actionable insights from it. Even though we have a large

number of machine learning and data analysis techniques at our disposal, the majority

of them are tuned to work with numerical data. Hence, we have to resort to natural

language processing and specialized techniques and transformations and models to

analyze text data or more specifically natural language. This is quite different from

structured data and normal programming languages, which are easily understood by

machines. Remember that textual data is highly unstructured, so it does not adhere to

structured or regular syntax and patterns. Hence, we cannot directly use statistical or

machine learning models to analyze such data.

Unstructured data—especially text, images, and videos—contain a wealth of

information. However, due to the inherent complexity in processing and analyzing this

data, people often refrain from venturing out from structured datasets to analyze these

unstructured sources of data, which can be a potential gold mine. Natural language

processing (NLP) is all about leveraging tools, techniques, and algorithms to process

and understand natural language-based data, which is usually unstructured (like

text, speech, and so on). We cover essential concepts and techniques around NLP in

this book. However, before we dive into specific techniques or algorithms to analyze

textual data, we cover some of the core concepts and principles associated with natural

language and unstructured text. The primary intent of this is to familiarize you with

concepts and domains associated with natural language processing and text analytics.

We use the Python programming language in this book primarily for accessing and

analyzing textual data. Being a revised edition, we focus on Python 3.x and the latest

state-of-the-art open source frameworks for our analyses. The examples in this chapter

will be pretty straightforward and fairly easy to follow. However, you can quickly skim

over Chapter 2, “Python for Natural Language Processing” if you want to get a head start

on Python, essential frameworks, and constructs before going through this chapter.

In this chapter, we cover concepts relevant to natural language, linguistics, text data

formats, syntax, semantics, and grammar (all of which are major components of NLP

itself) before moving on to more advanced topics like text corpora, natural language

processing, deep learning, and text analytics. All the code examples showcased in this

chapter are available on the book’s official GitHub repository, which you can access at

 https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-

Second- Edition.

Chapter 1 Natural laNguage proCessiNg BasiCs

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

3

 Natural Language
Textual data is unstructured data but it usually belongs to a specific language following

specific syntax and semantics. All text data, such as a simple word, sentence, or a

document, relates back to some natural language. In this section, we look at the

definition of natural language, the philosophy of language, language acquisition, and the

use of language.

 What Is Natural Language?
To understand text analytics and natural language processing, we need to understand

what makes a language “natural”. In simple terms, a natural language is a language

developed and evolved by humans through natural use and communication rather

than constructing and creating the language artificially, like a computer programming

language.

Various human languages, such as English, Japanese, or Sanskrit, can be called

natural languages. Natural languages can be communicated in different ways, including

speech, writing, or even using signs. There has been a lot of interest in trying to

understand the origins, nature, and philosophy of language. We discuss this briefly in the

following section.

 The Philosophy of Language
We now know what a natural language is. But think about the following questions. What

are the origins of a language? What makes the English language “English”? How did the

meaning of the word “fruit” come into existence? How do humans communicate using

language? These are definitely some heavy philosophical questions.

We now look at the philosophy of language, which mainly deals with the following

four problems.

• The nature of meaning in a language

• The use of language

• Language cognition

• The relationship between language and reality

Chapter 1 Natural laNguage proCessiNg BasiCs

4

The nature of meaning in a language is concerned with the semantics of a language

and the nature of meaning itself. Here, philosophers of language or linguistics try to

find out what it means to actually “mean” anything, i.e., how the meaning of any word

or sentence came into being and how different words in a language can be synonyms of

each other and form relations. Another thing of importance here is how structure and

syntax in the language paved the way for semantics or, to be more specific, how words

that have their own meaning are structured together to form meaningful sentences.

Linguistics is the scientific study of language, a special field that deals with some of these

problems.

Syntax, semantics, grammar, and parse trees are some ways to solve these problems.

The nature of meaning can be expressed in linguistics between two human beings,

notably a sender and a receiver. From a non-linguistic standpoint, things like body

language, prior experiences, and psychological effects are contributors to the meaning of

language, where each human being perceives or infers meaning in their own way, taking

into account some of these factors.

The use of language is more concerned with how language is used as an entity in

various scenarios and communication between human beings. This includes analyzing

speech and the usage of language when speaking, including the speaker’s intent, tone,

content, and actions involved in expressing a message. This is often called a “speech

act” in linguistics. More advanced concepts like language creation and human cognitive

activities like language acquisition—which study the learning and usage of languages—

are also of prime interest.

Language cognition specifically focuses on how the cognitive functions of the human

brain are responsible for understanding and interpreting language. Considering the

example of a typical sender and receiver, there are many actions involved, from message

communication to interpretation. Cognition tries to find out how the mind combines

and relates specific words into sentences and then into a meaningful message and what

is the relation of language is to the thought process of the sender and receiver when they

use the language to communicate messages.

The relationship between language and reality explores the extent of truth of

expressions originating from language. Language philosophers try to measure how

factual these expressions are and how they relate to certain affairs in our world which are

true. This relationship can be expressed in several ways and we explore some of them.

One of the most popular models is the “triangle of reference,” which is used to

explain how words convey meaning and ideas in the minds of the receiver and how

Chapter 1 Natural laNguage proCessiNg BasiCs

5

that meaning relates back to a real-world entity or fact. The triangle of reference was

proposed by Charles Ogden and Ivor Richards in their book, The Meaning of Meaning,

and is denoted in Figure 1-1.

Figure 1-1. The triangle of reference model

The triangle of reference model is also known as the meaning of meaning model.

Figure 1-1 shows a real example of a couch being perceived by a person. A symbol is

denoted as a linguistic symbol like a word or an object that evokes thought in a person’s

mind. In this case, the symbol is the couch and this evokes thoughts like what is a couch,

a piece of furniture that can be used for sitting on or lying down and relaxing, something

that gives us comfort. These thoughts are known as a reference and through this

reference, the person is able to relate it to something that exists in the real world, which

is called a referent. In this case, the referent is the couch that the person perceives to be

present in front of him.

The second way to determine relationships between language and reality is known

as the “direction of fit” and we talk about two main directions here. The “word-to-world”

direction of fit talks about instances, where the usage of language can reflect reality. This

Chapter 1 Natural laNguage proCessiNg BasiCs

6

indicates using words to match or relate to something that’s happening or has already

happened in the real world. An example would be the sentence, “The Eiffel Tower is

really big,” which accentuates a fact in reality. The other direction of fit is known as

“world-to-word” and talks about instances where the usage of language can change

reality. An example here would be the sentence, “I am going to take a swim,” where you

are changing reality by taking a swim and are representing this fact in the sentence you

are communicating. Figure 1-2 shows the relationship between both directions of fits.

Based on the referent that is perceived from the real world, a person can form a

representation in the form of a symbol or word and consequently can communicate

the same to another person. This forms a representation of the real world based on the

received symbol, thus forming a cycle.

 Language Acquisition and Usage
By now, we have seen what natural languages mean and the concepts behind language,

its nature, meaning. and use. In this section, we talk in further detail about how language

is perceived, understood, and learned using cognitive abilities by humans. Finally, we

end our discussion with the main forms of language usage that we discussed previously

in brief, as speech acts. It is important to not only understand what natural language

denotes but also how humans interpret, learn, and use language. This helps us emulate

some of these concepts programmatically in our algorithms and techniques when we try

Intended

World-to-Word direction of fit

World-to-Word direction of fit

encoded
decoded

Human
thought

Human
thought

WORLD
(Referent)

WORD
(Symbol)

extended

Figure 1-2. The direction of fit representation

Chapter 1 Natural laNguage proCessiNg BasiCs

7

to extract insights from textual data. A lot of you might have seen recent advancements

based on these principles, including deep learning, sequence modeling, generative

models, and cognitive computing.

 Language Acquisition and Cognitive Learning

Language acquisition is defined as the process by which human beings utilize their

cognitive abilities, knowledge, and experience to understand language based on hearing

and perception. This enables them to start using it in terms of words, phrases, and

sentences to communicate with other human beings. In simple terms, the ability of

acquiring and producing languages is termed language acquisition.

The history of language acquisition dates back centuries, when philosophers and

scholars tried to reason and understand the origins of language acquisition and came

up with several theories, like it being a god-gifted ability being passed down from

generation to generation. There were also scholars like Plato who indicated that a form

of word-meaning mapping would have been responsible for language acquisition.

Modern theories were proposed by various scholars and philosophers and some of the

popular ones, most notably Burrhus Skinner, indicated that knowledge, learning, and

use of language were more behavioral in nature

Symbols in any language are based on certain stimuli and are reinforced in young

children’s memories, based on repeated reactions to their usage. This theory is based on

operant or instrumentation conditioning, which is a type of conditional learning where

the strength of a particular behavior or action is modified based on its consequences like

reward or punishment and these consequent stimuli help reinforce or control behavior

and learning.

An example would be that a child would learn that a specific combination of sounds

made up a word from repeated usage of it by his/her parents or being rewarded by

appreciation when he/she speaks it correctly or being corrected when he/she makes a

mistake when speaking the same. This repeated conditioning ends up reinforcing the

actual meaning and understanding of the word in the child’s memory. To sum it up,

children try to learn and use language mostly behaviorally, by hearing and imitating adults.

However, this behavioral theory was challenged by renowned linguist Noam

Chomsky, who proclaimed that it would be impossible for children to learn language just

by imitating everything from adults. This hypothesis is valid in the following examples.

While words like “go” and “give” are valid, children often end up using an invalid form of

the word like “goed” or “gived” instead of “went” or “gave” in the past tense.

Chapter 1 Natural laNguage proCessiNg BasiCs

8

We know that their parents didn’t utter these words in front of them, so it would be

impossible to pick these up based on the previous theory of Skinner. Consequently,

Chomsky proposed that children must not only be imitating words they hear, but also

are extracting patterns, syntax, and rules from the same language constructs, and this

process is separate from just utilizing generic cognitive abilities based on behavior.

Considering Chomsky’s view, cognitive abilities along with language specific knowledge

and abilities like syntax, semantics, parts of speech, and grammar form what he termed

a “language acquisition device”. This enabled humans to have the ability of “language

acquisition”. Besides cognitive abilities, what is unique and important in language learning

is the syntax of the language itself, which can be emphasized in his famous sentence,

“Colorless green ideas sleep furiously”. The sentence does not make sense because colorless

cannot be associated with green and neither can ideas be associated with green nor can

they sleep furiously. However, the sentence is grammatically correct.

This is precisely what Chomsky tried to explain, that syntax and grammar depicts

information that is independent from the meaning and semantics of words. Hence, he

proposed that learning and identifying language syntax is a separate human capability

compared to other cognitive abilities. This proposed hypothesis is also known as the

“autonomy of syntax”. Of course, these theories are still widely debated among scholars

and linguists, but it is useful to consider how the human mind tends to acquire and learn

language. We now look at the typical patterns in which language is generally used.

 Language Usage

In the previous section, we discussed speech acts and how the direction-of-fit model

is used for relating words and symbols to reality. In this section, we cover some

concepts related to speech acts that highlight different ways in which language is used

in communication. There are mainly three categories of speech acts. These include

locutionary, illocutionary, and perlocutionary acts.

• Locutionary acts are mainly concerned with the actual delivery of the

sentence when communicated from one human being to another by

speaking it.

• Illocutionary acts focus on the actual semantics and significance of

the sentence that was communicated.

• Perlocutionary acts refer to the effect the communication had on its

receiver, which is more psychological or behavioral.

Chapter 1 Natural laNguage proCessiNg BasiCs

9

A simple example would be the phrase, “Get me the book from the table” spoken by

a father to his child. The phrase when spoken by the father forms the locutionary act.

This significance of this sentence is a directive that tells the child to get the book from the

table and forms an illocutionary act. The action the child takes after hearing this, i.e. if

he brings the book from the table to his father, forms the perlocutionary act. We did talk

about the illocutionary act being a directive in this case. According to the philosopher

John Searle, there are a total of five classes of illocutionary speech acts:

• Assertives

• Directives

• Commissives

• Expressives

• Declarations

Assertives are speech acts that communicate how things are already existent in the

world. They are spoken by the sender when he tried to assert a proposition that can be

true or false in the real world. These assertions could be statements or declarations. A

simple example would be “The Earth revolves round the Sun”. These messages represent

the word-to-world direction of fit, which we discussed earlier.

Directives are speech acts that the sender communicates to the receiver, asking or

directing him/her to do something. This represents a voluntary act that the receiver

might do in the future after receiving a directive from the sender. Directives can either be

complied with or not complied with. These directives could be simple requests or even

orders or commands. An example directive would be, “Get me the book from the table,”

which we discussed in detail when we talked about types of speech acts.

Commissives are speech acts that commit the sender or speaker who utters the

sentence to some future voluntary act or action. Acts like promises, oaths, pledges, and

vows represent commissives and the direction of fit could be either way. An example

commissive would be, “I promise to be there tomorrow for the ceremony”.

Expressives reveal the speaker or sender’s disposition and outlook toward a

particular proposition, which he/she communicates through the message. These could

be various forms of expression or emotion like congratulatory, sarcastic, and so on. An

example expressive would be, “Congratulations on graduating top of the class!”.

Chapter 1 Natural laNguage proCessiNg BasiCs

10

Declarations are powerful speech acts since they have the capability to change

the reality based on the declared proposition of the message communicated by the

speaker/sender. The usual direction of fit is world-to-word, but it can go the other way

also. An example declaration would be, “I hereby declare him to be guilty of all charges”.

These speech acts are the primary ways in which language is used and

communicated among human beings. Without even realizing it, you end up using

hundreds of these on any given day. We now look at linguistics and some of the main

areas of research associated with it.

 Linguistics
We have seen what natural language means, how language is learned and used, and

the origins of language acquisition. In fact, a lot of these things are actually formally

researched and studied in linguistics by researchers and scholars called linguists.

Formally, linguistics is defined as the scientific study of language, including the form and

syntax of language, the meaning and semantics depicted by the usage of language, and

the context of use. The origins of linguistics can be dated back to the 4th century BCE,

when Indian scholar and linguist Panini formalized the Sanskrit language description.

The term linguistics was first defined to indicate the scientific study of languages in 1847

approximately before which the term philology was used to indicate the same. While

a detailed exploration of linguistics is not needed for text analytics, it is useful to know

the different areas of linguistics because some of them are used extensively in natural

language processing and text analytics algorithms. The main distinctive areas of study

under linguistics are mentioned next.

• Phonetics: This is the study of the acoustic properties of sounds

produced by the human vocal tract during a speech. This includes

studying the sound properties of how they are created as well as

perceived by human beings. The smallest individual unit of human

speech is termed a phoneme, which is usually distinctive to a specific

language as opposed to a more generic term, called a phone.

Chapter 1 Natural laNguage proCessiNg BasiCs

11

• Phonology: This is the study of sound patterns as interpreted in

the human mind and used for distinguishing between different

phonemes. The structure, combination, and interpretations of

phonemes are studied in detail, usually by taking into account a

specific language at a time. The English language consists of around

45 phonemes. Phonology usually extends beyond just studying

phonemes and includes things like accents, tone, and syllable

structures.

• Syntax: This is usually the study of sentences, phrases, words, and

their structures. This includes researching how words are combined

grammatically to form phrases and sentences. Syntactic order of

words used in a phrase or a sentence matter since the order can

change the meaning entirely.

• Semantics: This involves the study of meaning in language and can

be further subdivided into lexical and compositional semantics.

• Lexical semantics: This involves the study of the meanings of

words and symbols using morphology and syntax.

• Compositional semantics: This involves studying relationships

among words and combination of words and understanding the

meaning of phrases and sentences and how they are related.

• Morphology: By definition, a morpheme is the smallest unit of

language that has distinctive meaning. This includes things like

words, prefixes, suffixes, and so on, which have their own distinct

meaning. Morphology is the study of the structure and meaning of

these distinctive units or morphemes in a language. There are specific

rules and syntaxes that govern the way morphemes can combine.

• Lexicon: This is the study of properties of words and phrases used

in a language and how they build the vocabulary of the language.

These include what kinds of sounds are associated with meanings for

words, as well as the parts of speech that words belong to and their

morphological forms.

Chapter 1 Natural laNguage proCessiNg BasiCs

12

• Pragmatics: This is the study of how linguistic and non-linguistic

factors like context and scenario might affect the meaning of an

expression of a message or an utterance. This includes trying to infer

if there are any hidden or indirect meanings in communication.

• Discourse analysis: This analyzes language and exchange of

information in the form of sentences across conversations among

human beings. These conversations could be spoken, written, or even

signed.

• Stylistics: This is the study of language with a focus on the style of

writing including the tone, accent, dialogue, grammar, and type of

voice.

• Semiotics: This is the study of signs, symbols, and sign processes and

how they communicate meaning. Things like analogies, metaphors,

and symbolism are covered in this area.

While these are the main areas of study and research, linguistics is an enormous

field and has a much bigger scope than what is mentioned here. However, things like

language syntax and semantics are some of the most important concepts and often

form the foundations of natural language processing (NLP). Hence, we look at them in

more detail in the following section. We showcase some of the concepts with hands-

on examples for better understanding. You can also check out the Jupyter notebook

for Chapter 1 in my GitHub repository at https://github.com/dipanjanS/text-

analytics- with-python/tree/master/New-Second-Edition if you want to follow along

and run the examples yourself. Load the following dependencies in your own Python

environment to get started. Detailed instructions to install and set up Python and

specific frameworks are covered in Chapter 2.

import nltk

import spacy

import numpy as np

import pandas as pd

following line is optional for custom vocabulary installation

you can use nlp = spacy.load('en')

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

Chapter 1 Natural laNguage proCessiNg BasiCs

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

13

 Language Syntax and Structure
We already know what language syntax and structure indicate. Syntax and structure

usually go hand in hand where a set of specific rules, conventions, and principles govern

the way words are combined into phrases. Phrases are combined into clauses and

clauses are combined into sentences. We talk specifically about the English language

syntax and structure in this section, since in this book we deal with textual data that

belongs to the English language. However, a lot of these concepts can be extended to

other languages too. Knowledge about the structure and syntax of language is helpful in

many areas, like text processing, annotation, and parsing for further operations like text

classification or summarization.

In English, words combine to form other constituent units. These constituents

include words, phrases, clauses, and sentences. All these constituents exist together

in any message and are related to each other in a hierarchical structure. Moreover, a

sentence is a structured format representing a collection of words provided they follow

certain syntactic rules like grammar. Let’s take a sample sentence, “The brown fox is

quick and he is jumping over the lazy dog”. The following snippet shows us how the

sentence looks in Python.

sentence = "The brown fox is quick and he is jumping over the lazy dog"

sentence

'The brown fox is quick and he is jumping over the lazy dog'

The grammar and ordering of words definitely gives meaning to a sentence. What if

we jumbled up the words? Would the sentence still make sense?

words = sentence.split()

np.random.shuffle(words)

print(words)

['quick', 'is', 'fox', 'brown', 'The', 'and', 'the', 'is', 'he', 'dog',

'lazy', 'jumping', 'over']

This unordered bunch of words, as represented in Figure 1-3, is definitely hard to

make sense of, isn’t it?

Chapter 1 Natural laNguage proCessiNg BasiCs

14

From the collection of words in Figure 1-3, it is very difficult to ascertain what it

might be trying to convey. Indeed, languages are not just comprised of a bag or bunch of

unstructured words. Sentences with proper syntax not only help us give proper structure

and relate words, but also help the words convey meaning based on order or position.

Considering our previous hierarchy of sentence → clause → phrase → word, we can

construct the hierarchical sentence tree shown in Figure 1-4 using shallow parsing, a

technique often used for determining the constituents in a sentence.

From the hierarchical tree in Figure 1-4, we get the following sentence, “The brown

fox is quick and he is jumping over the lazy dog” with a sentence of structure and

meaning. We can see that the leaf nodes of the tree consist of words, which are the

smallest unit here, and combinations of words form phrases, which in turn form clauses.

Clauses are connected through various filler terms or words like conjunctions and they

form the final sentence. In the following section, we look at each of these constituents

in further detail and learn how to analyze them and determine the major syntactic

categories.

dog the over he

lazy jumping is the fox

and is quick brown

Figure 1-3. A collection of words without any relation or structure

Sentence

Clause

Phrase Phrase Phrase Conjunction Phrase Phrase Phrase Phrase

Clause

Word Word Word Word Word Word Word Word Word Word Word WordWord

The brown fox is quick and he is jumping over the lazy dog

Figure 1-4. Structured sentence following the hierarchical syntax

Chapter 1 Natural laNguage proCessiNg BasiCs

15

 Words
Words are the smallest unit in a language; they are independent and have a meaning

of their own. Although morphemes are the smallest distinctive units, they are not

independent like words. A word can be comprised of several morphemes. It is useful to

annotate and tag words and then analyze them into their parts of speech (POS) to see

the major syntactic categories. Here, we cover the main categories and significance of

the various POS tags; however, we examine them in further detail and look at methods

to generate POS tags programmatically in Chapter 3. Words typically fall into one of the

following major categories:

• N(oun): This usually denotes words that depict some object or entity

that could be living or non-living. Some examples are fox, dog, book,

and so on. The POS tag symbol for nouns is N.

• V(erb): Verbs are words that are used to describe certain actions,

states, or occurrences. There are a wide variety of further sub-

categories like auxiliary, reflexive, transitive, and many more. Some

typical examples of verbs are running, jumping, read, and write. The

POS tag symbol for verbs is V.

• Adj(ective): Adjectives are words that describe or qualify other

words, typically nouns and noun phrases. The phrase “beautiful

flower” has the noun (N) “flower,” which is described or qualified

using the adjective (ADJ) “beautiful”. The POS tag symbol for

adjectives is ADJ.

• Adv(erb): Adverbs usually act as modifiers for other words including

nouns, adjectives, verbs, or other adverbs. The phrase “very beautiful

flower” has the adverb (ADV) “very,” which modifies the adjective

(ADJ) “beautiful” indicating the degree of how beautiful the flower is.

The POS tag symbol for adverbs is ADV.

Besides these four major categories of parts of speech, there are other categories

that occur frequently in the English language. These include pronouns, prepositions,

interjections, conjunctions, determiners, and many others. Each POS tag, like nouns

(N) can be further sub-divided into various categories, like singular nouns (NN), singular

proper nouns (NNP), and plural nouns (NNS). We look at POS tags in further detail in

Chapter 3 when we process and parse textual data and implement POS taggers to

Chapter 1 Natural laNguage proCessiNg BasiCs

16

annotate text. Considering our previous example sentence, “The brown fox is quick and

he is jumping over the lazy dog,” we can leverage NLTK or spaCy in Python to annotate it

with POS tags. See Figure 1-5.

pos_tags = nltk.pos_tag(sentence.split())

pd.DataFrame(pos_tags).T

We talk about the meaning of each POS tag in detail in Chapter 3. But you can still

leverage spaCy to understand the high-level semantics of each tag annotation. See

Figure 1-6.

spacy_pos_tagged = [(word, word.tag_, word.pos_) for word in nlp(sentence)]

pd.DataFrame(spacy_pos_tagged).T

Figure 1-5. Annotated words with their parts of speech tags using NLTK

Figure 1-6. Annotated words with their parts of speech tags using spaCy

It is interesting to see that, based on the output depicted in Figure 1-6, the tag

annotations match in both frameworks. Internally, they use the Penn Treebank notation

for POS tag annotation. Tying this back to our discussion, a simple annotation of our

sentence using basic POS tags would look as depicted in Figure 1-7.

DET DETADJ ADJADJ ADVCONJ PRONN NV V V

The brown fox is quick and he is jumping over the lazy dog

Figure 1-7. Annotated words with their parts of speech tags

Chapter 1 Natural laNguage proCessiNg BasiCs

17

From this example, you might see a few unknown tags. The tag DET stands for

determiner, which is used to depict articles like a, an, the, etc. The tag CONJ indicates a

conjunction, which usually bind together clauses to form sentences, and the PRON tag

stands for pronoun, which are words that represent or take the place of a noun. The N,

V, ADJ, and ADV tags are typical open classes and represent words belonging to an open

vocabulary. Open classes are word classes that consist of an infinite set of words and

commonly accept the addition of new words to the vocabulary. Words are usually added

to open classes through processes like morphological derivation, invention based on

usage, and creating compound lexemes. Some popular nouns that have been added

include “internet” and “multimedia”. Closed classes consist of a closed and finite set

of words and they do not accept new additions. Pronouns are a closed class. In the

following section, we look at the next level of the hierarchy, phrases.

 Phrases
Words have their own lexical properties like parts of speech, which we saw earlier. Using

these words, we can order them in ways that give meaning to the words such that each

word belongs to a corresponding phrasal category and one of the words is the main

or head word. In the hierarchy tree, groups of words make up phrases, which form the

third level in the syntax tree. By principle, phrases are assumed to have at least two or

more words considering the pecking order of words ⟵ phrases ⟵ clauses ⟵ symbols.

However, a phrase can be a single word or a combination of words based on the syntax

and position of the phrase in a clause or sentence. For example, the sentence, “Dessert

was good” has only three words and each of them roll up to three phrases. The word

“dessert” is a noun as well as a noun phrase, “is” depicts a verb as well as a verb phrase,

and “good” represents an adjective as well as an adjective phrase describing the

aforementioned dessert. There are five major categories of phrases, described next:

• Noun phrase (NP): These are phrases where a noun acts as the head

word. Noun phrases act as a subject or object to a verb. Noun phrases

can be a set of words that can be replaced by a pronoun without

rendering the sentence or clause syntactically incorrect. Some

examples are “dessert”, “the lazy dog”, and “the brown fox”.

Chapter 1 Natural laNguage proCessiNg BasiCs

18

• Verb phrase (VP): These phrases are lexical units that have a verb

acting as the head word. Usually there are two forms of verb phrases,

one form has the verb components as well as other entities like

nouns adjectives or adverbs that are a part of the object. The verb

here is known as a finite verb. It acts as a single unit in the hierarchy

tree and can function as the root in a clause. This form is prominent

in constituency grammars. The other form is where the finite verb

acts as the root of the entire clause and is prominent in dependency

grammars. Another derivation of this includes verb phrases strictly

consisting of verb components, including main, auxiliary, infinitive,

and participles. The following sentence, “He has started the engine”

can be used to illustrate the two types of verb phrases. They would

be ”has started the engine” and “has started” based on the two forms

discussed.

• Adjective phrase (ADJP): These are phrases whose head word is

an adjective. Their main role is to describe or qualify nouns and

pronouns in a sentence and they will be placed before or after

the noun or pronoun. The sentence, “The cat is too quick” has an

adjective phrase, “too quick” qualifying the cat, which is a noun

phrase.

• Adverb phrase (ADVP): These phrases act like an adverb since the

adverb acts as the head word in the phrase. Adverb phrases are used

as modifiers for nouns, verbs, or adverbs by providing further details

to describe or qualify them. Considering the sentence, “The train

should be at the station pretty soon”, the adjective phrase is “pretty

soon” since it describes when the train will be arriving.

• Prepositional phrase (PP): These phrases usually contain a

preposition as the head word and other lexical components like

nouns, pronouns, etc. They act like an adjective or adverb describing

other words or phrases. The sentence “Going up the stairs” has a

prepositional phrase, “up” describing the direction of the stairs.

These five major syntactic categories of phrases can be generated from words using

several rules, some of which we discussed, like utilizing syntax and grammar of different

types. We explore some of the popular grammars in a later section. Shallow parsing is

Chapter 1 Natural laNguage proCessiNg BasiCs

19

a popular natural language processing technique used to extract these constituents,

including POS tags as well as phrases from a sentence. For our sentence, “The brown fox

is quick and he is jumping over the lazy dog,” one way of representing it using shallow

parsing is to have seven phrases, as depicted in Figure 1-8.

The phrase tags fall into the categories we discussed earlier; however the word

“and” is a conjunction and is used to combine clauses. Is there a better way to do this?

Probably! You can define your own rules for phrases and then enable shallow parsing or

chunking using a lookup based parser similar to NLTK’s RegexpParser. It’s a grammar

based chunk parser and uses a set of regular expression patterns (defined grammar

rules) to specify the behavior of the parser. The following code shows it in action for our

sentence! See Figure 1-9 too.

grammar = '''

 NP: {<DT>?<JJ>?<NN.*>}

 ADJP: {<JJ>}

 ADVP: {<RB.*>}

 PP: {<IN>}

 VP: {<MD>?<VB.*>+}

 '''

pos_tagged_sent = nltk.pos_tag(sentence.split())

rp = nltk.RegexpParser(grammar)

shallow_parsed_sent = rp.parse(pos_tagged_sent)

print(shallow_parsed_sent)

(S

 (NP The/DT brown/JJ fox/NN)

 (VP is/VBZ)

 (ADJP quick/JJ)

 and/CC

NP VP ADJP - NP VP PP NP

The brown fox is quick and he is jumping over the lazy dog

Figure 1-8. Annotated phrases with their tags in shallow parsing

Chapter 1 Natural laNguage proCessiNg BasiCs

20

 he/PRP

 (VP is/VBZ jumping/VBG)

 (PP over/IN)

 (NP the/DT lazy/JJ dog/NN))

visualize shallow parse tree

shallow_parsed_sent

Based on the output in Figure 1-9, we can see the power of a simple rule-based

chunker in identifying major phrases and sentence structure. In the following section,

we look at clauses, their main categories, and some conventions and syntactic rules for

extracting clauses from sentences.

 Clauses
By nature, clauses can act as independent sentences or several clauses can be combined

together to form a sentence. Clauses are groups of words with some relation between

them and they usually contain a subject and a predicate. Sometimes the subject may not

be present and the predicate has a verb phrase or a verb with an object. By default you

can classify clauses into two distinct categories, the main clause and the subordinate

clause. The main clause is also known as an independent clause because it can form a

sentence by itself and act as both a sentence and a clause. The subordinate or dependent

clause cannot exist by itself; it depends on the main clause for its meaning. They are

usually with other clauses using dependent words like subordinating conjunctions.

Since we are talking a lot about syntactic properties of language, clauses can be

subdivided into several categories based on syntax. They are explained in detail as follows.

• Declarative: These clauses occur quite frequently and denote

statements that do not have a specific tone associated with them.

These are just standard statements that are declared with a neutral

tone and could be factual or non-factual. An example would be,

“Grass is green”.

NP

brown JJ fox NN is VBZ is VBZ jumping VBG

VP PP NP

over IN the DT lazy JJ dog NNquick JJ

VP ADJP and CC he PRP

S

The DT

Figure 1-9. Annotated phrases with their tags in shallow parsing using NLTK

Chapter 1 Natural laNguage proCessiNg BasiCs

21

• Imperative: These clauses are usually in the form of a request,

command, rule, or advice. The tone in this case is a person issuing an

order to one or more people to carry out an order, request, or even an

instruction. An example would be, “Please do not talk in class”.

• Relative: The simplest interpretation of relative clauses is that they

are subordinate clauses and hence dependent on another part of the

sentence, which usually contains a word, phrase, or even a clause.

This element usually acts as the antecedent to one of the words from

the relative clause and relates to it. A simple example would be the

following sentence, “John just mentioned that he wanted a soda”. The

antecedent is the proper noun, “John” which was referred to in the

relative clause, “he wanted a soda”.

• Interrogative: These clauses are typically in the form of questions.

The type of these questions can be either affirmative or negative.

Some example would be, “Did you get my mail?” and “Didn’t you go

to school?”

• Exclamative: These clauses are used to express shock, surprise, or

even compliments. All these expressions fall under exclamations and

these clauses often end with an exclamation mark. An example is

“What an amazing race!”

Most clauses are expressed in one of these syntactic forms; however, this list of

clause categories is not exhaustive and can be further categorized into several other

forms. Considering our example sentence, “The brown fox is quick and he is jumping

over the lazy dog,” if you remember the syntax tree, the coordinating conjunction (and)

divides the sentence into two clauses. They are “The brown fox is quick” and “he is

jumping over the lazy dog”. Can you guess what categories they might fall into? (Hint:

Look back at the definitions of declarative and relative clauses.)

 Grammar
Grammar helps enable syntax and structure in language. It primarily consists of a set

of rules that are used to determine how to position words, phrases, and clauses when

constructing sentences in a natural language. Grammar is not restricted to the written

word but is also used verbally. These rules can be specific to a region, language, or

Chapter 1 Natural laNguage proCessiNg BasiCs

22

dialect, or be somewhat universal like the Subject-Verb-Object (SVO) model. Origins

of grammar have a rich history, starting with Sanskrit in India. In the West, the study

of grammar originated with the Greeks and the earliest work was the Art of Grammar,

written by Dionysius Thrax. Latin grammar models were developed from the Greek

models and gradually across several ages, grammar models for various languages started

being created. It was only in the 18th Century that grammar was considered a serious

candidate for being a field under linguistics.

Grammar was developed over the course of time and has kept evolving leading to the

birth of newer types of grammar. Hence, grammar is not a fixed set of rules but evolves

based on language use over the course of time. Considering the English language as

before, there are several ways that grammar can be classified. We first talk about two

broad classes into which most of the popular grammatical frameworks can be grouped

and then we further explore how these grammar frameworks represent language.

Grammar can be subdivided into two main classes based on its representations for

linguistic syntax and structure. They are as follows:

• Dependency grammar

• Constituency grammar

 Dependency Grammar

This is a class of grammar that specifically does not focus on constituents (unlike

constituency grammars) like words, phrases, and clauses, but gives more emphasis

on words. Hence these grammar types are also known as word-based grammars. To

understand dependency grammar, we should first know what dependency means in this

context. Dependencies in this context are labeled word-word relations or links that are

usually asymmetrical. A word has a relation or depends on another word based on the

positioning of the words in the sentence. Consequently, dependency grammars assume

that further constituents of phrases and clauses are derived from this dependency

structure between words. The basic principle behind dependency grammar is that in any

sentence in the language, all the words except one has some relationship or dependency

on other words in the sentence. The word that has no dependency is termed the root

of the sentence. The verb is taken as the root of the sentence in most cases. All the

other words are directly or indirectly linked to the root verb using links, which are the

dependencies. While there are no concepts of phrases or clauses, looking at the syntax

Chapter 1 Natural laNguage proCessiNg BasiCs

23

and relations between words and their dependents, one can determine the necessary

constituents in the sentence.

Dependency grammars always have a one-to-one relationship to each word

in the sentence. There are two aspects to this grammar representation. One is the

syntax or structure of the sentence and the other is the semantics obtained from the

relationships denoted between the words. The syntax or structure of the words and their

interconnections can be shown using a sentence syntax or parse tree, similar to what we

depicted in an earlier section. Considering our sentence, “The brown fox is quick and he

is jumping over the lazy dog,” if we would want to draw the dependency syntax tree for

this, we would have the structure shown in Figure 1-10.

Figure 1-10 shows us that the dependencies form a tree or, to be more accurate, a

graph over all the words in the sentence. The graph is connected where each word has at

least one directed edge going out or coming into it. The graph is also directed since each

edge between two words points in one specific direction. Hence, the dependency tree

is a directed acyclic graph (DAG). Every node in the tree has at most one incoming edge

except the root node. Since this is a directed graph, by nature, dependency trees do not

fox (N)

dog (N)

the (DET) lazy (ADJ)

The (DET) brown (ADJ) he (PRON) over (ADV)

quick (ADJ) and (CONJ) jumping (V)

is (V)

is (V)

Figure 1-10. Dependency grammar based syntax tree with POS tags

Chapter 1 Natural laNguage proCessiNg BasiCs

24

depict the order of the words in the sentence. The emphasis is more on the relationship

between the words in the sentence. Our sentence is annotated in Figure 1-10 with the

relevant POS tags, which we discussed earlier, and the directed edges showing the

dependency.

Now, if you remember, we discussed earlier that there were two aspects to the

representation of sentences using dependency grammar. Each directed edge represents

a specific type of meaningful relationship (also known as a syntactic function) and we

can annotate our sentence, further showing the specific dependency relationship types

between the words. This is depicted in Figure 1-11.

These dependency relationships each have their own meaning and are a part of

a list of universal dependency types. This is a part of the original paper, “Universal

Stanford Dependencies: A Cross-Linguistic Typology” (de Marneffe et al., 2014).

You can check out the exhaustive list of dependency types and their meanings at

fox (N)

The (DET) brown (ADJ) he (PRON) over (ADV)

quick (ADJ) and (CONJ) jumping (V)

is (V)

is (V)

nsubj acomp cc conj

det amod nsubj prepaux

pobj

dog (N)

the (DET) lazy (ADJ)

det
amod

Figure 1-11. Dependency grammar based syntax tree annotated with dependency
relationship types

Chapter 1 Natural laNguage proCessiNg BasiCs

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

25

http://universaldependencies.org/u/dep/index.html. The spaCy framework

leverages this universal dependency scheme and an alternate scheme called the

CLEAR dependency scheme. Details on possible dependencies are available at

https://emorynlp.github.io/nlp4j/components/dependency-parsing.html in

case you are interested in understanding the significance of all these dependencies.

If we observe some of these dependencies, it is not too hard to understand them.

We look in detail some of the tags used in the dependencies for the sentence in

Figure 1-11.

• The dependency tag det denotes the determiner relationship

between a nominal head and the determiner. Usually the word with

POS tag DET will also have the det relation. Examples include (fox ->

the) and (dog -> the).

• The dependency tag amod stands for adjectival modifier and stands

for any adjective that modifies the meaning of a noun. Examples

include (fox -> brown) and (dog -> lazy).

• The dependency tag nsubj stands for an entity that acts as a subject or

agent in a clause. Examples include (is -> fox) and (jumping -> he).

• The dependencies cc and conj are linkages related to words

connected by coordinating conjunctions. Examples include (is ->

and) and (is -> jumping).

• The dependency tag aux indicates the auxiliary or secondary verb in

the clause. Examples include (jumping -> is).

• The dependency tag acomp stands for adjective complement and acts

as the complement or object to a verb in the sentence. Examples

include (is -> quick).

• The dependency tag prep denotes a prepositional modifier that usually

modifies the meaning of a noun, verb, adjective, or even a preposition.

This representation is used for prepositions having a noun or noun

phrase complement. Examples include (jumping -> over).

• The dependency tag pobj is used to denote the object of a

preposition. This is usually the head of a noun phrase following a

preposition in the sentence. Examples include (over -> dog).

Chapter 1 Natural laNguage proCessiNg BasiCs

http://universaldependencies.org/u/dep/index.html
https://emorynlp.github.io/nlp4j/components/dependency-parsing.html

26

These tags have been extensively used in our sample sentence for annotating

the various dependency relationships among the words. Now that you understand

dependency relationships better, it would be good to remember that often when

representing a dependency grammar for sentences, instead of creating a tree with linear

orders, you can also represent it with a normal graph since there is no concept of order

of words in dependency grammar. We can leverage spaCy to build this dependency tree/

graph for our sample sentence (see Figure 1-12).

from spacy import displacy

displacy.render(nlp(sentence), jupyter=True,

 options={'distance': 100,

 'arrow_stroke': 1.5,

 'arrow_width': 8})

Figure 1-12 depicts our sentence annotated with dependency tags, which should

be clear to you based on our earlier discussion. When we cover constituency based

grammar next, you will observe that the number of nodes in dependency grammars

will be a lot fewer corresponding to their constituency counterparts. Currently there

are various grammatical frameworks based on dependency grammar. Some popular

ones are algebraic syntax and operator grammar. Next, we look at the concepts behind

constituency grammars and their representations.

 Constituency Grammar

These grammar types are built on the principle that a sentence can be represented

by several constituents derived from it. These grammar types can be used to model

or represent the internal structure of sentences in terms of a hierarchically ordered

amod

det

nsubj acomp

cc

conj

nsubj

aux prep

pobj

det

amod

The

DET

brown

ADJ

fox is

NOUN VERB

is jumping

VERB VERB

over

ADP

the

DET

lazy

ADJ

dog

NOUN

quick

ADJ

and

CCONJ

he

PRON

Figure 1-12. Dependency grammar annotated graph for our sample sentence
with spaCy

Chapter 1 Natural laNguage proCessiNg BasiCs

27

structure of its constituents. Each word belongs to a specific lexical category and forms

the head words of different phrases. These phrases are formed based on rules called

phrase structure rules. Hence constituency grammars are also called phrase structure

grammars. Phrase structure grammars were introduced by Noam Chomsky in the

1950s. To understand constituency grammars, we must know clearly what we mean by

constituents. We covered this several times earlier in this chapter, but just to refresh your

memory, constituents are words or group of words that have specific meaning and can

act together as a dependent or independent unit. They also can be combined to form

higher order structures in a sentence. These include phrases and clauses.

Phrase structure rules form the core of constituency grammars since they talk about

syntax and rules, which govern the hierarchy and ordering of the various constituents in

the sentences. These rules cater to two things primarily. First and foremost, these rules

determine what words are used to construct the phrases or constituents and secondly,

these rules determine how we need to order these constituents. If we want to analyze

phrase structure, we should be aware of typical schema patterns of the phrase structure

rules. The generic representation of a phrase structure rule is S → A B, which depicts that

the structure S consists of constituents A and B and the ordering is A followed by B.

There are several phrase structure rules and we explore them one by one to

understand how exactly we extract and order constituents in a sentence. The most

important rule describes how to divide a sentence or a clause. The phrase structure

rule denotes a binary division for a sentence or a clause as S → NP VP, where S is

the sentence or clause and it is divided into the subject, denoted by the noun phrase

(NP) and the predicate, denoted by the verb phrase (VP). Of course, we can apply

additional rules to break down each of the constituents further, but the top level of the

hierarchy starts with a NP and VP. The rule for representing a noun phrase is of the form

NP → [DET][ADJ]N [PP], where the square brackets […] denote that it is optional. A noun

phrase usually consists of a (N)oun as the head word and may optionally contain (DET)

erminants and (ADJ)ectives describing the noun and a prepositional phrase (PP) at the

right side in the syntax tree. Consequently, a noun phrase may contain another noun

phrase as a constituent of it. Figure 1-13 shows a few examples that are governed by the

aforementioned rules for noun phrases.

Chapter 1 Natural laNguage proCessiNg BasiCs

28

These syntax trees shows us the various constituents that a noun phrase typically

contains. As mentioned, a noun phrase denoted by NP on the left side of the production

rule may also appear on the right side of the production rule, as depicted in the last

example. This is a property called recursion and we talk about it toward the end of this

section. We now look at rules for representing verb phrases. The rule is of the form

VP → V ∣ MD [VP][NP][PP][ADJP][ADVP], where the head word is usually a (V)erb or a

modal (MD). A modal is itself an auxiliary verb, but we give it a different representation

just to distinguish it from the normal verb. This is optionally followed by another verb

phrase (VP) or noun phrase (NP), prepositional phrase (PP), adjective phrase (ADJP), or

adverbial phrase (ADVP). The verb phrase is always the second component when we split

a sentence using the binary division rule, making the noun phrase the first component.

Figure 1-14 depicts a few examples for the different types of verb phrases that can be

typically constructed and their representations as syntax trees.

NP N NP DET N DET ADJ NNP NP NP PP

NP NP NP

N

Fox

NDET

FoxThe

NDET ADJ

Fox

Fox in

The brown

NP

NP

PP

PREP

NP

N

N

DET ADJ

a box

The brown DET

Figure 1-13. Constituency syntax trees depicting structuring rules for noun
phrases

VP V VP VP NP PP AVDPMD VP V VP V

VP

V

jumping fixing

the roof

VPMD

VP VP VP

PP ADVP

V

V VNP

DET N

jump

jumpedwill

the

above

dog

swiftly

NP ADVPREP

DET N

Figure 1-14. Constituency syntax trees depicting structuring rules for verb phrases

Chapter 1 Natural laNguage proCessiNg BasiCs

29

Like we depicted earlier, these syntax trees show us the representations of the

various constituents in verb phrases and, using the property of recursion, a verb phrase

may also contain another verb phrase inside it, as we see in the second syntax tree. We

also see the hierarchy being maintained specially in the third and fourth syntax trees,

where the NP and PP by itself are further constituents under the VP and they can be

further broken down into smaller constituents. Since we have seen a lot of prepositional

phrases being used in the previous examples, let’s look at the production rules for

representing prepositional phrases. The basic rule has the form PP → PREP [NP], where

PREP denotes a preposition that acts as the head word and it is optionally followed by a

noun phrase (NP). Figure 1-15 depicts some representations of prepositional phrases and

their corresponding syntax trees.

PP PPPREP PREP NP

PP PP

PREP

DET ADJ Nover

the lazy dog

NPPREP

in

Figure 1-15. Constituency syntax trees depicting structuring rules for
prepositional phrases

These syntax trees show us some different representations for prepositional phrases.

We now discuss the concept of recursion. Recursion is an inherent property of the

language that allows constituents to be embedded in other constituents, which are

depicted by different phrasal categories that appear on both sides of the production

rules. This enables us to create long constituency-based syntax trees from sentences. A

simple example is the representation of the sentence, “The flying monkey in the circus

on the trapeze by the river” depicted by the constituency parse tree in Figure 1-16.

Chapter 1 Natural laNguage proCessiNg BasiCs

30

If you closely observe the syntax tree in Figure 1-16, you will notice that it is made up

of only noun phrases and prepositional phrases. However, due to the inherent recursive

property that a prepositional phrase itself can consist of a noun phrase and the noun

phrase can consist of a noun phrase as well as a prepositional phrase, the hierarchical

structure has multiple NPs and PPs. If you go over the production rules for noun phrases

and prepositional phrases, you will find the constituents in the tree in Figure 1-16 adhere

to the rules.

We now talk a bit about conjunctions, since they are used to join clauses and

phrases and form an important part of language syntax. Usually words, phrases and

even clauses can be combined using conjunctions. The production rule can be denoted

as S → S conj S ∀ S ∈ {S, NP, VP}, where two constituents can be joined by a conjunction

denoted by conj in the rule. A simple example for a sentence consisting of a noun phrase

which by itself is constructed out of two noun phrases and a conjunction would be, “The

brown fox and the lazy dog”. This is depicted by the constituency syntax tree showing the

adherence to the production rule in Figure 1-17.

S

NP

NP

NP

NP

NP

NPN

N

NP

DET N

PP

PP

PREP

PREP

DET

DET

PREP

DET V N

PP

The flying monkey in

the circus on

the trapeze by

the river

Figure 1-16. Constituency syntax tree depicting recursive properties among
constituents

Chapter 1 Natural laNguage proCessiNg BasiCs

31

Figure 1-17 shows us that the top-level noun phrase is the sentence by itself and

it has two noun phrases as its constituents. They are joined by a conjunction, thus

satisfying our aforementioned production rule. What if we wanted to join two sentences

or clauses together with a conjunction? We can do that by putting all of these rules and

conventions together and generating the constituency based syntax tree for our sample

sentence, “The brown fox is quick and he is jumping over the lazy dog”. This would give

us the syntactic representation of our sentence as depicted in Figure 1-18.

S

NP

NP

DET ADJ N

CONJ NP

DET ADJ Nand

The the lazy dogbrown fox

Figure 1-17. Constituency syntax tree depicting noun phrases joined by a conjunction

S

SS

NP

DET ADJ

ADJ

ADJPN

DET ADJ N

V

VP NP

NP

PRON V

V

VP

VP

PP

PREP

CONJ

and

he

jumping

is

the lazy

over

dog

The brown fox is

quick

Figure 1-18. Constituency syntax tree for our sample sentence

Chapter 1 Natural laNguage proCessiNg BasiCs

32

From Figure 1-18, you can conclude that our sentence has two main clauses or

constituents, which we had talked about earlier, and they are joined by a coordinating

conjunction (and). Moreover, the constituency grammar-based production rules break

down the top-level constituents into further constituents consisting of phrases and their

words. Looking at this syntax tree, you can see that it does show the order of the words

in the sentence and it more of a hierarchical tree-based structure with undirected edges.

Hence, this is a lot different compared to the dependency grammar based syntax tree/

graph with unordered words and directed edges. There are several popular grammar

frameworks based on concepts derived from constituency grammar. These include

Phrase Structure Grammar, Arc Pair Grammar, Lexical Functional Grammar, and even

the famous Context-Free Grammar, which is used extensively in describing formal

language. We can leverage Stanford’s Core NLP-based parsers in NLTK to perform

constituency parsing on our sample sentence.

from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/

stanford-parser- full-2015-04-20/stanford-parser-3.5.2-models.jar')

result = list(scp.raw_parse(sentence))

print(result[0])

(ROOT

 (NP

 (S

 (S

 (NP (DT The) (JJ brown) (NN fox))

 (VP (VBZ is) (ADJP (JJ quick))))

 (CC and)

 (S

 (NP (PRP he))

 (VP

 (VBZ is)

Chapter 1 Natural laNguage proCessiNg BasiCs

33

 (VP

 (VBG jumping)

 (PP (IN over) (NP (DT the) (JJ lazy) (NN dog)))))))))

visualize constituency tree

result[0]

We can see that the constituency tree depicted in Figure 1-19 has the same

hierarchical structure as the tree in Figure 1-18.

 Word-Order Typology
Typology in linguistics is a field that specifically deals with trying to classify languages

based on their syntax, structure, and functionality. They can be classified in several ways

and one of the most common models is to classify them according to their dominant

word orders, also known as word-order typology. The primary word orders of interest

occur in clauses, consisting of a subject, verb, and an object. Of course, not all clauses

ROOT

NP

S

S

NP

DT JJ NN VBZ ADJP

NP

PRP

he is

VBZ

VBG PP

VP VP

VP

and

CC S

The brown fox is JJ

quick jumping

over DT JJ NN

IN NP

the lazy dog

Figure 1-19. Constituency syntax tree for our sample sentence with NLTK and
Stanford Core NLP

Chapter 1 Natural laNguage proCessiNg BasiCs

34

will use the subject, verb, and object format and the subject and object are not used in

certain languages. However, there exist several different classes of word orders that can

be used to classify a wide variety of languages. A survey was done by Russell Tomlin in

1986 and Table 1-1 shows some insights derived from his analysis.

Table 1-1. Word Order Based Language Classification Surveyed by Russell

Tomlin, 1986

Sl No. Word Order Language Frequency Example Languages

1 subject-object-Verb 180 (45%) sanskrit, Bengali, gothic, hindi, latin

2 subject-Verb-object 168 (42%) english, French, Mandarin, spanish

3 Verb-subject-object 37 (9%) hebrew, irish, Filipino, aramaic

4 Verb-object-subject 12 (3%) Baure, Malagasy, aneityan

5 object-Verb-subject 5 (1%) apalai, hixkaryana, arecua

6 object-subject-Verb 1 (0%) Warao

Figure 1-20. English to Hindi translation changes the word order class for the
sentence

From this table, we can observe that there are six major classes of word orders

and languages like English follow the Subject-Verb-Object word order class. A simple

example would be the sentence, “He ate cake” where “He” is the subject, “ate” is the

verb, and “cake” is the object. The majority of languages from Table 1-1 follow the

Subject- Object- Verb word order. In that case, the sentence, “He cake ate” would be

correct if it was translated to those languages. This is illustrated by the English to Hindi

translation of the same sentence in Figure 1-20, courtesy of Google Translate.

Chapter 1 Natural laNguage proCessiNg BasiCs

35

Even if you do not understand Hindi, you can understand by the English annotation

provided by Google that the word “cake” denoted by “kek” in the text under the Hindi

translation has moved to the middle of the sentence and the verb “ate” denoted by

“khaaya” has moved to the end of the sentence, thus making the word order class

Subject-Object-Verb, which is the correct form for the Hindi language. This gives us an

indication of the importance of word order and how representation of messages can be

grammatically different in various languages. This brings us to the end of our discussion

regarding the syntax and structure of languages. Next, we look at some of the concepts

around language semantics.

 Language Semantics
The definition of semantics is the study of meaning. Linguistics has its own sub-field

of linguistic semantics that deals with the study of meaning in language, including the

relationship between words, phrases, and symbols. It studies their indication, meaning,

and representation of the knowledge they signify. In simple words, semantics is more

concerned with facial expressions, signs, symbols, body language, and knowledge that’s

transferred when passing messages from one entity to another. Representing semantics

using formal rules or conventions has always been a challenge in linguistics. However,

there are different ways to represent meaning and knowledge obtained from language.

In the following section, we look at relationships between the lexical units of a language,

which are predominantly words and phrases, and explore several concepts around

formalizing the representation of knowledge and meaning.

 Lexical Semantic Relations
Lexical semantics is concerned with identifying semantic relations between lexical

units in a language and how they are correlated to the syntax and structure of the

language. Lexical units are usually represented by morphemes, the smallest meaningful

and syntactically correct unit of a language. Words are inherently a subset of these

morphemes. Each lexical unit has its own syntax, form, and meaning. They also derive

meaning from their surrounding lexical units in phrases, clauses, and sentences. A

lexicon is a complete vocabulary of these lexical units. We explore some concepts

revolving around lexical semantics in this section.

Chapter 1 Natural laNguage proCessiNg BasiCs

36

 Lemmas and Wordforms

A lemma is also known as the canonical or citation form for a set of words. The lemma

is usually the base form of a set of words, known as a lexeme. Lemma is the specific

base form or head word that represents the lexeme. Word forms are inflected forms of

the lemma, which are part of the lexeme and can appear as one of the words from the

lexeme in text. A simple example is the lexeme {eating, ate, eats}, which are the word

forms and their lemma is the word “eat”.

These words have specific meanings based on their position among other words in a

sentence. This is also known as “sense” of the word or wordsense. Wordsense gives us a

concrete representation of the different aspects of a word’s meaning. Consider the word

“fair” in the following sentences: “They are going to the annual fair” and “I hope the

judgment is fair to all”. Even though the word “fair” is the same in both the sentences, the

meaning changes based on the surrounding words and context.

 Homonyms, Homographs, and Homophones

Homonyms are defined as words that share the same spelling or pronunciation but have

different meanings. An alternative definition restricts the constraint to the same spelling.

The relationship between these words is termed homonymy. Homonyms are often said

to be a superset of homographs and homophones. An example of homonyms can be

demonstrated in the following sentences, “The bat hangs upside down from the tree”

and “That baseball bat is really sturdy” for the word “bat”.

Homographs are defined as words that have the same written form or spelling but

have different meanings. Several alternate definitions say that the pronunciation can also

be different. Some examples of homographs include, the word “lead” as in “I am using a

lead pencil” and “Please lead the soldiers to the camp” and the word “bass” as in “Turn

up the bass for the song” and “I just caught a bass today while I was out fishing”. Note

that with the case of the word “lead,” the spelling stays the same but the pronunciation

changes based on the context in the sentences.

Homophones are defined as words that have the same pronunciation but have

different meanings and can have the same or different spellings. Examples are the words

“pair” (which means couple) and “pear” (which means the fruit), which sound the

same but have different meanings and written forms. These words cause problems in

natural language processing, since it is very difficult to determine the actual context and

meaning using machine intelligence.

Chapter 1 Natural laNguage proCessiNg BasiCs

37

 Heteronyms and Heterographs

Heteronyms are defined as words that have the same written form or spelling but have

different pronunciation and meaning. By nature, they are a subset of homographs.

They are also often called heterophones, which means, “different sound”. Examples

of heteronyms are the words “lead” (metal, command) and “tear” (rip off something,

moisture from eyes).

Heterographs are defined as words that have the same pronunciation but different

meanings as well as spellings. By nature they are a subset of homonyms. Their written

representation might be different but they sound very similar or often exactly the same

when spoken. Some examples include the words “to,” “too,” and “two,” which sound

similar but have different spellings and meanings.

 Polysemes

Polysemes are defined as words that have the same written form or spelling and different

but related meanings. While this is very similar to homonymy, the difference is very

subjective and depends on the context since these words are related to each other. A

very good example is the word “bank,” which can mean (1) a financial institution, (2) the

bank of the river, (3) the building that belongs to the financial institution, or (4) even as a

verb which means to rely upon. Now all these examples use the same word, “bank” and

are homonyms. But only (1), (3), and even (4), which stand for trust and security (which

a financial organization represents) are polysemes and represent a common theme.

 Capitonyms

Capitonyms are defined as words that have the same written form or spelling but have

different meanings when they are capitalized. The words may or may not have different

pronunciations. Some examples include the words “march” (“March” indicates the

month and “march” depicts the action of walking) and “may” (“May” indicates the

month and “may” depicts a modal verb).

 Synonyms and Antonyms

Synonyms are defined as words that have different pronunciations and spellings but

have the same meanings in some or all contexts. If two words or lexemes are synonyms,

they can be substituted for each other in various contexts and it signifies them having

Chapter 1 Natural laNguage proCessiNg BasiCs

38

the same propositional meaning. Words that are synonyms are said to be synonymous

with each other and the state of being a synonym is called synonymy. Perfect synonymy

is almost non-existent. The reason is because synonymy is more of a relation between

senses and has contextual meaning rather than just words. Consider the words “big,”

“huge,” and “large,” which are synonyms of each other. They are related and make

perfect sense in sentences like, “That milkshake is really (big\large\huge)”. However,

if we consider the sentence, “Bruce is my big brother,” it does not make sense if we

substitute the word big with either huge or large. The reason is because the word big

here has a context or sense depicting being older and the other two synonyms lack this

sense. Synonyms can exist for all parts of speech, including nouns, adjectives, verbs,

adverbs, and prepositions.

Antonyms are defined as pairs of words that define a binary opposite relationship.

These words indicate specific sense and meaning that are completely opposite of each

other. The state of being an antonym is termed antonymy. There are three types of

antonyms—graded antonyms, complementary antonyms, and relational antonyms.

Graded antonyms are antonyms with a certain grade or level when measured on a

continuous scale, like the pair (fat, skinny). Complementary antonyms are word pairs

that are opposite in their meaning but they cannot be measured on any grade or scale.

An example of a complementary antonym pair is (divide, unite). Relational antonyms

are word pairs that have some relationship between them and the contextual antonymy

is signified by this very relationship. An example of a relational antonym pair is (doctor,

patient).

 Hyponyms and Hypernyms

Hyponyms are words that are subclasses of other words. In this case the hyponyms are

generally words with a very specific sense and context as compared to the word that is

their superclass. Hypernyms are the words that act as the superclass to the hyponyms

and have a more generic sense compared to the hyponyms. An example is the word

“fruit,” which is the hypernym and the words “mango,” “orange,” and “pear” are possible

hyponyms. The relationship depicted between these words is often called hyponymy or

hypernymy.

Chapter 1 Natural laNguage proCessiNg BasiCs

39

 Semantic Networks and Models
We have seen several ways to formalize relations between words and their sense or

meaning. Considering lexical semantics, there are approaches to determine the sense

and meaning of each lexical unit, but what if we wanted to consider representing the

meaning of some concept or theory that involves relating these lexical units together and

forming connections between them based on their meaning? Semantic networks aim to

tackle this problem of representation of knowledge and concepts by using a network or

a graph. The basic unit of semantic network is an entity or a concept. A concept could be

a tangible or an abstract item like an idea. Sets of concepts have some relation to each

other and can be represented with directed or undirected edges. Each edge denoted a

specific type of relationship between two concepts.

Let’s assume we are talking about the concept of fish. We can have different concepts

around fish based on their relationship to it. For instance, fish “is-a” animal and fish

“is-a” part of marine life. These relationships are depicted as “is-a” relationships. There

can be various other relationships like “has-a,” “part-of,” “related-to,” and many more

depending on the context and semantics. These concepts and relationships form a

semantic network and you can even browse several of these semantic models online,

where you’ll find vast knowledgebases spanning different concepts. Figure 1-21 shows

a possible representation for concepts related to fish. This model is provided courtesy

of Nodebox at https://www.nodebox.net/perception/. You can search for various

concepts and see associated concepts at this site.

Chapter 1 Natural laNguage proCessiNg BasiCs

https://www.nodebox.net/perception/

40

From the network shown in Figure 1-21, we can see some of the concepts we

discussed earlier around fish, as well as specific types of fish, like eel, salmon, shark,

etc. These can be hyponyms to the concept “fish”. These semantic networks are formally

denoted and represented by semantic data models using graph structures, where

concepts or entities are the nodes and the edges denote the relationships. The semantic

web is the extension of the world wide web using semantic metadata annotations and

embeddings and data modeling techniques like Resource Description Framework

(RDF) and Web Ontology Language (OWL). In linguistics, we have a rich lexical corpus

and database called WordNet, which has an exhaustive list of different lexical entities

that are grouped into synsets based on semantic similarity (e.g., synonyms). Semantic

relationships between these synsets and consequently various words can be explored

in WordNet, making it in essence a type of semantic network. We talk about WordNet in

more detail in a later section when we cover text corpora.

Figure 1-21. Semantic network around the concept of fish

Chapter 1 Natural laNguage proCessiNg BasiCs

41

 Representation of Semantics
So far we have seen how to represent semantics based on lexical units and how they

can be interconnected by leveraging semantic networks. If we consider the normal

form of communication via messages, whether it is written or spoken, if an entity sends

a message to another entity and that entity takes some specific actions based on the

message, then he/she is said to have understood the meaning conveyed by that message.

A question that might come to mind is how we formally represent the meaning or

semantics conveyed by a simple sentence. While it might be extremely easy for us to

understand the meaning conveyed, representing semantics formally is not as easy as it

seems. Consider the following example, “Get me the book from the table”. This sentence

by nature is a directive and it directs the listener to do something. Understanding the

meaning conveyed by this sentence may involve pragmatics like “which specific book?”

and “which specific table?” besides the actual deed of getting the book from the table.

While the human mind is intuitive, representing the meaning and relationship between

the various constituents formally is a challenge. However, we can do it using several

techniques, like propositional logic and first order logic. Using these representations,

we can represent the meaning indicated by different sentences and draw inference

from them. We can even discover if one sentence entails another one based on their

semantics. Representation of semantics is useful especially for carrying out various

natural language processing operations in order to make machines understand the

semantics behind messages using proper representations, since they lack the cognitive

power of humans.

 Propositional Logic

Propositional logic, also known as sentential logic or statement logic, is defined as

the discipline of logic that’s concerned with the study of propositions, statements,

and sentences. This includes studying logical relationships and properties between

propositions and statements, combining multiple propositions to form more complex

propositions, and observing how the value of propositions change based on the

components and logical operators. A proposition or statement is usually declarative

and is capable of having a binary truth value (true or false). Usually statement is more

language specific and concrete and a proposition is more inclined toward the idea or the

concepts conveyed by the statement. A simple example is these two statements—“The

rocket was faster than the airship” and “The airship was slower than the rocket”—which

Chapter 1 Natural laNguage proCessiNg BasiCs

42

are distinct but convey the same meaning or proposition. However, the terms statement

and proposition are often used interchangeably in propositional logic.

The main focus in propositional logic is to study different propositions and see how

combining various propositions with logical operators changes the semantics of the

overall proposition. These logic operators are used more like connectors or coordinating

conjunctions. Operators include terms like “and,” “or,” and “not,” which can change the

meaning of a proposition by itself or when combined with several propositions. A simple

example is two propositions—“The Earth is round” and “The Earth revolves around the

Sun”. These can be combined with the logical operator “and” to give us the proposition,

“The Earth is round and it revolves around the Sun,” which gives us the indication that

the two propositions on either side of the “and” operator must be true for the combined

proposition to be true.

The good thing about propositional logic is that each proposition has its own truth

value and it is not concerned with further subdividing a proposition into smaller chunks

and verifying the logical characteristics. Each proposition is considered an indivisible

whole unit with its own truth value. Logical operators may be applied to it and several

other propositions. Subdividing parts of propositions like clauses or phrases are not

considered here. To represent the various building blocks of propositional logic,

we use several conventions and symbols. Uppercase letters like P and Q are used to

denote individual statements or propositions. The different operators used and their

corresponding symbols are depicted in Table 1-2, based on their order of precedence.

Table 1-2. Logical Operators with Their Symbols and Precedence

Sl No. Operator Symbol Operator Meaning Precedence

1 ¬ not highest

2 ∧ and

3 ∨ or

4 → if-then

5 ↔ iff (if and only if) lowest

From Table 1-2, we can see that there are a total of five operators with the not

operator having the highest precedence and the iff operator having the lowest. Logical

constants are denoted as being true or false. Constants and symbols are known as

atomic units and all other units, more specifically the sentences and statements, are

Chapter 1 Natural laNguage proCessiNg BasiCs

43

complex units. A literal is usually an atomic statement or its negation on applying the

not operator. We depict a simple example of two sentences, P and Q, and applying the

various operators to them. Let’s consider the following representations:

P: He is hungry

Q: He will eat a sandwich

The expression P ∧ Q translates to “he is hungry and he will eat a sandwich”. This

expresses that the outcome of this operation itself is also a sentence or proposition.

This is the conjunction operation where P and Q are the conjuncts. The outcome of this

sentence is true only if both P and Q are true.

The expression P ∨ Q translates to “he is hungry or he will eat a sandwich”. This

expresses that the outcome of this operation is also another proposition formed from the

disjunction operation where P and Q are the disjuncts. The outcome of this sentence is

true if either P or Q is true or both of them are true.

The expression P → Q translates to “if he is hungry, then he will eat a sandwich”. This

is the implication operation that determines P is the premise or the antecedent and Q

is the consequent. It is just like a rule that states that Q will occur only if P has already

occurred or is true.

The expression P ↔ Q translates to “he will eat a sandwich if and only if he is

hungry,” which is basically a combination of the expressions “If he is hungry then he will

eat a sandwich” (P → Q) and “If he will eat a sandwich, he is hungry” (Q → P). This is

the biconditional or equivalence operation that will evaluate to true if and only if the two

implication operations we described evaluate to true.

The expression ¬P translates to “he is not hungry,” which depicts the negation

operation and will evaluate to true if and only if P evaluates to false.

This gives us an idea of the basic operations between propositions and more

complex operations, which can be carried out with multiple logical connectives and by

adding more propositions. A simple example are these statements:

P: We will play football

Q: The stadium is open

R: It will rain today

They can be combined and represented as Q ∧ ¬R → P to depict the complex

proposition, “If the stadium is open and it does not rain today, then we will play football”.

The semantics of the truth value or outcome of the final proposition can be evaluated

based on the truth value of the individual propositions and the operators. The various

outcomes of the truth values for the different operators are depicted in Figure 1- 22.

Chapter 1 Natural laNguage proCessiNg BasiCs

44

Thus, using the table in Figure 1-22, we can evaluate even more complex

propositions by breaking them down into simpler binary operations, evaluating the

truth value for them, and combining them step by step. Besides these outcomes, there

are other properties like associativity, commutativity, and distributivity, which aid in

evaluating complex proposition outcomes. The act of checking the validity of each

operation and proposition and finally evaluating the outcome is also known as inference.

However, besides evaluating extensive truth tables all the time, we can also use

several inference rules to arrive at the final outcome or conclusion. The main reason for

doing so would be that the size of these truth tables with the various operations starts

increasing exponentially as the number of propositions increases. Moreover, rules of

inference are easier to understand and well tested and at the heart of them, the same

truth value tables are actually applied but we do not have to bother ourselves with the

internals. A sequence of inference rules, when applied, usually leads to a conclusion,

which is often called a logical proof. The usual form of an inference rule is P ⊢ Q, which

indicates that Q can be derived by some inference operations from the set of statements

represented by P. The turnstile symbol (⊢) indicates that Q is some logical consequence

of P. The most popular inference rules are as follows:

• Modus ponens: This is perhaps the most popular inference rule, also

known as the implication elimination rule. It can be represented as

{P → Q, P} ⊢ Q, which indicates that if P implies Q and P is asserted

to be true, then it is inferred that Q is also true. You can also represent

this using the following representation ((P → Q) ∧ P) → Q,

which can be evaluated easily using truth tables. A simple example

is the statement, “If it is sunny, we will play football” represented by

P → Q. Now if we say that “it is sunny,” this indicates that P is true,

hence Q automatically is inferred as true as well, indicating, “we will

play football”.

Figure 1-22. Truth values for various logical connectors

Chapter 1 Natural laNguage proCessiNg BasiCs

https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢

45

• Modus tollens: This is quite similar to the previous rule and is

represented formally as {P → Q, ¬Q} ⊢ ¬P. This indicates that if P

implies Q and Q is actually asserted to be false, then it is inferred

that P is false as well. You can also represent this using the following

representation ((P → Q) ∧ ¬Q) → ¬P, which can be evaluated easily

using truth tables. An example proposition is, “If he is a bachelor, he

is not married” indicated by P → Q. Now if we propose that “he is

married,” represented by ¬Q, then we can infer ¬P, which translates

to “he is not a bachelor”.

• Disjunctive syllogism: This is also known as disjunction elimination

and is formally represented as {P ∨ Q, ¬P} ⊢ Q. This indicates that if

either P or Q is true and P is false then Q is true. A simple example is

the statement, “He is a miracle worker or a fraud” represented by P ∨ Q.

The statement “he is not a miracle worker” is represented by ¬P, so

we can then infer “he is a fraud,” depicted by Q.

• Hypothetical syllogism: This is often known as the chain rule of

deduction and is formally represented as {P → Q, Q → R} ⊢ P → R.

This tells us that if P implies Q and Q implies R, we can infer that

P implies R. A really interesting example to understand this is the

statement “If I am sick, I can’t go to work” represented by P → Q and

“If I can’t go to work, the building construction will not be complete”

represented by Q → R. We can then infer “If I am sick, the building

construction will not be complete,” which is represented by P → R.

• Constructive dilemma: This inference rule is the disjunctive version

of modus ponens and can be formally represented as {(P → Q) ∧ (R
→ S), P ∨ R} ⊢ Q ∨ S. This indicates that if P implies Q and R implies

S, and either P or R are true, then it can be inferred that either Q or S

is true. Consider the following propositions, “If I work hard, I will be

successful” represented by P → Q, and “If I win the lottery, I will be

rich” represented by R → S. Now we can propose that, “I work hard or

I win the lottery” is true, which is represented by P ∨ R. We can then

infer that “I will be successful or I will be rich” represented by

Q ∨ S. The complement of this rule is destructive dilemma, which is

the disjunctive version of modus tollens.

Chapter 1 Natural laNguage proCessiNg BasiCs

https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢

46

This should give you a clear idea of how intuitive inference rules can be and using

them is much easier than going over multiple truth tables trying to determine the

outcome of complex propositions. The interpretation we derive from inference gives

us the semantics of the statement or proposition. A valid statement is one that would

be true under all interpretations, irrespective of the logical operations or various

statements inside it. This is often called a tautology. The complement of a tautology is a

contradiction or an inconsistent statement, which is false under all interpretations. Note

that the previous list is just an indicative list of the most popular inference rules and it is

by no way exhaustive. Interested readers can read more on inference and propositional

calculus to get an idea of several other rules and axioms, which are used besides the

ones covered here to gain more depth into the subject. Next we look at first order logic,

which tries to solve some of the shortcomings existing in propositional logic.

 First Order Logic

First order logic (FOL), also known popularly as predicate logic and first order predicate

calculus, is defined as a collection of well-defined formal systems used extensively in

deduction, inference, and representation of knowledge. FOL allows us to use quantifiers

and variables in sentences, which enable us to overcome some of the limitations of

propositional logic. If we are to consider the pros and cons of propositional logic (PL),

considering the points in its favor, PL is declarative and allows us to easily represent facts

using a well-formed syntax. PL also allows complex representations like conjunctive,

disjunctive, and negated knowledge representations. This by nature makes PL

compositional, wherein a composite or complex proposition is built from the simple

propositions that are its components along with logical connectives. However, there are

several areas where PL is lacking. It is definitely not easy to represent facts in PL because

for each possible atomic fact, we need a unique symbolic representation. Hence, due to

this limitation, PL has very limited expressive power. Hence the basic idea behind FOL is

to not treat propositions as atomic entities.

Chapter 1 Natural laNguage proCessiNg BasiCs

47

FOL has a much richer syntax and necessary components for the same compared to

PL. The basic components in FOL are as follows:

• Objects: These are specific entities or terms with individual unique

identities like people, animals, etc.

• Relations: These are also known as predicates and usually

hold among objects or sets of objects and express some form of

relationship or connection like is_man, is_brother, and is_mortal.

Relations typically correspond to verbs.

• Functions: These are a subset of relations where there is always only

one output value or object for some given input. Examples include

height, weight, and age_of.

• Properties: These are specific attributes of objects that help

distinguish them from other objects like round, huge, etc.

• Connectives: These are the logical connectives, which are similar to

the ones in PL, which include not (¬), and (∧), or (∨), implies (→),

and iff (if and only if ↔).

• Quantifiers: These include two types of quantifiers—universal (∀)

which stands for “for all” or “all” and existential (∃), which stands for

“there exists” or “exists”. They are used for quantifying entities in a

logical or mathematical expression.

• Constant symbols: These are used to represent concrete entities or

objects in the world. Examples include John, King, Red, and 7.

• Variable symbols: These are used to represent variables like x, y,

and z.

• Function symbols: These are used to map functions to outcomes,

Examples include age_of(John) = 25 or color_of(Tree) = Green.

• Predicate symbols: These map specific entities and a relation or

function between them to a truth value based on the outcome.

Examples include color(sky, blue) = True.

Chapter 1 Natural laNguage proCessiNg BasiCs

48

These are the main components that go into logical representations and syntax

for FOL. Usually, objects are represented by various terms, which could be a function,

variable, or a constant based on the different components. These terms do not need

to be defined and do not return values. Various propositions are usually constructed

using predicates and terms with the help of predicate symbols. An n-ary predicate is

constructed from a function over n-terms, which have either a true or false outcome.

An atomic sentence can be represented by an n-ary predicate and the outcome is true

or false depending on the semantics of the sentence, i.e., if the objects represented by

the terms have the correct relation as specified by the predicate. A complex sentence or

statement is formed using several atomic sentences and logical connectives. A quantified

sentence adds the quantifiers mentioned earlier to sentences.

Quantifiers are one of the advantages FOL has over PL, since they enable us to

represent statements about entire sets of objects without needing to represent and

enumerate each object by a different name. The universal quantifier (∀) asserts that a

specific relation or predicate is true for all values associated with a specific variable.

The representation ∀x F(x) indicates that F holds for all values of x in the domain

associated with x. An example is ∀x cat(x) → animal(x), which indicates that all cats are

animals. Universal quantifiers are used with the implies (→) connective to form rules

and statements. An important point to remember is that universal quantifiers are almost

never used in statements to indicate some relation for every entity in the world using

the conjunction (∧) connective. An example would be the representation, ∀x dog(x) ∧

eats_meat(x), which actually means that every entity in the world is a dog and they eat

meat. This obviously sounds absurd! The existential quantifier (∃) asserts that a specific

relation or predicate holds true for at least some value associated with a specific variable.

The representation, ∃x F(x) indicates that F holds for some value of x in the domain

associated with x. An example is ∃x student(x) ∧ pass_exam(x), which indicates that

there is at least one student who has passed the exam. This quantifier gives FOL a lot

of power since we can make statements about objects or entities without specifically

naming them.

Existential quantifiers are usually used with the conjunction (∧) connective to form

rules and statements. You should remember that existential quantifiers are almost never

used with the implies (→) connective in statements because the semantics indicated

by it are usually wrong. An example is ∃x student(x) → knowledgeable(x) which tells us

if you are a student you are knowledgeable. The real problem happens if you ask, what

about those who are not students, are they not knowledgeable?

Chapter 1 Natural laNguage proCessiNg BasiCs

49

Considering the scope for nesting of quantifiers, ordering of multiple quantifiers

may or may not matter depending on the type of quantifiers used. For multiple universal

quantifiers, switching the order does not change the meaning of the statement. This can

be depicted by (∀x)(∀y) brother(x,y) ↔ (∀y)(∀x) brother(x,y) which indicates two people

are brothers, irrespective of the order. Similarly, you can also switch the order of existential

quantifiers like (∃x)(∃y) F(x,y) ↔ (∃y)(∃x) F(x,y), Switching the order of mixed quantifiers

in a sentence does matter and changes the interpretation of that sentence. This can be

explained more clearly in the following examples, which are very popular in FOL.

• (∀x)(∃y) loves(x, y) means that everyone in the world loves at least

someone.

• (∃y)(∀x) loves(x, y) means that someone is the world is loved by everyone.

• (∀y)(∃x) loves(x, y) means that everyone in the world has at least

someone who loves them.

• (∃x)(∀y) loves(x, y) means that there is at least someone in the world

who loves everyone.

From these examples, you can see how the statements look almost the same but the

ordering of quantifiers changes the meanings significantly. There are also several other

properties showing the relationship between the quantifiers. We list some of the popular

quantifier identities and properties as follows.

• (∀x) ¬F(x) ↔ ¬(∃x) F(x)

• ¬(∀x) F(x) ↔ (∃x) ¬F(x)

• (∀x) F(x) ↔ ¬ (∃x) ¬F(x)

• (∃x) F(x) ↔ ¬(∀x) ¬F(x)

• (∀x) (P(x) ∧ Q(x)) ↔ ∀x P(x) ∧ ∀x Q(x)

• (∃x) (P(x) ∨ Q(x)) ↔ ∃x P(x) ∨ ∃x Q(x)

There are a couple of other important concepts for transformation rules in predicate

logic. These include instantiation and generalization. Universal instantiation, also known

as universal elimination, is a rule of inference involving the universal quantifier. It tells

us that if (∀x) F(x) is true, then F(C) is true where C is any constant term that is present

in the domain of x. The variable symbol here can be replaced by any ground term. An

example depicting this would be (∀x) drinks(John, x) → drinks(John, Water).

Chapter 1 Natural laNguage proCessiNg BasiCs

50

Universal generalization, also known as universal introduction, is the inference rule

that tells us that if F(A) ∧ F(B) ∧ F(C) ∧ … so on hold true, then we can infer that (∀x) F(x)

holds true.

Existential instantiation, also known as existential elimination, is an inference rule

involving the existential quantifier. It tells us that if the given representation (∃x) F(x)

exists, we can infer F(C) for a new constant or variable symbol C. This is assuming that

the constant or variable term C introduced in this rule is a new constant that has not

occurred previously in this proof or in our existing knowledge base. This process is also

known as skolemization and the constant C is known as the skolem constant.

Existential generalization, also known as existential introduction, is the inference

rule that tells us that assuming F(C) to be true where C is a constant term, we can then

infer (∃x) F(x) from it. This can be depicted by the representation, eats_fish(Cat) →

(∃x) eats_fish(x), which can be translated as “Cats eat fish, and therefore there exists

something or someone at least who eats fish”.

We now look at some examples of how FOL is used to represent natural language

statements and vice versa. The examples in Table 1-3 depict the typical usage of FOL to

represent natural language statements.

Table 1-3. Representation of Natural Language Statements Using First Order Logic

Sl No. FOL Representation Natural Language Statement

1 ¬ eats(John, fish) John does not eat fish.

2 is_hot(pie) ∧ is_delicious(pie) the pie is hot and delicious.

3 is_hot(pie) ∨ is_delicious(pie) the pie is either hot or delicious.

4 study(John, exam) → pass(John, exam) if John studies for the exam, he will pass

the exam.

5 ∀x student(x) → pass(x, exam) all students passed the exam.

6 ∃x student(x) ∧ fail(x, exam) there is at least one student who failed

the exam.

7 (∃x student(x) ∧ fail(x, exam) ∧ (∀y
fail(y, exam) → x=y))

there was exactly one student who failed

the exam.

8 ∀x (spider(x) ∧ black_widow(x)) →

poisonous(x)

all black widow spiders are poisonous.

Chapter 1 Natural laNguage proCessiNg BasiCs

51

This gives us a good idea about the various components of FOL and the utility and

advantages it gives us over propositional logic. However, FOL has its own limitations.

By nature, it allows us to quantify over variables and objects, but not properties or

relations. Higher order logic (HOL) allows us to quantify over relations, predicates, and

functions. More specifically, second order logic enables us to quantify over predicates

and functions and third order logic enables us to quantify over predicates of predicates.

While they are more expressive, it is extremely difficult to determine the validity of all

sentences in HOL. This brings us to an end of our discussion on representing semantics.

We talk about text corpora in the following section.

 Text Corpora
Text corpora is the plural form of “text corpus” and can be defined as large and

structured collections of texts or textual data. They usually consist of a body of written

or spoken text, often stored in electronic form. This includes converting old historic text

corpora from physical to electronic form so that they can be analyzed and processed

with ease. The primary purpose of text corpora is to leverage them for linguistic as well

as statistical analysis and to use them as data for building natural language processing

tools.

Monolingual corpora consist of textual data in only one language and multilingual

corpora consist of textual data in multiple languages. To understand the significance

of text corpora, we must understand the origins of corpora and the reason behind

them. It all started with the emergence of linguistics and people collecting data related

to language to study its properties and structure. During the 1950s, statistical and

quantitative methods were used to analyze collected data. However, this soon reached a

dead end due to the lack of large amounts of textual data over which statistical methods

could be effectively applied. Besides this, cognitive learning and behavioral sciences

gained a lot of focus. This empowered eminent linguist Noam Chomsky to build and

formulate a sophisticated rule-based language model that formed the basis for building,

annotating, and analyzing large-scale text corpora.

Chapter 1 Natural laNguage proCessiNg BasiCs

52

 Corpora Annotation and Utilities
Text corpora are annotated with rich metadata that is extremely useful for getting

valuable insights when utilizing the corpora for natural language processing and text

analytics. Popular annotations for text corpora include tagging parts of speech or POS

tags, word stems, lemmas, and many more. We look at some of the most commonly used

methods and techniques for annotating text corpora.

• POS tagging: This is mainly used to annotate each word with a POS

tag indicating the part of speech associated with it.

• Word stems: A stem for a word is a part of the word to which various

affixes can be attached.

• Word lemmas: A lemma is the canonical or base form for a set of

words and is also known as the head word.

• Dependency grammar: These include finding out the various

relationships among the components in sentences and annotating

the dependencies.

• Constituency grammar: These are used to add syntactic annotation to

sentences based on their constituents, including phrases and clauses.

• Semantic types and roles: The various constituents of sentences,

including words and phrases, are annotated with specific semantic

types and roles often obtained from an ontology that indicates what

they do. These include things like place, person, time, organization,

agent, recipient, theme, etc.

Advanced forms of annotations include adding syntactic and semantic structure

for text. These are dependency and constituency grammar-based parse trees. These

specialized corpora are also known as treebanks, which are extensively used in building

POS taggers, syntax, and semantic parsers. Corpora are also used extensively by linguists

to create new dictionaries and grammar rules. Properties like concordance, collocations,

and frequency counts enable them to find lexical information, patterns, morphosyntactic

information, and language learning. Besides linguistics, corpora are widely used in

developing natural language processing tools like text taggers, speech recognition,

machine translation, spelling and grammar checkers, text-to-speech and speech-to-text

synthesizers, information retrieval, entity recognition, and knowledge extraction.

Chapter 1 Natural laNguage proCessiNg BasiCs

53

 Popular Corpora
There are several popular resources for text corpora that have been built and have evolved

over time. We list some of the most popular corpora in this section to whet your appetite

and you can further go ahead and find out more details about the text corpora that catch

your eye. The following list describes some popular text corpora built over time.

• Keyword in context: KWIC was a methodology invented in the

1860s but used extensively around the 1950s by linguists to index

documents and create corpora of concordances.

• Brown corpus: This was the first million-word corpus for the English

language, published by Kucera and Francis in 1961; it’s also known

as “A Standard Corpus of Present-Day American English”. This corpus

consists of text from a wide variety of sources and categories.

• LOB corpus: The Lancaster-Oslo-Bergen (LOB) corpus was compiled

in the 1970s as a result of collaboration between the University of

Lancaster, the University of Oslo, and the Norwegian Computing

Centre for the Humanities, Bergen. The main motivation of this

project was to provide a British counterpart to the Brown corpus. This

corpus is also a million-word corpus consisting of text from a wide

variety of sources and categories.

• Collins corpus: The Collins Birmingham University International

Language Database (COBUILD) set up in 1980 in the University

of Birmingham and funded by the Collins publishers built a large

electronic corpus of contemporary text in the English language and

paved the way for future corpora like the “Bank of English” and the

“Collins COBUILD English Language Dictionary”.

• CHILDES: The Child Language Data Exchange System (CHILDES) is

a corpus that was created by Brian and Catherine in 1984 and serves

as a repository for language acquisition data including transcripts,

audio, and video in 26 languages from over 130 different corpora. This

was recently merged with a larger corpus called Talkbank. It is used

extensively for analyzing the language and speech of young children.

Chapter 1 Natural laNguage proCessiNg BasiCs

54

• WordNet: This corpus is a semantic oriented lexical database for

the English language. It was created at Princeton University in 1985

under the supervision of George Armitage. The corpus consists

of words and synonym sets often termed synsets. Besides these, it

consists of word definitions, relationships, and examples of using

words and synsets. Overall, it is a combination of a dictionary as well

as a thesaurus.

• Penn treebank: This corpus consists of tagged and parsed English

sentences including annotations like POS tags and grammar-based

parse trees typically found in treebanks. It can be also defined

as a bank of linguistic trees and was created at the University of

Pennsylvania.

• BNC corpus: The British National Corpus (BNC) is one of the

largest English corpora, consisting of over 100 million written and

spoken text samples from a wide variety of sources. This corpus is a

representative sample of written and spoken British English of the

late 20th Century.

• ANC corpus: The American National Corpus (ANC) is a large text

corpus in American English. It consists of over 22 million spoken

and written text samples since the 1990s. It includes data from a

wide variety of sources, including some emerging sources like email,

tweets, and websites, which are not present in the BNC.

• COCA corpus: The Corpus of Contemporary American English

(COCA) is the largest text corpus in American English and consists of

over 450 million words, including spoken transcripts and written text

from various categories and sources.

• Google N-gram corpus: The Google N-gram corpus consists of over

a trillion words from various sources, including books, web pages,

and so on. The corpora consists of n-gram files up to 5-grams for each

language.

• Reuters corpus: This corpus is a collection of Reuters news articles

and stories released in 2000 specifically for carrying out research in

natural language processing and machine learning.

Chapter 1 Natural laNguage proCessiNg BasiCs

55

• Web, chat, email, tweets: These are entirely new forms of text

corpora that have come into prominence since the rise of social

media. We can get them on the web from various sources, including

Twitter, Facebook, chat rooms, and so on.

This gives us an idea of some of the most popular text corpora and how they have

evolved over time. In the next section, we talk about how we can access some of these

text corpora with the help of Python and the Natural Language Toolkit (NLTK) platform.

 Accessing Text Corpora
We already have an idea about what constitutes a text corpus and looked at a list of

several popular text corpora that exist today. In this section, we leverage NLTK to

interface and access some of these text corpora. We cover NLTK and Python more

in the next chapter, so do not worry if some of the syntax or code seems to be a bit

overwhelming. The main intent of this section is to give you an idea of how you can

access and utilize text corpora easily for your natural language processing and analytics

needs. We also use the Natural Language Toolkit (nltk) library and you can find out

more details about this project at http://www.nltk.org/, which tells us more about

NLTK being a complete platform and framework for accessing text resources, including

corpora and libraries for various natural language processing and machine learning

capabilities.

To start, make sure you have Python installed. You can install Python separately or

download the popular Anaconda Python distribution from Anaconda at https://www.

anaconda.com/download, which comes with a complete suite of analytics packages,

including NLTK. If you want more details about Python and want to determine which

distribution would be best suited for you, you can go to Chapter 2 and take a quick

glance where we cover these topics in further detail.

Assuming you have Python installed now, if you installed the Anaconda distribution,

you will already have NLTK installed. Note that we use Python 3 for the entire course

of this book and we recommend everyone use the latest version of Python, preferably

at least Python 3.5+. In case you did not install the Anaconda distribution but have

Python installed, you can open your terminal or command prompt and run the following

command to install NLTK.

$ pip install nltk

Chapter 1 Natural laNguage proCessiNg BasiCs

http://www.nltk.org/
https://www.anaconda.com/download
https://www.anaconda.com/download

56

This will install the nltk library and you will be ready to use it. However, the default

installation of NLTK does not include all the components required in this book. To

install all the components and resources of NLTK, you can start your Python shell and

type the following commands. You will see the various dependencies for NLTK being

downloaded; a part of the output is shown in the following code snippet.

In [1]: import nltk

In [2]: nltk.download('all', halt_on_error=False)

[nltk_data] Downloading collection u'all'

[nltk_data] |

[nltk_data] | Downloading package abc to

[nltk_data] | C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data

[nltk_data] | ...

[nltk_data] | Package abc is already up-to-date!

[nltk_data] | Downloading package alpino to

[nltk_data] | C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data

[nltk_data] | ...

This command will download all the resources required by NLTK. In case you do

not want to download everything, you can also select the necessary components from a

graphical user interface (GUI) using the nltk.download() command. Once the necessary

dependencies are downloaded, you are now ready to start accessing the text corpora!

 Accessing the Brown Corpus

We have already talked a bit about the Brown corpus, which was developed in 1961 at

Brown University. This corpus consists of texts from 500 sources and has been grouped

into various categories. The following code snippet loads the Brown corpus into the

system memory and shows the various categories.

load the Brown Corpus

from nltk.corpus import brown

total categories

print('Total Categories:', len(brown.categories()))

Total Categories: 15

Chapter 1 Natural laNguage proCessiNg BasiCs

57

print the categories

print(brown.categories())

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government',

'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion',

'reviews', 'romance', 'science_fiction']

The preceding output tells us that there are a total of 15 categories in the corpus,

including news, mystery, lore, and so on. The following code snippet digs a little deeper

into the mystery category of the Brown corpus.

tokenized sentences

brown.sents(categories='mystery')

[['There', 'were', 'thirty-eight', 'patients', 'on', 'the', 'bus', 'the',

'morning', 'I', 'left', 'for', 'Hanover', ',', 'most', 'of', 'them',

'disturbed', 'and', 'hallucinating', '.'], ['An', 'interne', ',', 'a',

'nurse', 'and', 'two', 'attendants', 'were', 'in', 'charge', 'of', 'us',

'.'], ...]

POS tagged sentences

brown.tagged_sents(categories='mystery')

[[('There', 'EX'), ('were', 'BED'), ('thirty-eight', 'CD'), ('patients',

'NNS'), ('on', 'IN'), ('the', 'AT'), ('bus', 'NN'), ('the', 'AT'),

('morning', 'NN'), ('I', 'PPSS'), ('left', 'VBD'), ('for', 'IN'),

('Hanover', 'NP'), (',', ','), ('most', 'AP'), ('of', 'IN'), ('them',

'PPO'), ('disturbed', 'VBN'), ('and', 'CC'), ('hallucinating', 'VBG'),

('.', '.')], [('An', 'AT'), ('interne', 'NN'), (',', ','), ('a', 'AT'),

('nurse', 'NN'), ('and', 'CC'), ('two', 'CD'), ('attendants', 'NNS'),

('were', 'BED'), ('in', 'IN'), ('charge', 'NN'), ('of', 'IN'), ('us',

'PPO'), ('.', '.')], ...]

get sentences in natural form

sentences = brown.sents(categories='mystery')

sentences = [' '.join(sentence_token) for sentence_token in sentences]

sentences[0:5] # viewing the first 5 sentences

['There were thirty-eight patients on the bus the morning I left for

Hanover , most of them disturbed and hallucinating .',

 'An interne , a nurse and two attendants were in charge of us .',

Chapter 1 Natural laNguage proCessiNg BasiCs

58

 "I felt lonely and depressed as I stared out the bus window at Chicago's

grim, dirty West Side.",

 'It seemed incredible , as I listened to the monotonous drone of voices

and smelled the fetid odors coming from the patients , that technically I

was a ward of the state of Illinois , going to a hospital for the mentally

ill .',

 'I suddenly thought of Mary Jane Brennan , the way her pretty eyes could

flash with anger , her quiet competence , the gentleness and sweetness that

lay just beneath the surface of her defenses .']

From the preceding snippet and output, we can see the written contents of the

mystery genre and see how the sentences are available in tokenized as well as annotated

formats. Suppose we want to see the top nouns in the mystery genre? We can use the

following code snippet to obtain them. Remember that nouns have either an NN or NP

in their POS tag to indicate various forms of nouns. We cover POS tags in further detail in

Chapter 3.

get tagged words

tagged_words = brown.tagged_words(categories='mystery')

get nouns from tagged words

nouns = [(word, tag) for word, tag in tagged_words if any(noun_tag in tag

 for noun_tag in

['NP', 'NN'])]

nouns[0:10] # view the first 10 nouns

[('patients', 'NNS'), ('bus', 'NN'), ('morning', 'NN'), ('Hanover', 'NP'),

('interne', 'NN'),

 ('nurse', 'NN'), ('attendants', 'NNS'), ('charge', 'NN'), ('bus', 'NN'),

('window', 'NN')]

build frequency distribution for nouns

nouns_freq = nltk.FreqDist([word for word, tag in nouns])

view top 10 occurring nouns

nouns_freq.most_common(10)

[('man', 106), ('time', 82), ('door', 80), ('car', 69), ('room', 65),

 ('Mr.', 63), ('way', 61), ('office', 50), ('eyes', 48), ('Mrs.', 46)]

Chapter 1 Natural laNguage proCessiNg BasiCs

59

The preceding snippet and outputs depict the top ten nouns that occur most

frequently. It includes terms like man, time, room, and so on. We have used some

advanced constructs and techniques like list comprehensions, iterables, and tuples. We

cover core concepts of text processing using Python constructs in the next chapter. For

now, all you need to know is that we filter out the nouns from all other words based on

their POS tags and then compute their frequency to get the top occurring nouns in the

corpus.

 Accessing the Reuters Corpus

The Reuters corpus consists of 10,788 Reuters news documents from around 90

different categories and has been grouped into train and test sets. In machine learning

terminology, train sets are used to train a model and test sets are used to test the

performance of that model. The following code snippet shows us how to access the data

for the Reuters corpus.

load the Reuters Corpus

from nltk.corpus import reuters

total categories

print('Total Categories:', len(reuters.categories()))

Total Categories: 90

print the categories

print(reuters.categories())

['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', ...,

'yen', 'zinc']

get sentences in housing and income categories

sentences = reuters.sents(categories=['housing', 'income'])

sentences = [' '.join(sentence_tokens) for sentence_tokens in sentences]

sentences[0:5] # view the first 5 sentences

["YUGOSLAV ECONOMY WORSENED IN 1986 , BANK DATA SHOWS National Bank

economic data for 1986 shows that Yugoslavia ' s trade deficit grew , the

inflation rate rose , wages were sharply higher , the money supply expanded

and the value of the dinar fell .",

 'The trade deficit for 1986 was 2 . 012 billion dlrs , 25 . 7 pct higher

than in 1985 .',

Chapter 1 Natural laNguage proCessiNg BasiCs

60

 'The trend continued in the first three months of this year as exports

dropped by 17 . 8 pct , in hard currency terms , to 2 . 124 billion dlrs .',

 'Yugoslavia this year started quoting trade figures in dinars based on

current exchange rates , instead of dollars based on a fixed exchange rate

of 264 . 53 dinars per dollar .',

 "Yugoslavia ' s balance of payments surplus with the convertible currency

area fell to 245 mln dlrs in 1986 from 344 mln in 1985 ."]

fileid based access

print(reuters.fileids(categories=['housing', 'income']))

['test/16118', 'test/18534', 'test/18540', ..., 'training/7006',

'training/7015', 'training/7036', 'training/7098', 'training/7099',

'training/9615']

print(reuters.sents(fileids=[u'test/16118', u'test/18534']))

[['YUGOSLAV', 'ECONOMY', 'WORSENED', 'IN', '1986', ',', 'BANK', 'DATA',

'SHOWS', 'National', 'Bank', 'economic', 'data', 'for', '1986', 'shows',

'that', 'Yugoslavia', "'", 's', 'trade', 'deficit', 'grew', ',', 'the',

'inflation', 'rate', 'rose', ',', 'wages', 'were', 'sharply', 'higher',

',', 'the', 'money', 'supply', 'expanded', 'and', 'the', 'value', 'of',

'the', 'dinar', 'fell', '.'], ['The', 'trade', 'deficit', 'for', '1986',

'was', '2', '.', '012', 'billion', 'dlrs', ',', '25', '.', '7', 'pct',

'higher', 'than', 'in', '1985', '.'], ...]

This gives us an idea of how to access corpora data using both categories as well as

file identifiers. Next, we look at how to access the WordNet corpus.

 Accessing the WordNet Corpus

The WordNet corpus is perhaps one of the most used corpora out there since it consists

of a vast corpus of words and semantically linked synsets for each word. We explore

some of the basic features of the WordNet corpus here, including synsets and methods

for accessing the corpus data. For more advanced analysis and coverage of WordNet

capabilities, you can look at Chapter 3, where we cover synsets, lemmas, hyponyms,

hypernyms, and several other concepts that we covered in our semantics section earlier.

The following code snippet gives us an idea about how to access the WordNet corpus

data and synsets.

Chapter 1 Natural laNguage proCessiNg BasiCs

61

load the Wordnet Corpus

from nltk.corpus import wordnet as wn

word = 'hike' # taking hike as our word of interest

get word synsets

word_synsets = wn.synsets(word)

word_synsets

get details for each synonym in synset

for synset in word_synsets:

 print(('Synset Name: {name}\n'

 'POS Tag: {tag}\n'

 'Definition: {defn}\n'

 'Examples: {ex}\n').format(name=synset.name(),

 tag=synset.pos(),

 defn=synset.definition(),

 ex=synset.examples()))

Synset Name: hike.n.01

POS Tag: n

Definition: a long walk usually for exercise or pleasure

Examples: ['she enjoys a hike in her spare time']

Synset Name: rise.n.09

POS Tag: n

Definition: an increase in cost

Examples: ['they asked for a 10% rise in rates']

Synset Name: raise.n.01

POS Tag: n

Definition: the amount a salary is increased

Examples: ['he got a 3% raise', 'he got a wage hike']

Synset Name: hike.v.01

POS Tag: v

Definition: increase

Examples: ['The landlord hiked up the rents']

Chapter 1 Natural laNguage proCessiNg BasiCs

62

Synset Name: hike.v.02

POS Tag: v

Definition: walk a long way, as for pleasure or physical exercise

Examples: ['We were hiking in Colorado', 'hike the Rockies']

This code snippet depicts an interesting example with the word hike and its synsets,

which include synonyms that are nouns as well as verbs having distinct meanings.

WordNet makes it easier to semantically link words with synonyms and easily retrieve

meanings and examples for various words. This example tells us that “hike” can mean

a long walk as well as an increase in prices for salary/rent. Feel free to experiment with

different words and determine their synsets, definitions, examples, and relationships.

Besides these popular corpora, there are a vast number of text corpora available,

which you can check just by looking into the nltk.corpus module, which can be used

to access any of these corpora. Thus, you can see how easy it is to access and use data

from any text corpus with the help of Python and NLTK. This brings us to the end of our

discussion about text corpora. In the following section, we cover some ground regarding

basic concepts around natural language processing and text analytics.

 Natural Language Processing
We mention the term natural language processing (NLP) several times in this chapter.

By now, you might have formed some idea about what NLP means. NLP is defined

as a specialized field of computer science and engineering and artificial intelligence

with roots in computational linguistics. It is primarily concerned with designing and

building applications and systems that enable interaction between machines and

natural languages created by humans. This also makes NLP related to the area of

human-computer interaction (HCI). NLP techniques enable computers to process and

understand human natural language and utilize it further to provide useful output. Next,

we talk about some of the main applications of NLP.

 Machine Translation
Machine translation is perhaps one of the most coveted and sought after applications

of NLP. It is defined as the technique that helps provide syntactic, grammatical, and

semantically correct translations between any two pair of languages. This was perhaps

the first major area of research and development in NLP. On a simple level, machine

Chapter 1 Natural laNguage proCessiNg BasiCs

63

translation is the translation of natural language carried out by a machine. By default,

the basic building blocks for the machine translation process involve simple substitution

of words from one language to another, but in that case we ignore things like grammar

and phrasal structure consistency. Hence, more sophisticated techniques have evolved

over time, including combining large resources of text corpora along with statistical and

linguistic techniques. One of the most popular machine translation systems is Google

Translate. Figure 1-23 shows a successful machine translation operation executed by

Google Translate for the sentence, “What is the fare to the airport?” from English to Italian.

Over time, machine translation systems are getting better at providing translations in

real time as you speak or write into the application.

 Speech Recognition Systems
This is perhaps the most difficult application for NLP. One of the main and perhaps the

most difficult tests of true intelligence in artificial intelligence systems is the Turing test.

This test states that if a question is given by the user to the computer and to a human,

it would be unable to distinguish the responses obtained. Over a period of time, a

lot of progress has been made in this area by using techniques like speech synthesis,

analysis, syntactic parsing, and contextual reasoning. However, one chief limitation for

speech recognition systems still remains that they are very domain-specific and will not

work if the user strays even a little bit from the expected scripted inputs needed by the

system. Speech recognition systems are now found in a large variety of places from your

computers, to mobile phones, to virtual assistance systems.

Figure 1-23. Machine translation performed by Google Translate

Chapter 1 Natural laNguage proCessiNg BasiCs

64

 Question Answering Systems
Question Answering Systems (QAS) are built on the principle of question answering

based on using techniques from NLP and information retrieval (IR). QAS is primarily

concerned with building robust and scalable systems that provide answers to questions

given by users in natural language form. Imagine being in a completely different country,

asking a question to your personalized assistant in your phone in pure natural language,

and getting a similar response from it. This is the ideal state toward which researchers

and technologists are working day in and day out. We have achieved some success in

this field with personalized assistants like Siri and Cortana, but their scope is still limited

since they understand only a subset of key clauses and phrases in the entire human

natural language.

To build a successful QAS, you need a huge knowledgebase consisting of data about

various domains. Efficient querying systems into this knowledgebase would be leveraged

by the QAS to provide answers to questions in natural language form. Creating and

maintaining a queryable vast knowledgebase is extremely difficult, hence you will find

the rise of QAS in niche domains like food, healthcare, ecommerce, and so on. Chatbots

are one of the emerging trends that extensively use QAS.

 Contextual Recognition and Resolution
This covers a wide area in understanding natural language, which includes syntactic

and semantic based reasoning. Word sense disambiguation is a popular application

where we want to find the contextual sense of a word in a given sentence. Consider the

word “book”. It can mean an object containing knowledge and information when used

as a noun and it can also mean to reserve something like a seat or a table when used as

a verb. Detecting these differences in sentences based on context is the main premise of

word-sense disambiguation and it is a daunting task.

Co-reference resolution is another problem in linguistics that NLP is trying to

address. By definition, co-reference is said to occur when two or more terms/expressions

in a body of text refer to the same entity. Then they are said to have the same referent.

Consider the example sentence, “John just told me that he is going to the exam hall”. In

this sentence, the pronoun “he” has the referent “John”. Resolving these pronouns is part

of co-reference resolution and it becomes challenging once we have multiple referents in

a body of text. An example body of text would be, “John just talked with Jim. He told me

Chapter 1 Natural laNguage proCessiNg BasiCs

65

we have a surprise test tomorrow”. In this body of text, the pronoun “he” could refer to

either “John” or “Jim”, thus making it difficult to pinpoint to the exact referent.

 Text Summarization
The main aim of text summarization is to take a corpus of text documents, which could

be a collection of texts, paragraphs, or sentences, and reduce the content appropriately

to create a summary that retains the key points of the collection of documents.

Summarization can be carried out by looking at the various documents and trying to find

the keywords, phrases, and sentences that have prominence in the collection. Two main

types of techniques for text summarization include extraction-based summarization

and abstraction-based summarization. With the advent of huge amounts of text and

unstructured data, the need for text summarization for getting to valuable insights

quickly is in great demand.

Text summarization systems usually perform two main types of operations. The

first one is generic summarization, which tries to provide a generic summary of the

collection of documents under analysis. The second type of operation is query-based

summarization, which provides query-relevant text summaries where the corpus

is filtered further based on specific queries and relevant keywords and phrases are

extracted relevant to the query and the summary is constructed.

 Text Categorization
The main aim of text categorization is to identify to which category or class a specific

document should be placed based on the contents of the document. This is one of the

most popular applications of NLP and machine learning because with the right data, it

is extremely simple to understand the principles behind its internals and implement a

working text categorization system. Both supervised and unsupervised machine learning

techniques can be used to solve this problem and sometimes a combination of both are

used. This has helped build many successful and practical applications, including spam

filters and news article categorizations.

Chapter 1 Natural laNguage proCessiNg BasiCs

66

 Text Analytics
Like we mentioned before, with the advent of huge amounts of computing power,

unstructured data, and success with machine learning and statistical analysis

techniques, it wasn’t long before text analytics started garnering a lot of attention.

However, you need to understand some of the challenges that text analytics poses

compared to regular analytical methods. Free-flowing text is highly unstructured and

rarely follows a specific pattern, like weather data or structured attributes in relational

databases. Hence standard statistical methods will not be helpful when applied out-of-

the-box on unstructured text data. In this section, we cover some of the main concepts

surrounding text analytics and discuss the definition and scope of text analytics, which

will give you a broad idea of what you can expect in the upcoming chapters.

Text analytics, also known as text mining, is defined as the methodology and process

followed to derive quality and actionable information and insights from textual data. This

involves using natural language processing, information retrieval, and machine learning

techniques to parse unstructured text data into more structured forms and deriving

patterns and insights from this data that would be helpful to the end user. Text analytics

comprises a collection of machine learning, linguistic, and statistical techniques that are

used to model and extract information from text primarily for analysis needs, including

business intelligence, exploratory, descriptive, and predictive analysis. Some of the main

techniques and operations in text analytics are mentioned as follows.

• Text classification

• Text clustering

• Text summarization

• Sentiment analysis

• Entity extraction and recognition

• Similarity analysis and relation modeling

However, doing text analytics is a more involved process sometimes compared to

normal statistical analysis or machine learning. The reason is that before applying a

learning technique or algorithm, we have to convert the unstructured text data into a

format acceptable to those algorithms. By definition, a body of text under analysis is

often termed a document and by applying various techniques, we convert this to a vector

of words. This is usually a numeric array whose values are specific weights for each

Chapter 1 Natural laNguage proCessiNg BasiCs

67

word, which could be its frequency, its occurrence, or various other depictions, some

of which we explore in Chapter 3. Often the text needs to be cleaned and processed to

remove noisy terms and data and this process is termed text preprocessing. Once we

have the data in a machine readable and understandable format, we can apply relevant

algorithms based on the problem to be solved. The applications of text analytics are

manifold and some popular ones are as follows.

• Spam detection

• News articles categorization

• Social media analysis and monitoring

• Biomedical

• Security intelligence

• Marketing and CRM

• Sentiment analysis

• Ad placements

• Chatbots

• Virtual assistants

 Machine Learning
We can define machine learning (ML) as a subfield of artificial intelligence (AI). Machine

learning is the art and science of leveraging techniques. It can allow machines to

automatically learn latent patterns and relationships from underlying data and improve

itself over time, without explicitly programming or hard-coding specific rules. Usually

a combination of NLP and ML is often needed to solve real-world problems like text

categorization, clustering, and so on. The three major categories of machine learning

techniques include supervised, unsupervised, and reinforcement learning algorithms.

Chapter 1 Natural laNguage proCessiNg BasiCs

68

 Deep Learning
The field of deep learning (DL) is a subfield of machine learning specializing in models

and algorithms, which have been inspired by how the brain works and functions. Indeed

the artificial neural network (ANN) was the first model built by drawing inspiration

from the human brain. Although we are definitely quite far away from replicating what

the brain does, neural networks are extremely complex non-linear models, which are

capable of automatically learning hierarchical data representations. Deep learning

or deep neural networks typically use multiple layers of non-linear processing units,

also known as neurons. We prefer calling them processing units. Each layer performs

some feature extraction, engineering, and transformation on its own using the output

from the previous layer as its input. Hence, each level ends up learning hierarchical

representations of the data at different levels of abstraction. We can use these models to

solve both supervised and unsupervised problems. Recently, deep learning has shown a

lot of promise with regard to solving NLP problems.

 Summary
Congratulations on staying with this long chapter! We have started our journey of text

analytics with Python by taking a journey in the world of natural language processing

and the various concepts and domains surrounding it. You now have a good idea

of what natural language means and how it is significant in our world. We have also

seen concepts surrounding the philosophy of language and language acquisition and

usage. The field of linguistics gave us a flavor of the origins of language studies and

how they have evolved with time. We covered language syntax and semantics in detail,

including the essential concepts with interesting hands-on examples in Python to easily

understand them. We also talked about resources for natural language, namely text

corpora, and looked at some practical examples with code regarding how to interface

and access corpora using Python and NLTK. Finally, we ended with a discussion

about the various facets of natural language processing and text analytics. In the next

chapter, we talk about using Python for text analytics, where we touch upon setting up

your Python development environment for natural language processing, the various

constructs of Python useful for text processing, and look at some of the popular state-of-

the-art libraries, frameworks, and platforms used for NLP.

Chapter 1 Natural laNguage proCessiNg BasiCs

69
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_2

CHAPTER 2

Python for Natural
Language Processing
In the previous chapter, we took a journey into the world of natural language processing

and explored several interesting concepts and domains associated with it. We now have

a better understanding of the entire scope surrounding natural language processing,

linguistics, and text analytics. If you refresh your memory, we also got our first taste of

running Python code to look at essentials with regard to processing and understanding

text. We also looked at ways to access and use text corpora resources with the help of

the NLTK framework. In this chapter, we look at why Python is the language of choice

for natural language processing (NLP), set up a robust Python environment, take a

hands-on based approach to understanding essentials of string and text processing,

manipulation, and transformation, and conclude by looking at some of the important

libraries and frameworks associated with NLP and text analytics. This chapter is aimed

to provide a quick refresher for getting started with Python and NLP.

This book assumes you have some knowledge of Python or any other programming

language. If you are a Python practitioner or even a Python guru, you can skim through

the chapter since a lot of the content here will start right from a brief history of Python,

setting up your Python development environment, to basics of Python for working with

text data. Our main focus in the chapter is exploring how text data is handled in Python

and learning more about the state-of-the-art NLP tools and frameworks in Python. This

chapter follows a more hands-on approach and we cover various concepts with practical

examples. All the code examples showcased in this chapter are available on the book's

official GitHub repository at https://github.com/dipanjanS/text-analytics-with-

python/tree/master/New-Second-Edition.

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

70

 Getting to Know Python
Before we can dive into the Python ecosystem and look at the various components

associated with it, we need to take a brief look at the origins and philosophy behind

Python and see how it has evolved over time to be the choice of language powering

many applications, servers, and systems today. Python is a high-level open source

general-purpose programming language widely used as a scripting as well as a

programming language across different domains. Python is the brainchild of Guido Van

Rossum and was conceived in the late 1980s as a successor to the ABC language, both of

which were developed at the Centrum Wiskunde and Informatica (CWI), Netherlands.

Python was originally designed to be a scripting and interpreted language and to this day

it retains the essence of being one of the most popular scripting languages out there. But

with object oriented principles (OOP) and constructs, you can use it just like any other

object oriented language, e.g., Java. The name Python coined by Guido comes from the

hit comedy show, Monty Python's Flying Circus.

Python is a general purpose programming language that supports multiple

programming paradigms. The popular programming paradigms supported are as

follows:

• Object oriented programming

• Functional programming

• Procedural programming

• Aspect oriented programming

A lot of object oriented programming concepts are present in Python, including

classes, objects, data, and methods. Principles like abstraction, encapsulation,

inheritance, and polymorphism can also be implemented and exhibited using

Python. There are several advanced features in Python, including iterators, generators,

list comprehensions, lambda expressions, and several modules like collections,

itertools, and functools that provide the ability to write code following the functional

programming paradigm. Python has been designed keeping in mind that simple and

beautiful code is more elegant and easy to use than premature optimization and hard-

to- interpret code.

Python's standard libraries are power-packed with a wide variety of capabilities and

features, ranging from low-level hardware interfacing to handling files and working with

text data. Easy extensibility and integration was considered when developing Python

Chapter 2 python for natural language proCessing

71

so that it can be easily integrated with existing applications and even rich application

programming interfaces (APIs) can be created to provide interfaces to other applications

and tools. Python also has a thriving and helpful developer community that ensures

there are a ton of helpful resources and documentation out there on the Internet. The

community also organizes various workshops and conferences throughout the world!

Python boosts productivity by reducing the time taken to develop, run, debug,

deploy, and maintain large codebases compared to other languages like Java, C++, and C.

Large programs of over a 100 lines can be reduced to 20 lines or less on average by

porting them to Python. High-level abstractions help developers focus on the problem

to be solved at hand rather than worry about language specific nuances. The hindrance

of compiling and linking is also bypassed with Python. Hence, Python is often the best

choice, especially when rapid prototyping and development is essential for solving an

important problem in less time.

One of the main advantages of Python is that it is a multi-purpose programming

language that can be used for just about anything! From web applications to intelligent

systems, Python powers a wide variety of applications and systems. Besides being a

multi-purpose language, the wide variety of frameworks, libraries, and platforms that

have been developed using Python and used with Python form a complete robust

ecosystem around it. These libraries make our lives easier by giving us a wide variety

of capabilities and functionality to perform various tasks with minimal code. Some

examples include libraries for handling databases, text data, machine learning, signal

processing, image processing, deep learning, artificial intelligence, and the list goes on.

 The Zen of Python
You might be wondering what on earth the Zen of Python is. However, if you are

somewhat familiar with Python, this is one of the first things you’ll get to know. The

beauty of Python lies in its simplicity and elegance. “The Zen of Python” is a set of 20

guiding principles, also known as aphorisms, that have been influential behind Python's

design. Long-time Pythoneer Tim Peters documented 19 of them in 1999 and they

can be accessed at https://hg.python.org/peps/file/tip/pep-0020.txt as a part

of the Python Enhancement Proposals (PEP) number 20 (PEP 20). The best part is, if

you already have Python installed, you can access “The Zen of Python” by running the

following code in the Python or IPython shell or a Jupyter notebook.

Chapter 2 python for natural language proCessing

https://hg.python.org/peps/file/tip/pep-0020.txt

72

zen of python

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

This output shows us the 19 principles that form the Zen of Python and is included in

the Python language itself as an Easter egg. The principles are written in simple English

and a lot of them are pretty self-explanatory even if you have not written code before.

Many of them contain inside jokes! Python focuses on writing simple and clean code

that’s readable. It also encourages you to make sure you focus a lot on error handling and

implementing code that’s easy to interpret and understand. The one principle I would

like you to remember is “simple is better than complex,” which is applicable not only

to Python but to a lot of things, especially when you are out there in the world solving

problems. Sometimes a simple approach beats a more complex one as long as you know

what you are doing.

Chapter 2 python for natural language proCessing

73

 Applications: When Should You Use Python?
Python—being a general and multi-purpose programming language—can be used

to build applications and systems for different domains and solve diverse real-world

problems. Python comes with a standard library that hosts a large number of useful

libraries and modules that can be leveraged to solve various problems. Besides the

standard library, there are thousands of third-party libraries that are readily available on

the Internet encouraging open source and active development. The official repository

that hosts third-party libraries and utilities for enhancing development in Python is the

Python Package Index (PyPI) and you can access it by going to https://pypi.python.

org/ and checking out the various packages. Currently there are over 80,000 packages

that you can install and use. While Python can be used for solving a lot of problems, we

categorize some of the most popular domains and describe them as follows:

• Scripting: Python is often popularly known as a scripting language.

It can be used to perform a wide variety of tasks like interfacing with

networks and hardware, handling and processing files and databases,

performing operating system (OS) operations, and receiving and

sending e-mail.

• Web development: There are a lot of robust and stable Python

frameworks out there that are used extensively for web development,

such as Django, Flask, Web2Py, and Pyramid. You can use them

to develop complete enterprise web applications and they

support various architecture styles like RESTful APIs and the MVC

architecture. They also provide ORM support to interact with

databases and use object oriented programming on top of that.

Python even has frameworks like Kivy, which support cross-platform

development for developing apps on multiple platforms like iOS,

Android, Windows, and OS X.

• Graphical user interfaces: A lot of desktop based applications with

graphical user interfaces (GUIs) can be easily built with Python.

Libraries and APIs like tkinter, PyQt, PyGTK, and wxPython allow

developers to develop GUI-based apps with simple or complex

interfaces. Various frameworks enable developers to create GUI-

based apps for different OSes and platforms.

Chapter 2 python for natural language proCessing

https://pypi.python.org/
https://pypi.python.org/

74

• Systems programming: Python, being a high-level language, has

many interfaces to low-level OS services and protocols and the

abstractions on top of these services enable developers to write

robust and portable system monitoring and administration tools. You

can use Python to perform several OS operations, including creating,

handling, searching, deleting, and managing files and directories. The

Python Standard Library (PSL) has OS and POSIX bindings, which

can be used for handling files, multi-threading, multi-processing,

environment variables, controlling sockets, pipes, and processes.

• Database programming: Python is used to connect and access

data from different types of databases, be it SQL or NoSQL. APIs and

connectors exist for these databases like MySQL, MSSQL, MongoDB,

Oracle, PostgreSQL, and SQLite. In fact, SQLite, a lightweight

relational database, now comes as a part of the Python standard

distribution. Popular libraries like SQLAlchemy and SQLObject

provide interfaces to access various relational databases and have

ORM components to help implement OOP style classes and objects

on top of relational tables.

• Scientific computing: Python really shows its flair for being multi-

purpose in areas like numeric and scientific computing. You can

perform simple as well as complex mathematical operations,

including algebra and calculus. Libraries like SciPy and NumPy help

researchers, scientists, and developers leverage highly optimized

functions and interfaces for numeric and scientific programming.

These libraries are also used as the base for developing complex

algorithms in various domains like machine learning.

• Machine learning and deep learning: Python is regarded as one

of the most popular languages today for machine learning. There

exists a wide suite of libraries and frameworks like Scikit-Learn, h2o,

TensorFlow, Keras, PyTorch, and even core libraries like NumPy and

SciPy for not only implementing machine learning algorithms but

also using them to solve real-world advanced analytics problems.

Chapter 2 python for natural language proCessing

75

• NLP and text analytics: As mentioned, Python can handle text data

really well and this has led to several popular libraries like NLTK,

Gensim, and spaCy for natural language processing, information

retrieval, and text analytics. You can also apply standard machine

learning algorithms to solve problems related to text analytics. We

explore several of these libraries in this book.

Even though this list might seem a bit overwhelming, this is just scratching the

surface of what is possible with Python. It is widely used in several other domains

including artificial intelligence, game development, robotics, internet of things,

computer vision, media processing, and network and system monitoring, just to name a

few. To know some of the widespread success stories achieved with Python in different

diverse domains like arts, science, computer science, education and others, enthusiastic

programmers and researchers can check out this link https://www.python.org/about/

success/. If you want to know about various popular applications developed using

Python, you can check out https://www.python.org/about/apps/ and https://wiki.

python.org/moin/Applications, where you will definitely find some applications that

you have used.

 Drawbacks: When Should You Not Use Python?
Just like any tool or language out there, Python has its own advantages and

disadvantages, and in this section we highlight some of them so that you are aware of

them when developing and writing code in Python.

• Execution speed performance: Performance is a pretty heavy

term and can mean several things, so we pinpoint the exact area we

want to talk about and that is execution speed. Since Python is not

a fully compiled language, it will always be slower than low-level

fully compiled programming languages like C and C++. There are

several ways you can optimize your code, including multi-threading

and multi-processing and using static typing and C extensions for

Python, also known as Cython. You can also consider using PyPy,

which is much faster than normal Python since it uses a Just in

Time (JIT) compiler. See http://pypy.org/. Often, if you write well

optimized code, you can develop applications in Python just fine that

Chapter 2 python for natural language proCessing

https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/apps/
https://wiki.python.org/moin/Applications
https://wiki.python.org/moin/Applications
http://pypy.org/

76

do not need to depend on other languages. Remember that often the

problem is not with the tool but with the code you write, something

all developers and engineers realize with time and experience.

• Global interpreter lock: The Global Interpreter Lock (GIL) is

a mutual exclusion lock used is several programming language

interpreters like Python and Ruby. Interpreters using GIL only allow

one single thread to effectively execute at a time even when run on

a multi-core processor. This limits the effectiveness of parallelism

achieved by multi-threading depending on whether the processes are

I/O bound or CPU bound and how many calls it makes outside the

interpreter. Python 3.x also has modules like asyncio, which can be

used for asynchronous IO operations.

• Version incompatibility: If you have been following Python closely,

you will know that once Python released the 3.x version from 2.7.x, it

was backward incompatible in several aspects and it opened a huge

can of worms. Several major libraries and packages had been built

in Python 2.7.x and they started breaking when users unknowingly

updated their Python versions. Code deprecation and version

changes are some of the most important factors in systems breaking

down. However, Python 3.x is quite stable now and the majority of

the userbase has started using it actively in the last couple of years.

Many of these issues are not specific to Python but to other languages too. Hence,

you should not be discouraged from using Python just because of these points. That said,

you should definitely remember them when writing code and building systems.

 Python Implementations and Versions
There are several implementations of Python and different versions of Python that are

released periodically since it is under active development. We discuss implementations

and versions and their significance, and this should give you some idea of what Python

environments exist and which ones you might want to use for your development needs.

Currently, there are four major production-ready, robust, and stable implementations of

Python:

Chapter 2 python for natural language proCessing

77

• CPython: This is the regular old Python we know as just Python.

It is both a compiler and interpreter and comes with its own set

of standard packages and modules that have all been written in

standard C. This version can be used directly in all popular modern

platforms. Most of the Python third-party packages and libraries are

compatible with this version.

• PyPy: A faster alternative Python implementation that uses a Just-

in- Time (JIT) compiler to make code run faster than the CPython

implementation, sometimes giving speedups in the range of 10x -

100x. It is also more memory efficient, supporting greenlets and

stackless for high parallelism and concurrency.

• Jython: A Python implementation for the Java platform, supporting

Java Virtual Machine (JVM) for any version of Java ideally above

version 7. Using Jython you can write code leveraging all types of Java

libraries, packages, and frameworks. It works best when you know

more about the Java syntax and the OOP principles that are used

extensively in Java like classes, objects, and interfaces.

• IronPython: The Python implementation for the popular Microsoft

.NET framework, also called the Common Language Runtime

(CLR). You can use all of Microsoft's CLR libraries and frameworks

in IronPython and even though you do not essentially have to write

code in C#, it is useful to know more about syntax and constructs for

C# to use IronPython effectively.

To start, I suggest you use the default Python, which is the CPython implementation

and experiment with the other versions only if you are interested in interfacing with

other languages like C# and Java and need to use them in your codebase.

There are two major Python versions—the 2.x series and the 3.x series, where x is

a number. Python 2.7 was the last major version in the 2.x series released in 2010 and

from then on, future releases have bug fixes and performance improvements but no new

features. A very important point to remember is that support for Python 2.x is ending

by 2020. The 3.x series started with Python 3.0, which introduced many backward

incompatible changes compared to Python 2.x and each version 3 release not only has

bug fixes and improvements but also introduces new features like the AsyncIO module.

At the time of writing this, Python 3.7 was the latest version in the 3.x series and it was

Chapter 2 python for natural language proCessing

78

released in June 2018. There are many arguments over which version of Python should

be used. Considering that support for Python 2 is ending by 2020 and no new features or

enhancements are planned for it, we recommend you use Python 3 for all your projects,

research, and development.

 Setting Up a Robust Python Environment
Now that you have been acquainted with Python and know more about the language,

its capabilities, implementations, and versions, this section covers some essentials on

how to set up your development environment and handle package management and

virtual environments. This section gives you a good head start on getting things ready for

following along with the various hands-on examples covered in this book.

 Which Python Version?
We have previously talked about two major Python versions—the 2.x series and the 3.x

series. Both the versions are quite similar; however, there have been several backward

incompatible changes in the 3.x version, which has led to a huge drift between people who

use 2.x and people who use 3.x. Most legacy code and a large majority of Python packages

on PyPI are developed in Python 2.7.x and the package owners do not have the time or the

will to port all their codebases to Python 3.x. Some of the changes in 3.x are as follows:

• All text strings are Unicode by default

• print and exec are now functions and no longer statements

• Several methods like range() return a memory-efficient iterable

instead of a list

• The style for classes have changed

• Libraries and names have changed based on convention and style

violations

• More features, modules, and enhancements

To learn more about all the changes introduced in Python 3.x, check out https://

docs.python.org/3/whatsnew/3.7.html, which is the official documentation listing the

changes. This should give you a pretty good idea of what changes can break your code if

you are porting it from Python 2 to Python 3.

Chapter 2 python for natural language proCessing

https://docs.python.org/3/whatsnew/3.7.html
https://docs.python.org/3/whatsnew/3.7.html

79

Now addressing the problem of selecting which version, we definitely recommend

using Python 3 at all times. The primary reason behind this is a recent announcement

from the Python core group members that mentioned that support for Python 2 will be

ending by 2020 and no new features or enhancements will be pushed to Python 2. We

recommend checking out PEP 373 https://legacy.python.org/dev/peps/pep-0373/,

which covers this issue in further detail. However, if you are working on a large legacy

codebase with Python 2.x, you might need to stick to it until porting it to Python 3 is

possible. We use Python 3.x in this book and recommend you do the same. For code in

Python 2.x, you can refer to the previous release of this book as needed.

 Which Operating System?
There are several popular operating systems (OSes) out there and each person has their

own preference. The beauty of Python is that is can run seamlessly on any OS without

much hassle. Some of the different OSes that Python supports include:

• Windows

• Linux

• MacOS (also known as OS X)

You can choose any OS of your choice and use it to following along with the

examples. We use a combination of Linux and Windows as our OS platforms. Python

external packages are typically easy to install on UNIX-based OSes like Linux and

MacOS. However, sometimes there are major issues in installing them on Windows, so

we highlight such instances and address them so that executing any of the code snippets

and samples here becomes easy for our Windows readers. You are most welcome to use

any OS of your choice when following the examples in this book!

 Integrated Development Environments
Integrated development environments (IDEs) are software products that enable

developers to be highly productive by providing a complete suite of tools and capabilities

necessary for writing, managing, and executing code. The usual components of an

IDE include a source editor, debugger, compiler, interpreter, and refactoring and build

tools. They also have other capabilities like code-completion, syntax highlighting, error

highlighting and checks, objects, and variable explorers. IDEs can be used to manage

Chapter 2 python for natural language proCessing

https://legacy.python.org/dev/peps/pep-0373/

80

entire codebases and are much better than trying to write code in a simple text editor,

which takes more time. However, more experienced developers often use simple plain

text editors to write code, especially if they are working in server environments. The

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments link provides

a list of IDEs used specially with Python. We use a combination of PyCharm, Spyder,

Sublime Text and Jupyter notebooks. The code examples in this book are demonstrated

on Jupyter notebooks mostly, which comes installed along with the Anaconda Python

distribution for writing and executing the code.

 Environment Setup
In this section, we cover details regarding how to set up your Python environment with

minimal effort and the main required components. You can head over to the official

Python website and download Python 3.7 from https://www.python.org/downloads/

or you can download a complete Python distribution with over hundreds of packages

specially built for data science and AI, known as the Anaconda Python distribution, from

Anaconda (formerly known as Continuum Analytics). This provides a lot of advantages,

especially to Windows users, where installing some of the packages like NumPy and SciPy

can sometimes cause major issues. You can get more information about Anaconda and the

excellent work they are doing by visiting https://www.anaconda.com. Anaconda comes

with conda, an open source package and environment management system and Spyder

(Scientific Python Development Environment), an IDE for writing and executing your code.

To start your environment setup, you can follow along the instructions mentioned

at https://docs.anaconda.com/anaconda/install/windows for Windows or use the

instructions for any other OS of your choice. Head over to https://www.anaconda.com/

download/ and download the 64- or 32-bit Python 3 installer for Windows, depending on

your OS version. For other OSes, you can check the relevant instructions on the website.

Start the executable and follow the instructions on the screen by clicking the Next button

at each stage. Remember to set a proper install location, as depicted in Figure 2-1.

Chapter 2 python for natural language proCessing

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.python.org/downloads/
https://www.anaconda.com
https://docs.anaconda.com/anaconda/install/windows
https://www.anaconda.com/download/
https://www.anaconda.com/download/

81

Before starting the actual installation, remember to check the two options shown in

Figure 2-2.

Figure 2-1. Installing the Anaconda Python distribution: setting up an install
location

Chapter 2 python for natural language proCessing

82

Once the installation is complete, you can either start Spyder by double-clicking the

relevant icon or start the Python or IPython shell from the command prompt. To start

Jupyter notebooks, you can just type jupyter notebook from a terminal or command

prompt. Spyder provides you with a complete IDE to write and execute code in both

the regular Python and the IPython shell. Figure 2-3 shows you how to start a Jupyter

notebook.

Figure 2-2. Installing the Anaconda Python distribution: adding to system path

Chapter 2 python for natural language proCessing

83

This should give you an idea how easy it is to showcase code and outputs

interactively in Jupyter notebooks. We showcase our code usually through these

notebooks. To test if Python is properly installed, you can simply type python --version

from the terminal or even from your notebook, as depicted in Figure 2-4.

Figure 2-3. Starting a Jupyter notebook

Figure 2-4. Checking your Python installation

Chapter 2 python for natural language proCessing

84

 Package Management
We now cover package management briefly. You can use the pip or conda command to

install, uninstall, and upgrade packages. The following shell command depicts installing

the pandas library via pip. You can check if a package is installed using the pip freeze

<package_name> command and install packages using the pip install <package_

name> command, as depicted in Figure 2-5. If you already have a package/library

installed, you can use the --upgrade flag.

Figure 2-5. Python package management with pip

The conda package manager is better than pip in several aspects, since it provides a

holistic view of what dependencies are going to be upgraded and the specific versions

and other details during installation. pip often fails to install some packages in Windows;

however, conda usually has no such issues during installation. Figure 2-6 depicts how to

install and manage packages using conda.

Chapter 2 python for natural language proCessing

85

Now you have a much better idea of how to install external packages and libraries in

Python. This will be useful later, whenever you want to install external Python packages

in your environment. Your Python environment should now be set up and ready for

executing code. Before we dive into techniques for handling text data in Python, we

conclude with a discussion about virtual environments.

 Virtual Environments
A virtual environment, also called a venv, is a complete isolated Python environment

with its own Python interpreter, libraries, modules, and scripts. This environment is

a standalone environment isolated from other virtual environments and the default

system level Python environment. Virtual environments are extremely useful when

Figure 2-6. Python package management with conda

Chapter 2 python for natural language proCessing

86

you have multiple projects or codebases that have dependencies on different versions

of the same packages or libraries. For example, if my project called TextApp1 depends

on NLTK 2.0 and another project called TextApp2 depends on NLTK 3.0, then it would

be impossible to run both projects on the same system. Hence the need for virtual

environments that provide complete isolated environments, which can be activated and

deactivated as needed.

To set up a virtual environment, you need the virtualenv package. We create a new

directory where we want to keep our virtual environment and install virtualenv as

follows:

E:\>mkdir Apress

E:\>cd Apress

E:\Apress>pip install virtualenv

Collecting virtualenv

Installing collected packages: virtualenv

Successfully installed virtualenv-16.0.0

Once the package is installed, you can create a virtual environment. Here we create

a new project directory called test_proj and create the virtual environment inside the

directory:

E:\Apress>mkdir test_proj && chdir test_proj

E:\Apress\test_proj>virtualenv venv

Using base prefix 'c:\\program files\\anaconda3'

New python executable in E:\Apress\test_proj\venv\Scripts\python.exe

Installing setuptools, pip, wheel...done.

Now that you have installed the virtual environment successfully, let's try to observe

the major differences between the global system Python environment and our virtual

environment. If you remember, we updated our global system Python's pandas package

version to 0.23 in the previous section. We can verify it using the following commands.

E:\Apress\test_proj>echo 'This is Global System Python'

'This is Global System Python'

E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.23.3

Chapter 2 python for natural language proCessing

87

Now supposed we wanted an older version of pandas in our virtual environment

but we don’t want to affect our global system Python environment. We can do this by

activating our virtual environment and installing pandas.

E:\Apress\test_proj>venv\Scripts\activate

(venv) E:\Apress\test_proj>echo 'This is VirtualEnv Python'

'This is VirtualEnv Python'

(venv) E:\Apress\test_proj>pip install pandas==0.21.0

Collecting pandas==0.21.0

 100% |################################| 9.0MB 310kB/s

Collecting pytz>=2011k (from pandas==0.21.0)

Collecting python-dateutil>=2 (from pandas==0.21.0)

Collecting numpy>=1.9.0 (from pandas==0.21.0)

Collecting six>=1.5 (from python-dateutil>=2->pandas==0.21.0)

Installing collected packages: pytz, six, python-dateutil, numpy, pandas

Successfully installed numpy-1.14.5 pandas-0.21.0 python-dateutil-2.7.3

pytz-2018.5 six-1.11.0

(venv) E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.21.0

For other OS platforms, you might need to use the command source venv/bin/

activate to activate the virtual environment. Once the virtual environment is active,

you can see the (venv) notation, as shown in the preceding code output, and any new

packages you install will be placed in the venv folder in complete isolation from the

global system Python environment.

You can see from the previous code snippets how the pandas package has different

versions in the same machine—0.23.3 for global Python and 0.21.0 for the virtual

environment Python. Hence, these isolated virtual environments can run seamlessly on

the same system. Once you have finished working in the virtual environment, you can

deactivate it again as follows.

(venv) E:\Apress\test_proj>venv\Scripts\deactivate

E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.23.3

Chapter 2 python for natural language proCessing

88

This will bring you back to the system’s default Python version with all its installed

libraries and, as expected, the pandas version is the newer one that we had installed.

This gives us a good idea about the utility and advantages of virtual environments and

once you start working on several projects, you should definitely consider using it. To

learn more about virtual environments, check out http://docs.python-guide.org/

en/latest/dev/virtualenvs/, which is the official documentation for the virtualenv

package. This brings us to the end of our installation and setup activities. Next, we

look into some basic concepts around Python syntax and structure before diving into

handling text data with Python using hands-on examples.

 Python Syntax and Structure
We discuss briefly the basic syntax, structure, and design philosophies that are followed

when writing Python code for applications and systems. There is a defined hierarchical

syntax for Python code, which you should remember when writing code. Any big

Python application or system is built using several modules, which are themselves

comprised of Python statements. Each statement is like a command or direction to the

system directing what operations it should perform. These statements are comprised

of expressions and objects. Everything in Python is an object, including functions, data

structures, types, classes, and so on. This hierarchy can be visualized better in Figure 2-7.

Python Application

Statements

Expressions
Objects

Module 1

Statements

Expressions
Objects

Module 2

Statements

Expressions
Objects

Module 3

Figure 2-7. Python program structure hierarchy

Chapter 2 python for natural language proCessing

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

89

The basic statements consist of objects and expressions (which use objects and

process and perform operations on them). Objects can be anything from simple data

types and structures to complex objects, including functions and reserved words that

have their own specific roles. Python has around 30+ keywords or reserved words, all

of which have their own designated role and function. We assume that you have some

knowledge of basic programming constructs, but in case you do not, don't despair! In the

next section, we showcase how to work with text data using detailed hands-on examples.

 Working with Text Data
In this section, we briefly cover specific data types tailored to handle text data and how

these data types and their associated utilities, functions, and methods will be useful in

the subsequent chapters. The main data types that are used to handle text data in Python

are strings. These can be normal strings, bytes storing binary information, or Unicode.

By default, all strings are Unicode in Python 3.x but are not so in Python 2.x. This is

something you should definitely keep in mind when dealing with text in different Python

distributions.

Strings are a sequence of characters in Python, similar to arrays and code with a set

of attributes and methods that can be leveraged to manipulate and operate on text data

easily. This makes Python the language of choice for text analytics in many scenarios.

There are various types of strings that we discuss, with several examples in the next

section.

 String Literals
There are various types of strings, as mentioned earlier. The following BNF (Backus-Naur

Form) gives us the general lexical definitions for producing strings, as seen in the official

Python docs.

stringliteral ::= [stringprefix](shortstring | longstring)

stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"

 | "b" | "B" | "br" | "Br" | "bR" | "BR"

shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'

longstring ::= "'''" longstringitem* "'''" | '"""' longstringitem*

'"""'

Chapter 2 python for natural language proCessing

90

shortstringitem ::= shortstringchar | escapeseq

longstringitem ::= longstringchar | escapeseq

shortstringchar ::= <any source character except "\" or newline or the

quote>

longstringchar ::= <any source character except "\">

escapeseq ::= "\" <any ASCII character>

These rules tell us that different types of string prefixes exist and can be used with

different string types to produce string literals. In simple terms, the following types of

string literals are used the most:

• Short strings: These strings are usually enclosed with single quotes

(') or double quotes (") around the characters. Some examples are

'Hello' and "Hello".

• Long strings: These strings are usually enclosed with three single

(''') or double quotes (""") around the characters. Some examples

are """Hello, I'm a long string""" or '''Hello I\'m a long

string '''. Note the (\') indicates an escape sequence which we

shall talk about soon.

• Escape sequences in strings: These strings often have escape

sequences embedded in them, where the rule for escape sequences

starts with a backslash (\) followed by any ASCII character. Hence,

they perform backspace interpolation. Popular escape sequences

include (\n), which indicates a newline character and (\t), indicating

a tab.

• Bytes: These are used to represent bytestrings that create objects of

the byte’s data type. These strings can be created as bytes('...') or

using the b'...' notation. Examples include bytes('hello') and

b'hello'.

• Raw strings: These strings were originally created specifically for

regular expressions (regex) and regex patterns. These strings can be

created using the r'...' notation and keep the string in its raw or

native form. Hence, they do not perform any backspace interpolation

and turn off the escape sequences. An example is r'Hello'.

Chapter 2 python for natural language proCessing

91

• Unicode: These strings support Unicode characters in text and

they are usually non-ASCII character sequences. These strings are

denoted with the u'...' notation. However, in Python 3.x all string

literals are typically represented as Unicode. Besides the string

notation, there are several specific ways to represent special Unicode

characters in the string. The usual include the hex byte value escape

sequence of the format '\xVV'. Besides this, we also have Unicode

escape sequences of the form '\uVVVV' and '\uVVVVVVVV', where

the first form uses four hex-digits for encoding a 16 bit character

and the second uses eight hex-digits for encoding a 32-bit character.

Some examples include u 'H\xe8llo' and u 'H\u00e8llo', which

represents the string 'Hèllo'.

Now that we know the main types of string literals, let's look at ways to represent

strings.

 Representing Strings
Strings are sequences or collections of characters that are used to store and represent

textual data, which is our data type of choice in most of the book’s examples. Strings can

be used to store text and bytes as information. Strings have a wide variety of methods

that can be used for handling and manipulating strings, which we see in a subsequent

section. An important point to remember is that strings are immutable and any

operations performed on strings create a new string object (which can be checked using

the id function) rather than just changing the value of the existing string object. Let's

look at some basic string representations.

new_string = "This is a String" # storing a string

print('ID:', id(new_string)) # shows the object identifier (address)

print('Type:', type(new_string)) # shows the object type

print('Value:', new_string) # shows the object value

ID: 1907471142032

Type: <class 'str'>

Value: This is a String

Chapter 2 python for natural language proCessing

92

simple string

simple_string = 'Hello!' + " I'm a simple string"

print(simple_string)

Hello! I'm a simple string

Representing multi-line strings is also quite easy and can be done as follows:

multi-line string, note the \n (newline) escape character automatically

created

multi_line_string = """Hello I'm

a multi-line

string!"""

multi_line_string

"Hello I'm\na multi-line\nstring!"

print(multi_line_string)

Hello I'm

a multi-line

string!

Let's now look at ways to represent escape sequences and raw strings in their native

format, without any escape sequences.

Normal string with escape sequences leading to a wrong file path!

escaped_string = "C:\the_folder\new_dir\file.txt"

print(escaped_string) # will cause errors if we try to open a file here

C: he_folder

ew_dirile.txt

raw string keeping the backslashes in its normal form

raw_string = r'C:\the_folder\new_dir\file.txt'

print(raw_string)

C:\the_folder\new_dir\file.txt

Let’s look at ways to represent non-ASCII characters leveraging Unicode, which can

also be used to represent symbols like emojis.

Chapter 2 python for natural language proCessing

93

unicode string literals

string_with_unicode = 'H\u00e8llo!'

print(string_with_unicode)

Hèllo!

more_unicode = 'I love Pizza 🍕! Shall we book a cab 🚕 to get pizza?'

print(more_unicode)

I love Pizza 🍕! Shall we book a cab 🚕 to get pizza?

print(string_with_unicode + '\n' + more_unicode)

Hèllo!

I love Pizza 🍕! Shall we book a cab 🚕 to get pizza?

' '.join([string_with_unicode, more_unicode])

'Hèllo! I love Pizza 🍕! Shall we book a cab 🚕 to get pizza?'

more_unicode[::-1] # reverses the string

'?azzip teg ot 🚕 bac a koob ew llahS !🍕 azziP evol I'

 String Operations and Methods
Strings are iterable sequences and hence a lot of operations can be performed on

them. This is especially helpful when processing and parsing textual data into easy-to-

consume formats. There are several operations that can be performed on strings. We

have categorized them into the following segments.

• Basic operations

• Indexing and slicing

• Methods

• Formatting

• Regular expressions

These cover the most frequently used techniques for working with strings and form the

base of what we would need to get started. In the next chapter, we look at understanding

and processing textual data based on concepts we learned in the first two chapters.

Chapter 2 python for natural language proCessing

94

 Basic Operations

There are several basic operations you can perform on strings, including concatenation

and checking for substrings, characters, and lengths. We start off with some basic

examples of concatenating strings.

In [10]: 'Hello 😊' + ' and welcome ' + 'to Python 🐍!'

Out [10]: 'Hello 😊 and welcome to Python 🐍!'

In [11]: 'Hello 😊' ' and welcome ' 'to Python 🐍!'

Out [11]: 'Hello 😊 and welcome to Python 🐍!'

Let's now look at some ways of concatenating variables and literals when handling

strings.

concatenation of variables and literals

In [12]: s1 = 'Python 💻!'

 ...: 'Hello 😊 ' + s1

Out [12]: 'Hello 😊 Python 💻!'

In [13]: 'Hello 😊 ' s1

File "<ipython-input-17-da1762b9f01f>", line 1

 'Hello 😊 ' s1

 ^

SyntaxError: invalid syntax

We now look at some more ways of concatenating strings.

In [5]: s2 = '--🐍Python🐍--'

 ...: s2 * 5

Out [5]: '--🐍Python🐍----🐍Python🐍----🐍Python🐍----🐍Python🐍----

🐍Python🐍--'

In [6]: s1 + s2

Out [6]: 'Python 💻!--🐍Python🐍--'

In [7]: (s1 + s2)*3

Out [7]: 'Python 💻!--🐍Python🐍--Python 💻!--🐍Python🐍--Python 💻

!--🐍Python🐍--'

Chapter 2 python for natural language proCessing

95

concatenating several strings together in parentheses

In [8]: s3 = ('This '

 ...: 'is another way '

 ...: 'to concatenate '

 ...: 'several strings!')

 ...: s3

Out[8]: 'This is another way to concatenate several strings!'

Here are some more essential operations like checking for substrings and finding the

length of a typical string.

In [9]: 'way' in s3

Out[9]: True

In [10]: 'python' in s3

Out[10]: False

In [11]: len(s3)

Out[11]: 51

 Indexing and Slicing

We have already discussed that strings are iterables and are sequences of characters.

Hence they can be indexed, sliced, and iterated through, similar to other iterables

like lists. Each character has a specific position in the string, which is its index. Using

indexes, we can access specific parts of the string. Accessing a single character using a

specific position or index in the string is called indexing and accessing a part of a string

i.e., a substring using a start and end index, is called slicing. Python supports two types

of indexes—one starting from 0 and increasing by 1 each character until the end of the

string, and the other starting from -1 at the end of the string and decreasing by 1 each

character until the beginning of the string. Figure 2-8 depicts the two types of indexes for

the string, 'PYTHON'.

P Y T H O N

-6

0 1 2 3 4 5

-5 -4 -3 -2 -1

Figure 2-8. String-indexing syntax

Chapter 2 python for natural language proCessing

96

Let’s get started with some basic string indexing so you can get a feel for how to

access specific characters in a string.

creating a string

In [12]: s = 'PYTHON'

 ...: s, type(s)

Out[12]: ('PYTHON', str)

depicting string indices

In [13]: for index, character in enumerate(s):

 ...: print('Character ->', character, 'has index->', index)

Character -> P has index-> 0

Character -> Y has index-> 1

Character -> T has index-> 2

Character -> H has index-> 3

Character -> O has index-> 4

Character -> N has index-> 5

string indexing

In [14]: s[0], s[1], s[2], s[3], s[4], s[5]

Out[14]: ('P', 'Y', 'T', 'H', 'O', 'N')

In [15]: s[-1], s[-2], s[-3], s[-4], s[-5], s[-6]

Out[15]: ('N', 'O', 'H', 'T', 'Y', 'P')

It is quite clear that you can access specific string elements with indices similar to

how you would access a list. Let's look at some interesting ways to slice strings now with

some hands-on examples!

string slicing

In [16]: s[:]

Out[16]: 'PYTHON'

In [17]: s[1:4]

Out[17]: 'YTH'

In [18]: s[:3], s[3:]

Out[18]: ('PYT', 'HON')

Chapter 2 python for natural language proCessing

97

In [19]: s[-3:]

Out[19]: 'HON'

In [21]: s[:3] + s[-3:]

Out[21]: 'PYTHON'

In [22]: s[::1] # no offset

Out[22]: 'PYTHON'

In [24]: s[::2] # print every 2nd character in string

Out[24]: 'PTO'

The preceding snippets should give you some good perspective into how to slice and

extract specific substrings from a given string. As mentioned, it is very similar to lists.

However, the key difference is that strings are immutable. Let's try to understand this

idea in the following examples.

strings are immutable hence assignment throws error

In [27]: s[0] = 'X'

Traceback (most recent call last):

 File "<ipython-input-27-88104b3bc919>", line 1, in <module>

 s[0] = 'X'

TypeError: 'str' object does not support item assignment

creates a new string

In [28]: print('Original String id:', id(s))

 ...: # creates a new string

 ...: s = 'X' + s[1:]

 ...: print(s)

 ...: print('New String id:', id(s))

Original String id: 2117246774552

XYTHON

New String id: 2117246656048

Based on the preceding examples, you can clearly see that strings are immutable and

do not support assignment or modifications to the original string in any form. Even if you

use the same variable and perform some operations on it, you get a completely new string.

Chapter 2 python for natural language proCessing

98

 Methods

Strings have a huge arsenal of built-in methods in base Python at your disposal, which

you can use for performing various transformations, manipulations, and operations.

Discussing each and every method in detail would be out of the current scope; however,

this useful link in the official Python documentation https://docs.python.org/3/

library/stdtypes.html#string-methods provides all the information you need to

know about every method, along with syntax and definition. Methods are extremely

useful and increase your productivity, since you do not have to spend extra time writing

boilerplate code to handle and manipulate strings. We show some popular examples of

string methods in action in the following code snippets.

s = 'python is great'

case conversions

In [33]: s.capitalize()

Out[33]: 'Python is great'

In [34]: s.upper()

Out[34]: 'PYTHON IS GREAT'

In [35]: s.title()

Out[35]: 'Python Is Great'

string replace

In [36]: s.replace('python', 'NLP')

Out[36]: 'NLP is great'

Numeric checks

In [37]: '12345'.isdecimal()

Out[37]: True

In [38]: 'apollo11'.isdecimal()

Out[38]: False

Alphabet checks

In [39]: 'python'.isalpha()

Out[39]: True

In [40]: 'number1'.isalpha()

Out[40]: False

Chapter 2 python for natural language proCessing

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods

99

Alphanumeric checks

In [41]: 'total'.isalnum()

Out[41]: True

In [42]: 'abc123'.isalnum()

Out[42]: True

In [43]: '1+1'.isalnum()

Out[43]: False

The following snippets show some ways to split, join, and strip strings based on

different hands-on examples.

String splitting and joining

In [44]: s = 'I,am,a,comma,separated,string'

 ...: s.split(',')

Out[44]: ['I', 'am', 'a', 'comma', 'separated', 'string']

In [45]: ' '.join(s.split(','))

Out[45]: 'I am a comma separated string'

Basic string stripping

In [46]: s = ' I am surrounded by spaces '

 ...: s

Out[46]: ' I am surrounded by spaces '

In [47]: s.strip()

Out[47]: 'I am surrounded by spaces'

some more combinations

In [48]: sentences = 'Python is great. NLP is also good.'

 ...: sentences.split('.')

Out[48]: ['Python is great', ' NLP is also good', "]

In [49]: print('\n'.join(sentences.split('.')))

Python is great

 NLP is also good

Chapter 2 python for natural language proCessing

100

In [50]: print('\n'.join([sentence.strip()

 ...: for sentence in sentences.split('.')

 ...: if sentence]))

Python is great

NLP is also good

These examples just scratch the surface of the numerous manipulations and

operations possible on strings. Feel free to try other operations using different methods

mentioned in the docs. We use several of them in subsequent chapters.

 Formatting

String formatting is used to substitute specific data objects and types in a string. This is

often used when displaying text to the user. There are two different types of formatting

used for strings:

• Formatting expressions: These expressions are typically of the

syntax '...%s...%s...' %(values), where the %s denotes a

placeholder for substituting a string from the list of strings depicted

in values. This is quite similar to the C style printf model and has

been in Python since the beginning. You can substitute values of

other types with the respective alphabet following the % symbol, like

%d is for integers and %f for floating point numbers.

• Formatting methods: These strings take the form of '...{}...

{}...'.format(values), which uses the braces {} for placeholders

to place strings from values using the format method. This was

present in Python since the 2.6.x version.

The following code snippets depict both types of string formatting using several

hands-on examples.

Simple string formatting expressions - old style

In [51]: 'Hello %s' %('Python!')

Out[51]: 'Hello Python!'

Chapter 2 python for natural language proCessing

101

In [52]: 'Hello %s %s' %('World!', 'How are you?')

Out[52]: 'Hello World! How are you?'

Formatting expressions with different data types - old style

In [53]: 'We have %d %s containing %.2f gallons of %s' %(2, 'bottles',

2.5, 'milk')

Out[53]: 'We have 2 bottles containing 2.50 gallons of milk'

In [54]: 'We have %d %s containing %.2f gallons of %s' %(5.21, 'jugs',

10.86763, 'juice')

Out[54]: 'We have 5 jugs containing 10.87 gallons of juice'

Formatting strings using the format method - new style

In [55]: 'Hello {} {}, it is a great {} to meet you at {}'.format('Mr.',

'Jones', 'pleasure', 5)

Out[55]: 'Hello Mr. Jones, it is a great pleasure to meet you at 5'

In [56]: 'Hello {} {}, it is a great {} to meet you at {} o\'

clock'.format('Sir', 'Arthur', 'honor', 9)

Out[56]: "Hello Sir Arthur, it is a great honor to meet you at 9 o' clock"

Alternative ways of using string format

In [57]: 'I have a {food_item} and a {drink_item} with me'.format(drink_

item='soda', food_item='sandwich')

Out[57]: 'I have a sandwich and a soda with me'

In [58]: 'The {animal} has the following attributes: {attributes}'.

format(animal='dog', attributes=['lazy', 'loyal'])

Out[58]: "The dog has the following attributes: ['lazy', 'loyal']"

From these examples, you can see that there is no hard and fast rule for formatting

strings, so go ahead and experiment with different formats and use the one that’s best

suited to your task. We do recommend going with the new style in general.

Chapter 2 python for natural language proCessing

102

 Regular Expressions

Regular expressions, known more popularly as regexes, allow you to create string patterns

and use them for searching and substituting specific pattern matches in textual data. Python

offers a rich module named re for creating and using regular expressions. Entire books have

been written on this topic because it is easy to use but difficult to master. Discussing every

aspect of regular expressions would not be possible in the current scope, but we cover the

main areas with sufficient examples, which should be enough to get started on this topic.

Regular expressions or regexes are specific patterns often denoted using the

raw string notation. These patterns match a specific set of strings based on the rules

expressed by the patterns. These patterns then are usually compiled into bytecode,

which is then executed for matching strings using a matching engine. The re module

also provides several flags that can change the way the pattern matches are executed.

Some important flags are:

• re.I or re.IGNORECASE is used to match patterns ignoring case

sensitivity.

• re.S or re.DOTALL causes the period (.) character to match any

character, including new lines.

• re.U or re.UNICODE helps match Unicode-based characters

(deprecated in Python 3.x).

For pattern matching, there are various rules used in regexes. Some popular ones are:

• . for matching a single character

• ^ for matching the start of the string

• $ for matching the end of the string

• * for matching zero or more cases of the previous mentioned regex

before the * symbol in the pattern

• ? for matching zero or one case of the previous mentioned regex

before the ? symbol in the pattern

• [...] for matching any one of the set of characters inside the square

brackets

• [^...] for matching a character not present in the square brackets

after the ^ symbol

Chapter 2 python for natural language proCessing

103

• | denotes the OR operator for matching either the preceding or the

next regex

• + for matching one or more cases of the previous mentioned regex

before the + symbol in the pattern

• \d for matching decimal digits, which are also depicted as [0-9]

• \D for matching non-digits, also depicted as [^0-9]

• \s for matching whitespace characters

• \S for matching non-whitespace characters

• \w for matching alpha-numeric characters; also depicted as

[a-zA-Z0-9_]

• \W for matching non alpha-numeric characters; also depicted as

[^a-zA-Z0-9_]

Regular expressions can be compiled into pattern objects and then used with a

variety of methods for pattern search and substitution in strings. The main methods

offered by the re module for performing these operations are as follows:

• re.compile(): This method compiles a specified regular expression

pattern into a regular expression object, which can be used for

matching and searching. Takes a pattern and optional flags as input,

which we discussed previously.

• re.match(): This method is used to match patterns at the beginning

of strings.

• re.search(): This method is used to match patterns occurring at any

position in the string.

• re.findall(): This method returns all non-overlapping matches of

the specified regex pattern in the string.

• re.finditer(): This method returns all matched instances in the form

of an iterator, for a specific pattern in a string when scanned from left

to right.

• re.sub(): This method is used to substitute a specified regex pattern

in a string with a replacement string. It only substitutes the left-most

occurrence of the pattern in the string.

Chapter 2 python for natural language proCessing

104

The following code snippets depict some of these methods and show how they are

typically used when dealing with strings and regular expressions.

creating some strings

s1 = 'Python is an excellent language'

s2 = 'I love the Python language. I also use Python to build applications

at work!'

due to case mismatch there is no match found

In [61]: import re

 ...:

 ...: pattern = 'python'

 ...: # match only returns a match if regex match is found at the

beginning of the string

 ...: re.match(pattern, s1)

pattern is in lower case hence ignore case flag helps in matching same pattern

with different cases

In [62]: re.match(pattern, s1, flags=re.IGNORECASE)

Out[62]: <_sre.SRE_Match object; span=(0, 6), match='Python'>

printing matched string and its indices in the original string

In [64]: m = re.match(pattern, s1, flags=re.IGNORECASE)

 ...: print('Found match {} ranging from index {} - {} in the string

"{}"'.format(m.group(0), m.start(), m.end(), s1))

Found match Python ranging from index 0 - 6 in the string "Python is an

excellent language"

match does not work when pattern is not there in the beginning of string s2

In [65]: re.match(pattern, s2, re.IGNORECASE)

Chapter 2 python for natural language proCessing

105

Let's now look at some examples that illustrate how the find(...) and search(...)

methods work in regular expressions:

illustrating find and search methods using the re module

In [66]: re.search(pattern, s2, re.IGNORECASE)

Out[66]: <_sre.SRE_Match object; span=(11, 17), match='Python'>

In [67]: re.findall(pattern, s2, re.IGNORECASE)

Out[67]: ['Python', 'Python']

In [68]: match_objs = re.finditer(pattern, s2, re.IGNORECASE)

 ...: match_objs

Out[68]: <callable_iterator at 0x1ecf5c1c828>

In [69]: print("String:", s2)

 ...: for m in match_objs:

 ...: print('Found match "{}" ranging from index {} - {}'.format

(m.group(0), m.start(), m.end()))

String: I love the Python language. I also use Python to build applications

at work!

Found match "Python" ranging from index 11 - 17

Found match "Python" ranging from index 39 - 45

Regular expressions for text substitution are useful to find and replace specific text

tokens in strings. We illustrate these using a few examples:

illustrating pattern substitution using sub and subn methods

In [81]: re.sub(pattern, 'Java', s2, flags=re.IGNORECASE)

Out[81]: 'I love the Java language. I also use Java to build applications

at work!'

In [82]: re.subn(pattern, 'Java', s2, flags=re.IGNORECASE)

Out[82]: ('I love the Java language. I also use Java to build applications

at work!', 2)

Chapter 2 python for natural language proCessing

106

dealing with unicode matching using regexes

In [83]: s = u'H\u00e8llo! this is Python 🐍'

 ...: s

Out[83]: 'Hèllo! this is Python 🐍'

In [84]: re.findall(r'\w+', s)

Out[84]: ['Hèllo', 'this', 'is', 'Python']

In [85]: re.findall(r"[A-Z]\w+", s, re.UNICODE)

Out[85]: ['Hèllo', 'Python']

In [86]: emoji_pattern = r"[' \U0001F300-\U0001F5FF'|'\U0001F600-

\U0001F64F'|'\U0001F680-\U0001F6FF'|'\u2600-

\u26FF\u2700-\u27BF']"

 ...: re.findall(emoji_pattern, s, re.UNICODE)

Out[86]: ['🐍']

This concludes our discussion of strings and their various aspects, including

representation and operations. This should give you an idea of how strings can be

utilized for working with text data and how they form the basis for processing text, which

is an important component in text analytics. We now cover a basic text processing case

study, where we bring everything together based on what we learned in the previous

sections.

 Basic Text Processing and Analysis: Putting It All
Together
Let's utilize what we have learned so far in this chapter as well as the previous chapter to

build and solve a basic text-processing problem. For this, we load the King James version

of the Bible from the Gutenberg corpus in NLTK. The following code shows us how to

load the Bible corpus and display the first few lines in the corpus.

from nltk.corpus import gutenberg

import matplotlib.pyplot as plt

% matplotlib inline

Chapter 2 python for natural language proCessing

107

bible = gutenberg.open('bible-kjv.txt')

bible = bible.readlines()

bible[:5]

['[The King James Bible]\n',

 '\n',

 'The Old Testament of the King James Bible\n',

 '\n',

 'The First Book of Moses: Called Genesis\n']

We can clearly see the first few lines of the Bible corpus in the preceding output.

Let's do some basic preprocessing by removing all the empty newlines in our corpus and

stripping away any newline characters from other lines.

In [88]: len(bible)

Out[88]: 99805

In [89]: bible = list(filter(None, [item.strip('\n') for item in bible]))

 ...: bible[:5]

Out[89]:

['[The King James Bible]',

 'The Old Testament of the King James Bible',

 'The First Book of Moses: Called Genesis',

 '1:1 In the beginning God created the heaven and the earth.',

 '1:2 And the earth was without form, and void; and darkness was upon']

In [90]: len(bible)

Out[90]: 74645

We can clearly see that there were a lot of empty newlines in our corpus and we have

been able to successfully remove them. Let's do some basic frequency analysis on our

corpus now. Suppose we wanted to visualize the overall distribution of typical sentence

or line lengths across the Bible. We can do that by computing the length of each sentence

and then visualize this using a histogram, as shown in Figure 2-9.

line_lengths = [len(sentence) for sentence in bible]

h = plt.hist(line_lengths)

Chapter 2 python for natural language proCessing

108

Based on the plot depicted in Figure 2-9, it looks like most of the sentences are

around 65-70 characters. Let's look at the total words per sentence distribution now. To

get that distribution, first let's look at a way to tokenize each sentence in our corpus.

In [95]: tokens = [item.split() for item in bible]

 ...: print(tokens[:5])

[['[The', 'King', 'James', 'Bible]'], ['The', 'Old', 'Testament', 'of',

'the', 'King', 'James', 'Bible'], ['The', 'First', 'Book', 'of', 'Moses:',

'Called', 'Genesis'], ['1:1', 'In', 'the', 'beginning', 'God', 'created',

'the', 'heaven', 'and', 'the', 'earth.'], ['1:2', 'And', 'the', 'earth',

'was', 'without', 'form,', 'and', 'void;', 'and', 'darkness', 'was',

'upon']]

Now that we have tokenized each sentence, we just have to compute the length of

each sentence to get the total words per sentence and build a histogram to visualize this

distribution. See Figure 2-10.

In [96]: total_tokens_per_line = [len(sentence.split()) for sentence in bible]

 ...: h = plt.hist(total_tokens_per_line, color='orange')

0
0

10 20 30 40 50 60 70 80

40000

35000

30000

25000

20000

15000

5000

10000

Figure 2-9. Visualizing sentence length distributions in the Bible

Chapter 2 python for natural language proCessing

109

Based on the visualization depicted in Figure 2-10, we can clearly conclude that most

sentences in the Bible have roughly 12-15 words, or tokens, in them. Let's now try to

determine the most common words in the Bible corpus. We already have our sentences

tokenized into words (lists of words). The first step involves flattening this big list of lists

(each list is a tokenized sentence of words) into one big list of words.

words = [word for sentence in tokens for word in sentence]

print(words[:20])

['[The', 'King', 'James', 'Bible]', 'The', 'Old', 'Testament', 'of', 'the',

'King', 'James', 'Bible', 'The', 'First', 'Book', 'of', 'Moses:', 'Called',

'Genesis', '1:1']

Nice! We have our big list of tokens from our corpus. However, you can see the tokens

are not totally clean and we have some unwanted symbols and special characters in

some of the words. Let's use the power of regular expressions now to remove them.

words = list(filter(None, [re.sub(r'[^A-Za-z]', ", word) for word in

words]))

print(words[:20])

['The', 'King', 'James', 'Bible', 'The', 'Old', 'Testament', 'of', 'the',

'King', 'James', 'Bible', 'The', 'First', 'Book', 'of', 'Moses', 'Called',

'Genesis', 'In']

2.5 5.0 7.5 10.0 12.5 17.515.0

25000

20000

15000

10000

5000

0

Figure 2-10. Visualizing total words per sentence distributions in the Bible

Chapter 2 python for natural language proCessing

110

Based on the regular expression we used in the preceding code, we just removed

anything that was not an alphabetical character. Thus all numbers and special characters

were removed. We can now determine the most frequent words using the following

code.

In [99]: from collections import Counter

 ...:

 ...: words = [word.lower() for word in words]

 ...: c = Counter(words)

 ...: c.most_common(10)

Out[99]:

[('the', 64023),

 ('and', 51696),

 ('of', 34670),

 ('to', 13580),

 ('that', 12912),

 ('in', 12667),

 ('he', 10419),

 ('shall', 9838),

 ('unto', 8997),

 ('for', 8970)]

We see a lot of general filler words like pronouns, articles, and so on are the most

frequent words, which makes perfect sense. But this doesn't convey much information.

What if we could remove these words and focus on the more interesting ones? One

approach could be to remove these filler words, popularly known as stopwords, and then

compute the frequency as follows.

In [100]: import nltk

 ...:

 ...: stopwords = nltk.corpus.stopwords.words('english')

 ...: words = [word.lower() for word in words if word.lower() not in

stopwords]

 ...: c = Counter(words)

 ...: c.most_common(10)

Chapter 2 python for natural language proCessing

111

Out[100]:

[('shall', 9838),

 ('unto', 8997),

 ('lord', 7830),

 ('thou', 5474),

 ('thy', 4600),

 ('god', 4442),

 ('said', 3999),

 ('ye', 3983),

 ('thee', 3826),

 ('upon', 2748)]

Thus, we see that the results are better than before; however, many words are still

filler or stopwords. This is more colloquial English, hence they are not a part of the

standard English stopwords list so they were not removed. We can always build a custom

stopword list as needed. (More on stopwords in Chapter 3.) This should give you a good

idea of how we used all aspects pertaining to strings, methods, and transformations to

process and analyze text data.

 Natural Language Processing Frameworks
We talked about the Python ecosystem being diverse and supporting a wide variety

of libraries, frameworks, and modules in diverse domains. Since we will be analyzing

textual data and solving several use cases on it, there are dedicated frameworks and

libraries for natural language processing and text analytics, which you can just install

and start using, just like any other built-in module in the Python standard library. These

frameworks have been built over a long period of time and are usually still in active

development. Often the way to assess a framework is to see how active its developer

community is.

Each framework contains various methods, capabilities, and features for operating

on text, getting insights, and making the data ready for further analysis, like applying

machine learning algorithms on preprocessed textual data. Leveraging these frameworks

saves a lot of effort and time that would have been spent on writing boilerplate code

to handle, process, and manipulate text data. Thus, this enables the developers and

researchers to focus more on solving the actual problem and the necessary logic and

Chapter 2 python for natural language proCessing

112

algorithms needed. We have already seen some glimpses of the nltk library in the first

chapter. The following list of libraries and frameworks are some of the most popular text

analytics frameworks and we utilize several of them throughout the course of the book.

• nltk: The Natural Language Toolkit is a complete platform that

contains over 50 corpora and lexical resources, such as WordNet.

Besides this, it also provides the necessary tools, interfaces, and

methods to process and analyze text data. The NLTK framework

comes with a suite of efficient modules for classification,

tokenization, stemming, lemmatization, tagging, parsing, and

semantic reasoning. It is the standard workhorse of any NLP project

in the industry.

• pattern: The pattern project gets an honorable mention here since

we used it extensively in the first edition of the book. However, due

to a lack of official support or a Python 3.x version, we will not be

using it in this edition. This started out as a research project at the

Computational Linguistics & Psycholinguistics Research Centre at

the University of Antwerp. It provides tools and interfaces for web

mining, information retrieval, natural language processing, machine

learning, and network analysis.

• spacy: This is one of the newer libraries relatively as compared to the

others but perhaps one of the best libraries for NLP. We can vouch

for the fact that spaCy provides industrial-strength natural language

processing capabilities by providing the best implementation of each

technique and algorithm, which makes NLP tasks efficient in terms of

performance and implementation. In fact, spaCy excels at large-scale

information extraction tasks. It has been written from the ground up

using efficient, memory-managed Cython. Extensive research has

also confirmed that spaCy is the fastest in the world. spaCy also works

seamlessly with deep learning and machine learning frameworks like

TensorFlow, PyTorch, Scikit-Learn, Gensim, and the rest of Python's

excellent AI ecosystem. The best part is that spaCy has support for

several languages and provides pretrained word vectors!

Chapter 2 python for natural language proCessing

113

• gensim: The gensim library has a rich set of capabilities for semantic

analysis, including topic modeling and similarity analysis. But

the best part is that it contains a Python port of Google's very

popular Word2Vec model (originally available as a C package),

which is a neural network model implemented to learn distributed

representations of words where similar words (semantic) occur close

to each other. Thus, Gensim can be used for semantic analysis as well

as feature engineering!

• textblob: This is another library that provides several capabilities,

including text processing, phrase extraction, classification, POS

tagging, text translation, and sentiment analysis. TextBlob makes a

lot of difficult things very easy, including language translation and

sentiment analysis, by its extremely intuitive and easy to use API.

Besides these, there are several other frameworks and libraries that are not dedicated

to text analytics but will be useful when you want to use machine learning or deep

learning techniques on textual data. These include the Scikit-Learn, NumPy, and SciPy

stack, which are extremely useful for text feature engineering, handling feature sets in

the form of matrices, and even performing popular machine learning tasks like similarity

computation, text classification, and clustering.

Besides these, deep learning and tensor-based libraries like PyTorch, TensorFlow,

and Keras also come in handy if you want to build advanced deep learning models

based on deep neural nets, convnets, sequential, and generative models. You can install

most of these libraries using the pip install <library> command from the command

prompt or terminal. We cover any caveats in the upcoming chapters when we use these

libraries.

 Summary
This chapter provided a bird’s-eye yet sufficiently detailed view of the entire Python

ecosystem and what the language offers us in terms of its capabilities for handling

text data. You have seen the origins behind the Python language and how it has been

evolving with time. The language has benefits of being open source, which has resulted

in an active developer community constantly striving to improve the language and add

new features.

Chapter 2 python for natural language proCessing

114

By now, you also know when you should use Python and the drawbacks associated

with the language that every developer should keep in mind when building systems and

applications. This chapter also provides a clear idea about how to set up our own Python

environment and deal with multiple virtual environments. Starting from the very basics,

we have taken a deep dive into how to work with text data using the string data type and

its various syntaxes, methods, operations, and formats. We have also seen the power of

regular expressions and how useful they can be in pattern matching and substitutions.

To conclude our discussion, we looked at various popular text analytics and natural

language processing frameworks, which are useful in solving problems and tasks dealing

with natural language processing, analyzing, and extracting insights from text data. This

should get you started with programming in Python and handling text data. In the next

chapter, we build on the foundations of this chapter as we start to understand, process,

and parse text data in usable formats.

Chapter 2 python for natural language proCessing

115
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_3

CHAPTER 3

Processing and
Understanding Text
In the previous chapters, we saw a glimpse of the entire natural language processing and

text analytics landscape with essential terminology and concepts. Besides this, we were

also introduced to the Python programming language, essential constructs, syntax, and

learned how to work with strings to manage textual data. To perform complex operations

on text with machine learning or deep learning algorithms, you need to process and

parse textual data into more easy-to-interpret formats. All machine learning algorithms,

be they supervised or unsupervised techniques, work with input features, which are

numeric in nature. While this is a separate topic under feature engineering, which we

shall explore in detail in the next chapter, to get to that step, you will need to clean,

normalize, and preprocess the initial textual data.

The text corpora and other textual data in their native raw formats are normally not

well formatted and standardized and of course we should expect this, after all, text data

is highly unstructured! Text processing or, to be more specific preprocessing, involves a

wide variety of techniques that convert raw text into well-defined sequences of linguistic

components that have standard structure and notation. Additional metadata is often

also present in the form of annotations to give more meaning to the text components like

tags. The following list gives us an idea of some of the most popular text preprocessing

and understanding techniques, which we explore in this chapter.

• Removing HTML tags

• Tokenization

• Removing unnecessary tokens and stopwords

• Handling contractions

• Correcting spelling errors

116

• Stemming

• Lemmatization

• Tagging

• Chunking

• Parsing

Besides these techniques, you also need to perform some basic operations, like

case conversion, dealing with irrelevant components, and removing noise based on the

problem to be solved. An important point to remember is that a robust text preprocessing

system is always an essential part of any application on NLP and text analytics. The primary

reason for that is because all the textual components obtained after preprocessing—be

they words, phrases, sentences, or any other tokens—form the basic building blocks

of input that’s fed into the further stages of the application that perform more complex

analyses including learning patterns and extracting information. Hence, the saying

“Garbage in Garbage out!” is relevant here because if we do not process the text properly,

we will end up getting unwanted and irrelevant results from our applications and systems.

Besides this, text processing helps in cleaning and standardization of the text which

not only helps in analytical systems like increasing the accuracy of classifiers but we

also get additional information and metadata in the form of annotations. They are very

useful in giving more information about the text. We will touch upon normalizing text

using various techniques including cleaning, removing unnecessary tokens, stems, and

lemmas in this chapter.

Another important aspect is understanding the textual data after processing and

normalizing it. This will involve revisiting some of the concepts surrounding language

syntax and structure from Chapter 1, where we talked about sentences, phrases, parts

of speech, shallow parsing, and grammar. In this chapter, we look at ways to implement

these concepts and use them on real data. We follow a structured and definite path

in this chapter, starting from text processing, and gradually exploring the various

concepts and techniques associated with it and then moving on to understanding text

structure and syntax. Since this book is specifically aimed at practitioners, various code

snippets and practical examples also equip you with the right tools and frameworks

for implementing these concepts in solving practical problems. All the code examples

showcased in this chapter are available on the book’s official GitHub repository, which

you can access at https://github.com/dipanjanS/text-analytics-with-python/

tree/master/New-Second-Edition.

Chapter 3 proCessing and Understanding text

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

117

 Text Preprocessing and Wrangling
Text wrangling (also called preprocessing or normalization) is a process that consists of

a series of steps to wrangle, clean, and standardize textual data into a form that could be

consumed by other NLP and intelligent systems powered by machine learning and deep

learning. Common techniques for preprocessing include cleaning text, tokenizing text,

removing special characters, case conversion, correcting spellings, removing stopwords

and other unnecessary terms, stemming, and lemmatization. In this section, we discuss

various techniques that are commonly used for text wrangling based on the list we

mentioned at the beginning of this chapter. The key idea is to remove unnecessary content

from one or more text documents in a corpus (or corpora) and get clean text documents.

 Removing HTML Tags
Often, unstructured text contains a lot of noise, especially if you use techniques

like web scraping or screen scraping to retrieve data from web pages, blogs, and

online repositories. HTML tags, JavaScript, and Iframe tags typically don’t add much

value to understanding and analyzing text. Our main intent is to extract meaningful

textual content from the data extracted from the web. Let’s look at a section of a web

page showing the King James version of the Bible, freely available thanks to Project

Gutenberg, depicted in Figure 3-1.

Figure 3-1. Section of a web page showing a chapter from the Bible

Chapter 3 proCessing and Understanding text

118

We will now leverage requests and retrieve the contents of this web page in Python.

This is known as web scraping and the following code helps us achieve this.

import requests

data = requests.get('http://www.gutenberg.org/cache/epub/8001/pg8001.html')

content = data.content

print(content[1163:2200])

b'content="Ebookmaker 0.4.0a5 by Marcello Perathoner <webmaster@gutenberg.

org>" name="generator"/>\r\n</head>\r\n <body><p id="id00000">Project

Gutenberg EBook The Bible, King James, Book 1: Genesis</p>\r\n\r\n<p

id="id00001">Copyright laws are changing all over the world. Be sure

to check the\r\ncopyright laws for your country before downloading or

redistributing\r\nthis or any other Project Gutenberg eBook.</p>\r\n\r\n<p

id="id00002">This header should be the first thing seen when viewing this

Project\r\nGutenberg file. Please do not remove it. Do not change or edit

the\r\nheader without written permission.</p>\r\n\r\n<p id="id00003">Please

read the "legal small print," and other information about the\r\neBook and

Project Gutenberg at the bottom of this file. Included is\r\nimportant

information about your specific rights and restrictions in\r\nhow the

file may be used. You can also find out about how to make a\r\ndonation

to Project Gutenberg, and how to get involved.</p>\r\n\r\n<p id="id00004"

style="margin-top: 2em">**Welcome To The World of F'

We can clearly see from the preceding output that it is extremely difficult to decipher

the actual textual content in the web page, due to all the unnecessary HTML tags. We

need to remove those tags. The BeautifulSoup library provides us with some handy

functions that help us remove these unnecessary tags with ease.

import re

from bs4 import BeautifulSoup

def strip_html_tags(text):

 soup = BeautifulSoup(text, "html.parser")

 [s.extract() for s in soup(['iframe', 'script'])]

 stripped_text = soup.get_text()

 stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text)

Chapter 3 proCessing and Understanding text

119

 return stripped_text

clean_content = strip_html_tags(content)

print(clean_content[1163:2045])

*** START OF THE PROJECT GUTENBERG EBOOK, THE BIBLE, KING JAMES, BOOK 1***

This eBook was produced by David Widger

with the help of Derek Andrew's text from January 1992

and the work of Bryan Taylor in November 2002.

Book 01 Genesis

01:001:001 In the beginning God created the heaven and the earth.

01:001:002 And the earth was without form, and void; and darkness was

 upon the face of the deep. And the Spirit of God moved upon

 the face of the waters.

01:001:003 And God said, Let there be light: and there was light.

01:001:004 And God saw the light, that it was good: and God divided the

 light from the darkness.

01:001:005 And God called the light Day, and the darkness he called

 Night. And the evening and the morning were the first day.

01:001:006 And God said, Let there be a firmament in the midst of the

 waters,

You can compare this output with the raw web page content and see that we have

successfully removed the unnecessary HTML tags. We now have a clean body of text

that’s easier to interpret and understand.

 Text Tokenization
Chapter 1 explained textual structure, its components, and tokens. Tokens are

independent and minimal textual components that have some definite syntax and

semantics. A paragraph of text or a text document has several components, including

sentences, which can be further broken down into clauses, phrases, and words. The

most popular tokenization techniques include sentence and word tokenization, which

are used to break down a text document (or corpus) into sentences and each sentence

into words. Thus, tokenization can be defined as the process of breaking down or

splitting textual data into smaller and more meaningful components called tokens. In the

following sections, we look at some ways to tokenize text into sentences and words.

Chapter 3 proCessing and Understanding text

120

 Sentence Tokenization

Sentence tokenization is the process of splitting a text corpus into sentences that act

as the first level of tokens the corpus is comprised of. This is also known as sentence

segmentation, since we try to segment the text into meaningful sentences. Any text

corpus is a body of text where each paragraph comprises several sentences. There are

various ways to perform sentence tokenization. Basic techniques include looking for

specific delimiters between sentences like a period (.) or a newline character (\n) and

sometimes even a semicolon (;). We will use the NLTK framework, which provides

various interfaces for performing sentence tokenization. We primarily focus on the

following sentence tokenizers:

• sent_tokenize

• Pretrained sentence tokenization models

• PunktSentenceTokenizer

• RegexpTokenizer

Before we can tokenize sentences, we need some text on which we can try these

operations. We load some sample text and part of the Gutenberg corpus available in

NLTK. We load the necessary dependencies using the following snippet.

import nltk

from nltk.corpus import gutenberg

from pprint import pprint

import numpy as np

loading text corpora

alice = gutenberg.raw(fileids='carroll-alice.txt')

sample_text = ("US unveils world's most powerful supercomputer, beats China. "

 "The US has unveiled the world's most powerful supercomputer

called 'Summit', "

 "beating the previous record-holder China's Sunway

TaihuLight. With a peak performance "

 "of 200,000 trillion calculations per second, it is over

twice as fast as Sunway TaihuLight, "

Chapter 3 proCessing and Understanding text

121

 "which is capable of 93,000 trillion calculations per

second. Summit has 4,608 servers, "

 "which reportedly take up the size of two tennis courts.")

sample_text

"US unveils world's most powerful supercomputer, beats China. The US

has unveiled the world's most powerful supercomputer called 'Summit',

beating the previous record-holder China's Sunway TaihuLight. With a

peak performance of 200,000 trillion calculations per second, it is over

twice as fast as Sunway TaihuLight, which is capable of 93,000 trillion

calculations per second. Summit has 4,608 servers, which reportedly take up

the size of two tennis courts."

We can check the length of the “Alice in Wonderland” corpus and the first few lines in

it using the following snippet.

Total characters in Alice in Wonderland

len(alice)

144395

First 100 characters in the corpus

alice[0:100]

"[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER

I. Down the Rabbit-Hole\n\nAlice was"

Default Sentence Tokenizer

The nltk.sent_tokenize(...) function is the default sentence tokenization function

that NLTK recommends and it uses an instance of the PunktSentenceTokenizer class

internally. However, this is not just a normal object or instance of that class. It has been

pretrained on several language models and works really well on many popular languages

besides English. The following snippet shows the basic usage of this function on our text

samples.

Chapter 3 proCessing and Understanding text

122

default_st = nltk.sent_tokenize

alice_sentences = default_st(text=alice)

sample_sentences = default_st(text=sample_text)

print('Total sentences in sample_text:', len(sample_sentences))

print('Sample text sentences :-')

print(np.array(sample_sentences))

print('\nTotal sentences in alice:', len(alice_sentences))

print('First 5 sentences in alice:-')

print(np.array(alice_sentences[0:5]))

Upon running this snippet, you get the following output depicting the total number

of sentences and what those sentences look like in the text corpora.

Total sentences in sample_text: 4

Sample text sentences :-

["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it

is over twice as fast as Sunway TaihuLight, which is capable of 93,000

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis

courts.']

Total sentences in alice: 1625

First 5 sentences in alice:-

["[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER I."

 "Down the Rabbit-Hole\n\nAlice was beginning to get very tired of sitting

by her sister on the\nbank, and of having nothing to do: once or twice she

had peeped into the\nbook her sister was reading, but it had no pictures

or conversations in\nit, 'and what is the use of a book,' thought Alice

'without pictures or\nconversation?'"

 'So she was considering in her own mind (as well as she could, for the\nhot

day made her feel very sleepy and stupid), whether the pleasure\nof making

a daisy-chain would be worth the trouble of getting up and\npicking the

daisies, when suddenly a White Rabbit with pink eyes ran\nclose by her.'

Chapter 3 proCessing and Understanding text

123

 "There was nothing so VERY remarkable in that; nor did Alice think it so\

nVERY much out of the way to hear the Rabbit say to itself, 'Oh dear!"

 'Oh dear!']

Now, as you can see, the tokenizer is quite intelligent. It doesn’t just use periods to

delimit sentences, but also considers other punctuation and capitalization of words. We

can also tokenize text of other languages using some pretrained models present in NLTK.

Pretrained Sentence Tokenizer Models

Suppose we were dealing with German text. We can use sent_tokenize, which

is already trained, or load a pretrained tokenization model on German text into a

PunktSentenceTokenizer instance and perform the same operation. The following

snippet shows this. We start by loading a German text corpus and inspecting it.

from nltk.corpus import europarl_raw

german_text = europarl_raw.german.raw(fileids='ep-00-01-17.de')

Total characters in the corpus

print(len(german_text))

First 100 characters in the corpus

print(german_text[0:100])

157171

Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17.

Dezember unterbrochene Sit

Next, we tokenize the text corpus into sentences using the default sent_

tokenize(...) tokenizer and a pretrained German language tokenizer by loading it

from the NLTK resources.

default sentence tokenizer

german_sentences_def = default_st(text=german_text, language='german')

loading german text tokenizer into a PunktSentenceTokenizer instance

german_tokenizer = nltk.data.load(resource_url='tokenizers/punkt/german.

pickle')

german_sentences = german_tokenizer.tokenize(german_text)

Chapter 3 proCessing and Understanding text

124

We can now verify the time of our German tokenizer and check if the results

obtained by using the two tokenizers match!

verify the type of german_tokenizer

should be PunktSentenceTokenizer

print(type(german_tokenizer))

<class 'nltk.tokenize.punkt.PunktSentenceTokenizer'>

check if results of both tokenizers match

should be True

print(german_sentences_def == german_sentences)

True

Thus we see that indeed the german_tokenizer is an instance of

PunktSentenceTokenizer, which specializes in dealing with the German language. We

also checked if the sentences obtained from the default tokenizer are the same as the

sentences obtained by this pretrained tokenizer. As expected, they are the same (true).

We also print some sample tokenized sentences from the output.

print first 5 sentences of the corpus

print(np.array(german_sentences[:5]))

[' \nWiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem

17. Dezember unterbrochene Sitzungsperiode des Europäischen Parlaments für

wiederaufgenommen , wünsche Ihnen nochmals alles Gute zum Jahreswechsel und

hoffe , daß Sie schöne Ferien hatten .'

 'Wie Sie feststellen konnten , ist der gefürchtete " Millenium-Bug " nicht

eingetreten .'

 'Doch sind Bürger einiger unserer Mitgliedstaaten Opfer von schrecklichen

Naturkatastrophen geworden .'

 'Im Parlament besteht der Wunsch nach einer Aussprache im Verlauf dieser

Sitzungsperiode in den nächsten Tagen .'

 'Heute möchte ich Sie bitten - das ist auch der Wunsch einiger

Kolleginnen und Kollegen - , allen Opfern der Stürme , insbesondere in den

verschiedenen Ländern der Europäischen Union , in einer Schweigeminute zu

gedenken .']

Chapter 3 proCessing and Understanding text

125

Thus we see that our assumption was indeed correct and you can tokenize sentences

belonging to different languages in two different ways.

PunktSentenceTokenizer

Using the default PunktSentenceTokenizer class is also pretty straightforward, as the

following snippet shows.

punkt_st = nltk.tokenize.PunktSentenceTokenizer()

sample_sentences = punkt_st.tokenize(sample_text)

print(np.array(sample_sentences))

["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it

is over twice as fast as Sunway TaihuLight, which is capable of 93,000

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis

courts.']

RegexpTokenizer

The last tokenizer we cover in sentence tokenization is using an instance of the

RegexpTokenizer class to tokenize text into sentences, where we will use specific regular

expression-based patterns to segment sentences. Recall the regular expressions from the

previous chapter if you want to refresh your memory. The following snippet shows how

to use a regex pattern to tokenize sentences.

SENTENCE_TOKENS_PATTERN = r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)

(?<=\.|\?|\!)\s'

regex_st = nltk.tokenize.RegexpTokenizer(

 pattern=SENTENCE_TOKENS_PATTERN,

 gaps=True)

sample_sentences = regex_st.tokenize(sample_text)

print(np.array(sample_sentences))

Chapter 3 proCessing and Understanding text

126

["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it

is over twice as fast as Sunway TaihuLight, which is capable of 93,000

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis

courts.']

This output shows that we obtained the same sentences as we had obtained using

the other tokenizers. This gives us an idea of tokenizing text into sentences using

different NLTK interfaces. In the following section, we look at tokenizing these sentences

into words using several techniques.

 Word Tokenization

Word tokenization is the process of splitting or segmenting sentences into their

constituent words. A sentence is a collection of words and with tokenization we

essentially split a sentence into a list of words that can be used to reconstruct the

sentence. Word tokenization is really important in many processes, especially in

cleaning and normalizing text where operations like stemming and lemmatization work

on each individual word based on its respective stems and lemma. Similar to sentence

tokenization, NLTK provides various useful interfaces for word tokenization. We will

touch up on the following main interfaces:

• word_tokenize

• TreebankWordTokenizer

• TokTokTokenizer

• RegexpTokenizer

• Inherited tokenizers from RegexpTokenizer

We leverage our sample text data from the previous section to demonstrate hands-on

examples.

Chapter 3 proCessing and Understanding text

127

Default Word Tokenizer

The nltk.word_tokenize(...) function is the default and recommended word

tokenizer, as specified by NLTK. This tokenizer is an instance or object of the

TreebankWordTokenizer class in its internal implementation and acts as a wrapper to

that core class. The following snippet illustrates its usage.

default_wt = nltk.word_tokenize

words = default_wt(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'s", 'most', 'powerful',

 'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

 'previous', 'record-holder', 'China', "'s", 'Sunway', 'TaihuLight',

 '.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

 'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

 'which', 'is', 'capable', 'of', '93,000', 'trillion',

 'calculations', 'per', 'second', '.', 'Summit', 'has', '4,608',

 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

TreebankWordTokenizer

The TreebankWordTokenizer is based on the Penn Treebank and uses various regular

expressions to tokenize the text. Of course, one primary assumption here is that we have

already performed sentence tokenization beforehand. The original tokenizer used in the

Penn Treebank is available as a sed script and you can check it out at http://www.cis.

upenn.edu/~treebank/tokenizer.sed to get an idea of the patterns used to tokenize the

sentences into words. Some of the main features of this tokenizer are mentioned here:

• Splits and separates out periods that appear at the end of a sentence

• Splits and separates commas and single quotes when followed by

whitespace

Chapter 3 proCessing and Understanding text

http://www.cis.upenn.edu/~treebank/tokenizer.sed
http://www.cis.upenn.edu/~treebank/tokenizer.sed

128

• Most punctuation characters are split and separated into

independent tokens

• Splits words with standard contractions, such as don’t to do and n’t

The following snippet shows the usage of the TreebankWordTokenizer for word

tokenization.

treebank_wt = nltk.TreebankWordTokenizer()

words = treebank_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'s", 'most', 'powerful',

 'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

 'previous', 'record-holder', 'China', "'s", 'Sunway',

 'TaihuLight.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

 'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

 'which', 'is', 'capable', 'of', '93,000', 'trillion',

 'calculations', 'per', 'second.', 'Summit', 'has', '4,608',

 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

As expected, the output is similar to word_tokenize(), since they use the same

tokenizing mechanism.

TokTokTokenizer

TokTokTokenizer is one of the newer tokenizers introduced by NLTK present in the

nltk.tokenize.toktok module. In general, the tok-tok tokenizer is a general tokenizer,

where it assumes that the input has one sentence per line. Hence, only the final period

is tokenized. However, as needed, we can remove the other periods from the words

using regular expressions. Tok-tok has been tested on, and gives reasonably good results

for, English, Persian, Russian, Czech, French, German, Vietnamese, and many other

languages. It is in fact a Python port of https://github.com/jonsafari/tok-tok, where

there is also a Perl implementation. The following code shows a tokenization operation

using the TokTokTokenizer.

Chapter 3 proCessing and Understanding text

https://github.com/jonsafari/tok-tok

129

from nltk.tokenize.toktok import ToktokTokenizer

tokenizer = ToktokTokenizer()

words = tokenizer.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'", 's', 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'", 's', 'most', 'powerful',

 'supercomputer', 'called', "'", 'Summit', "'", ',', 'beating',

 'the', 'previous', 'record-holder', 'China', "'", 's', 'Sunway',

 'TaihuLight.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

 'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

 'which', 'is', 'capable', 'of', '93,000', 'trillion',

 'calculations', 'per', 'second.', 'Summit', 'has', '4,608',

 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

RegexpTokenizer

We now look at how to use regular expressions and the RegexpTokenizer class to

tokenize sentences into words. Remember that there are two main parameters that

are useful in tokenization—the regex pattern for building the tokenizer and the gaps

parameter, which, if set to true, is used to find the gaps between the tokens. Otherwise, it

is used to find the tokens themselves. The following code snippet shows some examples

of using regular expressions to perform word tokenization.

pattern to identify tokens themselves

TOKEN_PATTERN = r'\w+'

regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN,

 gaps=False)

words = regex_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', 's', 'most', 'powerful', 'supercomputer',

 'beats', 'China', 'The', 'US', 'has', 'unveiled', 'the', 'world',

 's', 'most', 'powerful', 'supercomputer', 'called', 'Summit',

Chapter 3 proCessing and Understanding text

130

 'beating', 'the', 'previous', 'record', 'holder', 'China', 's',

 'Sunway', 'TaihuLight', 'With', 'a', 'peak', 'performance', 'of',

 '200', '000', 'trillion', 'calculations', 'per', 'second', 'it',

 'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

 'which', 'is', 'capable', 'of', '93', '000', 'trillion',

 'calculations', 'per', 'second', 'Summit', 'has', '4', '608',

 'servers', 'which', 'reportedly', 'take', 'up', 'the', 'size',

 'of', 'two', 'tennis', 'courts'], dtype='<U13')

pattern to identify tokens by using gaps between tokens

GAP_PATTERN = r'\s+'

regex_wt = nltk.RegexpTokenizer(pattern=GAP_PATTERN,

 gaps=True)

words = regex_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', "world's", 'most', 'powerful', 'supercomputer,',

 'beats', 'China.', 'The', 'US', 'has', 'unveiled', 'the',

 "world's", 'most', 'powerful', 'supercomputer', 'called',

 "'Summit',", 'beating', 'the', 'previous', 'record-holder',

 "China's", 'Sunway', 'TaihuLight.', 'With', 'a', 'peak',

 'performance', 'of', '200,000', 'trillion', 'calculations', 'per',

 'second,', 'it', 'is', 'over', 'twice', 'as', 'fast', 'as',

 'Sunway', 'TaihuLight,', 'which', 'is', 'capable', 'of', '93,000',

 'trillion', 'calculations', 'per', 'second.', 'Summit', 'has',

 '4,608', 'servers,', 'which', 'reportedly', 'take', 'up', 'the',

 'size', 'of', 'two', 'tennis', 'courts.'], dtype='<U14')

Thus, you can see that there are multiple ways of obtaining the same results

leveraging token patterns themselves or gap patterns. The following code shows us how

to obtain the token boundaries for each token during the tokenize operation.

word_indices = list(regex_wt.span_tokenize(sample_text))

print(word_indices)

print(np.array([sample_text[start:end] for start, end in word_indices]))

[(0, 2), (3, 10), (11, 18), (19, 23), (24, 32), (33, 47), (48, 53), (54,

60), (61, 64), (65, 67), (68, 71), (72, 80), (81, 84), (85, 92), (93, 97),

Chapter 3 proCessing and Understanding text

131

(98, 106), (107, 120), (121, 127), (128, 137), (138, 145), (146, 149),

(150, 158), (159, 172), (173, 180), (181, 187), (188, 199), (200, 204),

(205, 206), (207, 211), (212, 223), (224, 226), (227, 234), (235, 243),

(244, 256), (257, 260), (261, 268), (269, 271), (272, 274), (275, 279),

(280, 285), (286, 288), (289, 293), (294, 296), (297, 303), (304, 315),

(316, 321), (322, 324), (325, 332), (333, 335), (336, 342), (343, 351),

(352, 364), (365, 368), (369, 376), (377, 383), (384, 387), (388, 393),

(394, 402), (403, 408), (409, 419), (420, 424), (425, 427), (428, 431),

(432, 436), (437, 439), (440, 443), (444, 450), (451, 458)]

['US' 'unveils' "world's" 'most' 'powerful' 'supercomputer,' 'beats'

 'China.' 'The' 'US' 'has' 'unveiled' 'the' "world's" 'most' 'powerful'

 'supercomputer' 'called' "'Summit'," 'beating' 'the' 'previous'

 'record-holder' "China's" 'Sunway' 'TaihuLight.' 'With' 'a' 'peak'

 'performance' 'of' '200,000' 'trillion' 'calculations' 'per' 'second,'

 'it' 'is' 'over' 'twice' 'as' 'fast' 'as' 'Sunway' 'TaihuLight,' 'which'

 'is' 'capable' 'of' '93,000' 'trillion' 'calculations' 'per' 'second.'

 'Summit' 'has' '4,608' 'servers,' 'which' 'reportedly' 'take' 'up' 'the'

 'size' 'of' 'two' 'tennis' 'courts.']

Inherited Tokenizers from RegexpTokenizer

Besides the base RegexpTokenizer class, there are several derived classes that

perform different types of word tokenization. The WordPunktTokenizer uses the pattern

r'\w+|[^\w\s]+' to tokenize sentences into independent alphabetic and

non-alphabetic tokens.

wordpunkt_wt = nltk.WordPunctTokenizer()

words = wordpunkt_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'", 's', 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'", 's', 'most', 'powerful',

 'supercomputer', 'called', "'", 'Summit', "',", 'beating', 'the',

 'previous', 'record', '-', 'holder', 'China', "'", 's', 'Sunway',

 'TaihuLight', '.', 'With', 'a', 'peak', 'performance', 'of', '200',

Chapter 3 proCessing and Understanding text

132

 ',', '000', 'trillion', 'calculations', 'per', 'second', ',', 'it',

 'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

 ',', 'which', 'is', 'capable', 'of', '93', ',', '000', 'trillion',

 'calculations', 'per', 'second', '.', 'Summit', 'has', '4', ',',

 '608', 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the',

 'size', 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

The WhitespaceTokenizer tokenizes sentences into words based on whitespace, like

tabs, newlines, and spaces. The following snippet shows demonstrations of these tokenizers.

whitespace_wt = nltk.WhitespaceTokenizer()

words = whitespace_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', "world's", 'most', 'powerful', 'supercomputer,',

 'beats', 'China.', 'The', 'US', 'has', 'unveiled', 'the',

 "world's", 'most', 'powerful', 'supercomputer', 'called',

 "'Summit',", 'beating', 'the', 'previous', 'record-holder',

 "China's", 'Sunway', 'TaihuLight.', 'With', 'a', 'peak',

 'performance', 'of', '200,000', 'trillion', 'calculations', 'per',

 'second,', 'it', 'is', 'over', 'twice', 'as', 'fast', 'as',

 'Sunway', 'TaihuLight,', 'which', 'is', 'capable', 'of', '93,000',

 'trillion', 'calculations', 'per', 'second.', 'Summit', 'has',

 '4,608', 'servers,', 'which', 'reportedly', 'take', 'up', 'the',

 'size', 'of', 'two', 'tennis', 'courts.'], dtype='<U14')

 Building Robust Tokenizers with NLTK and spaCy

For a typical NLP pipeline, I recommend leveraging state-of-the-art libraries like NLTK

and spaCy and using some of their robust utilities to build a custom function to perform

both sentence- and word-level tokenization. A simple example is depicted in the

following snippets. We start with looking at how we can leverage NLTK.

def tokenize_text(text):

 sentences = nltk.sent_tokenize(text)

 word_tokens = [nltk.word_tokenize(sentence) for sentence in sentences]

 return word_tokens

Chapter 3 proCessing and Understanding text

133

sents = tokenize_text(sample_text)

np.array(sents)

array([list(['US', 'unveils', 'world', "'s", 'most', 'powerful',

'supercomputer', ',', 'beats', 'China', '.']),

 list(['The', 'US', 'has', 'unveiled', 'the', 'world', "'s", 'most',

'powerful', 'supercomputer', 'called', "'Summit", "'", ',',

'beating', 'the', 'previous', 'record-holder', 'China', "'s",

'Sunway', 'TaihuLight', '.']),

 list(['With', 'a', 'peak', 'performance', 'of', '200,000',

'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

',', 'which', 'is', 'capable', 'of', '93,000', 'trillion',

'calculations', 'per', 'second', '.']),

 list(['Summit', 'has', '4,608', 'servers', ',', 'which',

'reportedly', 'take', 'up', 'the', 'size', 'of', 'two',

'tennis', 'courts', '.'])], dtype=object)

We can also get to the level of word-level tokenization by leveraging list

comprehensions, as depicted in the following code.

words = [word for sentence in sents for word in sentence]

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'s", 'most', 'powerful',

 'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

 'previous', 'record-holder', 'China', "'s", 'Sunway', 'TaihuLight',

 '.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

 'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

 'which', 'is', 'capable', 'of', '93,000', 'trillion',

 'calculations', 'per', 'second', '.', 'Summit', 'has', '4,608',

 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

Chapter 3 proCessing and Understanding text

134

In a similar way, we can leverage spaCy to perform sentence- and word-level

tokenizations really quickly, as depicted in the following snippets.

import spacy

nlp = spacy.load('en_core', parse = True, tag=True, entity=True)

text_spacy = nlp(sample_text)

sents = np.array(list(text_spacy.sents))

sents

array([US unveils world's most powerful supercomputer, beats China.,

 The US has unveiled the world's most powerful supercomputer called

'Summit', beating the previous record-holder China's Sunway TaihuLight.,

 With a peak performance of 200,000 trillion calculations per second,

it is over twice as fast as Sunway TaihuLight, which is capable of

93,000 trillion calculations per second.,

 Summit has 4,608 servers, which reportedly take up the size of two

tennis courts.],

 dtype=object)

sent_words = [[word.text for word in sent] for sent in sents]

np.array(sent_words)

array([list(['US', 'unveils', 'world', "'s", 'most', 'powerful',

'supercomputer', ',', 'beats', 'China', '.']),

 list(['The', 'US', 'has', 'unveiled', 'the', 'world', "'s", 'most',

'powerful', 'supercomputer', 'called', "'", 'Summit', "'",

',', 'beating', 'the', 'previous', 'record', '-', 'holder',

'China', "'s", 'Sunway', 'TaihuLight', '.']),

 list(['With', 'a', 'peak', 'performance', 'of', '200,000',

'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

',', 'which', 'is', 'capable', 'of', '93,000', 'trillion',

'calculations', 'per', 'second', '.']),

 list(['Summit', 'has', '4,608', 'servers', ',', 'which',

'reportedly', 'take', 'up', 'the', 'size', 'of', 'two',

'tennis', 'courts', '.'])],

 dtype=object)

Chapter 3 proCessing and Understanding text

135

words = [word.text for word in text_spacy]

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

 'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

 'unveiled', 'the', 'world', "'s", 'most', 'powerful',

 'supercomputer', 'called', "'", 'Summit', "'", ',', 'beating',

 'the', 'previous', 'record', '-', 'holder', 'China', "'s",

 'Sunway', 'TaihuLight', '.', 'With', 'a', 'peak', 'performance',

 'of', '200,000', 'trillion', 'calculations', 'per', 'second', ',',

 'it', 'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway',

 'TaihuLight', ',', 'which', 'is', 'capable', 'of', '93,000',

 'trillion', 'calculations', 'per', 'second', '.', 'Summit', 'has',

 '4,608', 'servers', ',', 'which', 'reportedly', 'take', 'up',

 'the', 'size', 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

This should be more than enough to get you started with text tokenization. We

encourage you to play around with more text data and see if you can make it even better!

 Removing Accented Characters
Usually in any text corpus, you might be dealing with accented characters/letters, especially

if you only want to analyze the English language. Hence, we need to make sure that these

characters are converted and standardized into ASCII characters. This shows a simple

example — converting é to e. The following function is a simple way of tackling this task.

import unicodedata

def remove_accented_chars(text):

 text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').

decode('utf-8', 'ignore')

 return text

remove_accented_chars('Sómě Áccěntěd těxt')

'Some Accented text'

The preceding function shows us how we can easily convert accented characters to

normal English characters, which helps standardize the words in our corpus.

Chapter 3 proCessing and Understanding text

136

 Expanding Contractions
Contractions are shortened versions of words or syllables. These exist in written and

spoken forms. Shortened versions of existing words are created by removing specific

letters and sounds. In the case of English contractions, they are often created by

removing one of the vowels from the word. Examples include “is not” to “isn’t” and

“will not” to “won’t”, where you can notice the apostrophe being used to denote the

contraction and some of the vowels and other letters being removed.

Contractions are often avoided when in formal writing, but are used quite extensively

in informal communication. Various forms of contractions exist and they are tied to the

type of auxiliary verbs, which give us normal contractions, negated contractions, and

other special colloquial contractions, some of which may not involve auxiliaries.

By nature, contractions pose a problem for NLP and text analytics because, to start

with, we have a special apostrophe character in the word. Besides this, we also have two

or more words represented by a contraction and this opens a whole new can of worms

when we try to tokenize them or standardize the words. Hence, there should be some

definite process for dealing with contractions when processing text.

Ideally, you can have a proper mapping for contractions and their corresponding

expansions and then use that to expand all the contractions in your text. I have created

a vocabulary for contractions and their corresponding expanded forms, which you can

access in the file named contractions.py in a Python dictionary (available along with

the code files for this chapter). A part of the contractions dictionary is shown in the

following snippet.

CONTRACTION_MAP = {

 "ain't": "is not",

 "aren't": "are not",

 "can't": "cannot",

 "can't've": "cannot have",

 .

 .

 .

 "you'll've": "you will have",

 "you're": "you are",

 "you've": "you have"

}

Chapter 3 proCessing and Understanding text

137

Remember, however, that some of the contractions can have multiple forms, such

the contraction “you’ll” which can be either “you will” or “you shall”. To make things

simple here, we use only one of these expanded forms for each contraction. For our next

step, to expand contractions, we use the following code snippet.

from contractions import CONTRACTION_MAP

import re

def expand_contractions(text, contraction_mapping=CONTRACTION_MAP):

 contractions_pattern = re.compile('({})'.format('|'.join(contraction_

mapping.keys())), flags=re.IGNORECASE|re.DOTALL)

 def expand_match(contraction):

 match = contraction.group(0)

 first_char = match[0]

 expanded_contraction = contraction_mapping.get(match)\

 if contraction_mapping.get(match)\

 else contraction_mapping.get(match.lower())

 expanded_contraction = first_char+expanded_contraction[1:]

 return expanded_contraction

 expanded_text = contractions_pattern.sub(expand_match, text)

 expanded_text = re.sub("'", "", expanded_text)

 return expanded_text

In this snippet, we use the expanded_match function inside the main

expand_contractions function to find each contraction that matches the regex pattern

we create out of all the contractions in our CONTRACTION_MAP dictionary. On matching

any contraction, we substitute it with its corresponding expanded version and retain the

correct case of the word. Let’s see this process in action now!

expand_contractions("Y'all can't expand contractions I'd think")

'You all cannot expand contractions I would think'

We can see how our function helps expand the contractions from the preceding

output. Are there better ways of doing this? Definitely! If we have enough examples, we

can even train a deep learning model for better performance.

Chapter 3 proCessing and Understanding text

138

 Removing Special Characters
Special characters and symbols are usually non-alphanumeric characters or even

occasionally numeric characters (depending on the problem), which add to the extra

noise in unstructured text. Usually, simple regular expressions (regexes) can be used to

remove them. The following code helps us remove special characters.

def remove_special_characters(text, remove_digits=False):

 pattern = r'[^a-zA-z0-9\s]' if not remove_digits else r'[^a-zA-z\s]'

 text = re.sub(pattern, '', text)

 return text

remove_special_characters("Well this was fun! What do you think? 123#@!",

 remove_digits=True)

'Well this was fun What do you think '

I’ve kept removing digits optional, because often we might need to keep them in the

preprocessed text.

 Case Conversions
Often you might want to modify the case of words or sentences to make things easier,

like matching specific words or tokens. Usually, there are two types of case conversion

operations that are used a lot. These are lower- and uppercase conversions, where a

body of text is converted completely to lowercase or uppercase. There are other forms

also like sentence case or title case. Lowercase is a form where all the letters of the text

are small letters and in uppercase they are all capitalized. Title case will capitalize the

first letter of each word in the sentence. The following snippet illustrates these concepts.

lowercase

text = 'The quick brown fox jumped over The Big Dog'

text.lower()

'the quick brown fox jumped over the big dog'

uppercase

text.upper()

'THE QUICK BROWN FOX JUMPED OVER THE BIG DOG'

Chapter 3 proCessing and Understanding text

139

title case

text.title()

'The Quick Brown Fox Jumped Over The Big Dog'

 Text Correction
One of the main challenges faced in text wrangling is the presence of incorrect words

in the text. The definition of incorrect here covers words that have spelling mistakes as

well as words with several letters repeated that do not contribute much to its overall

significance. To illustrate some examples, the word “finally” could be mistakenly written

as “fianlly” or someone expressing intense emotion could write it as “finalllllyyyyyy”. The

main objective here is to standardize different forms of these words to the correct form

so that we do not end up losing vital information from different tokens in the text. We

cover dealing with repeated characters as well as correcting spellings in this section.

 Correcting Repeating Characters

We just mentioned words that often contain several repeating characters that could be

due to incorrect spellings, slang language, or even people wanting to express strong

emotions. We show a method here that uses a combination of syntax and semantics to

correct these words. We start by correcting the syntax of these words and then move on

to semantics.

The first step in our algorithm is to identify repeated characters in a word using

a regex pattern and then use a substitution to remove the characters one by one.

Let’s consider the word “finalllyyy” from the earlier example. The pattern r'(\w*)

(\w)\2(\w*)' can be used to identify characters that occur twice among other

characters in the word. In each step, we try to eliminate one of the repeated characters

using a substitution for the match by utilizing the regex match groups (groups 1, 2, and

3) using the pattern r'\1\2\3'. Then we keep iterating through this process until no

repeated characters remain. The following snippet illustrates this process.

old_word = 'finalllyyy'

repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

match_substitution = r'\1\2\3'

step = 1

Chapter 3 proCessing and Understanding text

140

while True:

 # remove one repeated character

 new_word = repeat_pattern.sub(match_substitution,

 old_word)

 if new_word != old_word:

 print('Step: {} Word: {}'.format(step, new_word))

 step += 1 # update step

 # update old word to last substituted state

 old_word = new_word

 continue

 else:

 print("Final word:", new_word)

 break

Step: 1 Word: finalllyy

Step: 2 Word: finallly

Step: 3 Word: finally

Step: 4 Word: finaly

Final word: finaly

This snippet shows us how one repeated character is removed at each stage and we

end up with the word “finaly” in the end. However, this word is incorrect and the correct

word was “finally,” which we had obtained in Step 3. We will now utilize the WordNet

corpus to check for valid words at each stage and terminate the loop once it is obtained.

This introduces the semantic correction needed for our algorithm, as illustrated in the

following snippet.

from nltk.corpus import wordnet

old_word = 'finalllyyy'

repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

match_substitution = r'\1\2\3'

step = 1

while True:

 # check for semantically correct word

 if wordnet.synsets(old_word):

 print("Final correct word:", old_word)

 break

Chapter 3 proCessing and Understanding text

141

 # remove one repeated character

 new_word = repeat_pattern.sub(match_substitution,

 old_word)

 if new_word != old_word:

 print('Step: {} Word: {}'.format(step, new_word))

 step += 1 # update step

 # update old word to last substituted state

 old_word = new_word

 continue

 else:

 print("Final word:", new_word)

 break

Step: 1 Word: finalllyy

Step: 2 Word: finallly

Step: 3 Word: finally

Final correct word: finally

Thus, we see from this snippet that the code correctly terminated after the third step

and we obtained the correct word adhering to both syntax and semantics. We can build a

better version of this code by writing the logic in a function, as depicted here, to make it

more generic to deal with incorrect tokens from a list of tokens.

from nltk.corpus import wordnet

def remove_repeated_characters(tokens):

 repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

 match_substitution = r'\1\2\3'

 def replace(old_word):

 if wordnet.synsets(old_word):

 return old_word

 new_word = repeat_pattern.sub(match_substitution, old_word)

 return replace(new_word) if new_word != old_word else new_word

 correct_tokens = [replace(word) for word in tokens]

 return correct_tokens

Chapter 3 proCessing and Understanding text

142

In this snippet, we use the inner function replace() to basically emulate the

behavior of our algorithm that we illustrated earlier and then call it repeatedly on each

token in a sentence in the outer function remove_repeated_characters(). We can see

the code in action in the following snippet with an example sentence.

sample_sentence = 'My schooool is realllllyyy amaaazingggg'

correct_tokens = remove_repeated_characters(nltk.word_tokenize(sample_

sentence))

' '.join(correct_tokens)

'My school is really amazing'

We can see from this output that our function performs as intended and replaces the

repeating characters in each token, giving us correct tokens as desired.

 Correcting Spellings

The second problem we face with words is incorrect or wrong spellings that occur due to

human error and even machine based errors, which you might have seen with features

like auto-correcting text. There are various ways to deal with incorrect spellings where

the final objective is to have tokens of text with the correct spelling. We will talk about

one of the famous algorithms developed by Peter Norvig, the director of research at

Google. You can find the complete detailed post explaining his algorithm and findings at

http://norvig.com/spell-correct.html, which we will be exploring in this section.

The main objective of this exercise is that given a problematic word, we need to find

the most likely correct form of that word. The approach we follow is to generate a set of

candidate words that are near to our input word and select the most likely word from

this set as the correct word. We use a corpus of correct English words in this context

to identify the correct word based on its frequency in the corpus from our final set of

candidates with the nearest distance to our input word. This distance measures how

near or far a word is from our input word and is also called the edit distance.

The input corpus we use is a file with several books from the Gutenberg corpus

and a list of most frequent words from Wiktionary and the British National Corpus. You

can find the file under the name big.txt in this chapter’s code resources or you can

download it from Norvig’s direct link at http://norvig.com/big.txt and use it. We

use the following code snippet to generate a map of frequently occurring words in the

English language and their counts.

Chapter 3 proCessing and Understanding text

http://norvig.com/spell-correct.html
http://norvig.com/big.txt

143

import re, collections

def tokens(text):

 """

 Get all words from the corpus

 """

 return re.findall('[a-z]+', text.lower())

WORDS = tokens(open('big.txt').read())

WORD_COUNTS = collections.Counter(WORDS)

top 10 words in corpus

WORD_COUNTS.most_common(10)

[('the', 80030), ('of', 40025), ('and', 38313), ('to', 28766), ('in', 22050),

 ('a', 21155), ('that', 12512), ('he', 12401), ('was', 11410), ('it', 10681)]

Once we have our vocabulary, we define three functions that compute sets of words

that are zero, one, and two edits away from our input word. These edits can be made by

the means of insertions, deletions, additions, and transpositions. The following code

defines the functions.

def edits0(word):

 """

 Return all strings that are zero edits away

 from the input word (i.e., the word itself).

 """

 return {word}

def edits1(word):

 """

 Return all strings that are one edit away

 from the input word.

 """

 alphabet = 'abcdefghijklmnopqrstuvwxyz'

 def splits(word):

 """

 Return a list of all possible (first, rest) pairs

 that the input word is made of.

 """

Chapter 3 proCessing and Understanding text

144

 return [(word[:i], word[i:])

 for i in range(len(word)+1)]

 pairs = splits(word)

 deletes = [a+b[1:] for (a, b) in pairs if b]

 transposes = [a+b[1]+b[0]+b[2:] for (a, b) in pairs if len(b) > 1]

 replaces = [a+c+b[1:] for (a, b) in pairs for c in alphabet if b]

 inserts = [a+c+b for (a, b) in pairs for c in alphabet]

 return set(deletes + transposes + replaces + inserts)

def edits2(word):

 """Return all strings that are two edits away

 from the input word.

 """

 return {e2 for e1 in edits1(word) for e2 in edits1(e1)}

We also define a function called known(), which returns a subset of words from our

candidate set of words obtained from the edit functions based on whether they occur in

our vocabulary dictionary WORD_COUNTS. This gives us a list of valid words from our set of

candidate words.

def known(words):

 """

 Return the subset of words that are actually

 in our WORD_COUNTS dictionary.

 """

 return {w for w in words if w in WORD_COUNTS}

We can see these functions in action on our test input word in the following code

snippet, which shows lists of possible candidate words based on edit distances from the

input word.

input word

word = 'fianlly'

zero edit distance from input word

edits0(word)

{'fianlly'}

Chapter 3 proCessing and Understanding text

145

returns null set since it is not a valid word

known(edits0(word))

set()

one edit distance from input word

edits1(word)

{'afianlly',

 'aianlly',

 .

 .

'yianlly',

'zfianlly',

'zianlly'}

get correct words from above set

known(edits1(word))

{'finally'}

two edit distances from input word

edits2(word)

{'fchnlly',

 'fianjlys',

 .

 .

 'fiapgnlly',

 'finanlqly'}

get correct words from above set

known(edits2(word))

{'faintly', 'finally', 'finely', 'frankly'}

This output shows a set of valid candidate words that could be potential

replacements for the incorrect input word. We select our candidate words from the list

by giving higher priority to words whose edit distances are the smallest from the input

word. The following code snippet illustrates this.

Chapter 3 proCessing and Understanding text

146

candidates = (known(edits0(word)) or

 known(edits1(word)) or

 known(edits2(word)) or

 [word])

candidates

{'finally'}

In case there is a tie in the candidates, we resolve it by taking the highest occurring

word from our vocabulary dictionary WORD_COUNTS using the max(candidates, key=WORD_

COUNTS.get) function. Thus, we now define our function to correct words using this logic.

def correct(word):

 """

 Get the best correct spelling for the input word

 """

 # Priority is for edit distance 0, then 1, then 2

 # else defaults to the input word itself.

 candidates = (known(edits0(word)) or

 known(edits1(word)) or

 known(edits2(word)) or

 [word])

 return max(candidates, key=WORD_COUNTS.get)

We can use the function on incorrect words directly to correct them, as illustrated in

the following snippet.

correct('fianlly')

'finally'

correct('FIANLLY')

'FIANLLY'

We see that this function is case sensitive and fails to correct words that are not

lowercase, hence we write the following functions to make this generic to the case of

words and correct their spelling regardless. The logic here is to preserve the original case

of the word, convert it to lowercase, correct its spelling, and finally convert it back to its

original case using the case_of function.

Chapter 3 proCessing and Understanding text

147

def correct_match(match):

 """

 Spell-correct word in match,

 and preserve proper upper/lower/title case.

 """

 word = match.group()

 def case_of(text):

 """

 Return the case-function appropriate

 for text: upper, lower, title, or just str.:

 """

 return (str.upper if text.isupper() else

 str.lower if text.islower() else

 str.title if text.istitle() else

 str)

 return case_of(word)(correct(word.lower()))

def correct_text_generic(text):

 """

 Correct all the words within a text,

 returning the corrected text.

 """

 return re.sub('[a-zA-Z]+', correct_match, text)

We can now use the function to correct words irrespective of their case, as illustrated

in the following snippet.

correct_text_generic('fianlly')

'finally'

correct_text_generic('FIANLLY')

'FINALLY'

Chapter 3 proCessing and Understanding text

148

Of course this method is not always completely accurate and there might be words

that are not corrected if they do not occur in our vocabulary dictionary. Using more data

would help in this case as long as we cover different words with correct spellings in our

vocabulary. This same algorithm is available to be used out-of-the-box in the TextBlob

library. This is depicted in the following snippet.

from textblob import Word

w = Word('fianlly')

w.correct()

'finally'

check suggestions

w.spellcheck()

[('finally', 1.0)]

another example

w = Word('flaot')

w.spellcheck()

[('flat', 0.85), ('float', 0.15)]

Besides this, there are several robust libraries available in Python, including

PyEnchant based on the enchant library (http://pythonhosted.org/pyenchant/),

autocorrect, which is available at https://github.com/phatpiglet/autocorrect/,

and aspell- python, which is a Python wrapper around the popular GNU Aspell. With

the advent of deep learning, sequential models like RNNs and LSTMs coupled with

word embeddings often out-perform these traditional methods. I also recommend

readers take a look at DeepSpell, which is available at https://github.com/MajorTal/

DeepSpell. It leverages deep learning to build a spelling corrector. Feel free to check

them out and use them for correcting word spellings!

 Stemming
To understand the process of stemming, we need to understand what word stems

represent. In Chapter 1, we talked about morphemes, which are the smallest

independent unit in any natural language. Morphemes consist of units that are stems

and affixes. Affixes are units like prefixes, suffixes, and so on, which are attached to word

Chapter 3 proCessing and Understanding text

http://pythonhosted.org/pyenchant/
https://github.com/phatpiglet/autocorrect/
https://github.com/MajorTal/DeepSpell
https://github.com/MajorTal/DeepSpell

149

stems to change their meaning or create a new word altogether. Word stems are also

often known as the base form of a word and we can create new words by attaching affixes

to them. This process is known as inflection. The reverse of this is obtaining the base

form of a word from its inflected form and this is known as stemming.

Consider the word “JUMP”, you can add affixes to it and form several new words like

“JUMPS”, “JUMPED”, and “JUMPING”. In this case, the base word is “JUMP” and this is

the word stem. If we were to carry out stemming on any of its three inflected forms, we

would get the base form. This is depicted more clearly in Figure 3-2.

Figure 3-2 depicts how the word stem is present in all its inflections since it forms the

base on which each inflection is built upon using affixes. Stemming helps us standardize

words to their base stem irrespective of their inflections, which helps many applications

like classifying or clustering text or even in information retrieval. Search engines use

such techniques extensively to give better accurate results irrespective of the word form.

The NLTK package has several implementations for stemmers. These stemmers are

implemented in the stem module, which inherits the StemmerI interface in the nltk.

stem.api module. You can even create your own stemmer by using this class (technically

it is an interface) as your base class. One of the most popular stemmers is the Porter

stemmer, which is based on the algorithm developed by its inventor, Martin Porter.

Originally, the algorithm is said to have a total of five different phases for reduction of

inflections to their stems, where each phase has its own set of rules. There also exists a

Porter2 algorithm, which was the original stemming algorithm with some improvements

suggested by Dr. Martin Porter. You can see the Porter stemmer in action in the following

code snippet.

Figure 3-2. Word stem and inflections

Chapter 3 proCessing and Understanding text

150

Porter Stemmer

In [458]: from nltk.stem import PorterStemmer

 ...: ps = PorterStemmer()

 ...: ps.stem('jumping'), ps.stem('jumps'), ps.stem('jumped')

(jump, jump, jump)

In [460]: ps.stem('lying')

'lie'

In [461]: ps.stem('strange')

'strang'

The Lancaster stemmer is based on the Lancaster stemming algorithm, also

often known as the Paice/Husk stemmer, which was invented by Chris D. Paice. This

stemmer is an iterative stemmer with over 120 rules, which specify specific removal

or replacement for affixes to obtain the word stems. The following snippet shows the

Lancaster stemmer in action.

Lancaster Stemmer

In [465]: from nltk.stem import LancasterStemmer

 ...: ls = LancasterStemmer()

 ...: print ls.stem('jumping'), ls.stem('jumps'), ls.stem('jumped')

(jump, jump, jump)

In [467]: ls.stem('lying')

'lying'

In [468]: ls.stem('strange')

'strange'

You can see the behavior of this stemmer is different from the previous Porter

stemmer. Besides these two, there are several other stemmers, including RegexpStemmer,

where you can build your own stemmer based on user-defined rules and

SnowballStemmer, which supports stemming in 13 different languages besides English.

The following code snippet shows some ways of using them for performing stemming.

The RegexpStemmer uses regular expressions to identify the morphological affixes in

words and any part of the string matching them is removed.

Chapter 3 proCessing and Understanding text

151

Regex based stemmer

In [471]: from nltk.stem import RegexpStemmer

 ...: rs = RegexpStemmer('ing$|s$|ed$', min=4)

 ...: rs.stem('jumping'), rs.stem('jumps'), rs.stem('jumped')

(jump, jump, jump)

In [473]: rs.stem('lying')

'ly'

In [474]: rs.stem('strange')

'strange'

You can see how the stemming results are different from the previous stemmers

and is based completely on our custom defined rules based on regular expressions.

The following snippet shows how we can use the SnowballStemmer to stem words

in other languages. You can find more details about the Snowball Project at http://

snowballstem.org/.

Snowball Stemmer

In [486]: from nltk.stem import SnowballStemmer

 ...: ss = SnowballStemmer("german")

 ...: print('Supported Languages:', SnowballStemmer.languages)

Supported Languages: (u'danish', u'dutch', u'english', u'finnish',

u'french', u'german', u'hungarian', u'italian', u'norwegian', u'porter',

u'portuguese', u'romanian', u'russian', u'spanish', u'swedish')

stemming on German words

autobahnen -> cars

autobahn -> car

In [488]: ss.stem('autobahnen')

'autobahn'

springen -> jumping

spring -> jump

In [489]: ss.stem('springen')

'spring'

Chapter 3 proCessing and Understanding text

http://snowballstem.org/
http://snowballstem.org/

152

The Porter stemmer is used most frequently, but you should choose your stemmer

based on your problem and after trial and error. The following is a basic function that

can be used for stemming text.

def simple_stemmer(text):

 ps = nltk.porter.PorterStemmer()

 text = ' '.join([ps.stem(word) for word in text.split()])

 return text

simple_stemmer("My system keeps crashing his crashed yesterday, ours

crashes daily")

'My system keep crash hi crash yesterday, our crash daili'

Feel free to leverage this function for your own stemming needs. Also, if needed, you

can even build your own stemmer with your own defined rules!

 Lemmatization
The process of lemmatization is very similar to stemming, where we remove word affixes

to get to a base form of the word. However in this case, this base form is also known

as the root word but not the root stem. The difference between the two is that the root

stem may not always be a lexicographically correct word, i.e., it may not be present in

the dictionary but the root word, also known as the lemma, will always be present in the

dictionary.

The lemmatization process is considerably slower than stemming because an

additional step is involved where the root form or lemma is formed by removing the affix

from the word if and only if the lemma is present in the dictionary. The NLTK package

has a robust lemmatization module where it uses WordNet and the word’s syntax and

semantics like part of speech and context to get the root word or lemma. Remember

from Chapter 1 when we discussed parts of speech? There were three entities of nouns,

verbs, and adjectives that occur most frequently in natural language. The following code

snippet depicts how to use lemmatization for words belonging to each of those types.

Chapter 3 proCessing and Understanding text

153

In [514]: from nltk.stem import WordNetLemmatizer

 ...: wnl = WordNetLemmatizer()

lemmatize nouns

In [515]: print(wnl.lemmatize('cars', 'n'))

 ...: print(wnl.lemmatize('men', 'n'))

car

men

lemmatize verbs

In [516]: print(wnl.lemmatize('running', 'v'))

 ...: print(wnl.lemmatize('ate', 'v'))

run

eat

lemmatize adjectives

In [517]: print(wnl.lemmatize('saddest', 'a'))

 ...: print(wnl.lemmatize('fancier', 'a'))

sad

fancy

This snippet shows us how each word is converted to its base form using

lemmatization. This helps us standardize words. This code leverages the

WordNetLemmatizer class, which internally uses the morphy() function belonging to the

WordNetCorpusReader class. This function basically finds the base form or lemma for a

given word using the word and its part of speech by checking the WordNet corpus and

uses a recursive technique for removing affixes from the word until a match is found

in WordNet. If no match is found, the input word is returned unchanged. The part of

speech is extremely important because if that is wrong, the lemmatization will not be

effective, as you can see in the following snippet.

ineffective lemmatization

In [518]: print wnl.lemmatize('ate', 'n')

 ...: print wnl.lemmatize('fancier', 'v')

ate

fancier

Chapter 3 proCessing and Understanding text

154

SpaCy makes things a lot easier since it performs parts of speech tagging and

effective lemmatization for each token in a text document without you worrying about

if you are using lemmatization effectively. The following function can be leveraged for

performing effective lemmatization, thanks to spaCy!

import spacy

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

text = 'My system keeps crashing his crashed yesterday, ours crashes daily'

def lemmatize_text(text):

 text = nlp(text)

 text = ' '.join([word.lemma_ if word.lemma_ != '-PRON-' else word.text

for word in text])

 return text

lemmatize_text("My system keeps crashing! his crashed yesterday, ours

crashes daily")

'My system keep crash ! his crash yesterday , ours crash daily'

You can leverage NLTK or spaCy to build your own lemmatizers. Feel free to

experiment with these functions on your own data.

 Removing Stopwords
Stopwords are words that have little or no significance and are usually removed from

text when processing it so as to retain words having maximum significance and context.

Stopwords usually occur most frequently if you aggregate a corpus of text based on

singular tokens and checked their frequencies. Words like “a,” “the,” “and,” and so on are

stopwords. There is no universal or exhaustive list of stopwords and often each domain

or language has its own set of stopwords. We depict a method to filter out and remove

stopwords for English in the following code snippet.

from nltk.tokenize.toktok import ToktokTokenizer

tokenizer = ToktokTokenizer()

stopword_list = nltk.corpus.stopwords.words('english')

def remove_stopwords(text, is_lower_case=False):

 tokens = tokenizer.tokenize(text)

 tokens = [token.strip() for token in tokens]

Chapter 3 proCessing and Understanding text

155

 if is_lower_case:

 filtered_tokens = [token for token in tokens if token not in

stopword_list]

 else:

 filtered_tokens = [token for token in tokens if token.lower() not

in stopword_list]

 filtered_text = ' '.join(filtered_tokens)

 return filtered_text

remove_stopwords("The, and, if are stopwords, computer is not")

', , stopwords , computer'

There is no universal stopword list, but we use a standard English language

stopwords list from NLTK. You can also add your own domain-specific stopwords

as needed. In the previous function, we leverage the use of NLTK, which has a list of

stopwords for English, and use it to filter out all tokens that correspond to stopwords.

This output shows us a reduced number of tokens compared to what we had earlier and

you can compare and check the tokens that were removed as stopwords. To see the list of

all English stopwords in NLTK’s vocabulary, you can print the contents of nltk.corpus.

stopwords.words('english') to get an idea of the various stopwords. One important

thing to remember is that negations like “not” and “no” are removed in this case (in the

first sentence) and often it is essential to preserve them so as the actual meaning of the

sentence is not lost in applications like sentiment analysis. So you would need to make

sure you do not remove these words in those scenarios.

 Bringing It All Together — Building a Text Normalizer
Let’s now bring everything we learned together and chain these operations to build a text

normalizer to preprocess text data. We focus on including the major components often

used for text wrangling in our custom function.

def normalize_corpus(corpus, html_stripping=True, contraction_expansion=True,

 accented_char_removal=True, text_lower_case=True,

 text_lemmatization=True, special_char_removal=True,

 stopword_removal=True, remove_digits=True):

Chapter 3 proCessing and Understanding text

156

 normalized_corpus = []

 # normalize each document in the corpus

 for doc in corpus:

 # strip HTML

 if html_stripping:

 doc = strip_html_tags(doc)

 # remove accented characters

 if accented_char_removal:

 doc = remove_accented_chars(doc)

 # expand contractions

 if contraction_expansion:

 doc = expand_contractions(doc)

 # lowercase the text

 if text_lower_case:

 doc = doc.lower()

 # remove extra newlines

 doc = re.sub(r'[\r|\n|\r\n]+', ' ',doc)

 # lemmatize text

 if text_lemmatization:

 doc = lemmatize_text(doc)

 # remove special characters and\or digits

 if special_char_removal:

 # insert spaces between special characters to isolate them

 special_char_pattern = re.compile(r'([{.(-)!}])')

 doc = special_char_pattern.sub(" \\1 ", doc)

 doc = remove_special_characters(doc, remove_digits=remove_digits)

 # remove extra whitespace

 doc = re.sub(' +', ' ', doc)

 # remove stopwords

 if stopword_removal:

 doc = remove_stopwords(doc, is_lower_case=text_lower_case)

 normalized_corpus.append(doc)

 return normalized_corpus

Chapter 3 proCessing and Understanding text

157

Let’s now put this function in action! We will leverage our sample text from the

previous sections as the input document, which we will preprocess using the preceding

function.

{'Original': sample_text,

 'Processed': normalize_corpus([sample_text])[0]}

{'Original': "US unveils world's most powerful supercomputer, beats

China. The US has unveiled the world's most powerful supercomputer called

'Summit', beating the previous record-holder China's Sunway TaihuLight.

With a peak performance of 200,000 trillion calculations per second,

it is over twice as fast as Sunway TaihuLight, which is capable of

93,000 trillion calculations per second. Summit has 4,608 servers, which

reportedly take up the size of two tennis courts.",

 'Processed': 'us unveil world powerful supercomputer beat china us unveil

world powerful supercomputer call summit beat previous record holder chinas

sunway taihulight peak performance trillion calculation per second twice

fast sunway taihulight capable trillion calculation per second summit

server reportedly take size two tennis court'}

Thus, you can see how our text preprocessor helps in preprocessing our sample

news article! In the next section, we look at ways of analyzing and understanding various

facets of textual data with regard to its syntactic properties and structure.

 Understanding Text Syntax and Structure
We talked about language syntax and structure in detail in Chapter 1. If you don’t

remember the basics, head over to the section titled “Language Syntax and Structure”

in Chapter 1 and skim through it quickly to get an idea of the various ways of analyzing

and understanding the syntax and structure of textual data. To refresh your memory, let’s

briefly cover the importance of text syntax and structure.

For any language, syntax and structure usually go hand in hand, where a set of specific

rules, conventions, and principles govern the way words are combined into phrases;

phrases are combined into clauses; and clauses are combined into sentences. We will

be talking specifically about the English language syntax and structure in this section.

In English, words usually combine to form other constituent units. These constituents

Chapter 3 proCessing and Understanding text

158

include words, phrases, clauses, and sentences. The sentence “The brown fox is quick and

he is jumping over the lazy dog” is made of a bunch of words. Just looking at the words by

themselves doesn’t tell us much (see Figure 3-3).

Figure 3-3. A bunch of unordered words doesn’t convey much information

Knowledge about the structure and syntax of language is helpful in many areas like

text processing, annotation, and parsing for further operations such as text classification

or summarization. In this section, we implement some of the concepts and techniques

used to understand text syntax and structure. This is extremely useful in natural

language processing and is usually done after text processing and wrangling. We focus

on implementing the following techniques:

• Parts of speech (POS) tagging

• Shallow parsing or chunking

• Dependency parsing

• Constituency parsing

This book is targeted toward practitioners and enforces and emphasizes on

best approaches for implementing and using techniques and algorithms in real-

world problems. Hence in the following sections, we look at the best possible ways

of leveraging libraries like NLTK and spaCy to implement some of these techniques.

Besides this, since you might be interested in the internals and implementing some of

these techniques on your own, we also look at ways to accomplish this. Before jumping

into the details, we look at the necessary dependencies and installation details for the

required libraries, since some of them are not very straightforward.

Chapter 3 proCessing and Understanding text

159

 Installing Necessary Dependencies
We leverage several libraries and dependencies:

• The nltk library

• The spacy library

• The Stanford Parser

• Graphviz and necessary libraries for visualization

We touched upon installing NLTK in Chapter 1. You can install it directly by going to

your terminal or command prompt and typing pip install nltk, which will download

and install it. Remember to install the library preferably equal to or higher than version

3.2.4. After downloading and installing NLTK, remember to download the corpora,

which we also discussed in Chapter 1. For more details on downloading and installing

NLTK, you can follow the information at http://www.nltk.org/install.html and

http://www.nltk.org/data.html, which tells you how to install the data dependencies.

Start the Python interpreter and use the following snippet.

import nltk

download all dependencies and corpora

nltk.download('all', halt_on_error=False)

OR use a GUI based downloader and select dependencies

nltk.download()

To install spaCy, type pip install spacy from the terminal or conda install spaCy.

Once it’s done, download the English language model using the command, python -m

spacy.en.download from the terminal, which will download around 500MB of

data in the directory of the spaCy package. For more details, you can refer to the link

https://spacy.io/docs/#getting-started, which tells you how to get started with

using spaCy. We will use spaCy for tagging and depicting dependency based parsing.

However, in case you face issues loading spaCy’s language models, feel free to follow the

steps highlighted here to resolve this issue. (I faced this issue in one of my systems but it

doesn’t always occur.)

Chapter 3 proCessing and Understanding text

http://www.nltk.org/install.html
http://www.nltk.org/data.html
https://spacy.io/docs/#getting-started

160

OPTIONAL: ONLY USE IF SPACY FAILS TO LOAD LANGUAGE MODEL

Use the following command to install spaCy

> pip install -U spacy

OR

> conda install -c conda-forge spacy

Download the following language model and store it in disk

https://github.com/explosion/spacy-models/releases/tag/en_core_web_md-2.0.0

Link the same to spacy

> python -m spacy link ./spacymodels/en_core_web_md-2.0.0/en_core_web_md

en_core Linking successful

 ./spacymodels/en_core_web_md-2.0.0/en_core_web_md --> ./Anaconda3/lib/

site-packages/spacy/data/en_core

You can now load the model via spacy.load('en_core')

The Stanford Parser is a Java-based implementation for a language parser developed

at Stanford, which helps parse sentences to understand their underlying structure. We

perform both dependency and constituency grammar based parsing using the Stanford

Parser and NLTK, which provides an excellent wrapper to leverage and use the parser

from Python itself without the need to write code in Java. You can refer to the official

installation guide at https://github.com/nltk/nltk/wiki/Installing-Third-Party-

Software, which tells us how to download and install the Stanford Parser and integrate

it with NLTK. Personally, I faced several issues especially in Windows based systems;

hence, I will provide one of the best known methods for installation of the Stanford

Parser and its necessary dependencies.

To start with, make sure you download and install the Java Development Kit (not just

JRE also known as Java Runtime Environment) by going to http://www.oracle.com/

technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp. Use any

version typically on or after Java SE 8u101 / 8u102. I used 8u102 since I haven’t upgraded

Java in a while. After installing, make sure that you have set the path for Java by adding it

to the path system environment variable. You can also create a JAVA_HOME environment

variable pointing to the java.exe file belonging to the JDK.

In my experience neither worked for me when running the code from Python and I

had to explicitly use the Python os library to set the environment variable, which I will be

Chapter 3 proCessing and Understanding text

https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp

161

showing when we dive into the implementation details. Once Java is installed, download

the official Stanford Parser from http://nlp.stanford.edu/software/stanford-

parser- full-2015-04-20.zip, which seems to work quite well. You can try a later

version by going to http://nlp.stanford.edu/software/lex-parser.shtml#Download

and checking the “Release History” section. After downloading, unzip it to a known

location in your filesystem. Once you’re done, you are now ready to use the parser from

NLTK, which we will be exploring soon!

Graphviz is not a necessity and we will only be using it to view the dependency

parse tree generated by the Stanford Parser. You can download Graphviz from its official

website at http://www.graphviz.org/Download_windows.php and install it. Next you

need to install pygraphviz, which you can get by downloading the wheel file from

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz based on your system

architecture and Python version. Then install it using the pip install pygraphviz-

1.3.1- cp34-none-win_amd64.whl command for a 64-bit system running Python 3.x.

Once it’s installed, pygraphviz should be ready to work. Some people reported running

into additional issues and you might need to install pydot-ng and graphviz in the same

order using the following snippet in the terminal.

pip install pydot-ng

pip install graphviz

We also leverage NLTK’s plotting capabilities to visualize parse trees in Jupyter

notebooks. To enable this, you might need to install ghostscript in case NLTK throws

an error. Instructions for installation and setup are depicted as follows.

download and install ghostscript from https://www.ghostscript.com/

download/gsdnld.html

often need to add to the path manually (for windows)

os.environ['PATH'] = os.environ['PATH']+";C:\\Program Files\\gs\\gs9.09\\bin\\"

With this, we are done with installing our necessary dependencies and can start

implementing and looking at practical examples. However, we are not ready just yet.

We need to go through a few basic concepts of machine learning before we dive into the

code and examples.

Chapter 3 proCessing and Understanding text

http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://www.graphviz.org/Download_windows.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
https://www.ghostscript.com/download/gsdnld.html

162

 Important Machine Learning Concepts
We will be implementing and training some of our own taggers in the following section

using corpora and leverage existing taggers. There are some important concepts

related to analytics and machine learning, which you must know to understand the

implementations more clearly.

• Data preparation: Usually consists of preprocessing the data before

extracting features and training

• Feature extraction: The process of extracting useful features from

raw data that are used to train machine learning models

• Features: Various useful attributes of the data (examples could be

age, weight, and so on for personal data)

• Training data: A set of data points used to train a model

• Testing/validation data: A set of data points on which a pretrained

model is tested and evaluated to see how well it performs

• Model: This is built using a combination of data/features and

a machine learning algorithm that could be supervised or

unsupervised

• Accuracy: How well the model predicts something (also has other

detailed evaluation metrics like precision, recall, and F1-score)

These terms should be enough to get you started. Going into details is beyond the

current scope; however, you will find a lot of resources on the web on machine learning

if you are interested in exploring some of them further. We recommend checking out

Practical Machine Learning with Python, Apress 2018, if you are interested in learning

machine learning using a hands-on approach. Besides this, we cover supervised and

unsupervised learning with regards to textual data in subsequent chapters.

Chapter 3 proCessing and Understanding text

163

 Parts of Speech Tagging
Parts of speech (POS) are specific lexical categories to which words are assigned based

on their syntactic context and role. If you remember from Chapter 1, we covered some

ground on POS, where we mentioned the main POS being nouns, verbs, adjectives, and

adverbs. The process of classifying and labeling POS tags for words is defined as parts of

speech tagging (POS tagging).

POS tags are used to annotate words and depict their POS, which is really helpful

when we need to use the same annotated text later in NLP-based applications because

we can filter by specific parts of speech an-d utilize that information to perform

specific analysis. We can narrow down nouns and determine which ones are the most

prominent. Considering our previous example sentence, “The brown fox is quick and he

is jumping over the lazy dog”, if we were to annotate it using basic POS tags, it would look

like Figure 3-4.

Figure 3-4. POS tagging for a sentence

Thus, a sentence typically follows a hierarchical structure consisting of the following

components: sentence → clauses → phrases → words.

We will be using the Penn Treebank notation for POS tagging and most of the

recommended POS taggers also leverage it. You can find out more information about

various POS tags and their notation at http://www.cis.uni-muenchen.de/~schmid/

tools/TreeTagger/data/Penn-Treebank-Tagset.pdf, which contains detailed

documentation explaining each tag with examples. The Penn Treebank project is a part

of the University of Pennsylvania and their web page can be found at https://catalog.

ldc.upenn.edu/docs/LDC95T7/treebank2.index.html, which gives more information

about the project. Remember there are various tags, such as POS tags for parts of speech

assigned to words, chunk tags, which are usually assigned to phrases, and some tags are

secondary tags, which are used to depict relations.

Table 3-1 provides a detailed overview of different tags with examples in case you do

not want to go through the detailed documentation for Penn Treebank tags. You can use

this as a reference anytime to understand POS tags and parse trees in a better way.

Chapter 3 proCessing and Understanding text

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
https://catalog.ldc.upenn.edu/docs/LDC95T7/treebank2.index.html
https://catalog.ldc.upenn.edu/docs/LDC95T7/treebank2.index.html

164

Table 3-1. Parts of Speech Tags

Sl No. TAG DESCRIPTION EXAMPLE(S)

1 CC Coordinating conjunction and, or

2 CD Cardinal number five, one, 2

3 DT determiner a, the

4 EX existential there there were two cars

5 FW Foreign word d'hoevre, mais

6 IN preposition/subordinating conjunction of, in, on, that

7 JJ adjective quick, lazy

8 JJR adjective, comparative quicker, lazier

9 JJS adjective, superlative quickest, laziest

10 LS List item marker 2)

11 MD Verb, modal could, should

12 NN noun, singular or mass fox, dog

13 NNS noun, plural foxes, dogs

14 NNP noun, proper singular John, alice

15 NNPS noun, proper plural Vikings, indians, germans

16 PDT predeterminer both cats

17 POS possessive ending boss's

18 PRP pronoun, personal me, you

19 PRP$ pronoun, possessive our, my, your

20 RB adverb naturally, extremely, hardly

21 RBR adverb, comparative better

22 RBS adverb, superlative best

23 RP adverb, particle about, up

24 SYM symbol %, $

25 TO infinitival to how to, what to do

(continued)

Chapter 3 proCessing and Understanding text

165

This table shows us the main POS tag set used in the Penn Treebank and is the most

widely used POS tag set in various text analytics and NLP applications. In the following

sections, we look at some hands-on implementations of POS tagging.

Table 3-1. (continued)

Sl No. TAG DESCRIPTION EXAMPLE(S)

26 UH interjection oh, gosh, wow

27 VB Verb, base form run, give

28 VBD Verb, past tense ran, gave

29 VBG Verb, gerund/present participle running, giving

30 VBN Verb, past participle given

31 VBP Verb, non-third person singular present i think, i take

32 VBZ Verb, third person singular present he thinks, he takes

33 WDT Wh-determiner which, whatever

34 WP Wh-pronoun, personal who, what

35 WP$ Wh-pronoun, possessive whose

36 WRB Wh-adverb where, when

37 NP noun phrase the brown fox

38 PP prepositional phrase in between, over the dog

39 VP Verb phrase was jumping

40 ADJP adjective phrase warm and snug

41 ADVP adverb phrase also

42 SBAR subordinating conjunction whether or not

43 PRT particle up

44 INTJ interjection hello

45 PNP prepositional noun phrase over the dog, as of today

46 -SBJ sentence subject the fox jumped over the dog

47 -OBJ sentence object the fox jumped over the dog

Chapter 3 proCessing and Understanding text

166

 Building POS Taggers

We will be leveraging NLTK and spaCy, which use the Penn Treebank notation for POS

tagging. To demonstrate how things work, we will leverage a news headline from our

sample news article from the previous sections. Let’s look at how POS tagging can be

implemented using spaCy. See Figure 3-5.

sentence = "US unveils world's most powerful supercomputer, beats China."

import pandas as pd

import spacy

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

sentence_nlp = nlp(sentence)

POS tagging with Spacy

spacy_pos_tagged = [(word, word.tag_, word.pos_) for word in sentence_nlp]

pd.DataFrame(spacy_pos_tagged, columns=['Word', 'POS tag', 'Tag type']).T

Thus, we can clearly see in Figure 3-5 the POS tag for each token in our sample news

headline, as defined using spaCy, and they make perfect sense. Let’s try to perform the

same task using NLTK (see Figure 3-6).

POS tagging with nltk

import nltk

nltk_pos_tagged = nltk.pos_tag(nltk.word_tokenize(sentence))

pd.DataFrame(nltk_pos_tagged, columns=['Word', 'POS tag']).T

Figure 3-5. POS tagging for our news headline using spaCy

Figure 3-6. POS tagging for our news headline using NLTK

Chapter 3 proCessing and Understanding text

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf

167

The output in Figure 3-6 gives us tags that purely follow the Penn Treebank format

specifying the specific form of adjective, noun, or verbs in more detail.

We will now explore some techniques to build our own POS taggers! We leverage

some classes provided by NLTK. To evaluate the performance of our taggers, we use

some test data from the treebank corpus in NLTK. We will also be using some training

data for training some of our taggers. To start with, we will first get the necessary data for

training and evaluating the taggers by reading in the tagged treebank corpus.

from nltk.corpus import treebank

data = treebank.tagged_sents()

train_data = data[:3500]

test_data = data[3500:]

print(train_data[0])

[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years',

'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the',

'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'),

('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.', '.')]

We will use the test data to evaluate our taggers and see how they work on our

sample sentence by using its tokens as input. All the taggers we will be leveraging from

NLTK are a part of the nltk.tag package. Each tagger is a child class of the base TaggerI

class and each tagger implements a tag() function, which takes a list of sentence

tokens as input and returns the same list of words with their POS tags as output. Besides

tagging, there is also an evaluate() function, which is used to evaluate the performance

of the tagger. This is done by tagging each input test sentence and then comparing the

result with the actual tags of the sentence. We will be using the same function to test the

performance of our taggers on test_data.

We will first look at the DefaultTagger, which inherits from the

SequentialBackoffTagger base class and assigns the same user input POS tag to each

word. This might seem to be really naïve but it is an excellent way to form a baseline POS

tagger and improve upon it.

default tagger

from nltk.tag import DefaultTagger

dt = DefaultTagger('NN')

Chapter 3 proCessing and Understanding text

168

accuracy on test data

dt.evaluate(test_data)

0.1454158195372253

tagging our sample headline

dt.tag(nltk.word_tokenize(sentence))

[('US', 'NN'), ('unveils', 'NN'), ('world', 'NN'), ("'s", 'NN'), ('most', 'NN'),

 ('powerful', 'NN'), ('supercomputer', 'NN'), (',', 'NN'), ('beats', 'NN'),

 ('China', 'NN'), ('.', 'NN')]

We can see from this output we have obtained 14% accuracy in correctly tagging

words from the treebank test dataset, which is not great. The output tags on our sample

sentence are all nouns, just like we expected since we fed the tagger with the same tag.

We will now use regular expressions and the RegexpTagger to see if we can build a better

performing tagger.

regex tagger

from nltk.tag import RegexpTagger

define regex tag patterns

patterns = [

 (r'.*ing$', 'VBG'), # gerunds

 (r'.*ed$', 'VBD'), # simple past

 (r'.*es$', 'VBZ'), # 3rd singular present

 (r'.*ould$', 'MD'), # modals

 (r'.*\'s$', 'NN$'), # possessive nouns

 (r'.*s$', 'NNS'), # plural nouns

 (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers

 (r'.*', 'NN') # nouns (default) ...

]

rt = RegexpTagger(patterns)

accuracy on test data

rt.evaluate(test_data)

0.24039113176493368

tagging our sample headline

Chapter 3 proCessing and Understanding text

169

rt.tag(nltk.word_tokenize(sentence))

[('US', 'NN'), ('unveils', 'NNS'), ('world', 'NN'), ("'s", 'NN$'), ('most', 'NN'),

 ('powerful', 'NN'), ('supercomputer', 'NN'), (',', 'NN'), ('beats', 'NNS'),

 ('China', 'NN'), ('.', 'NN')]

This output shows us that the accuracy has now increased to 24%, but can we do

better? We will now train some n-gram taggers. If you don’t know already, n-grams

are contiguous sequences of n items from a sequence of text or speech. These items

could consist of words, phonemes, letters, characters, or syllables. Shingles are n-grams

where the items only consist of words. We will use n-grams of size 1, 2, and 3, which

are also known as unigram, bigram, and trigram, respectively. The UnigramTagger,

BigramTagger, and TrigramTagger are classes that inherit from the base class

NGramTagger, which itself inherits from the ContextTagger class, which inherits from the

SequentialBackoffTagger class. We will use the train_data as training data to train the

n-gram taggers based on sentence tokens and their POS tags. Then we will evaluate the

trained taggers on test_data and see the result upon tagging our sample sentence.

N gram taggers

from nltk.tag import UnigramTagger

from nltk.tag import BigramTagger

from nltk.tag import TrigramTagger

ut = UnigramTagger(train_data)

bt = BigramTagger(train_data)

tt = TrigramTagger(train_data)

testing performance of unigram tagger

print(ut.evaluate(test_data))

print(ut.tag(nltk.word_tokenize(sentence)))

0.8619421047536063

[('US', 'NNP'), ('unveils', None), ('world', 'NN'), ("'s", 'POS'), ('most',

'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), ('beats',

None), ('China', 'NNP'), ('.', '.')]

testing performance of bigram tagger

print(bt.evaluate(test_data))

print(bt.tag(nltk.word_tokenize(sentence)))

Chapter 3 proCessing and Understanding text

170

0.1359279697937845

[('US', None), ('unveils', None), ('world', None), ("'s", None), ('most',

None), ('powerful', None), ('supercomputer', None), (',', None), ('beats',

None), ('China', None), ('.', None)]

testing performance of trigram tagger

print(tt.evaluate(test_data))

print(tt.tag(nltk.word_tokenize(sentence)))

0.08142124116565011

[('US', None), ('unveils', None), ('world', None), ("'s", None), ('most',

None), ('powerful', None), ('supercomputer', None), (',', None), ('beats',

None), ('China', None), ('.', None)]

This output clearly shows us that we obtain 86% accuracy on the test set using

unigram tagger alone, which is really good compared to our last tagger. The None tag

indicates the tagger was unable to tag that word and the reason for that would be that

it was unable to get a similar token in the training data. Accuracies of the bigram and

trigram models are far lower because the same bigrams and trigrams observed in the

training data aren’t always present in the same way in the testing data.

We now look at an approach to combine all the taggers by creating a combined

tagger with a list of taggers and use a backoff tagger. Essentially, we would create a chain

of taggers and each tagger would fall back on a backoff tagger if it cannot tag the input

tokens.

def combined_tagger(train_data, taggers, backoff=None):

 for tagger in taggers:

 backoff = tagger(train_data, backoff=backoff)

 return backoff

ct = combined_tagger(train_data=train_data,

 taggers=[UnigramTagger, BigramTagger, TrigramTagger],

 backoff=rt)

evaluating the new combined tagger with backoff taggers

print(ct.evaluate(test_data))

print(ct.tag(nltk.word_tokenize(sentence)))

Chapter 3 proCessing and Understanding text

171

0.9108335753703166

[('US', 'NNP'), ('unveils', 'NNS'), ('world', 'NN'), ("'s", 'POS'),

('most', 'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','),

('beats', 'NNS'), ('China', 'NNP'), ('.', '.')]

We now obtain an accuracy of 91% on the test data, which is excellent. Also we see

that this new tagger can successfully tag all the tokens in our sample sentence (even

though a couple of them are not correct, like beats should be a verb).

For our final tagger, we will use a supervised classification algorithm to train

our tagger. The ClassifierBasedPOSTagger class enables us train a tagger by using

a supervised learning algorithm in the classifier_builder parameter. This class

is inherited from the ClassifierBasedTagger and it has a feature_detector()

function that forms the core of the training process. This function is used to generate

various features from the training data like word, previous word, tag, previous tag,

case, and so on. In fact, you can even build your own feature detector function and

pass it to the feature_detector parameter when instantiating an object of the

ClassifierBasedPOSTagger class.

The classifier we will be using is the NaiveBayesClassifier. It uses the Bayes’

theorem to build a probabilistic classifier assuming the features are independent. You

can read more about it at https://en.wikipedia.org/wiki/Naive_Bayes_classifier

since going into details about the algorithm is out of our current scope. The following

code snippet shows a classification based approach to building and evaluating a POS

tagger.

from nltk.classify import NaiveBayesClassifier, MaxentClassifier

from nltk.tag.sequential import ClassifierBasedPOSTagger

nbt = ClassifierBasedPOSTagger(train=train_data,

 classifier_builder=NaiveBayesClassifier.train)

evaluate tagger on test data and sample sentence

print(nbt.evaluate(test_data))

print(nbt.tag(nltk.word_tokenize(sentence)))

0.9306806079969019

[('US', 'PRP'), ('unveils', 'VBZ'), ('world', 'VBN'), ("'s", 'POS'),

('most', 'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','),

('beats', 'VBZ'), ('China', 'NNP'), ('.', '.')]

Chapter 3 proCessing and Understanding text

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

172

Using this tagger, we get an accuracy of 93% on our test data, which is the highest

out of all our taggers. Also if you observe the output tags for the sample sentence, you

will see they are correct and make perfect sense. This gives us an idea of how powerful

and effective classifier based POS taggers can be! Feel free to use a different classifier like

MaxentClassifier and compare the performance with this tagger. We have included the

code in the notebook to make things easier.

There are also several other ways to build and use POS taggers using NLTK and other

packages. Even though it is not necessary and this should be enough to cover your POS

tagging needs, you can go ahead and explore other methods to compare with these

methods and satisfy your curiosity.

 Shallow Parsing or Chunking
Shallow parsing, also known as light parsing or chunking, is a technique of analyzing the

structure of a sentence to break it down into its smallest constituents, which are tokens

like words, and group them together into higher-level phrases. In shallow parsing, there

is more focus on identifying these phrases or chunks rather than diving into further

details of the internal syntax and relations inside each chunk, like we see in grammar

based parse trees obtained from deep parsing. The main objective of shallow parsing is

to obtain semantically meaningful phrases and observe relations among them.

You can look at the “Language Syntax and Structure” section from Chapter 1 just

to refresh your memory regarding how words and phrases give structure to a sentence

consisting of a bunch of words. Based on the hierarchy we depicted earlier, groups of

words make up phrases. There are five major categories of phrases:

• Noun phrase (NP): These are phrases where a noun acts as the head

word. Noun phrases act as a subject or object to a verb.

• Verb phrase (VP): These phrases are lexical units that have a verb

acting as the head word. Usually, there are two forms of verb phrases.

One form has the verb components as well as other entities such as

nouns, adjectives, or adverbs as parts of the object.

• Adjective phrase (ADJP): These are phrases with an adjective as

the head word. Their main role is to describe or qualify nouns and

pronouns in a sentence, and they will be placed before or after the

noun or pronoun.

Chapter 3 proCessing and Understanding text

173

• Adverb phrase (ADVP): These phrases act like adverbs since the

adverb acts as the head word in the phrase. Adverb phrases are used

as modifiers for nouns, verbs, or adverbs by providing further details

that describe or qualify them.

• Prepositional phrase (PP): These phrases usually contain a

preposition as the head word and other lexical components like

nouns, pronouns, and so on. These act like an adjective or adverb,

describing other words or phrases.

A shallow parsed tree is depicted in Figure 3-7 for a sample sentence just to refresh

your memory on its structure.

We will now look at ways in which we can implement shallow parsing on text data

using a wide variety of techniques, including regular expressions, chunking, chinking,

and tag based training.

 Building Shallow Parsers

We use several techniques like regular expressions and tagging based learners to build

our own shallow parsers. Just like POS tagging, we use some training data to train our

parsers if needed and evaluate all our parsers on some test data and on our sample

sentence. The treebank corpus is available in NLTK with chunk annotations. We load it

and then prepare our training and testing datasets using the following code snippet.

from nltk.corpus import treebank_chunk

data = treebank_chunk.chunked_sents()

train_data = data[:3500]

test_data = data[3500:]

Figure 3-7. An example of shallow parsing depicting higher level phrase annotations

Chapter 3 proCessing and Understanding text

174

view sample data

print(train_data[7])

(S

 (NP A/DT Lorillard/NNP spokewoman/NN)

 said/VBD

 ,/,

 ``/``

 (NP This/DT)

 is/VBZ

 (NP an/DT old/JJ story/NN)

 ./.)

From this output, you can see that our data points are sentences and are already

annotated with phrase and POS tags metadata, which will be useful in training shallow

parsers. We start by using regular expressions for shallow parsing using concepts of

chunking and chinking. Using the process of chunking, we can use and specify specific

patterns to identify what we would want to chunk or segment in a sentence, such as

phrases based on specific metadata. Chinking is the reverse of chunking, where we

specify which specific tokens we do not want to be a part of any chunk and then form the

necessary chunks excluding these tokens. Let’s consider a simple sentence (our news

headline) and use regular expressions. We leverage the RegexpParser class to create

shallow parsers to illustrate chunking and chinking for noun phrases.

from nltk.chunk import RegexpParser

get POS tagged sentence

tagged_simple_sent = nltk.pos_tag(nltk.word_tokenize(sentence))

print('POS Tags:', tagged_simple_sent)

illustrate NP chunking based on explicit chunk patterns

chunk_grammar = """

NP: {<DT>?<JJ>*<NN.*>}

"""

rc = RegexpParser(chunk_grammar)

c = rc.parse(tagged_simple_sent)

print and view chunked sentence using chunking

Chapter 3 proCessing and Understanding text

175

print(c)

c

(S

 (NP US/NNP)

 (NP unveils/JJ world/NN)

 's/POS

 most/RBS

 (NP powerful/JJ supercomputer/NN)

 ,/,

 beats/VBZ

 (NP China/NNP)

 ./.)

We can see how the shallow parse tree looks in Figure 3-8 with only NP chunks using

chunking. Let’s look at building this using chinking now.

illustrate NP chunking based on explicit chink patterns

chink_grammar = """

NP:

 {<.*>+} # Chunk everything as NP

 }<VBZ|VBD|JJ|IN>+{ # Chink sequences of VBD\VBZ\JJ\IN

"""

rc = RegexpParser(chink_grammar)

c = rc.parse(tagged_simple_sent)

print and view chunked sentence using chinking

print(c)

c

(S

 (NP US/NNP)

Figure 3-8. Shallow parsing using chunking

Chapter 3 proCessing and Understanding text

176

 unveils/JJ

 (NP world/NN 's/POS most/RBS)

 powerful/JJ

 (NP supercomputer/NN ,/,)

 beats/VBZ

 (NP China/NNP ./.))

We can see how the shallow parse tree looks in Figure 3-9, with verbs and

adjectives forming chinks and separating out noun phrases. Remember that chunks

are sequences of tokens that are included in a collective group (chunk) and chinks

are tokens or sequences of tokens that are excluded from chunks. We will now train a

more generic regular expression-based shallow parser and test its performance on our

test treebank data. Internally there are several steps that are executed to perform this

parsing. The Tree structures used to represent parsed sentences in NLTK are converted

to ChunkString objects. We create an object of RegexpParser using defined chunking

and chinking rules. Objects of the ChunkRule and ChinkRule classes help create the

complete shallow parsed tree with the necessary chunks based on specified patterns.

The following code snippet represents a shallow parser using regular expression based

patterns.

create a more generic shallow parser

grammar = """

NP: {<DT>?<JJ>?<NN.*>}

ADJP: {<JJ>}

ADVP: {<RB.*>}

PP: {<IN>}

VP: {<MD>?<VB.*>+}

"""

rc = RegexpParser(grammar)

c = rc.parse(tagged_simple_sent)

Figure 3-9. Shallow parsing using chinking

Chapter 3 proCessing and Understanding text

177

print and view shallow parsed sample sentence

print(c)

c

(S

 (NP US/NNP)

 (NP unveils/JJ world/NN)

 's/POS

 (ADVP most/RBS)

 (NP powerful/JJ supercomputer/NN)

 ,/,

 (VP beats/VBZ)

 (NP China/NNP)

 ./.)

We can see how the shallow parse tree looks in Figure 3-10, with more specific rules

for specific phrases. Let’s take a look at how this parser performs on the test dataset we

built earlier.

Evaluate parser performance on test data

print(rc.evaluate(test_data))

ChunkParse score:

 IOB Accuracy: 46.1%%

 Precision: 19.9%%

 Recall: 43.3%%

 F-Measure: 27.3%%

From the output, we can see that the parse tree for our sample sentence is very

similar to the one we obtained from the out-of-the-box parser in the previous section.

Also the accuracy of the overall test data is 54.5%, which is quite decent for a start. To

Figure 3-10. Shallow parsing using more specific rules

Chapter 3 proCessing and Understanding text

178

get more details as to what each performance metric signifies, you can refer to the

“Evaluating Classification Models” section in Chapter 5.

Remember when we said annotated tagged metadata for text is useful in many ways?

We use the chunked and tagged treebank training data now to build a shallow parser.

We leverage two chunking utility functions—tree2conlltags to get triples of word, tag,

and chunk tags for each token and conlltags2tree to generate a parse tree from these

token triples.

We use these functions to train our parser later. First, let’s see how these two

functions work. Remember the chunk tags use a popular format, known as the IOB

format. In this format, you will notice some new notations with I, O, and B prefixes, which

is the popular IOB notation used in chunking. It depicts Inside, Outside, and Beginning.

The B- prefix before a tag indicates it is the beginning of a chunk; the I- prefix indicates

that it is inside a chunk. The O tag indicates that the token does not belong to any chunk.

The B- tag is always used when there are subsequent tags following it of the same type

without the presence of O tags between them.

from nltk.chunk.util import tree2conlltags, conlltags2tree

look at a sample training tagged sentence

train_sent = train_data[7]

print(train_sent)

(S

 (NP A/DT Lorillard/NNP spokewoman/NN)

 said/VBD

 ,/,

 ``/``

 (NP This/DT)

 is/VBZ

 (NP an/DT old/JJ story/NN)

 ./.)

get the (word, POS tag, Chunk tag) triples for each token

wtc = tree2conlltags(train_sent)

wtc

[('A', 'DT', 'B-NP'),

 ('Lorillard', 'NNP', 'I-NP'),

Chapter 3 proCessing and Understanding text

179

 ('spokewoman', 'NN', 'I-NP'),

 ('said', 'VBD', 'O'),

 (',', ',', 'O'),

 ('``', '``', 'O'),

 ('This', 'DT', 'B-NP'),

 ('is', 'VBZ', 'O'),

 ('an', 'DT', 'B-NP'),

 ('old', 'JJ', 'I-NP'),

 ('story', 'NN', 'I-NP'),

 ('.', '.', 'O')]

get shallow parsed tree back from the WTC triples

tree = conlltags2tree(wtc)

print(tree)

(S

 (NP A/DT Lorillard/NNP spokewoman/NN)

 said/VBD

 ,/,

 ``/``

 (NP This/DT)

 is/VBZ

 (NP an/DT old/JJ story/NN)

 ./.)

Now that we know how these functions work, we define a function called conll_tag_

chunks() to extract POS and Chunk tags from sentences with chunked annotations and

reuse our combined_taggers() function from POS tagging to train multiple taggers with

backoff taggers, as depicted in the following code snippet.

def conll_tag_chunks(chunk_sents):

 tagged_sents = [tree2conlltags(tree) for tree in chunk_sents]

 return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents]

def combined_tagger(train_data, taggers, backoff=None):

 for tagger in taggers:

 backoff = tagger(train_data, backoff=backoff)

 return backoff

Chapter 3 proCessing and Understanding text

180

We now define a NGramTagChunker class, which will take in tagged sentences

as training input, get their WTC triples (word, POS tag, chunk tag), and train a

BigramTagger with a UnigramTagger as the backoff tagger. We also define a parse()

function to perform shallow parsing on new sentences.

from nltk.tag import UnigramTagger, BigramTagger

from nltk.chunk import ChunkParserI

class NGramTagChunker(ChunkParserI):

 def __init__(self, train_sentences,

 tagger_classes=[UnigramTagger, BigramTagger]):

 train_sent_tags = conll_tag_chunks(train_sentences)

 self.chunk_tagger = combined_tagger(train_sent_tags, tagger_classes)

 def parse(self, tagged_sentence):

 if not tagged_sentence:

 return None

 pos_tags = [tag for word, tag in tagged_sentence]

 chunk_pos_tags = self.chunk_tagger.tag(pos_tags)

 chunk_tags = [chunk_tag for (pos_tag, chunk_tag) in chunk_pos_tags]

 wpc_tags = [(word, pos_tag, chunk_tag) for ((word, pos_tag), chunk_tag)

 in zip(tagged_sentence, chunk_tags)]

 return conlltags2tree(wpc_tags)

In this class, the constructor __init__() function is used to train the shallow parser

using n-gram tagging based on the WTC triples for each sentence. Internally, it takes a

list of training sentences as input, which is annotated with chunked parse tree metadata.

It uses the conll_tag_chunks() function, which we defined earlier, to get a list of WTC

triples for each chunked parse tree. Finally, it trains a BigramTagger with a Unigram

tagger as a backoff tagger using these triples and stores the training model in self.

chunk_tagger.

Remember that you can parse other n-gram based taggers for training by using the

tagger_classes parameter. Once trained, the parse() function can be used to evaluate

the tagger on test data and shallow parse new sentences. Internally, it takes a POS tagged

sentence as input, separates the POS tags from the sentence, and uses our trained self.

chunk_tagger to get the IOB chunk tags for the sentence. This is then combined with

Chapter 3 proCessing and Understanding text

181

the original sentence tokens and we use the conlltags2tree() function to get our final

shallow parsed tree. The following snippet shows our parser in action. See Figure 3-11.

train the shallow parser

ntc = NGramTagChunker(train_data)

test parser performance on test data

print(ntc.evaluate(test_data))

ChunkParse score:

 IOB Accuracy: 97.2%%

 Precision: 91.4%%

 Recall: 94.3%%

 F-Measure: 92.8%%

parse our sample sentence

sentence_nlp = nlp(sentence)

tagged_sentence = [(word.text, word.tag_) for word in sentence_nlp]

tree = ntc.parse(tagged_sentence)

print(tree)

tree

(S

 (NP US/NNP)

 unveils/VBZ

 (NP world/NN 's/POS most/RBS powerful/JJ supercomputer/NN)

 ,/,

 beats/VBZ

 (NP China/NNP)

 ./.)

Figure 3-11. Shallow parsed news headline using n-gram based chunking on
treebank data

Chapter 3 proCessing and Understanding text

182

This output depicts our parser performance on the treebank test set data, which has

an overall accuracy of 99.6%, which is excellent! Figure 3-11 also shows us how the parse

tree looks for our sample news headline.

Let’s now train and evaluate our parser on the conll2000 corpus, which contains

excerpts from The Wall Street Journal and is a much larger corpus. We will train our

parser on the first 10,000 sentences and test its performance on the remaining 940+

sentences. The following snippet depicts this process.

from nltk.corpus import conll2000

wsj_data = conll2000.chunked_sents()

train_wsj_data = wsj_data[:10000]

test_wsj_data = wsj_data[10000:]

look at a sample sentence in the corpus

print(train_wsj_data[10])

(S

 (NP He/PRP)

 (VP reckons/VBZ)

 (NP the/DT current/JJ account/NN deficit/NN)

 (VP will/MD narrow/VB)

 (PP to/TO)

 (NP only/RB #/# 1.8/CD billion/CD)

 (PP in/IN)

 (NP September/NNP)

 ./.)

train the shallow parser

tc = NGramTagChunker(train_wsj_data)

test performance on the test data

print(tc.evaluate(test_wsj_data))

ChunkParse score:

 IOB Accuracy: 89.1%%

 Precision: 80.3%%

 Recall: 86.1%%

 F-Measure: 83.1%%

Chapter 3 proCessing and Understanding text

183

This output shows that our parser achieved an overall accuracy of around 89%,

which is quite good considering this corpus is much larger compared to the treebank

corpus. Let’s look at how it chunks our sample news headline.

parse our sample sentence

tree = tc.parse(tagged_sentence)

print(tree)

tree

(S

 (NP US/NNP)

 (VP unveils/VBZ)

 (NP world/NN)

 (NP 's/POS most/RBS powerful/JJ supercomputer/NN)

 ,/,

 (VP beats/VBZ)

 (NP China/NNP)

 ./.)

Figure 3-12 shows us how the parse tree looks for our sample news headline with

more defined verb phrases as compared to previous parse trees. You can also look at

implementing shallow parsers using other techniques, like supervised classifiers, by

leveraging the ClassifierBasedTagger class.

 Dependency Parsing
In dependency-based parsing, we try to use dependency-based grammars to analyze

and infer both structure and semantic dependencies and relationships between tokens

in a sentence. Refer to the “Dependency Grammars” subsection under “Grammar”

in the “Language Syntax and Structure” section of Chapter 1 to refresh your memory.

Dependency grammars help us annotate sentences with dependency tags, which

Figure 3-12. Shallow parsed news headline using n-gram based chunking on
conll2000 data

Chapter 3 proCessing and Understanding text

184

are one-to-one mappings between tokens signifying dependencies between them. A

dependency grammar-based parse tree representation is a labeled and directed tree or

graph to be more precise. The nodes are always the lexical tokens and the labeled edges

depict dependency relationships between the heads and their dependents. The labels on

the edges indicate the grammatical role of the dependent.

The basic principle behind a dependency grammar is that in any sentence in the

language, all words except one have some relationship or dependency on other words

in the sentence. The word that has no dependency is called the root of the sentence. The

verb is taken as the root of the sentence in most cases. All the other words are directly or

indirectly linked to the root verb using links , which are the dependencies. If we wanted

to draw the dependency syntax tree for our sentence, “The brown fox is quick and he is

jumping over the lazy dog,” we would have the structure depicted in Figure 3-13.

These dependency relationships each have their own meanings and are part of a

list of universal dependency types. This is discussed in an original paper, entitled

“Universal Stanford Dependencies: A Cross-Linguistic Typology,” by de Marneffe et al.,

2014. You can check out the exhaustive list of dependency types and their meanings at

http://universaldependencies.org/u/dep/index.html. Just to refresh your memory,

if we observe some of these dependencies, it is not too hard to understand them.

Figure 3-13. A dependency parse tree for a sample sentence

Chapter 3 proCessing and Understanding text

https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://universaldependencies.org/u/dep/index.html

185

• The dependency tag det is pretty intuitive — it denotes the determiner

relationship between a nominal head and the determiner. Usually,

the word with POS tag DET will also have the det dependency tag

relation. Examples include fox → the and dog → the.

• The dependency tag amod stands for adjectival modifier and stands

for any adjective that modifies the meaning of a noun. Examples

include fox → brown and dog → lazy.

• The dependency tag nsubj stands for an entity that acts as a subject

or agent in a clause. Examples include is → fox and jumping → he.

• The dependencies cc and conj have more to do with linkages related

to words connected by coordinating conjunctions. Examples include

is → and and is → jumping.

• The dependency tag aux indicates the auxiliary or secondary verb in

the clause. Example: jumping → is.

• The dependency tag acomp stands for adjective complement

and acts as the complement or object to a verb in the sentence.

Example: is → quick.

• The dependency tag prep denotes a prepositional modifier, which

usually modifies the meaning of a noun, verb, adjective, or preposition.

Usually, this representation is used for prepositions having a noun or

noun phrase complement. Example: jumping → over.

• The dependency tag pobj is used to denote the object of a

preposition. This is usually the head of a noun phrase following a

preposition in the sentence. Example: over → dog.

Let’s look at some ways in which we can build dependency parsers for parsing

unstructured text!

 Building Dependency Parsers

We use a couple of state-of-the-art libraries, including NLTK and spaCy, to generate

dependency-based parse trees and test them on our sample news headline. SpaCy had

two types of English dependency parsers based on what language models you use. You can

find more details at https://spacy.io/api/annotation#section-dependency- parsing.

Chapter 3 proCessing and Understanding text

https://spacy.io/api/annotation#section-dependency-parsing

186

Based on language models, you can use the Universal Dependencies Scheme or the

CLEAR Style Dependency Scheme, also available in NLP4Jnow. We now leverage spaCy

and print the dependencies for each token in our news headline.

dependency_pattern = '{left}<---{word}[{w_type}]--->{right}\n--------'

for token in sentence_nlp:

 print(dependency_pattern.format(word=token.orth_,

 w_type=token.dep_,

 left=[t.orth_

 for t

 in token.lefts],

 right=[t.orth_

 for t

 in token.rights]))

[]<---US[nsubj]--->[]

['US']<---unveils[ROOT]--->['supercomputer', ',', 'beats', '.']

[]<---world[poss]--->["'s"]

[]<---'s[case]--->[]

[]<---most[advmod]--->[]

['most']<---powerful[amod]--->[]

['world', 'powerful']<---supercomputer[dobj]--->[]

[]<---,[punct]--->[]

[]<---beats[conj]--->['China']

[]<---China[dobj]--->[]

[]<---.[punct]--->[]

Chapter 3 proCessing and Understanding text

http://universaldependencies.org/u/dep/index.html
http://www.mathcs.emory.edu/~choi/doc/cu-2012-choi.pdf
https://emorynlp.github.io/nlp4j/components/dependency-parsing.html

187

This output gives us each token and its dependency type. The left arrow points to the

dependencies on its left and the right arrow points to the dependencies on its right. It

is evident that the verb “beats” is the root since it doesn’t have any other dependencies

as compared to the other tokens. To learn more about each annotation, you can always

refer to the CLEAR dependency scheme at https://emorynlp.github.io/nlp4j/

components/dependency-parsing.html. We can also visualize these dependencies in a

better way using the following code. See Figure 3-14.

from spacy import displacy

displacy.render(sentence_nlp, jupyter=True,

 options={'distance': 110,

 'arrow_stroke': 2,

 'arrow_width': 8})

You can also leverage NLTK and the Stanford Dependency Parser to visualize and

build the dependency tree. We showcase the dependency tree in its raw and annotated

forms. We start by building the annotated dependency tree and showing it using

Graphviz. See Figure 3-15.

from nltk.parse.stanford import StanfordDependencyParser

sdp = StanfordDependencyParser(path_to_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/

stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar')

Figure 3-14. Visualizing our news headline dependency tree using spaCy

Chapter 3 proCessing and Understanding text

https://emorynlp.github.io/nlp4j/components/dependency-parsing.html
https://emorynlp.github.io/nlp4j/components/dependency-parsing.html

188

perform dependency parsing

result = list(sdp.raw_parse(sentence))[0]

generate annotated dependency parse tree

result

Figure 3-15. Visualizing our news headline annotated dependency tree using
NLTK and the Stanford Dependency Parser

Chapter 3 proCessing and Understanding text

189

We can also look at the actual dependency components in the form of triplets using

the following code snippet.

generate dependency triples

[item for item in result.triples()]

[(('beats', 'VBZ'), 'ccomp', ('unveils', 'VBZ')),

 (('unveils', 'VBZ'), 'nsubj', ('US', 'NNP')),

 (('unveils', 'VBZ'), 'dobj', ('supercomputer', 'NN')),

 (('supercomputer', 'NN'), 'nmod:poss', ('world', 'NN')),

 (('world', 'NN'), 'case', ("'s", 'POS')),

 (('supercomputer', 'NN'), 'amod', ('powerful', 'JJ')),

 (('powerful', 'JJ'), 'advmod', ('most', 'RBS')),

 (('beats', 'VBZ'), 'nsubj', ('China', 'NNP'))]

This gives us a detailed view into each token and the dependency relationships

between tokens. Let’s build and visualize the raw dependency tree now. See Figure 3-16.

print simple dependency parse tree

dep_tree = result.tree()

print(dep_tree)

(beats (unveils US (supercomputer (world 's) (powerful most))) China)

visualize simple dependency parse tree

dep_tree

Figure 3-16. Visualizing our news headline raw dependency tree using NLTK and
Stanford Dependency Parser

Chapter 3 proCessing and Understanding text

190

Notice the similarities with the tree we obtained earlier in Figure 3-15. The

annotations help with understanding the type of dependency among the different

tokens. You can also see how easily we can generate dependency parse trees for

sentences and analyze and understand relationships and dependencies among the

tokens. The Stanford Parser is quite stable and robust. It integrates well with NLTK. We

recommend using the NLTK or spaCy parsers, as both of them are quite good.

 Constituency Parsing
Constituent based grammars are used to analyze and determine the constituents that

a sentence is composed of. Besides determining the constituents, another important

objective is to determine the internal structure of these constituents and how they link

to each other. There are usually several rules for different types of phrases based on the

type of components they can contain and we can use them to build parse trees. Refer to

the “Constituency Grammars” subsection under “Grammar” in the “Language Syntax

and Structure” section of Chapter 1 to refresh your memory and look at some examples

of sample parse trees.

In general, constituency based grammar helps specify how we can break a sentence

into various constituents. Once that is done, it helps in breaking down those constituents

into further subdivisions; this process repeats until we reach the level of individual

tokens or words. Typically, these grammar types can be used to model or represent the

internal structure of sentences in terms of a hierarchically ordered structure of their

constituents. Each word usually belongs to a specific lexical category in the case and

forms the head word of different phrases. These phrases are formed based on rules

called phrase structure rules.

Phrase structure rules form the core of constituency grammars, because they talk

about syntax and rules that govern the hierarchy and ordering of the various constituents

in the sentences. These rules cater to two things primarily:

• They determine what words are used to construct the phrases or

constituents.

• They determine how we need to order these constituents.

The generic representation of a phrase structure rule is S → AB , which depicts that

the structure S consists of constituents A and B , and the ordering is A followed by B .

While there are several rules (refer to Chapter 1 if you want to dive deeper), the most

Chapter 3 proCessing and Understanding text

191

important rule describes how to divide a sentence or a clause. The phrase structure

rule denotes a binary division for a sentence or a clause as S → NP VP, where S is the

sentence or clause, and it is divided into the subject, denoted by the noun phrase (NP)

and the predicate, denoted by the verb phrase (VP).

These grammars have various production rules and usually a context free

grammar (CFG) or Phrase Structured Grammar is sufficient for this. A constituency

parser can be built based on such grammars/rules, which are usually collectively

available as context-free grammar (CFG) or phrase-structured grammar. The parser will

process input sentences according to these rules and help in building a parse tree.

A sample tree is depicted in Figure 3-17.

The parser brings the grammar to life and can be said to be a procedural

interpretation of the grammar. There are various types of parsing algorithms some of

which are mentioned as follows:

• Recursive Descent parsing

• Shift Reduce parsing

• Chart parsing

• Bottom-up parsing

Figure 3-17. An example of constituency parsing showing a nested hierarchical
structure

Chapter 3 proCessing and Understanding text

192

• Top-down parsing

• PCFG parsing

Going through these in detail would be impossible in the current scope. However,

NLTK provides some excellent information on them at http://www.nltk.org/book/

ch08.html in their official book. We describe some of these parsers briefly and look at

PCFG parsing in detail when we implement our own parser later.

• Recursive Descent parsing usually follows a top-down parsing

approach; it reads in tokens from the input sentence and tries to

match them with the terminals from the grammar production rules.

It keeps looking ahead by one token and advances the input read

pointer each time it gets a match.

• Shift Reduce parsing follows a bottom-up parsing approach where

it finds sequences of tokens (words/phrases) that correspond to the

right side of grammar productions and then replaces it with the left

side for that rule. This process continues until the whole sentence is

reduced to give us a parse tree.

• Chart parsing uses dynamic programming to store intermediate

results and reuses them when needed to get significant efficiency

gains. In this case, chart parsers store partial solutions and look them

up when needed to get to the complete solution.

 Building Constituency Parsers

We will be using NLTK and the Stanford Parser to generate parse trees since they are

state-of-the-art and work very well.

Prerequisites download the official stanford parser from http://nlp.
stanford.edu/software/stanford-parser-full-2015-04-20.zip,
which seems to work quite well. You can try a later version by going to http://
nlp.stanford.edu/software/lex-parser.shtml#Download and checking
the release history section. after downloading, unzip it to a known location in your
filesystem. once you’re done, you are now ready to use the parser from nLtK,
which we will be exploring shortly.

Chapter 3 proCessing and Understanding text

http://www.nltk.org/book/ch08.html
http://www.nltk.org/book/ch08.html
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://nlp.stanford.edu/software/lex-parser.shtml#Download

193

The Stanford Parser generally uses a PCFG (probabilistic context-free grammar)

parser. A PCFG is a context-free grammar that associates a probability with each of its

production rules. The probability of a parse tree generated from a PCFG is simply the

production of the individual probabilities of the productions used to generate it. Let’s

put this parser to action now! See Figure 3-18.

set java path

import os

java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'

os.environ['JAVAHOME'] = java_path

create parser object

from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser.jar',

 path_to_models_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser-3.5.2-models.jar')

get parse tree

result = list(scp.raw_parse(sentence))[0]

print the constituency parse tree

print(result)

(ROOT

 (SINV

 (S

 (NP (NNP US))

 (VP

 (VBZ unveils)

 (NP

 (NP (NN world) (POS 's))

 (ADJP (RBS most) (JJ powerful))

 (NN supercomputer))))

 (, ,)

 (VP (VBZ beats))

 (NP (NNP China))

 (. .)))

Chapter 3 proCessing and Understanding text

194

Figure 3-18. Constituency parsing on our sample news headline

visualize the parse tree

from IPython.display import display

display(result)

We can see the nested hierarchical structure of the constituents in the preceding

output as compared to the flat structure in shallow parsing. In case you are wondering

what SINV means, it represents an inverted declarative sentence, i.e. one in which the

subject follows the tensed or modal verb. Refer to the “Penn Treebank Reference” at

https://web.archive.org/web/20130517134339/http://bulba.sdsu.edu/jeanette/

thesis/PennTags.html as needed to look up other tags.

There are various ways that you can build your own constituency parsers, including

creating your own CFG production rules and then using a parser to use that grammar. To

build your own CFG, you can use the nltk.CFG.fromstring function to feed in your own

production rules and then use parsers like ChartParser or RecursiveDescentParser,

which both belong to the NLTK package. Feel free to build some toy grammars and play

around with these parsers.

We now look at a way to build a constituency parser that scales well and is efficient.

The problem with regular CFG parsers like chart and recursive descent parsers is that

they can get easily overwhelmed by the sheer number of total possible parses and can

Chapter 3 proCessing and Understanding text

https://web.archive.org/web/20130517134339/http:/bulba.sdsu.edu/jeanette/thesis/PennTags.html
https://web.archive.org/web/20130517134339/http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
https://web.archive.org/web/20130517134339/http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

195

become extremely slow. This is where weighted grammars like PCFG (Probabilistic

Context Free Grammar) and probabilistic parsers like the Viterbi parser prove to be more

effective.

A PCFG is a context free grammar that associates a probability with each of its

production rules. The probability of a parse tree generated from a PCFG is simply the

production of the individual probabilities of the productions that were used to generate

it. We will use NLTK’s ViterbiParser to train a parser on the treebank corpus, which

provides annotated parse trees for each sentence in the corpus. This parser is a bottom-

up PCFG parser that uses dynamic programming to find the most likely parse at each

step. We start our process of building our own parser by loading the necessary training

data and dependencies.

import nltk

from nltk.grammar import Nonterminal

from nltk.corpus import treebank

load and view training data

training_set = treebank.parsed_sents()

print(training_set[1])

(S

 (NP-SBJ (NNP Mr.) (NNP Vinken))

 (VP

 (VBZ is)

 (NP-PRD

 (NP (NN chairman))

 (PP

 (IN of)

 (NP

 (NP (NNP Elsevier) (NNP N.V.))

 (, ,)

 (NP (DT the) (NNP Dutch) (VBG publishing) (NN group))))))

 (. .))

Chapter 3 proCessing and Understanding text

196

Now we build the production rules for our grammar by extracting the productions

from the tagged and annotated training sentences and adding them.

extract the productions for all annotated training sentences

treebank_productions = list(

 set(production

 for sent in training_set

 for production in sent.productions()

)

)

view some production rules

treebank_productions[0:10]

[VP -> VB NP-2 PP-CLR ADVP-MNR,

 NNS -> 'foods',

 NNP -> 'Joanne',

 JJ -> 'state-owned',

 VP -> VBN PP-LOC,

 NN -> 'turmoil',

 SBAR -> WHNP-240 S,

 QP -> DT VBN CD TO CD,

 NN -> 'cultivation',

 NNP -> 'Graham']

add productions for each word, POS tag

for word, tag in treebank.tagged_words():

 t = nltk.Tree.fromstring("("+ tag + " " + word +")")

 for production in t.productions():

 treebank_productions.append(production)

build the PCFG based grammar

treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'), treebank_

productions)

Now that we have our necessary grammar with production rules, we create our

parser using the following snippet by training it on the grammar and then try to evaluate

it on our sample news headline.

Chapter 3 proCessing and Understanding text

197

build the parser

viterbi_parser = nltk.ViterbiParser(treebank_grammar)

get sample sentence tokens

tokens = nltk.word_tokenize(sentence)

get parse tree for sample sentence

result = list(viterbi_parser.parse(tokens))

ValueError Traceback (most recent call last)

<ipython-input-87-2b0fd95b2fbd> in <module>()

 16

 17 # get parse tree for sample sentence

---> 18 result = list(viterbi_parser.parse(tokens))

ValueError: Grammar does not cover some of the input words: "'unveils',

'beats'".

Unfortunately, we get an error when we try to parse our sample sentence tokens with

our newly built parser. The reason is quite clear from the error that some of the words in

our sample sentence are not covered by the Treebank-based grammar because they are

not present in our treebank corpus. Since this constituency based grammar uses POS

tags and phrase tags to build the tree based on the training data, we will add the token

and POS tags for our sample sentence in our grammar and rebuild the parser.

get tokens and their POS tags and check it

tagged_sent = nltk.pos_tag(nltk.word_tokenize(sentence))

print(tagged_sent)

[('US', 'NNP'), ('unveils', 'JJ'), ('world', 'NN'), ("'s", 'POS'), ('most',

'RBS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), ('beats',

'VBZ'), ('China', 'NNP'), ('.', '.')]

extend productions for sample sentence tokens

for word, tag in tagged_sent:

 t = nltk.Tree.fromstring("("+ tag + " " + word +")")

 for production in t.productions():

 treebank_productions.append(production)

Chapter 3 proCessing and Understanding text

198

rebuild grammar

treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),

 treebank_productions)

rebuild parser

viterbi_parser = nltk.ViterbiParser(treebank_grammar)

get parse tree for sample sentence

result = list(viterbi_parser.parse(tokens))[0]

print parse tree

print(result)

(S

 (NP-SBJ-2

 (NP (NNP US))

 (NP

 (NP (JJ unveils) (NN world) (POS 's))

 (JJS most)

 (JJ powerful)

 (NN supercomputer)))

 (, ,)

 (VP (VBZ beats) (NP-TTL (NNP China)))

 (. .)) (p=5.08954e-43)

visualize parse tree

result

Figure 3-19. Constituency parse tree for our sample news headline based on
Treebank annotations

Chapter 3 proCessing and Understanding text

199

We are now able to successfully generate the parse tree for our sample news

headline. You can see the visual representation of the tree in Figure 3-19. Remember

that this is a probabilistic PCFG parser and you can see the overall probability of this

tree mentioned in the output when we printed our parse tree. The notations of the tags

followed here are all based on the Treebank annotations discussed earlier. Thus, this

shows us how to build our own constituency-based parser.

 Summary
We have covered a lot concepts, techniques, and implementations with regard to text

processing and wrangling, syntactic analysis, and understanding text data. A lot of

the concepts from Chapter 1 should seem more relevant and clear now that we have

implemented them on real examples. The content covered in this chapter is two-fold.

We looked at concepts related to text processing and wrangling. You now know

the importance of processing and normalizing text and, as we move on to future

chapters, you will see why it becomes more and more important to have well processed

and standardized textual data. We have covered a wide variety of techniques for

wrangling including text cleaning and tokenization, removing special characters, case

conversions, and expanding contractions. We also looked at techniques for correcting

text, like spelling corrections. We also built our own spelling corrector and contraction

expander in the same context. We found a way to leverage WordNet and correct words

with repeated characters. Finally, we looked at various stemming and lemmatization

techniques and learned about ways to remove irrelevant words, known as stopwords.

The next part of our chapter was dedicated to analyzing and understanding text

syntax and structure. We revisited concepts from Chapter 1, including POS tagging,

shallow parsing, dependency parsing, and constituency parsing. You now know how

to use taggers and parsers on real-world textual data and how to implement your own

taggers and parsers. We dive more into analyzing and deriving insights from text in

future chapters using various machine learning techniques including classification,

clustering, and summarization. Stay tuned!

Chapter 3 proCessing and Understanding text

201
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_4

CHAPTER 4

Feature Engineering
for Text Representation
In the previous chapters, we saw how to understand, process, and wrangle text data.

However, all machine learning or deep learning models are limited because they

cannot understand text data directly and they only understand numeric representations

of features as inputs. In this chapter, we look at how to work with text data, which is

definitely one of the most abundant sources of unstructured data. Text data usually

consists of documents that can represent words, sentences, or even paragraphs of

free-flowing text. The inherent lack of structure (no neatly formatted data columns!)

and noisy nature of textual data makes it harder for machine learning methods to

directly work on raw text data. Hence, in this chapter, we follow a hands-on approach

to exploring some of the most popular and effective strategies for extracting meaningful

features from text data. These features can then be used to represent text efficiently,

which can be further leveraged in building machine learning or deep learning models

easily to solve complex tasks.

Feature engineering is very important and is often known as the secret sauce to

creating superior and better performing machine learning models. Just one excellent

feature could be your ticket to winning a Kaggle challenge or getting more returns based

on your forecast! Feature engineering is even more important for unstructured, textual

data because we need to convert free-flowing text into some numeric representations,

which can then be understood by machine learning algorithms. Even with the advent

of automated feature engineering capabilities, you still need to understand the core

concepts behind different feature engineering strategies before applying them as black

box models. Always remember, “If you are given a box of tools to repair a house, you

should know when to use a power drill and when to use a hammer!” .

202

In this chapter, we cover a wide variety of techniques for feature engineering to

represent text data. We look at traditional models as well as newer models based on deep

learning. We cover the following techniques in this chapter:

• Bag of Words model

• Bag of N-Grams model

• TF-IDF model

• Similarity features

• Topic models

• Word2Vec

• GloVe

• FastText

We look at important concepts pertaining to each feature engineering technique and

learn how the model is used to represent text data. We also showcase full-fledged hands-

on examples, because learning by doing works best! All the code examples showcased in

this chapter are available on the book’s official GitHub repository, which you can access

at https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-

Second- Edition.

 Understanding Text Data
I’m sure must have a fair idea of what textual data is, considering we covered three

chapters on it! Do remember you can always have text data in the form of structured

data attributes, but usually those fall under the umbrella of structured, categorical data.

In this scenario, we are talking about free-flowing text in the form of words, phrases,

sentences, and entire documents. Essentially, we do have some syntactic structure.

Words make phrases, which in turn make sentences, which in turn make paragraphs.

However, there is no inherent structure to text documents because you can have a

wide variety of words that can vary across documents and each sentence will also be of

variable length as compared to a fixed number of data dimensions in structured datasets.

This chapter is a perfect example of text data! An important question might be how can

we represent text data so it’s easy for machines to comprehend and understand?

Chapter 4 Feature engineering For text representation

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

203

A vector space model is a useful concept when dealing with textual data and is very

popular in information retrieval and document ranking. The vector space model is also

called the term vector model and is defined as a mathematical and algebraic model for

transforming and representing text documents as numeric vectors of specific terms, which

form the vector dimensions. Mathematically, this can be defined as follows. Consider

we have a document D in a document vector space VS. The number of dimensions or

columns for each document will be the total number of distinct terms or words for all

documents in the vector space. Hence the vector space can be denoted as follows:

VS = {W1, W2, ... , Wn}

where there are n distinct words across all documents. Now we can represent document

D in this vector space as follows:

D = {wD1, wD2, ... , wDn}

where wDn denotes the weight for word n in document D. This weight is a numeric value

and can be anything ranging from the frequency of that word in the document, the

average frequency of occurrence, embedding weights, or even the TF-IDF weight, which

we discuss shortly.

An important point to remember about feature extraction and engineering is that

once we build a feature engineering model using transformations and mathematical

operations, we need to make sure we use the same process when extracting features

from new documents to be predicted and not rebuild the whole algorithm again based

on the new documents.

 Building a Text Corpus
We need a text corpus to work on and demonstrate different feature engineering and

representation methodologies. To keep things simple and easy to understand, we build a

simple text corpus in this section. To get started, load the following dependencies in your

Jupyter notebook.

import pandas as pd

import numpy as np

import re

Chapter 4 Feature engineering For text representation

204

import nltk

import matplotlib.pyplot as plt

pd.options.display.max_colwidth = 200

%matplotlib inline

Let’s now build a sample corpus of documents on which we will run most of our

analyses in this chapter. A corpus is typically a collection of text documents usually

belonging to one or more subjects or topics. The following code helps us create this

corpus. You can see this sample text corpus in the output in Figure 4-1.

building a corpus of documents

corpus = ['The sky is blue and beautiful.',

 'Love this blue and beautiful sky!',

 'The quick brown fox jumps over the lazy dog.',

 "A king's breakfast has sausages, ham, bacon, eggs, toast and beans",

 'I love green eggs, ham, sausages and bacon!',

 'The brown fox is quick and the blue dog is lazy!',

 'The sky is very blue and the sky is very beautiful today',

 'The dog is lazy but the brown fox is quick!'

]

labels = ['weather', 'weather', 'animals', 'food', 'food', 'animals',

'weather', 'animals']

corpus = np.array(corpus)

corpus_df = pd.DataFrame({'Document': corpus, 'Category': labels})

corpus_df = corpus_df[['Document', 'Category']]

corpus_df

Chapter 4 Feature engineering For text representation

205

Figure 4-1 shows that we have taken a few sample text documents belonging to

different categories for our toy corpus. Before we talk about feature engineering, we

need to do some data preprocessing and wrangling to remove unnecessary characters,

symbols, and tokens.

 Preprocessing Our Text Corpus
There can be multiple ways of cleaning and preprocessing textual data. In the following

points, we highlight some of the most important ones that are used heavily in Natural

Language Processing (NLP) pipelines. A lot of this will be a refresher if you have read

Chapter 3.

• Removing tags: Our text often contains unnecessary content like

HTML tags, which do not add much value when analyzing text. The

BeautifulSoup library does an excellent job in providing necessary

functions for this.

• Removing accented characters: In any text corpus, especially if you

are dealing with the English language, you might be dealing with

accented characters/letters. Hence, you need to make sure that these

characters are converted and standardized into ASCII characters.

A simple example is converting é to e.

Figure 4-1. Our sample text corpus

Chapter 4 Feature engineering For text representation

206

• Expanding contractions: In the English language, contractions

are basically shortened versions of words or syllables, created by

removing specific letters and sounds. Examples include do not to

don’t and I would to I’d. Converting each contraction to its expanded,

original form often helps with text standardization.

• Removing special characters: Special characters and symbols that

are usually non alphanumeric characters often add to the extra noise

in unstructured text. More often than not, simple regular expressions

(regexes) can be used to achieve this.

• Stemming and lemmatization: Word stems are the base form of

possible words that can be created by attaching affixes like prefixes

and suffixes to the stem to create new words. This is known as

inflection. The reverse process of obtaining the base form of a word

is known as stemming. A simple example are the words watches,

watching, and watched. They have the word root stem watch as the

base form. Lemmatization is very similar to stemming, where we

remove word affixes to get to the base form of a word. However,

the base form in this case is known as the root word but not the

root stem. The difference being that the root word is always a

lexicographically correct word (present in the dictionary) but the root

stem may not always be correct.

• Removing stopwords: Words that have little or no significance,

especially when constructing meaningful features from text, are

known as stopwords. These are usually words that end up having the

maximum frequency if you do a simple term or word frequency in

a corpus. Words like “a,” “an,” “the,” and so on are considered to be

stopwords. There is no universal stopword list, but we use a standard

English language stopwords list from NLTK. You can also add your

own domain specific stopwords as needed.

You can also do other standard operations like tokenization, removing extra

whitespace, text lowercasing and more advanced operations like spelling corrections,

grammatical error corrections, removing repeated characters, and so on. If you are

interested, check out the detailed section on text preprocessing and wrangling in

Chapter 3.

Chapter 4 Feature engineering For text representation

207

Since the focus of this article is on feature engineering, we build a simple text

preprocessor that focuses on removing special characters, extra whitespace, digits,

stopwords, and then lowercasing the text corpus.

wpt = nltk.WordPunctTokenizer()

stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

 # lowercase and remove special characters\whitespace

 doc = re.sub(r'[^a-zA-Z\s]', '', doc, re.I|re.A)

 doc = doc.lower()

 doc = doc.strip()

 # tokenize document

 tokens = wpt.tokenize(doc)

 # filter stopwords out of document

 filtered_tokens = [token for token in tokens if token not in stop_words]

 # re-create document from filtered tokens

 doc = ' '.join(filtered_tokens)

 return doc

normalize_corpus = np.vectorize(normalize_document)

Once we have our basic preprocessing pipeline ready, let’s apply it to our sample

corpus so we can use it for feature engineering.

norm_corpus = normalize_corpus(corpus)

norm_corpus

array(['sky blue beautiful', 'love blue beautiful sky',

 'quick brown fox jumps lazy dog',

 'kings breakfast sausages ham bacon eggs toast beans',

 'love green eggs ham sausages bacon',

 'brown fox quick blue dog lazy', 'sky blue sky beautiful today',

 'dog lazy brown fox quick'], dtype='<U51')

This output should give you a clear view of how each of our sample documents look

after preprocessing. Let’s explore various feature engineering techniques now!

Chapter 4 Feature engineering For text representation

208

 Traditional Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data belong to

a family of models popularly known as the Bag of Words model. This includes term

frequencies, TF-IDF (term frequency-inverse document frequency), N-grams, topic

models, and so on. While they are effective methods for extracting features from text,

due to the inherent nature of the model being just a bag of unstructured words, we lose

additional information like the semantics, structure, sequence, and context around

nearby words in each text document. There are more advanced models that take care of

these aspects and we cover them in a subsequent section in this chapter. The traditional

feature engineering models are built using mathematical and statistical methodologies.

We look at some of these models and apply them to our sample corpus.

 Bag of Words Model
This is perhaps the most simple vector space representational model for unstructured

text. A vector space model is simply a mathematical model to represent unstructured

text (or any other data) as numeric vectors, such that each dimension of the vector is

a specific feature/attribute. The Bag of Words model represents each text document

as a numeric vector where each dimension is a specific word from the corpus and the

value could be its frequency in the document, occurrence (denoted by 1 or 0), or even

weighted values. The model’s name is such because each document is represented

literally as a bag of its own words, disregarding word order, sequences, and grammar.

from sklearn.feature_extraction.text import CountVectorizer

get bag of words features in sparse format

cv = CountVectorizer(min_df=0., max_df=1.)

cv_matrix = cv.fit_transform(norm_corpus)

cv_matrix

<8x20 sparse matrix of type '<class 'numpy.int64'>'

 with 42 stored elements in Compressed Sparse Row format>

view non-zero feature positions in the sparse matrix

print(cv_matrix)

Chapter 4 Feature engineering For text representation

209

 (0, 2) 1

 (0, 3) 1

 (0, 17) 1

 (1, 14) 1

 ...

 ...

 (6, 17) 2

 (7, 6) 1

 (7, 13) 1

 (7, 8) 1

 (7, 5) 1

 (7, 15) 1

The feature matrix is traditionally represented as a sparse matrix since the number

of features increases phenomenally with each document considering each distinct word

becomes a feature. The preceding output tells us the total count for each (x, y) pair. Here,

x represents a document and y represents a specific word/feature and the value is the

number of times y occurs in x. We can leverage the following code to view the output in a

dense matrix representation.

view dense representation

warning might give a memory error if data is too big

cv_matrix = cv_matrix.toarray()

cv_matrix

array([[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],

 [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0],

 [1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0],

 [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0],

 [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],

 [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1],

 [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]],

dtype=int64)

Chapter 4 Feature engineering For text representation

210

Thus, you can see that these documents have been converted into numeric vectors

so that each document is represented by one vector (row) in the feature matrix and each

column represents a unique word as a feature. The following code represents this in a

more easy to understand format. See Figure 4-2.

get all unique words in the corpus

vocab = cv.get_feature_names()

show document feature vectors

pd.DataFrame(cv_matrix, columns=vocab)

Figure 4-2. Our Bag of Words model based document feature vectors

Figure 4-2 should make things more clear! You can clearly see that each column

or dimension in the feature vectors represents a word from the corpus and each row

represents one of our documents. The value in any cell represents the number of times

that word (represented by column) occurs in the specific document (represented by

row). A simple example would be the first document has the words blue, beautiful, and

sky occurring once each and hence the corresponding features have a value of 1 for the

first row in the preceding output. Hence, if a corpus of documents consists of N unique

words across all the documents, we would have an N-dimensional vector for each of

the documents.

 Bag of N-Grams Model
A word is just a single token, often known as a unigram or 1-gram. We already know that

the Bag of Words model doesn’t consider the order of words. But what if we also wanted

to take into account phrases or collection of words that occur in a sequence? N-grams

help us do that. An N-gram is basically a collection of word tokens from a text document

such that these tokens are contiguous and occur in a sequence. Bi-grams indicate

Chapter 4 Feature engineering For text representation

211

n-grams of order 2 (two words), tri-grams indicate n-grams of order 3 (three words), and

so on. The Bag of N-Grams model is just an extension of the Bag of Words model that

leverages N-gram based features. The following example depicts bi-gram based features

in each document feature vector. See Figure 4-3.

you can set the n-gram range to 1,2 to get unigrams as well as bigrams

bv = CountVectorizer(ngram_range=(2,2))

bv_matrix = bv.fit_transform(norm_corpus)

bv_matrix = bv_matrix.toarray()

vocab = bv.get_feature_names()

pd.DataFrame(bv_matrix, columns=vocab)

Figure 4-3. Bi-gram based feature vectors using the Bag of N-Grams model

This gives us feature vectors for our documents, where each feature consists of a

bi-gram representing a sequence of two words and values represent how many times

the bi-gram was present for our documents. We encourage you to play around with the

ngram_range argument. Try out these functions by setting ngram_range to (1, 3) and

see the outputs!

 TF-IDF Model
There are some potential problems that might arise with the Bag of Words model

when it is used on large corpora. Since the feature vectors are based on absolute term

frequencies, there might be some terms that occur frequently across all documents and

these may tend to overshadow other terms in the feature set. Especially words that don’t

occur as frequently, but might be more interesting and effective as features to identify

Chapter 4 Feature engineering For text representation

212

specific categories. This is where TF-IDF comes into the picture. TF-IDF stands for term

frequency-inverse document frequency. It’s a combination of two metrics, term frequency

(tf) and inverse document frequency (idf). This technique was originally developed as a

metric for ranking search engine results based on user queries and has come to be a part

of information retrieval and text feature extraction.

Let’s formally define TF-IDF now and look at the mathematical representations

before diving into its implementation. Mathematically, TD-IDF is the product of two

metrics and can be represented as follows:

 tfidf tf idf= ´

where term frequency (tf) and inverse-document frequency (idf) represent the two

metrics we just talked about. Term frequency, denoted by tf, is what we computed in

the Bag of Words model in the previous section. Term frequency in any document

vector is denoted by the raw frequency value of that term in a particular document.

Mathematically it can be represented as follows:

tf w D fwD

,() =

where fwD
 denoted frequency for word w in document D, which becomes the term

frequency (tf). Sometimes you can also normalize the absolute raw frequency using

logarithms or averaging the frequency. We use the raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency

for each term and is computed by dividing the total number of documents in our corpus

by the document frequency for each term and then applying logarithmic scaling to the

result. In our implementation, we will be adding 1 to the document frequency for each

term to indicate that we also have one more document in our corpus, which essentially

has every term in the vocabulary. This is to prevent potential division by zero errors

and smoothen the inverse document frequencies. We also add 1 to the result of our idf

computation to avoid ignoring terms that might have zero idf. Mathematically, our

implementation for idf can be represented as follows:

idf w D

N

df w
,() = +

+ ()
1

1
log

Chapter 4 Feature engineering For text representation

213

where idf (w, D) represents the idf for the term/word w in document D, N represents

the total number of documents in our corpus, and df (t) represents the number of

documents in which the term w is present.

Thus, the term frequency-inverse document frequency can be computed by

multiplying these two measures. The final TF-IDF metric that we will be using is a

normalized version of the tfidf matrix that we get from the product of tf and idf. We

will normalize the tfidf matrix by dividing it by the L2 norm of the matrix, also known

as the Euclidean norm, which is the square root of the sum of the square of each term’s

tfidf weight. Mathematically we can represent the final tfidf feature vector as follows:

tfidf

tfidf

tfidf
=

where ∥tfidf∥ represents the Euclidean L2 norm for the tfidf matrix. There are multiple

variants of this model but they all end up with similar results. Let’s apply this on our

corpus now!

 Using TfidfTransformer

The following code shows an implementation of getting the tfidf-based feature vectors

considering we already have our Bag of Words feature vectors from a previous section.

See Figure 4-4.

from sklearn.feature_extraction.text import TfidfTransformer

tt = TfidfTransformer(norm='l2', use_idf=True)

tt_matrix = tt.fit_transform(cv_matrix)

tt_matrix = tt_matrix.toarray()

vocab = cv.get_feature_names()

pd.DataFrame(np.round(tt_matrix, 2), columns=vocab)

Chapter 4 Feature engineering For text representation

214

You can see that we used the L2 norm option in the parameters and made sure we

smoothen the IDFs to give weight to terms that may have zero IDF so that we do not

ignore them.

 Using TfidfVectorizer

You don’t always need to generate features beforehand using a Bag of Words or count

based model before engineering TF-IDF features. The TfidfVectorizer by Scikit-Learn

enables us to directly compute the tfidf vectors by taking the raw documents as

input and internally computing the term frequencies as well as the inverse document

frequencies. This eliminates the need to use CountVectorizer to compute the term

frequencies based on the Bag of Words model. Support is also present for adding

n-grams to the feature vectors. We can see the function in action in the following snippet.

See Figure 4-5.

from sklearn.feature_extraction.text import TfidfVectorizer

tv = TfidfVectorizer(min_df=0., max_df=1., norm='l2',

 use_idf=True, smooth_idf=True)

tv_matrix = tv.fit_transform(norm_corpus)

tv_matrix = tv_matrix.toarray()

vocab = tv.get_feature_names()

pd.DataFrame(np.round(tv_matrix, 2), columns=vocab)

Figure 4-4. Our TF-IDF model based document feature vectors using
TfidfTransformer

Chapter 4 Feature engineering For text representation

215

You can see that, just like before, we used the L2 norm option in the parameters and

made sure we smoothened the idfs. You can see from the output that the tfidf feature

vectors match to the ones we obtained previously.

 Understanding the TF-IDF Model

This section is dedicated to machine learning experts and our curious readers who are

often interested in how things work behind the scenes! We start by loading the necessary

dependencies and computing the term frequencies (TF) for our sample corpus. See

Figure 4-6.

get unique words as feature names

unique_words = list(set([word for doc in [doc.split() for doc in norm_corpus]

 for word in doc]))

def_feature_dict = {w: 0 for w in unique_words}

print('Feature Names:', unique_words)

print('Default Feature Dict:', def_feature_dict)

Feature Names: ['lazy', 'fox', 'love', 'jumps', 'sausages', 'blue', 'ham',

'beautiful', 'brown', 'kings', 'eggs', 'quick', 'bacon', 'breakfast',

'toast', 'beans', 'green', 'today', 'dog', 'sky']

Default Feature Dict: {'lazy': 0, 'fox': 0, 'kings': 0, 'love': 0, 'jumps':

0, 'sausages': 0, 'breakfast': 0, 'today': 0, 'brown': 0, 'ham': 0,

'beautiful': 0, 'green': 0, 'eggs': 0, 'blue': 0, 'bacon': 0, 'toast': 0,

'beans': 0, 'dog': 0, 'sky': 0, 'quick': 0}

Figure 4-5. Our TF-IDF model based document feature vectors using
Tfidf Vectorizer

Chapter 4 Feature engineering For text representation

216

from collections import Counter

build bag of words features for each document - term frequencies

bow_features = []

for doc in norm_corpus:

 bow_feature_doc = Counter(doc.split())

 all_features = Counter(def_feature_dict)

 bow_feature_doc.update(all_features)

 bow_features.append(bow_feature_doc)

bow_features = pd.DataFrame(bow_features)

bow_features

Figure 4-6. Constructing count-based Bag of Words features from scratch for our
corpus

We now compute our document frequencies (DF) for each term based on the

number of documents in which the term occurs. The following snippet shows how to

obtain it from our Bag of Words features. See Figure 4-7.

import scipy.sparse as sp

feature_names = list(bow_features.columns)

build the document frequency matrix

df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)

df = 1 + df # adding 1 to smoothen idf later

show smoothened document frequencies

pd.DataFrame([df], columns=feature_names)

Chapter 4 Feature engineering For text representation

217

This tells us the document frequency (DF) for each term and you can verify it with

the documents in our sample corpus. Remember that we added 1 to each frequency

value to smoothen the IDF values later and prevent division by zero errors by assuming

we have a document (imaginary) that has all the terms once. Thus, if you check in the

corpus, you will see that “bacon” occurs 2(+1) times, “sky” occurs 3(+1) times, and so on

considering (+1) for our smoothening.

Now that we have the document frequencies, we compute the inverse document

frequency (IDF) by using our formula, which we defined earlier. Remember to add 1 to

the total count of documents in the corpus to add the document, which we had assumed

earlier to contain all the terms at least once for smoothening the idfs. See Figure 4-8.

compute inverse document frequencies

total_docs = 1 + len(norm_corpus)

idf = 1.0 + np.log(float(total_docs) / df)

show smoothened idfs

pd.DataFrame([np.round(idf, 2)], columns=feature_names)

Figure 4-7. Document frequencies for each feature in our corpus

Figure 4-8. Inverse document frequencies for each feature in our corpus

Thus, we can see that Figure 4-8 depicts the inverse document frequencies

(smoothed) for each feature in our corpus. We now convert this into a matrix for easier

operations when we compute the overall TF-IDF score later. See Figure 4-9.

compute idf diagonal matrix

total_features = bow_features.shape[1]

idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)

idf_dense = idf_diag.todense()

print the idf diagonal matrix

pd.DataFrame(np.round(idf_dense, 2))

Chapter 4 Feature engineering For text representation

218

You can now see the idf matrix that we created based on our mathematical

equation. We also convert it to a diagonal matrix, which will be helpful later when we

want to compute the product with term frequency. Now that we have our TFs and IDFs,

we can compute the raw TF-IDF feature matrix using matrix multiplication, as depicted

in the following snippet. See Figure 4-10.

compute tfidf feature matrix

tf = np.array(bow_features, dtype='float64')

tfidf = tf * idf

view raw tfidf feature matrix

pd.DataFrame(np.round(tfidf, 2), columns=feature_names)

Figure 4-9. Constructing an n-verse document frequency diagonal matrix for each
feature in our corpus

Chapter 4 Feature engineering For text representation

219

We now have our tfidf feature matrix, but wait! We still have to divide this by the

L2 norm, if you remember from our equations depicted earlier. The following snippet

computes the tfidf norms for each document and then divides the tfidf weights by the

norm to give us the final desired tfidf matrix. See Figure 4-11.

from numpy.linalg import norm

compute L2 norms

norms = norm(tfidf, axis=1)

print norms for each document

print (np.round(norms, 3))

[3.013 3.672 4.761 6.534 5.319 4.35 5.019 4.049]

compute normalized tfidf

norm_tfidf = tfidf / norms[:, None]

show final tfidf feature matrix

pd.DataFrame(np.round(norm_tfidf, 2), columns=feature_names)

Figure 4-10. Constructing the raw TF-IDF matrix from the TF and IDF
components

Figure 4-11. Constructing the final normalized TF-IDF matrix

Chapter 4 Feature engineering For text representation

220

If you compare obtained tfidf feature matrix in Figure 4-11 for the documents in our

corpus to the feature matrix obtained using TfidfTransformer or TfidfVectorizer

earlier. You will notice they are exactly the same, thus verifying that our mathematical

implementation was correct. In fact, this very same implementation is adopted by Scikit-

Learn behind the scenes using some more optimizations.

 Extracting Features for New Documents
Suppose you built a machine learning model to classify and categorize news articles

and it is in currently in production. How can you generate features for completely new

documents so that you can feed it into the machine learning models for prediction? The

Scikit-Learn API provides the transform(...) function for the vectorizers we discussed

previously and we can leverage it to get features for a completely new document that was

not present in our corpus (when we trained our model). See Figure 4-12.

new_doc = 'the sky is green today'

pd.DataFrame(np.round(tv.transform([new_doc]).toarray(), 2),

 columns=tv.get_feature_names())

Figure 4-12. Generating the TF-IDF feature vector for a completely new document

Thus, always leverage the fit_transform(...) function to build a feature matrix on

all documents in your corpus. This typically becomes the training feature set on which

you build and train your predictive or other machine learning models. Once ready,

leverage the transform(...) function to generate feature vectors of new documents.

This can then be fed into your trained models to generate insights as needed.

 Document Similarity
Document similarity is the process of using a distance or similarity based metric that

can identify how similar a text document is to any other document(s) based on features

extracted from the documents, like Bag of Words or TF-IDF. Thus you can see that we can

build on top of the TF-IDF-based features we engineered in the previous section and use

them to generate new features. Domains such as search engines, document clustering,

and information retrieval can be leveraged using these similarity based features.

Chapter 4 Feature engineering For text representation

221

Pairwise document similarity in a corpus involves computing document similarity

for each pair of documents in a corpus. Thus, if you have C documents in a corpus,

you would end up with a C x C matrix, such that each row and column represents the

similarity score for a pair of documents. This represents the indices at the row and

column, respectively. There are several similarity and distance metrics that are used

to compute document similarity. These include cosine distance/similarity, Euclidean

distance, manhattan distance, BM25 similarity, jaccard distance, and so on. In our

analysis, we use perhaps the most popular and widely used similarity metrics—cosine

similarity and compare pairwise document similarity—based on their TF-IDF feature

vectors. See Figure 4-13.

from sklearn.metrics.pairwise import cosine_similarity

similarity_matrix = cosine_similarity(tv_matrix)

similarity_df = pd.DataFrame(similarity_matrix)

similarity_df

Figure 4-13. Pairwise document similarity matrix (cosine similarity)

Cosine similarity gives us a metric representing the cosine of the angle between the

feature vector representations of two text documents. The smaller the angle between the

documents, the closer and more similar they are, as depicted with the scores in Figure 4-

13 and with some sample document vectors in Figure 4-14.

Chapter 4 Feature engineering For text representation

222

Looking closely at the similarity matrix in Figure 4-13, you can clearly see that

documents 0, 1, and 6 and 2, 5, and 7 are very similar to one another, whereas

documents 3 and 4 are slightly similar to each other. This must indicate these similar

documents have some similar features. This is a perfect example of grouping or

clustering that can be solved by unsupervised learning, especially when you are dealing

with huge corpora of millions of text documents.

 Document Clustering with Similarity Features

We have been building a lot of features, but let’s use some of them now for a real-world

problem of grouping similar documents! Clustering leverages unsupervised learning to

group data points (documents in this scenario) into groups or clusters. We leverage an

unsupervised hierarchical clustering algorithm here to try to group similar documents

from our toy corpus by leveraging the document similarity features we generated earlier.

There are two types of hierarchical clustering algorithms—agglomerative and

divisive. We use an agglomerative clustering algorithm, which is hierarchical clustering

using a bottom-up approach, i.e., each observation or document starts in its own cluster

and clusters are successively merged using a distance metric that measures distances

between data points and a linkage merge criterion. A sample depiction is shown in

Figure 4-15.

Figure 4-14. Cosine similarity depictions for text document feature vectors

Chapter 4 Feature engineering For text representation

223

The selection of the linkage criterion governs the merge strategy. Some examples of

linkage criteria are Ward, Complete linkage, Average linkage, and so on. This criterion is

very useful for choosing the pair of clusters (individual documents at the lowest step and

clusters in higher steps) to merge at each step, which is based on the optimal value of

an objective function. We choose the Ward’s minimum variance method as our linkage

criterion to minimize total within-cluster variance. Hence, at each step, we find the

pair of clusters that leads to the minimum increase in total within-cluster variance after

merging. Since we already have our similarity features, let’s build the linkage matrix on

our sample documents. See Figure 4-16.

from scipy.cluster.hierarchy import dendrogram, linkage

Z = linkage(similarity_matrix, 'ward')

pd.DataFrame(Z, columns=['Document\Cluster 1', 'Document\Cluster 2',

 'Distance', 'Cluster Size'], dtype='object')

Figure 4-15. Agglomerative hierarchical clustering

Chapter 4 Feature engineering For text representation

224

If you closely look at the linkage matrix in Figure 4-16, you can see that each step

(row) of the linkage matrix tells us which data points (or clusters) were merged. If you

have n data points, the linkage matrix, Z will have a shape of (n − 1) × 4 where Z[i]

will tell us which clusters were merged at step i. Each row has four elements; the first

two elements are either data point identifiers or cluster labels (in the later parts of the

matrix once multiple data points are merged), the third element is the cluster distance

between the first two elements (either data points or clusters), and the last element is

the total number of elements/data points in the cluster once the merge is complete.

We recommend you refer to the SciPy documentation, which explains this in detail.

Let’s now visualize this matrix as a dendrogram to understand the elements better! See

Figure 4-17.

plt.figure(figsize=(8, 3))

plt.title('Hierarchical Clustering Dendrogram')

plt.xlabel('Data point')

plt.ylabel('Distance')

dendrogram(Z)

plt.axhline(y=1.0, c='k', ls='--', lw=0.5)

Figure 4-16. Linkage matrix for our corpus

Chapter 4 Feature engineering For text representation

225

We can see how each data point starts as an individual cluster and is slowly

merged with other data points to form clusters. On a high level from the colors and the

dendrogram, you can see that the model has correctly identified three major clusters

if you consider a distance metric of around 1.0 or above (denoted by the dotted line).

Leveraging this distance, we get our cluster labels. See Figure 4-18.

from scipy.cluster.hierarchy import fcluster

max_dist = 1.0

cluster_labels = fcluster(Z, max_dist, criterion='distance')

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)

Figure 4-17. Dendrogram visualizing our hierarchical clustering process

Figure 4-18. Clustering our documents into groups with hierarchical clustering

Chapter 4 Feature engineering For text representation

226

Thus you can clearly see our algorithm has correctly identified the three distinct

categories in our documents based on the cluster labels assigned to them. This should

give you a good idea of how our TF-IDF features were leveraged to build our similarity

features, which in turn helped in clustering our documents. You can use this pipeline in

the future for clustering your own documents. We discuss text clustering in further detail

with more models and examples in a future chapter in this book.

 Topic Models
While we are covering topic modeling in detail in a separate chapter in this book,

a discussion about feature engineering is not complete without talking about topic

models. We can use some summarization techniques to extract topic- or concept-based

features from text documents. The idea of topic models revolves around the process of

extracting key themes or concepts from a corpus of documents, which are represented

as topics. Each topic can be represented as a bag or collection of words/terms from the

document corpus. Together, these terms signify a specific topic, theme, or a concept

and each topic can be easily distinguished from other topics by virtue of the semantic

meaning conveyed by these terms.

However, often you do end up with overlapping topics based on the data. These

concepts can range from simple facts and statements to opinions and outlook. Topic

models are extremely useful in summarizing large corpus of text documents to extract

and depict key concepts. They are also useful in extracting features from text data that

capture latent patterns in the data. See Figure 4-19.

Chapter 4 Feature engineering For text representation

227

There are various techniques for topic modeling and most of them involve some

form of matrix decomposition. Some techniques like Latent Semantic Indexing (LSI) use

matrix decomposition operations, more specifically Singular Valued Decomposition. We

use another technique called Latent Dirichlet Allocation (LDA), which uses a generative

probabilistic model where each document consists of a combination of several topics

and each term or word can be assigned to a specific topic. This is similar to the pLSI-

based model (probabilistic LSI). Each latent topic contains a Dirichlet priority over them

in the case of LDA. The math behind in this technique is pretty involved, so I will try to

keep things simple here. We cover topic modeling in detail in a subsequent chapter also!

See Figure 4-20.

Figure 4-19. Clustering our documents into groups using hierarchical clustering

Chapter 4 Feature engineering For text representation

228

The black box in Figure 4-20 represents the core algorithm that uses the previously

mentioned parameters to extract K topics from M documents. The steps outlined in

Figure 4-22 give a simplistic explanation of what happens behind the scenes.

Figure 4-20. End-to-end LDA framework (courtesy of C. Doig, Introduction to
Topic Modeling in Python)

Chapter 4 Feature engineering For text representation

229

Once this runs for several iterations, we should have topic mixtures for each

document and then generate the constituents of each topic from the terms that point to

that topic. Frameworks like Gensim or Scikit-Learn enable us to leverage the LDA model

for generating topics. For the purpose of feature engineering, which is the intent of this

chapter, you need to remember that when LDA is applied to a document-term matrix

(TF-IDF or Bag of Words feature matrix), it is broken into two main components.

• A document-topic matrix, which would be the feature matrix we are

looking for.

• A topic-term matrix, which helps us look at potential topics in the

corpus.

Figure 4-21. Major steps in the LDA topic modeling algorithm

Chapter 4 Feature engineering For text representation

230

Let’s now leverage Scikit-Learn to get the document-topic matrix as follows. This can

be used as features for any subsequent modeling requirements. See Figure 4-22.

from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=3, max_iter=10000, random_state=0)

dt_matrix = lda.fit_transform(cv_matrix)

features = pd.DataFrame(dt_matrix, columns=['T1', 'T2', 'T3'])

features

Figure 4-22. Document-topic feature matrix from our LDA model

You can clearly see which documents contribute the most to which of the three

topics in this output. You can view the topics and their main constituents as follows.

tt_matrix = lda.components_

for topic_weights in tt_matrix:

 topic = [(token, weight) for token, weight in zip(vocab, topic_weights)]

 topic = sorted(topic, key=lambda x: -x[1])

 topic = [item for item in topic if item[1] > 0.6]

 print(topic)

 print()

[('sky', 4.3324395825632624), ('blue', 3.373753174831771), ('beautiful',

3.3323652405224857), ('today', 1.3325579841038182), ('love',

1.3304224288080069)]

Chapter 4 Feature engineering For text representation

231

[('bacon', 2.332695948479998), ('eggs', 2.332695948479998), ('ham',

2.332695948479998), ('sausages', 2.332695948479998), ('love',

1.335454457601996), ('beans', 1.332773525378464), ('breakfast',

1.332773525378464), ('kings', 1.332773525378464), ('toast',

1.332773525378464), ('green', 1.3325433207547732)]

[('brown', 3.3323474595768783), ('dog', 3.3323474595768783), ('fox',

3.3323474595768783), ('lazy', 3.3323474595768783), ('quick',

3.3323474595768783), ('jumps', 1.3324193736202712), ('blue',

1.2919635624485213)]

Thus, you can clearly see the three topics are quite distinguishable from each other

based on their constituent terms. The first one is talking about weather, the second

one is about food, and the last one is about animals. Choosing the number of topics for

topic modeling is an entire technique of its own and is an art as well as a science. There

are various methods and heuristics to get the optimal number of topics, but due to the

detailed nature of these techniques, we don’t discuss them here.

 Advanced Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve models

belonging to a family of models, popularly known as the Bag of Words model. This

includes term frequencies, TF-IDF (term frequency-inverse document frequency),

N-Grams, and so on. While they are effective methods for extracting features from text,

due to the inherent nature of the model being just a bag of unstructured words, we lose

additional information like the semantics, structure, sequence, and context around

nearby words in each text document. This forms as enough motivation for us to explore

more sophisticated models that can capture this information and give us features that

are vector representation of words, popularly known as embeddings.

While this does make some sense, why should we be motivated enough to learn and

build these word embeddings? With regard to speech or image recognition systems, all

the information is already present in the form of rich dense feature vectors embedded in

high-dimensional datasets like audio spectrograms and image pixel intensities. However,

when it comes to raw text data, especially count-based models like Bag of Words, we are

dealing with individual words that may have their own identifiers and do not capture the

Chapter 4 Feature engineering For text representation

232

semantic relationship among words. This leads to huge sparse word vectors for textual

data and thus if we do not have enough data, we may end up getting poor models or

even overfitting the data due to the curse of dimensionality. See Figure 4-23.

Figure 4-23. Comparing feature representations for audio, image, and text

To overcome the shortcomings of the Bag of Words model, we need to use vector

space models (VSMs) in such a way that we can embed word vectors in this continuous

vector space based on semantic and contextual similarity. In fact, the distributional

hypothesis in the field of distributional semantics tells us that words that occur and

are used in the same context are semantically similar to one another and have similar

meanings. In simple terms, “a word is characterized by the company it keeps”.

One of the famous papers talking about these semantic word vectors and various

types in detail is “Don’t count, predict! A systematic comparison of context-counting vs.

context-predicting semantic vectors,” by Baroni et al. We won’t go into extensive depth,

but in short, there are two main types of methods for contextual word vectors. Count-

based methods like Latent Semantic Analysis (LSA) can be used to calculate statistical

measures of how often words occur with their neighboring words in a corpus and then

build dense word vectors for each word from these measures. Predictive methods like

neural network based language models try to predict words from their neighboring

words by looking at word sequences in the corpus. In the process, it learns distributed

representations giving us dense word embeddings. We focus on these predictive

methods in this section.

Chapter 4 Feature engineering For text representation

233

 Loading the Bible Corpus
To train and showcase some of the capabilities of these advanced deep learning based

feature representation models, we typically need a larger corpus. While we will still be

using our previous corpus for demonstrations, let’s also load our other corpus based on

the King James version of the Bible using NLTK. Then we preprocess the text to showcase

examples that might be more relevant depending on the models we implement later.

from nltk.corpus import gutenberg

from string import punctuation

bible = gutenberg.sents('bible-kjv.txt')

remove_terms = punctuation + '0123456789'

norm_bible = [[word.lower() for word in sent if word not in remove_terms]

for sent in bible]

norm_bible = [' '.join(tok_sent) for tok_sent in norm_bible]

norm_bible = filter(None, normalize_corpus(norm_bible))

norm_bible = [tok_sent for tok_sent in norm_bible if len(tok_sent.split()) > 2]

print('Total lines:', len(bible))

print('\nSample line:', bible[10])

print('\nProcessed line:', norm_bible[10])

The following output shows the total number of lines in our corpus and how the

preprocessing works on the Bible corpus.

Total lines: 30103

Sample line: ['1', ':', '6', 'And', 'God', 'said', ',', 'Let', 'there',

'be', 'a', 'firmament', 'in', 'the', 'midst', 'of', 'the', 'waters', ',',

'and', 'let', 'it', 'divide', 'the', 'waters', 'from', 'the', 'waters', '.']

Processed line: god said let firmament midst waters let divide waters

waters

Let’s now look at some of the popular word embedding models and engineer

meaningful features from our corpora!

Chapter 4 Feature engineering For text representation

234

 Word2Vec Model
This model was created by Google in 2013 and is a predictive deep learning based

model to compute and generate high quality, distributed, and continuous dense vector

representations of words that capture contextual and semantic similarity. Essentially

these are unsupervised models that can take in massive textual corpora, create a

vocabulary of possible words, and generate dense word embeddings for each word in

the vector space representing that vocabulary. Usually, you can specify the size of the

word embedding vectors and the total number of vectors are essentially the size of the

vocabulary. This makes the dimensionality of this dense vector space much lower than

the high-dimensional sparse vector space built using traditional Bag of Words models.

There are two different model architectures that can be leveraged by Word2Vec to

create these word embedding representations. These include:

• The Continuous Bag of Words (CBOW) model

• The Skip-Gram model

There were introduced by Mikolov et al. and I recommend interested readers

read up on the original papers around these models, which includes “Distributed

Representations of Words and Phrases and their Compositionality” by Mikolov et al. and

“Efficient Estimation of Word Representations in Vector Space” by Mikolov et al. to gain

an in-depth perspective.

 The Continuous Bag of Words (CBOW) Model

The CBOW model (see Figure 4-24) architecture tries to predict the current target word

(the center word) based on the source context words (surrounding words). Considering

a simple sentence, “the quick brown fox jumps over the lazy dog”, this can be pairs of

(context _ window, target _ word), where if we consider a context window of size 2, we

have examples like ([quick, fox], brown), ([the, brown], quick), ([the, dog], lazy), and

so on. Thus, the model tries to predict the target_word based on the context_window

words.

Chapter 4 Feature engineering For text representation

235

Because the Word2Vec family of models is unsupervised, you can just give it a corpus

without additional labels or information and it can construct dense word embeddings

from the corpus. But you still need to leverage a supervised, classification methodology

once you have this corpus to get to these embeddings. We do that from within the corpus

itself, without any auxiliary information. We can model this CBOW architecture as a

deep learning classification model such that we take in the context words as our input,

X, and try to predict the target word, Y. In fact, building this architecture is simpler than

the Skip-Gram model, whereby we try to predict a whole bunch of context words from a

source target word.

Figure 4-24. The CBOW model architecture (Source: https://arxiv.org/
pdf/1301.3781.pdf Mikolov et al.)

Chapter 4 Feature engineering For text representation

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf

236

 Implementing the Continuous Bag of Words (CBOW) Model

While it’s excellent to use robust frameworks that have the Word2Vec model like Gensim,

let’s try to implement this from scratch to gain some perspective on how things work

behind the scenes. We leverage the Bible corpus contained in the norm_bible variable to

train our model. The implementation will focus on four parts:

• Build the corpus vocabulary

• Build a CBOW (context, target) generator

• Build the CBOW model architecture

• Train the model

• Get word embeddings

Without further delay, let’s get started!

Build the Corpus Vocabulary

To start off, we will build our corpus vocabulary, where we extract each unique word

from our vocabulary and map a unique numeric identifier to it.

from keras.preprocessing import text

from keras.utils import np_utils

from keras.preprocessing import sequence

tokenizer = text.Tokenizer()

tokenizer.fit_on_texts(norm_bible)

word2id = tokenizer.word_index

build vocabulary of unique words

word2id['PAD'] = 0

id2word = {v:k for k, v in word2id.items()}

wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in

norm_bible]

vocab_size = len(word2id)

embed_size = 100

window_size = 2 # context window size

Chapter 4 Feature engineering For text representation

237

print('Vocabulary Size:', vocab_size)

print('Vocabulary Sample:', list(word2id.items())[:10])

Vocabulary Size: 12425

Vocabulary Sample: [('base', 2338), ('feller', 10771), ('sanctuary', 455),

('plunge', 10322), ('azariah', 1120), ('enlightened', 4438), ('horns',

838), ('kareah', 2920), ('nursing', 5943), ('baken', 3492)]

Thus, you can see that we created a vocabulary of unique words in our corpus and

ways to map a word to its unique identifier and vice versa. The PAD term is typically used

to pad context words to a fixed length if needed.

Build a CBOW (Context, Target) Generator

We need pairs that consist of a target center word and surround the context words. In

our implementation, a target word is of length 1 and the surrounding context is of length

2 × window _ size, where we take window_size words before and after the target word in

our corpus. This will become clearer with the following example.

def generate_context_word_pairs(corpus, window_size, vocab_size):

 context_length = window_size*2

 for words in corpus:

 sentence_length = len(words)

 for index, word in enumerate(words):

 context_words = []

 label_word = []

 start = index - window_size

 end = index + window_size + 1

 context_words.append([words[i]

 for i in range(start, end)

 if 0 <= i < sentence_length

 and i != index])

 label_word.append(word)

 x = sequence.pad_sequences(context_words, maxlen=context_length)

 y = np_utils.to_categorical(label_word, vocab_size)

 yield (x, y)

Chapter 4 Feature engineering For text representation

238

Test this out for some samples

i = 0

for x, y in generate_context_word_pairs(corpus=wids, window_size=window_

size, vocab_size=vocab_size):

 if 0 not in x[0]:

 print('Context (X):', [id2word[w] for w in x[0]], '-> Target (Y):',

 id2word[np.argwhere(y[0])[0][0]])

 if i == 10:

 break

 i += 1

Context (X): ['old','testament','james','bible'] -> Target (Y): king

Context (X): ['first','book','called','genesis'] -> Target(Y): moses

Context(X):['beginning','god','heaven','earth'] -> Target(Y):created

Context (X):['earth','without','void','darkness'] -> Target(Y): form

Context (X): ['without','form','darkness','upon'] -> Target(Y): void

Context (X): ['form', 'void', 'upon', 'face'] -> Target(Y): darkness

Context (X): ['void', 'darkness', 'face', 'deep'] -> Target(Y): upon

Context (X): ['spirit', 'god', 'upon', 'face'] -> Target (Y): moved

Context (X): ['god', 'moved', 'face', 'waters'] -> Target (Y): upon

Context (X): ['god', 'said', 'light', 'light'] -> Target (Y): let

Context (X): ['god', 'saw', 'good', 'god'] -> Target (Y): light

The preceding output should give you some more perspective of how X forms

our context words and we are trying to predict the target center word Y, based on this

context. For example, say the original text was “in the beginning god created heaven and

earth” which, after preprocessing and removal of stopwords, became “beginning god

created heaven earth”. Given [beginning, god, heaven, earth] as the context, the target

center word is “created” in this case.

Build the CBOW Model Architecture

We now leverage Keras on top of TensorFlow to build our deep learning architecture

for the CBOW model. For this, our inputs will be our context words, which are passed

to an embedding layer (initialized with random weights). The word embeddings are

Chapter 4 Feature engineering For text representation

239

propagated to a lambda layer where we average the word embeddings (hence called

CBOW because we don’t really consider the order or sequence in the context words

when averaged). Then we pass this averaged context embedding to a dense softmax

layer, which predicts our target word. We match this with the actual target word,

compute the loss by leveraging the categorical_crossentropy loss, and perform back-

propagation with each epoch to update the embedding layer in the process. He following

code shows the model architecture. See Figure 4-25.

import keras.backend as K

from keras.models import Sequential

from keras.layers import Dense, Embedding, Lambda

build CBOW architecture

cbow = Sequential()

cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_

length=window_size*2))

cbow.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(embed_size,)))

cbow.add(Dense(vocab_size, activation='softmax'))

cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop')

view model summary

print(cbow.summary())

visualize model structure

from IPython.display import SVG

from keras.utils.vis_utils import model_to_dot

SVG(model_to_dot(cbow, show_shapes=True, show_layer_names=False,

 rankdir='TB').create(prog='dot', format='svg'))

Chapter 4 Feature engineering For text representation

240

In case you still have difficulty visualizing this deep learning model, I

recommend you read through the papers I mentioned earlier. I try to summarize

the core concepts of this model in simple terms. We have input context words of

dimensions (2 × window _ size), and we will pass them to an embedding layer of size

(vocab _ size × embed _ size), which will give us dense word embeddings for each of these

context words (1 × embed _ size for each word). Next, we use a lambda layer to average

these embeddings and get an average dense embedding (1 × embed _ size), which is sent

to the dense softmax layer, which outputs the most likely target word. We compare this

with the actual target word, compute the loss, back-propagate the errors to adjust the

weights (in the embedding layer), and repeat this process for all (context, target) pairs for

multiple epochs. Figure 4-26 tries to explain this process.

Figure 4-25. CBOW model summary and architecture

Chapter 4 Feature engineering For text representation

241

We are now ready to train this model on our corpus using our data generator to feed

in the (context, target_word) pairs.

Train the Model

Running the model on our complete corpus takes a fair bit of time, so I just ran it for five

epochs. You can leverage the following code and increase it for more epochs if necessary.

for epoch in range(1, 6):

 loss = 0.

 i = 0

Figure 4-26. Visual depiction of the CBOW deep learning model

Chapter 4 Feature engineering For text representation

242

 for x, y in generate_context_word_pairs(corpus=wids, window_

size=window_size, vocab_size=vocab_size):

 i += 1

 loss += cbow.train_on_batch(x, y)

 if i % 100000 == 0:

 print('Processed {} (context, word) pairs'.format(i))

 print('Epoch:', epoch, '\tLoss:', loss)

 print()

Epoch: 1 Loss: 4257900.60084

Epoch: 2 Loss: 4256209.59646

Epoch: 3 Loss: 4247990.90456

Epoch: 4 Loss: 4225663.18927

Epoch: 5 Loss: 4104501.48929

Note running this model is computationally expensive and works better if
trained using a gpu. i trained this on an aWs p2.x instance with a tesla K80 gpu
and it took me close to 1.5 hours for just five epochs!

Once this model is trained, similar words should have similar weights based on the

embedding layer.

Get Word Embeddings

To get word embeddings for our entire vocabulary, we can extract them from our

embedding layer by leveraging the following code. We don’t take the embedding at

position 0 since it belongs to the padding (PAD) term, which is not really a word of

interest. See Figure 4-27.

weights = cbow.get_weights()[0]

weights = weights[1:]

print(weights.shape)

pd.DataFrame(weights, index=list(id2word.values())[1:]).head()

Chapter 4 Feature engineering For text representation

243

Thus, you can clearly see that each word has a dense embedding of size (1 × 100), as

depicted in the output in Figure 4-27. Let’s try to find some contextually similar words

for specific words of interest based on these embeddings. For this, we build a pairwise

distance matrix among all the words in our vocabulary based on the dense embedding

vectors and then find the n-nearest neighbors of each word of interest based on the

shortest (Euclidean) distance.

from sklearn.metrics.pairwise import euclidean_distances

compute pairwise distance matrix

distance_matrix = euclidean_distances(weights)

print(distance_matrix.shape)

view contextually similar words

similar_words = {search_term: [id2word[idx]

 for idx in distance_matrix[word2id[search_term]-1].

argsort()[1:6]+1]

 for search_term in ['god', 'jesus', 'noah', 'egypt',

'john', 'gospel', 'moses','famine']}

similar_words

(12424, 12424)

{'egypt': ['destroy', 'none', 'whole', 'jacob', 'sea'],

 'famine': ['wickedness', 'sore', 'countries', 'cease', 'portion'],

 'god': ['therefore', 'heard', 'may', 'behold', 'heaven'],

 'gospel': ['church', 'fowls', 'churches', 'preached', 'doctrine'],

Figure 4-27. Word embeddings for our vocabulary based on the CBOW model

Chapter 4 Feature engineering For text representation

244

 'jesus': ['law', 'heard', 'world', 'many', 'dead'],

 'john': ['dream', 'bones', 'held', 'present', 'alive'],

 'moses': ['pharaoh', 'gate', 'jews', 'departed', 'lifted'],

 'noah': ['abram', 'plagues', 'hananiah', 'korah', 'sarah']}

You can clearly see that some of these make sense contextually (god, heaven),

(gospel, church) and so on and some do not. Training for more epochs usually ends

up giving better results. We now explore the Skip-Gram architecture, which often gives

better results than CBOW.

 The Skip-Gram Model

The Skip-Gram model architecture tries to achieve the reverse of what the CBOW model

does. It tries to predict the source context words (surrounding words) given a target

word (the center word). Consider our simple sentence from earlier, “the quick brown fox

jumps over the lazy dog”. If we used the CBOW model, we get pairs of (context_window,

target_word), where if we consider a context window of size 2, we have examples such as

([quick, fox], brown), ([the, brown], quick), ([the, dog], lazy) and so on. Now, considering

that the Skip-Gram model’s aim is to predict the context from the target word, the model

typically inverts the contexts and targets and tries to predict each context word from its

target word. Hence the task becomes to predict the context [quick, fox], given target word

“brown” or [the, brown] given target word “quick,” and so on. Thus the model tries to

predict the context_window words based on the target_word. See Figure 4-28.

Chapter 4 Feature engineering For text representation

245

As we discussed in the CBOW model, we need to model this Skip-Gram architecture

as a deep learning classification model, so we take in the target word as our input

and try to predict the context words. This becomes slightly complex since we have

multiple words in our context. We simplify this further by breaking down each

(target, context _ words) pair into (target, context) pairs so the context consists of only one

word. Hence our dataset from earlier gets transformed into pairs like (brown, quick),

(brown, fox), (quick, the), (quick, brown), and so on. But how do we supervise or train

the model to know what is contextual and what is not?

For this, we feed our Skip-Gram model pairs of (X, Y), where X is our input and Y is

our label. We do this by using [(target, context), 1] pairs as positive input samples, where

target is our word of interest and context is a context word occurring near the target

word. The positive label 1 indicates this is a contextually relevant pair. We also feed in

[(target, random), 0] pairs as negative input samples, where target is again our word of

Figure 4-28. The Skip-Gram model architecture (Source: https://arxiv.org/
pdf/1301.3781.pdf Mikolov et al.)

Chapter 4 Feature engineering For text representation

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf

246

interest but random is just a randomly selected word from our vocabulary and it has

no context or association with our target word. Hence the negative label 0 indicates

this is a contextually irrelevant pair. We do this so that the model can then learn which

pairs of words are contextually relevant and which are not and then generate similar

embeddings for semantically similar words.

 Implementing the Skip-Gram Model

Let’s now try to implement this model from scratch to gain some perspective on how

things work behind the scenes and so that we can compare it to our implementation

of the CBOW model. We leverage our Bible corpus as usual, which is contained in the

norm_bible variable for training our model. The implementation will focus on five parts:

• Build the corpus vocabulary

• Build a Skip-Gram [(target, context), relevancy] generator

• Build the Skip-Gram model architecture

• Train the model

• Get word embeddings

Let’s get cracking and build our Skip-Gram Word2Vec model!

Build the Corpus Vocabulary

To start, we follow the standard process of building our corpus vocabulary where we

extract each unique word from our vocabulary and assign a unique identifier, similar

to what we did in the CBOW model. We also maintain mappings to transform words to

their unique identifiers and vice versa.

from keras.preprocessing import text

tokenizer = text.Tokenizer()

tokenizer.fit_on_texts(norm_bible)

word2id = tokenizer.word_index

id2word = {v:k for k, v in word2id.items()}

vocab_size = len(word2id) + 1

embed_size = 100

Chapter 4 Feature engineering For text representation

247

wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in

norm_bible]

print('Vocabulary Size:', vocab_size)

print('Vocabulary Sample:', list(word2id.items())[:10])

Vocabulary Size: 12425

Vocabulary Sample: [('base', 2338), ('feller', 10771), ('sanctuary', 455),

('plunge', 10322), ('azariah', 1120), ('enlightened', 4438), ('horns',

838), ('kareah', 2920), ('nursing', 5943), ('baken', 3492)]

Each unique word from the corpus is now part of our vocabulary and has a unique

numeric identifier.

Build a Skip-Gram [(target, context), relevancy] Generator

It’s now time to build our Skip-Gram generator, which will give us pair of words and their

relevance, as we discussed earlier. Luckily, Keras has a nifty Skip-Grams utility that can

be used and we don’t have to manually implement this generator like we did in CBOW.

the function skipgrams(...) is present in keras.preprocessing.
sequence. this function transforms a sequence of word indexes (list of integers)
into tuples of words of the form:

1. (word, word in the same window), with label 1 (positive samples).

2. (word, random word from the vocabulary), with label 0 (negative samples).

from keras.preprocessing.sequence import skipgrams

generate skip-grams

skip_grams = [skipgrams(wid, vocabulary_size=vocab_size, window_size=10)

for wid in wids]

view sample skip-grams

pairs, labels = skip_grams[0][0], skip_grams[0][1]

for i in range(10):

Chapter 4 Feature engineering For text representation

248

 print("({:s} ({:d}), {:s} ({:d})) -> {:d}".format(

 id2word[pairs[i][0]], pairs[i][0],

 id2word[pairs[i][1]], pairs[i][1],

 labels[i]))

(bible (5766), stank (5220)) -> 0

(james (1154), izri (9970)) -> 0

(king (13), bad (2285)) -> 0

(king (13), james (1154)) -> 1

(king (13), lucius (8272)) -> 0

(james (1154), king (13)) -> 1

(james (1154), bazluth (10091)) -> 0

(james (1154), bible (5766)) -> 1

(king (13), bible (5766)) -> 1

(bible (5766), james (1154)) -> 1

thus, you can see we have successfully generated our required skip-grams and,
based on the sample skip-grams in the preceding output, you can clearly see what
is relevant and what is irrelevant based on the label (0 or 1).

Build the Skip-Gram Model Architecture

We now leverage Keras on top of TensorFlow to build our deep learning architecture for

the Skip-Gram model. For this, our inputs will be our target word and context or random

word pair. Each of these are passed to an embedding layer (initialized with random

weights) of its own. Once we obtain the word embeddings for the target and the context

word, we pass it to a merge layer where we compute the dot product of these two vectors.

Then we pass this dot product value to a dense sigmoid layer, which predicts either a 1 or

a 0 depending on if the pair of words are contextually relevant or just random words (Y’).

We match this with the actual relevance label (Y), compute the loss by leveraging the

mean_squared_error loss, and perform back-propagation with each epoch to update the

embedding layer in the process. The following code shows our model architecture. See

Figure 4-29.

Chapter 4 Feature engineering For text representation

249

from keras.layers import Dot

from keras.layers.core import Dense, Reshape

from keras.layers.embeddings import Embedding

from keras.models import Sequential

from keras.models import Model

build skip-gram architecture

word_model = Sequential()

word_model.add(Embedding(vocab_size, embed_size, embeddings_initializer=

 "glorot_uniform", input_length=1))

word_model.add(Reshape((embed_size,)))

context_model = Sequential()

context_model.add(Embedding(vocab_size, embed_size,

 embeddings_initializer="glorot_uniform",

 input_length=1))

context_model.add(Reshape((embed_size,)))

model_arch = Dot(axes=1)([word_model.output, context_model.output])

model_arch = Dense(1, kernel_initializer="glorot_uniform",

activation="sigmoid")(model_arch)

model = Model([word_model.input,context_model.input], model_arch)

model.compile(loss="mean_squared_error", optimizer="rmsprop")

view model summary

print(model.summary())

visualize model structure

from IPython.display import SVG

from keras.utils.vis_utils import model_to_dot

SVG(model_to_dot(model, show_shapes=True, show_layer_names=False,

 rankdir='TB').create(prog='dot', format='svg'))

Chapter 4 Feature engineering For text representation

250

Understanding the deep learning model is pretty straightforward. However, I will try

to summarize the core concepts of this model in simple terms for ease of understanding.

We have a pair of input words for each training example consisting of one input target

word with a unique numeric identifier and one context word with a unique numeric

identifier. If it is a positive sample, the word has contextual meaning, is a context word,

and our label Y = 1. Otherwise, if it is a negative sample, the word has no contextual

meaning, is just a random word, and our label Y = 0. We will pass each of these to an

embedding layer of their own, having size (vocab _ size × embed _ size), which will give

us dense word embeddings for each of these two words (1 × embed _ size for each word).

Next, we use a merge layer to compute the dot product of these two embeddings and

get the dot product value. This is then sent to the dense sigmoid layer, which outputs a

1 or 0. We compare this to the actual label Y (1 or 0), compute the loss, back-propagate

the errors to adjust the weights (in the embedding layer), and repeat this process for all

(target, context) pairs for multiple epochs. Figure 4-30 tries to explain this process.

Figure 4-29. Skip-Gram model summary and architecture

Chapter 4 Feature engineering For text representation

251

Let’s now start training our model with our Skip-Grams.

Train the Model

Running the model on our complete corpus takes a fair bit of time, but it’s quicker than

the CBOW model. I ran it for five epochs. You can leverage the following code and run

more epochs if necessary.

for epoch in range(1, 6):

 loss = 0

 for i, elem in enumerate(skip_grams):

 pair_first_elem = np.array(list(zip(*elem[0]))[0], dtype='int32')

 pair_second_elem = np.array(list(zip(*elem[0]))[1], dtype='int32')

Figure 4-30. Visual depiction of the Skip-Gram deep learning model

Chapter 4 Feature engineering For text representation

252

 labels = np.array(elem[1], dtype='int32')

 X = [pair_first_elem, pair_second_elem]

 Y = labels

 if i % 10000 == 0:

 print('Processed {} (skip_first, skip_second, relevance)

pairs'.format(i))

 loss += model.train_on_batch(X,Y)

 print('Epoch:', epoch, 'Loss:', loss)

Epoch: 1 Loss: 4474.41281086

Epoch: 2 Loss: 3750.71884749

Epoch: 3 Loss: 3752.47489296

Epoch: 4 Loss: 3793.9177565

Epoch: 5 Loss: 3718.15081862

Once this model is trained, similar words should have similar weights based on the

embedding layer.

Get Word Embeddings

To get word embeddings for our entire vocabulary, we can extract them from our

embedding layer by leveraging the following code. Note that we are only interested in

the target word embedding layer, so we extract the embeddings from our word_model

embedding layer. We don’t take the embedding at position 0 since none of our words in

the vocabulary have a numeric identifier of 0. See Figure 4-31.

word_embed_layer = model.layers[2]

weights = word_embed_layer.get_weights()[0][1:]

print(weights.shape)

pd.DataFrame(weights, index=id2word.values()).head()

Figure 4-31. Word embeddings for our vocabulary based on the Skip-Gram model

Chapter 4 Feature engineering For text representation

253

Thus, you can clearly see that each word has a dense embedding of size (1 × 100), as

depicted in the preceding output. This is similar to what we obtained from the CBOW

model. Let’s now apply the Euclidean distance metric on these dense embedding

vectors to generate a pairwise distance metric for each word in our vocabulary. We can

then determine the n-nearest neighbors of each word of interest based on the shortest

(Euclidean) distance, similar to what we did on the embeddings from our CBOW model.

from sklearn.metrics.pairwise import euclidean_distances

distance_matrix = euclidean_distances(weights)

print(distance_matrix.shape)

similar_words = {search_term: [id2word[idx]

 for idx in distance_matrix[word2id[search_term]-1].

argsort()[1:6]+1]

 for search_term in ['god', 'jesus', 'noah',

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

(12424, 12424)

{'egypt': ['taken', 'pharaoh', 'wilderness', 'gods', 'became'],

 'famine': ['moved', 'awake', 'driven', 'howl', 'snare'],

 'god': ['strength', 'given', 'blessed', 'wherefore', 'lord'],

 'gospel': ['preached', 'must', 'preach', 'desire', 'grace'],

 'jesus': ['disciples', 'christ', 'dead', 'peter', 'jews'],

 'john': ['peter', 'hold', 'mountain', 'ghost', 'preached'],

 'moses': ['commanded', 'third', 'congregation', 'tabernacle', 'tribes'],

 'noah': ['ham', 'terah', 'amon', 'adin', 'zelophehad']}

You can clearly see from the results that a lot of the similar words for each of the

words of interest are making sense and we have obtained better results as compared

to our CBOW model. Let’s visualize these word embeddings using t-SNE, which stands

for t-distributed stochastic neighbor embedding. It’s a popular dimensionality reduction

technique used to visualize higher dimension spaces in lower dimensions (e.g. 2D). See

Figure 4-32.

Chapter 4 Feature engineering For text representation

254

from sklearn.manifold import TSNE

words = sum([[k] + v for k, v in similar_words.items()], [])

words_ids = [word2id[w] for w in words]

word_vectors = np.array([weights[idx] for idx in words_ids])

print('Total words:', len(words), '\tWord Embedding shapes:', word_vectors.

shape)

tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=3)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(word_vectors)

labels = words

plt.figure(figsize=(14, 8))

plt.scatter(T[:, 0], T[:, 1], c='steelblue', edgecolors='k')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

 plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset

points')

Figure 4-32. Visualizing Skip-Gram Word2Vec word embeddings using t-SNE

Chapter 4 Feature engineering For text representation

255

The circles in Figure 4-32 show different words of contextual similarity positioned

near each other in the vector space. If you find any other interesting patterns, feel free to

let me know!

 Robust Word2Vec Models with Gensim
While our implementations are decent enough, they are not optimized to work well on

large corpora. The Gensim framework, created by Radim Řehůřek, consists of a robust,

efficient, and scalable implementation of the Word2Vec model. We will leverage this

on our Bible corpus. In our workflow, we will tokenize our normalized corpus and then

focus on the following four parameters in the Word2Vec model to build it. The basic idea

is to provide a corpus of documents as input and get feature vectors for the output.

Internally, it constructs a vocabulary based on the input text documents and learns

vector representations for words based on various techniques, which we mentioned

earlier. Once this is complete, it builds a model that can be used to extract word vectors

for each word in a document. Using various techniques like average weighting or TF-

IDF weighting, we can compute the averaged vector representation of a document using

its word vectors. You can get more details about the interface for Gensim's Word2Vec

implementation at http://radimrehurek.com/gensim/models/word2vec.html. We

will be mainly focusing on the following parameters when we build our model from our

sample training corpus.

• size: This parameter is used to set the size or dimension for the word

vectors and can range from tens to thousands. You can try various

dimensions to see which gives the best result.

• window: This parameter is used to set the context or window size

that specifies the length of the window of words that should be

considered for the algorithm to take into account as context when

training.

• min_count: This parameter specifies the minimum word count

needed across the corpus for the word to be considered in the

vocabulary. This helps remove very specific words that may not have

much significance since they occur very rarely in the documents.

• sample: This parameter is used to downsample effects of occurrence

of frequent words. Values between 0.01 and 0.0001 are usually ideal.

Chapter 4 Feature engineering For text representation

http://radimrehurek.com/gensim/models/word2vec.html

256

After building our model, we will use our words of interest to see the top similar

words for each of them.

from gensim.models import word2vec

tokenize sentences in corpus

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_bible]

Set values for various parameters

feature_size = 100 # Word vector dimensionality

window_context = 30 # Context window size

min_word_count = 1 # Minimum word count

sample = 1e-3 # Downsample setting for frequent words

w2v_model = word2vec.Word2Vec(tokenized_corpus, size=feature_size,

 window=window_context, min_count=min_word_count,

 sample=sample, iter=50)

view similar words based on gensim's model

similar_words = {search_term: [item[0]

 for item in w2v_model.wv.most_similar([search_term],

topn=5)]

 for search_term in ['god', 'jesus', 'noah',

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

{'egypt': ['pharaoh', 'egyptians', 'bondage', 'rod', 'flowing'],

 'famine': ['pestilence', 'peril', 'blasting', 'mildew', 'morever'],

 'god': ['lord', 'promised', 'worldly', 'glory', 'reasonable'],

 'gospel': ['faith', 'afflictions', 'christ', 'persecutions', 'godly'],

 'jesus': ['peter', 'messias', 'apostles', 'immediately', 'neverthless'],

 'john': ['baptist', 'james', 'peter', 'galilee', 'zebedee'],

 'moses': ['congregation', 'children', 'aaron', 'ordinance', 'doctor'],

 'noah': ['shem', 'japheth', 'ham', 'noe', 'henoch']}

Chapter 4 Feature engineering For text representation

257

The similar words are more closely related to our words of interest and this is

expected, given we ran this model for more iterations, which must yield better and more

contextual embeddings. Do you notice any interesting associations? See Figure 4-33.

Figure 4-33. Noah’s sons come up as the most contextually similar entities from
our model!

Let’s also visualize the words of interest and their similar words using their

embedding vectors after reducing their dimensions to a 2D space with t-SNE. See

Figure 4-34.

from sklearn.manifold import TSNE

words = sum([[k] + v for k, v in similar_words.items()], [])

wvs = w2v_model.wv[words]

tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=2)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(wvs)

labels = words

plt.figure(figsize=(14, 8))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

 plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset

points')

Chapter 4 Feature engineering For text representation

258

The circles have been drawn by me to point out some interesting associations. We

can clearly see based on what I depicted earlier that Noah and his sons are quite close to

each other based on the word embeddings from our model!

 Applying Word2Vec Features for Machine Learning Tasks
If you remember from the previous section in this chapter, you might have seen me using

features for some actual machine learning tasks like clustering. Let’s leverage our other

corpus and try to achieve this result. To start, we build a simple Word2Vec model on the

corpus and visualize the embeddings. See Figure 4-35.

build word2vec model

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_corpus]

Set values for various parameters

feature_size = 10 # Word vector dimensionality

window_context = 10 # Context window size

min_word_count = 1 # Minimum word count

sample = 1e-3 # Downsample setting for frequent words

Figure 4-34. Visualizing our Word2Vec word embeddings using t-SNE

Chapter 4 Feature engineering For text representation

259

w2v_model = word2vec.Word2Vec(tokenized_corpus, size=feature_size,

 window=window_context, min_count = min_word_

count, sample=sample, iter=100)

visualize embeddings

from sklearn.manifold import TSNE

words = w2v_model.wv.index2word

wvs = w2v_model.wv[words]

tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=2)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(wvs)

labels = words

plt.figure(figsize=(12, 6))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

 plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset

points')

Figure 4-35. Visualizing Word2Vec word embeddings on our other sample corpus

Chapter 4 Feature engineering For text representation

260

Remember that our corpus is extremely small, so to get meaningful word

embeddings and for the model to get more context and semantics, we need more data.

Now what is a word embedding in this scenario? It’s typically a dense vector for each

word, as depicted in the following example for the word “sky”.

w2v_model.wv['sky']

array([0.04576328, 0.02328374, -0.04483001, 0.0086611 , 0.05173225,

 0.00953358, -0.04087641, -0.00427487, -0.0456274 , 0.02155695],

dtype=float32)

 Strategy for Getting Document Embeddings

Now suppose we wanted to cluster the eight documents from our toy corpus. We would

need to get the document-level embeddings from each of the words present in each

document. One strategy would be to average the word embeddings for each word in a

document. This is an extremely useful strategy and you can adopt it to your own problems.

Let’s apply this on our corpus to get features for each document. See Figure 4- 36.

def average_word_vectors(words, model, vocabulary, num_features):

 feature_vector = np.zeros((num_features,),dtype="float64")

 nwords = 0.

 for word in words:

 if word in vocabulary:

 nwords = nwords + 1.

 feature_vector = np.add(feature_vector, model[word])

 if nwords:

 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

def averaged_word_vectorizer(corpus, model, num_features):

 vocabulary = set(model.wv.index2word)

 features = [average_word_vectors(tokenized_sentence, model, vocabulary,

num_features) for tokenized_sentence in corpus]

 return np.array(features)

Chapter 4 Feature engineering For text representation

261

get document level embeddings

w2v_feature_array = averaged_word_vectorizer(corpus=tokenized_corpus,

model=w2v_model, num_features=feature_size)

pd.DataFrame(w2v_feature_array)

Figure 4-36. Document-level embeddings

Now that we have our features for each document, let’s cluster these documents

using the affinity propagation algorithm, which is a clustering algorithm based on

the concept of “message passing” between data points. It does not need the number

of clusters as an explicit input, which is often required by partition-based clustering

algorithms. This is discussed in more detail in Chapter 7. See Figure 4-37.

from sklearn.cluster import AffinityPropagation

ap = AffinityPropagation()

ap.fit(w2v_feature_array)

cluster_labels = ap.labels_

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)

Chapter 4 Feature engineering For text representation

262

We can see that our algorithm has clustered each document into the right group

based on our Word2Vec features. Pretty neat! We can also visualize how each document

is positioned in each cluster by using Principal Component Analysis (PCA) to reduce the

feature dimensions to 2D and then visualizing them (by color coding each cluster). See

Figure 4-38.

from sklearn.decomposition import PCA

pca = PCA(n_components=2, random_state=0)

pcs = pca.fit_transform(w2v_feature_array)

labels = ap.labels_

categories = list(corpus_df['Category'])

plt.figure(figsize=(8, 6))

for i in range(len(labels)):

 label = labels[i]

 color = 'orange' if label == 0 else 'blue' if label == 1 else 'green'

 annotation_label = categories[i]

 x, y = pcs[i]

 plt.scatter(x, y, c=color, edgecolors='k')

 plt.annotate(annotation_label, xy=(x+1e-4, y+1e-3), xytext=(0, 0),

 textcoords='offset points')

Figure 4-37. Clusters assigned based on the document features from Word2Vec

Chapter 4 Feature engineering For text representation

263

Everything looks to be in order, as documents in each cluster are closer to each other

and far apart from the other clusters.

 The GloVe Model
The GloVe (Global Vectors) model is a unsupervised learning model that can be used

to obtain dense word vectors similar to Word2Vec. However, the technique is different

and training is performed on an aggregated global word-word co-occurrence matrix,

giving us a vector space with meaningful sub-structures. This method was invented in

Stanford by Pennington et al. and I recommend you read the original paper on GloVe,

entitled “GloVe: Global Vectors for Word Representation,” by Pennington et al., which is

an excellent read to get some perspective on how this model works.

Figure 4-38. Visualizing our document clusters

Chapter 4 Feature engineering For text representation

264

We won’t cover the implementation of the model from scratch in too much detail,

but if you are interested in the actual code, you can check out the official GloVe page at

https://nlp.stanford.edu/projects/glove/. We keep things simple here and try to

understand the basic concepts behind the GloVe model.

We talked about count-based matrix factorization methods like LSA and predictive

methods like Word2Vec. The paper claims that currently, both families suffer significant

drawbacks. Methods like LSA efficiently leverage statistical information but they do

relatively poorly on the word analogy task like how we found out semantically similar

words. Methods like Skip-Gram may do better on the analogy task, but they poorly utilize

the statistics of the corpus on a global level.

The basic methodology of the GloVe model is to first create a huge word-context

co-occurrence matrix consisting of (word, context) pairs such that each element in this

matrix represents how often a word occurs with the context (which can be a sequence

of words). The idea then is to apply matrix factorization to approximate this matrix, as

depicted in Figure 4-39.

Figure 4-39. Conceptual model for the GloVe model’s implementation

Considering the Word-Context (WC) matrix, Word-Feature (WF) matrix, and

Feature-Context (FC) matrix, we try to factorize

 WC WF FC= ´

such that we we aim to reconstruct WC from WF and FC by multiplying them. For this,

we typically initialize WF and FC with some random weights and attempt to multiply

them to get WC’ (an approximation of WC) and measure how close it is to WC. We do this

multiple times using Stochastic Gradient Descent (SGD) to minimize the error.

Chapter 4 Feature engineering For text representation

https://nlp.stanford.edu/projects/glove/

265

Finally, the Word-Feature matrix (WF) gives us the word embeddings for each word,

where F can be preset to a specific number of dimensions. A very important point to

remember is that both Word2Vec and GloVe models are very similar in how they work.

Both of them aim to build a vector space where the position of each word is influenced

by its neighboring words based on their context and semantics. Word2Vec starts with

local individual examples of word co-occurrence pairs and GloVe starts with global

aggregated co-occurrence statistics across all words in the corpus.

 Applying GloVe Features for Machine Learning Tasks
Let’s try to leverage GloVe-based embeddings for our document clustering task. The

very popular spaCy framework comes with capabilities to leverage GloVe embeddings

based on different language models. You can also get pretrained word vectors from

Stanford NLP’s website (https://nlp.stanford.edu/projects/glove/) and load

them as needed using Gensim or spaCy. We will install spaCy and use the en_vectors_

web_lg model (https://spacy.io/models/en#en_vectors_web_lg), which consists

of 300-dimensional word vector dense embeddings trained on the Common Crawl

(http://commoncrawl.org/) with GloVe.

Use the following command to install spaCy

> pip install -U spacy

OR

> conda install -c conda-forge spacy

Download the following language model and store it in disk

https://github.com/explosion/spacy-models/releases/tag/en_vectors_web_lg- 2.0.0

Link the same to spacy

> python -m spacy link ./spacymodels/en_vectors_web_lg-2.0.0/en_vectors_

web_lg en_vecs

Linking successful

 ./spacymodels/en_vectors_web_lg-2.0.0/en_vectors_web_lg -->

./Anaconda3/lib/site-packages/spacy/data/en_vecs

You can now load the model via spacy.load('en_vecs')

Chapter 4 Feature engineering For text representation

https://nlp.stanford.edu/projects/glove/
https://spacy.io/models/en#en_vectors_web_lg
http://commoncrawl.org/

266

There are automated ways to install models in spaCy too. You can check the Models

& Languages page at https://spacy.io/usage/models for more information if needed.

I had some issues with it, so I had to manually load them. We now load our language

model using spaCy.

import spacy

nlp = spacy.load('en_vecs')

total_vectors = len(nlp.vocab.vectors)

print('Total word vectors:', total_vectors)

Total word vectors: 1070971

This validates that everything is working and in order. Let’s get the GloVe

embeddings for each of our words now in our toy corpus. See Figure 4-40.

unique_words = list(set([word for sublist in [doc.split() for doc in norm_

corpus] for word in sublist]))

word_glove_vectors = np.array([nlp(word).vector for word in unique_words])

pd.DataFrame(word_glove_vectors, index=unique_words)

Figure 4-40. GloVe embeddings for words in our sample corpus

Chapter 4 Feature engineering For text representation

https://spacy.io/usage/models

267

We can now use t-SNE to visualize these embeddings, similar to what we did using

our Word2Vec embeddings. See Figure 4-41.

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=3)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(word_glove_vectors)

labels = unique_words

plt.figure(figsize=(12, 6))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

 plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset

points')

Figure 4-41. Visualizing GloVe word embeddings on our sample corpus

The beauty of spaCy is that it automatically provides the averaged embeddings

for words in each document without us having to implement a function like we did in

Word2Vec. We will now leverage spaCy to get document features for our corpus and use

k-means clustering to cluster our documents. See Figure 4-42.

Chapter 4 Feature engineering For text representation

268

doc_glove_vectors = np.array([nlp(str(doc)).vector for doc in norm_corpus])

km = KMeans(n_clusters=3, random_state=0)

km.fit_transform(doc_glove_vectors)

cluster_labels = km.labels_

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)

Figure 4-42. Clusters assigned based on our document features from GloVe

We see consistent clusters similar to what we obtained from our Word2Vec model,

which is good! The GloVe model claims to perform better than the Word2Vec model

in many scenarios, as illustrated in Figure 4-43, which is from the original paper by

Pennington et al.

Chapter 4 Feature engineering For text representation

269

These experiments were done by training 300-dimensional vectors on the same 6B

token corpus (Wikipedia 2014 + Gigaword 5) with the same 400,000 word vocabulary and

a symmetric context window of size 10 (in case you are interested in the details).

 The FastText Model
The FastText model was introduced by Facebook in 2016 as an extension and supposedly

improvement of the vanilla Word2Vec model. It’s based on the original paper entitled

“Enriching Word Vectors with Subword Information” by Mikolov et al., which is an

excellent read to gain in-depth understanding into how this model works. Overall,

FastText is a framework for learning word representations and performing robust, fast,

and accurate text classifications. The framework is open sourced by Facebook on GitHub

and claims to have the following.

• Recent state-of-the-art English word vectors

• Word vectors for 157 languages trained on Wikipedia and Crawl

• Models for language identification and various supervised tasks

Figure 4-43. GloVe vs Word2Vec performance (Source: https://nlp.stanford.
edu/pubs/glove.pdf by Pennington et al.)

Chapter 4 Feature engineering For text representation

https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf

270

Although I haven’t implemented this model from scratch, based on the research

paper, the following is what I learned about how the model works. In general, predictive

models like Word2Vec consider each word a distinct entity (e.g., where) and generate

a dense embedding for the word. However, this is a serious limitation with languages

that have massive vocabularies and many rare words. The Word2Vec model typically

ignores the morphological structure of each word and considers a word a single entity.

The FastText model considers each word a Bag of Character n-grams. This is also called a

subword model in the paper.

We add special boundary symbols < and > at the beginning and end of words. This

enables us to distinguish prefixes and suffixes from other character sequences. We also

include the letter w in the set of its n-grams to learn a representation for each word (in

addition to its character n-grams). Taking the word “where” and n=3 (tri-grams) as an

example, it will be represented by the character n-grams: <wh, whe, her, ere, re> and the

special sequence <where>, which represents the whole word. Note that the sequence

corresponding to the word <her> is different from the tri-gram “her” and the word

“where”.

In practice, the paper recommends extracting all the n-grams for n ≥ 3 and n ≤ 6.

This is a very simple approach, and different sets of n-grams could be considered, for

example taking all prefixes and suffixes. We typically associate a vector representation

(embedding) to each n-gram for a word. Thus, we can represent a word by the sum of the

vector representations of its n-grams or the average of the embedding of these n-grams.

Thus, due to this effect of leveraging n-grams from individual words based on their

characters, there is a higher chance for rare words to get good representation since their

character-based n-grams should occur across other words of the corpus.

 Applying FastText Features to Machine Learning Tasks
The Gensim package has wrappers that provide interfaces to leverage the FastText model

available under the gensim.models.fasttext module. Let’s apply this once again to the

Bible corpus and look at the words of interest and their most similar words.

from gensim.models.fasttext import FastText

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_bible]

Chapter 4 Feature engineering For text representation

271

Set values for various parameters

feature_size = 100 # Word vector dimensionality

window_context = 50 # Context window size

min_word_count = 5 # Minimum word count

sample = 1e-3 # Downsample setting for frequent words

sg decides whether to use the skip-gram model (1) or CBOW (0)

ft_model = FastText(tokenized_corpus, size=feature_size, window=window_

context, min_count=min_word_count,sample=sample, sg=1, iter=50)

view similar words based on gensim's FastText model

similar_words = {search_term: [item[0]

 for item in ft_model.wv.most_similar([search_term],

topn=5)]

 for search_term in ['god', 'jesus', 'noah',

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

{'egypt': ['land', 'pharaoh', 'egyptians', 'pathros', 'assyrian'],

 'famine': ['pestilence', 'sword', 'egypt', 'dearth', 'blasted'],

 'god': ['lord', 'therefore', 'jesus', 'christ', 'truth'],

 'gospel': ['preached', 'preach', 'christ', 'preaching', 'gentiles'],

 'jesus': ['christ', 'god', 'disciples', 'paul', 'grace'],

 'john': ['baptist', 'baptize', 'peter', 'philip', 'baptized'],

 'moses': ['aaron', 'commanded', 'congregation', 'spake', 'tabernacle'],

 'noah': ['shem', 'methuselah', 'creepeth', 'adam', 'milcah']}

You can see a lot of similarity in the results (see Figure 4-44). Do you notice any

interesting associations and similarities?

Chapter 4 Feature engineering For text representation

272

Having these embeddings, we can perform some interesting natural language tasks.

One of these is to determine the similarity between different words (entities).

print(ft_model.wv.similarity(w1='god', w2='satan'))

print(ft_model.wv.similarity(w1='god', w2='jesus'))

0.333260876685

0.698824900473

st1 = "god jesus satan john"

print('Odd one out for [',st1, ']:', ft_model.wv.doesnt_match(st1.split()))

st2 = "john peter james judas"

print('Odd one out for [',st2, ']:', ft_model.wv.doesnt_match(st2.split()))

Odd one out for [god jesus satan john]: satan

Odd one out for [john peter james judas]: judas

We can see that “god” is more closely associated with “jesus” than “satan,” based on

the text in the Bible corpus. Similar results can be seen in both cases for the odd entity

among the other words.

Figure 4-44. Moses, his brother Aaron, and the Tabernacle of Moses come up as
similar entities from our model

Chapter 4 Feature engineering For text representation

273

 Summary
We covered a wide variety of feature engineering techniques and models in this chapter.

We covered traditional and advanced, newer models of text representation. Remember

that traditional strategies are based on concepts from mathematics, information

retrieval, and natural language processing. Hence, these tried and tested methods over

time have proven to be successful in a wide variety of datasets and problems. We covered

a wide variety of traditional feature engineering models, including the Bag of Words, Bag

of N-Grams, TF-IDF, similarity, and topic models. We also implemented some models

from scratch to better understand the concepts with hands-on examples.

Traditional models have some limitations considering sparse representations,

leading to feature explosion. This causes the curse of dimensionality and losing context,

ordering, and sequence of related words in text data. This is where we covered advanced

feature engineering models, which leverage deep learning and neural network models to

generate dense embeddings for every word in any corpus.

We took a deep dive into Word2Vec and even trained deep learning models from

scratch to showcase how the CBOW and Skip-Gram models work. Understanding how to

use a feature engineering model in the real world is also important and we demonstrated

how to extract and build document-level features and use them for text clustering.

Finally, we covered essential concepts and detailed examples of two other advanced

feature engineering models—GloVe and FastText. We encourage you to try leveraging

these models in your own problems. We also use these models in the next chapter on

text classification!

Chapter 4 Feature engineering For text representation

275
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_5

CHAPTER 5

Text Classification
Learning to process and understand text is one of the first, yet most essential, steps on

the journey to getting meaningful insights from textual data. While it is important to

understand language syntax, structure, and semantics, it is not sufficient on its own to

be able to derive useful patterns and insights and get maximum use out of vast volumes

of text data. Knowledge of language processing coupled with concepts from artificial

intelligence, machine learning, and deep learning help in building intelligent systems,

which can leverage text data and help solve real-world practical problems that benefit

businesses and enterprises.

There are various aspects in machine learning, which include supervised learning,

unsupervised learning, reinforcement learning, and more recently, deep learning. Each

of these domains have several techniques and algorithms, which can be leveraged on

top of text data and thus enable us to build self-learning systems, which do not need

too much manual supervision. A machine learning model is a combination of data and

algorithms and we got a taste of them in Chapter 3 when we were building our own

parsers and taggers. The benefit of machine learning is that once a model is trained, we

can directly use that model on new and previously unseen data to start seeing useful

insights and desired results—the key to predictive and prescriptive analytics!

One of the most relevant and challenging problems in the domain of natural

language processing is text classification or categorization, also popularly known as

document classification. This task involves categorizing or classifying text documents

into various (predefined) categories based on inherent properties or attributes of each

text document. This has applications in diverse domains and businesses, including

email spam identification and news categorization. The concept might seem simple and

if you have a small number of documents, you can look at each document and gain some

idea about what it is trying to indicate. Based on this knowledge, you can group similar

documents into categories or classes. It starts getting more challenging once the number

of text documents to be classified increases to several hundred thousands or millions.

This is where techniques like feature extraction and supervised or unsupervised

276

machine learning come in handy. Document classification is a generic problem not

limited to text alone but also can be extended for other items like music, images, video,

and other media.

To formalize this problem more clearly, we will have a given set of classes and several

text documents. Remember that documents are basically sentences or paragraphs of

text. This forms a corpus. Our task is to determine which class or classes each document

belongs to. This entire process involves several steps, which we will be discussing in

more detail shortly. Briefly, for a supervised classification problem, we need to have

some labeled data that we can use for training a text classification model. This data

is essentially curated documents that are already assigned to some specific class or

category beforehand. Using this, we essentially extract features and attributes from each

document and make our model learn these attributes corresponding to each particular

document and its class/category. This is done by feeding it to a supervised machine

learning algorithm.

Of course the data needs to be preprocessed and normalized before building the

model. Once done, we follow the same process of normalization and feature extraction

and then feed it to the model to predict the class or category for new documents.

However, for an unsupervised classification problem, we essentially do not have any

labeled training documents and instead use techniques like clustering and document

similarity measures to cluster documents based on their inherent properties and assign

labels to them.

In this chapter, we discuss the concept of text document classification and learn how

it can be formulated as a supervised machine learning problem. We also talk about the

various forms of classification and what they indicate. A clear depiction of the essential

steps necessary to complete a text classification workflow are also presented and we cover

the essential steps from the same workflow. Some of these we covered in Chapters 3

and 4, including text wrangling and feature engineering and newer aspects including

supervised machine learning classifiers, model evaluation, and tuning. Finally we put all

these components together to build an end-to-end text classification system. All the code

examples showcased in this chapter are available on the book’s official GitHub repository,

which you can access at https://github.com/dipanjanS/text-analytics- with-

python/tree/master/New-Second-Edition.

Chapter 5 text ClassifiCation

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

277

 What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and

what we mean by classification. The textual data involved here can be anything ranging

from a phrase, a sentence, or a complete document with paragraphs of text that can

be obtained from corpora, blogs, anywhere from the web, or even an enterprise data

warehouse. Text classification is also often called document classification just to cover

all forms of textual content under the term “document”. While the term “document”

can be defined as some form of concrete representation of thoughts or events, which

could be in the form of writing, recorded speech, drawings, or presentations, we use the

term “document” to represent textual data like sentences or paragraphs belonging to the

English language (feel free to extend this to other languages as long as you are able to

parse and process that language!).

Text classification is also often called text categorization. However, we explicitly

use the word “classification” for two reasons. The first reason is because it depicts the

same essence as text categorization, where we want to classify documents. The second

reason is to depict that we are using classification or a supervised machine learning

approach to classify or categorize text. Text categorization can be done in many ways.

We focus explicitly on using a supervised approach using classification. The process of

classification is not restricted to text alone and is used quite frequently in other domains

like science, healthcare, weather, and technology.

 Formal Definition
Now that we have all our background assumptions cleared, we can formally define the

task of text classification and its overall scope. Text or document classification is defined

as the process of assigning text documents into one or more classes or categories,

assuming that we have a predefined set of classes. Documents are textual documents

and each document can contain a sentence or even a paragraph of words. A text

classification system can successfully classify each document to its correct class(es)

based on inherent properties of the document.

Mathematically, we can define it as, given some description and attributes d

for a document D, where d ∈ D, and given a set of predefined classes or categories,

C = {c1, c2, c3, … , cn}. The actual document D can have many inherent properties and

attributes, which lead it to being an entity in a high-dimensional space. Using a subset

of that space with a limited set of descriptions and features depicted by d, we should be

Chapter 5 text ClassifiCation

278

able to successfully assign the original document, D to its correct class Cx using a text

classification system T. This can be represented by T : D → Cx. We talk more about the

text classification system in detail in subsequent sections. Figure 5-1 shows a high-level

conceptual representation of the text classification process.

Figure 5-1. Conceptual overview of text classification

In Figure 5-1, we can see there are several documents that can be assigned to

various categories of food, mobile phones, and movies. Initially, these documents are

all present together, just like a text corpus has various documents in it. Once it goes

through a text classification system, which is represented as a black box, we can see

that each document is assigned to one specific class or category we defined previously.

The documents are just represented by their names in real data; they can contain

descriptions of each product, specific attributes like movie genre, product specifications,

constituents, and much more, which are basically properties that can be used as features

in the text classification system, to make document identification and classification

easier.

 Major Text Classification Variants
There are various types of text classification. We mention two major types that are based

on the type of content that make up the documents. They are as follows.

• Content-based classification

• Request-based classification

Chapter 5 text ClassifiCation

279

These are more like different philosophies behind approaches to classifying text

documents rather than specific technical algorithms or processes. Content-based

classification is the type of text classification where priorities or weights are given to

specific subjects or topics in the text content, which help determine the class of the

document. A conceptual example is that of a book with more than 30% of the content

about food preparation. It can be classified under cooking/recipes. Request-based

classification is influenced based on user requests and is targeted toward specific user

groups and audience. This type of classification is governed by specific policies and

ideals based on user behavior and decisions.

 Automated Text Classification
We have an idea of the definition and scope of text classification. We have also formally

defined text classification conceptually and mathematically, where we talked about

a “text classification system” being able to classify text documents to their respective

categories or classes. Consider several humans going through each document and

classifying it. They would then be a part of the text classification system that we are

talking about. However, that would not scale very well once we had millions of text

documents to be classified in short time intervals. To make the process more efficient

and faster, we can automate the task of text classification, which brings us to automated

text classification. To automate text classification, we use several machine learning

techniques and concepts. There are two main types of machine learning techniques that

are relevant to solving this problem. They are as follows:

• Supervised machine learning

• Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms

like reinforcement learning and semi-supervised learning. We’ll look at supervised

and unsupervised learning algorithms in more detail from both a machine learning

perspective as well as how they can be leveraged in classifying text documents.

Unsupervised learning refers to specific machine learning techniques or algorithms

that do not require any prelabeled training data samples to build a model. The focus

is more on pattern mining and finding latent substructures in the data rather than

predictive analytic’. We usually have a collection of data points, which could be textual or

numeric depending on the problem we are trying to solve. We extract features from each

Chapter 5 text ClassifiCation

280

of the data points using a process known as feature engineering and then we feed the

feature set for each data point into our algorithm and try to extract meaningful patterns

from the data, like trying to group together similar data points using techniques like

clustering or summarizing documents based on topic models.

This is extremely useful in text document categorization and is also called document

clustering, where we cluster documents into groups based on their features, similarity,

and attributes, without training any model on previously labeled data. We discuss

unsupervised learning more in future chapters when we cover topic models, document

summarization, similarity analysis, and clustering.

Supervised learning refers to specific machine learning techniques or algorithms

that are trained on prelabeled data samples, known as training data, and corresponding

training labels/classes. Features are extracted from this data using feature engineering

and each data point has its own feature set and corresponding class/label. The algorithm

learns various patterns for each type of class from the training data. Once this process is

complete, we have a trained model. This model can then be used to predict the class for

future test data samples once we feed their features to the model. Thus, the machine has

actually learned, based on previous training data samples, how to predict the class for

new unseen data samples. There are two major types of supervised learning algorithms,

described as follows:

• Classification: Supervised learning algorithms are known as

classification when the outcomes to be predicted are distinct

categories, thus the outcome variable is a categorical variable in this

case. Examples are news categories and movie genres.

• Regression: Supervised learning algorithms are known as regression

algorithms when the outcome we want to predict is a continuous

numeric variable. Examples are house prices and weather

temperature.

We specifically focus on classification for our problem because the name of the

chapter speaks for itself. We are trying to classify text documents into distinct classes.

We follow supervised learning approaches using different classification models in our

implementations.

Chapter 5 text ClassifiCation

281

 Formal Definition
Now we are ready to mathematically define the process of automated or machine

learning based text classification. Consider we now have a training set of documents

labeled with their corresponding class or category. This can be represented by TS, which

is a set of paired documents and labels, TS = {(d1, c1), (d2, c2), … , (dn, cn)}, where d1, d2, … ,

dn is the list of text documents. Their corresponding labels are c1, c2, … , cn such that

cx ∈ C = {c1, c2, … , cn} where cx denoted the class label for document x and C denotes

the set of all possible distinct classes, any of which can be the class for each document.

Assuming we have our training set, we can define a supervised learning algorithm F

such that, when it is trained on our training dataset TS, we build a classification model or

classifier γ and F(TS) = γ. Thus, the supervised learning algorithm F takes the input set of

(document, class) pairs TS and gives us the trained classifier γ, which is our model. This

process is known as the training process. This model can then take a new, previously

unseen document ND and predict its class cND such that cND ∈ C. This process is known

as the prediction process and can be represented by γ : TD → cND. Thus, we can see that

there are two main stages in the supervised text classification process:

• Training

• Prediction

An important point to remember is that some manually labeled training data

is necessary for supervised text classification so even though we are talking about

automated text classification, to kick start the process, we need some manual effort. Of

course the benefits of this are manifold since, once we have a trained classifier, we can

keep using it to predict and classify new documents with minimal effort and manual

supervision. There are various learning methods or algorithms, which we discuss in

a future section. These learning algorithms are not specific just for text data but are

generic machine learning algorithms that can be applied to various types of data after

due preprocessing and feature engineering. We touch upon several supervised machine

learning algorithms and use them in solving our real-world text classification problem.

These algorithms are usually trained on the training dataset and often an optional

validation set so that the trained model does not overfit to the training data, which

basically means it would then not be able to generalize well and predict properly for

new instances of text documents. The model is often tuned based on several of its

internal parameters (known as hyperparameters) based on the learning algorithm and

Chapter 5 text ClassifiCation

282

by evaluating various performance metrics like accuracy on the validation set or by using

cross-validation, where we split the training dataset into training and validation sets by

random sampling. This is comprised of the training process whose outcome yields a fully

trained model that’s ready to predict. In the prediction stage, we usually have new data

points from the test dataset. We can use them to feed into the model after normalization

and feature engineering and see how well the model is performing by evaluating its

prediction performance.

 Text Classification Task Variants
There are several variants of text classification tasks, based on the number of classes to

predict and the nature of predictions. They are as follows:

• Binary classification

• Multi-class classification

• Multi-label classification

These types of classification are based on the dataset, the number of classes/

categories pertaining to that dataset, and the number of classes that can be predicted

on any data point. Binary classification is when the total number of distinct classes or

categories is two and any prediction can contain either one of those classes. Multi-

class classification is also known as multinomial classification and refers to a problem

where the total number of classes is more than two and each prediction gives one class

or category, which can belong to any of those classes. This this is an extension of the

binary classification problem, where the total number of classes is more than two. Multi-

label classification refers to problems where each prediction can yield more than one

outcome/predicted class for any data point.

 Text Classification Blueprint
Now that we know the basic scope that the automated text classification entails, we

present a blueprint for a complete workflow of building an automated text classifier

system in this section. This consists of a series of steps that must be followed in the

training and testing phases. To build a text classification system, we need to make sure

Chapter 5 text ClassifiCation

283

we have our source of data and retrieve that data so that we can start feeding it to our

system. The following main steps outline a typical workflow for a text classification

system, assuming that we have our dataset already downloaded and ready to be used.

• Prepare train and test datasets (optionally a validation dataset)

• Preprocess and normalize text documents

• Feature extraction and engineering

• Model training

• Model prediction and evaluation

• Model deployment

These are the main steps that are carried out in that order for building a text

classifier. Figure 5-2 shows a detailed workflow for a text classification system with the

main components highlighted in training and prediction.

Figure 5-2. Blueprint for building an automated text classification system

Chapter 5 text ClassifiCation

284

From Figure 5-2, we notice that there are two main boxes called training and

prediction, which are the two main stages involved in building a text classifier. In

general, the dataset that we have is usually divided into two or three splits called the

training, validation (optional), and testing datasets. Notice an overlap of the “Text

Normalization” module and the “Feature Extraction” module in Figure 5-2 for both the

processes. This indicates that no matter which document we want to classify and predict,

it must go through the same series of transformations in the training and prediction

process. Each document in first preprocessed and normalized and then specific features

pertaining to the document are extracted. These processes are always uniform in both

the “training” and “prediction” processes to make sure that our classification model

performs consistently in its predictions.

In the “training” process, each document has its own corresponding class/category,

which was manually labeled or curated beforehand. These training text documents are

preprocessed and normalized in the “Text Normalization” module, giving us clean and

standardized training text documents. They are then passed to the “Feature Extraction”

module, where different feature extraction or engineering techniques are used to extract

meaningful features from the processed text documents. Popular feature extraction

techniques were covered extensively in Chapter 4 and we use some of them in this

chapter! These features are usually numeric arrays or vectors, the reason being that

standard machine learning algorithms work only on numeric vectors and can’t work on

raw unstructured data like text. Once we have our features, we select one or more than

one supervised machine learning algorithms and train our model.

Training the model involves feeding the feature vectors from the documents and the

corresponding labels such that the algorithm can learn various patterns corresponding

to each class/category and can reuse this knowledge to predict classes for future new

documents. Often an optional validation dataset is used to evaluate the performance

of the classification algorithm to make sure it generalizes well with the data during

training. A combination of these features and the machine learning algorithm yields

a classification model, which is the end artifact or output from the “training” process.

Often this model is tuned using various model parameters using a process called

hyperparameter tuning to build a better performing optimal model. We explore this

shortly during our hands-on examples.

The “prediction” process involves trying to either predict classes for new documents

or evaluate how predictions are working on new, previously unseen, test data. The test

dataset documents go through the same process of normalization and feature extraction

and engineering. Then, the test document feature vectors are passed to the trained

Chapter 5 text ClassifiCation

285

“classification model,” which predicts the possible class for each of the documents based

on previously learned patterns (no training happens here—maybe later if you have a

model that learns from feedback). If you have the true class labels for the documents that

were manually labeled, you can evaluate the prediction performance of the model by

comparing the true labels and the predicted labels using various metrics like accuracy,

precision, recall, and F1-score, to name a few. This would give you an idea of how well

the model performs based on its predictions for new documents.

Once we have a stable and working model, the last step is to deploy the model,

which usually involves saving the model and its necessary dependencies and deploying

it as a service, API, or as a running program. It predicts categories for new documents

as a batch job or based on serving user requests if accessed as a web service. There are

various ways to deploy machine learning models and this usually depends on how you

would want to access it later. We now discuss each of the main modules and components

from this blueprint and implement/reuse these modules so that we can integrate them

to build a real-world automated text classifier.

 Data Retrieval
Obviously, the first step in any data science or machine learning pipeline is to access

and retrieve the data necessary for our analysis and for building machine learning

models. For this, we use the very popular but non-trivial 20 Newsgroups dataset, which

is available for download directly using Scikit-Learn. The 20 Newsgroups dataset

comprises around 18,000 newsgroups posts spread across 20 different categories or

topics, thus making it a 20-class classification problem, which is definitely non-trivial as

compared to predicting spam in emails. Remember, the higher the number of classes,

the more complex it gets to build an accurate classifier.

Details pertaining to the dataset can be found at http://scikit-learn.org/0.19/

datasets/twenty_newsgroups.html and it is recommended to remove the headers,

footers, and quotes from the text documents to prevent the model from overfitting or

not generalizing well due to certain specific headers or email addresses. Thankfully,

Scikit-Learn recognizes this problem and the functions that load the 20 Newsgroups data

provide a parameter called remove, telling it what kinds of information to strip out of

each file. The remove parameter should be a tuple containing any subset of ('headers',

'footers', 'quotes'), telling it to remove headers, signature blocks, and quotation

blocks, respectively.

Chapter 5 text ClassifiCation

http://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
http://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

286

We will also remove documents that are empty or have no content after removing

these three items during the data preprocessing stage, because it would be pointless to

try to extract features from empty documents. Let’s start by loading the necessary dataset

and defining functions for building the training and testing datasets. We load the usual

dependencies including the text preprocessing and normalization module we built in

Chapter 3, called text_normalizer.

from sklearn.datasets import fetch_20newsgroups

import numpy as np

import text_normalizer as tn

import matplotlib.pyplot as plt

import pandas as pd

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

We now leverage the helper function from Scikit-Learn to fetch the required data.

Once we get the data, we transform this data into an easy-to-use dataframe. See Figure 5- 3.

data = fetch_20newsgroups(subset='all', shuffle=True,

 remove=('headers', 'footers', 'quotes'))

data_labels_map = dict(enumerate(data.target_names))

Downloading 20news dataset. This may take a few minutes.

Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)

building the dataframe

corpus, target_labels, target_names = (data.data, data.target,

 [data_labels_map[label] for label in

data.target])

data_df = pd.DataFrame({'Article': corpus, 'Target Label': target_labels,

'Target Name': target_names})

print(data_df.shape)

data_df.head(10)

(18846, 3)

Chapter 5 text ClassifiCation

287

From this dataset, we can see that each document has some textual content and the

label can be denoted by a specific number, which maps to a newsgroup category name.

Some data samples are depicted in Figure 5-3.

 Data Preprocessing and Normalization
Before, we preprocess and normalize our documents, let’s first take a look at potential

empty documents in our dataset and remove them.

total_nulls = data_df[data_df.Article.str.strip() == "].shape[0]

print("Empty documents:", total_nulls)

Empty documents: 515

We can now do use a simple pandas filter operation and remove all the records with

no textual content in the article as follows.

data_df = data_df[~(data_df.Article.str.strip() == ")]

data_df.shape

(18331, 3)

Figure 5-3. The 20 Newsgroups dataset

Chapter 5 text ClassifiCation

288

This is neat! Now we need to think about the general text preprocessing or wrangling

stage. This involves cleaning, preprocessing, and normalizing text to bring text

components like sentences, phrases, and words to some standard format. This enables

standardization across our document corpus, which helps in building meaningful

features and helps reduce noise, which can be introduced due to many factors like

irrelevant symbols, special characters, XML and HTML tags, and so on. We have

already talked about this in detail in Chapter 3. However, just for a brief recap, the main

components in our text normalization pipeline are described as follows. Remember they

are all available as a part of the text_normalizer module, which is present in the text_

normalizer.py file.

• Cleaning text: Our text often contains unnecessary content, like

HTML tags, which do not add much value when analyzing sentiment.

Hence, we need to make sure we remove them before extracting

features. The BeautifulSoup library does an excellent job at providing

necessary functions for this. Our strip_html_tags(...) function

cleans and strips out HTML code.

• Removing accented characters: In our dataset, we are dealing

with reviews in the English language so we need to make sure that

characters with any other format, especially accented characters, are

converted and standardized into ASCII characters. A simple example

is converting é to e. Our remove_accented_chars(...) function

helps in this respect.

• Expanding contractions: In the English language, contractions are

basically shortened versions of words or syllables. These shortened

versions of existing words or phrases are created by removing specific

letters and sounds. More often than not, vowels are removed from

the words. Examples include do not to don’t and I would to I’d.

Contractions pose a problem in text normalization because we have

to deal with special characters like apostrophes and we also have to

convert each contraction to its expanded, original form. The expand_

contractions(...) function uses regular expressions and various

contractions mapped in the contractions.py module to expand all

contractions in our text corpus.

Chapter 5 text ClassifiCation

289

• Removing special characters: Another important task in text

cleaning and normalization is to remove special characters and

symbols that often add to the extra noise in unstructured text. Simple

regexes can be used to achieve this. Our function remove_special_

characters(...) helps remove special characters. In our code, we

have retained numbers but you can also remove numbers if you do

not want them in your normalized corpus.

• Stemming or lemmatization: Word stems are usually the base

form of possible words that can be created by attaching affixes,

like prefixes and suffixes, to the stem to create new words. This is

known as inflection. The reverse process of obtaining the base form

of a word is known as stemming. A simple example is “watches,”

“watching,” and “watched,” which have the word root stem “watch”

as the base form. The NLTK package offers a wide range of stemmers

like the PorterStemmer and LancasterStemmer. Lemmatization

is very similar to stemming, where we remove word affixes to get

to the base form of a word. However, the base form in this case

is known as the root word but not the root stem. The difference

being that the root word is always a lexicographically correct word

(present in the dictionary) but the root stem may not be correct.

We use lemmatization only in our normalization pipeline to retain

lexicographically correct words. The function lemmatize_text(...)

helps us in that respect.

• Removing stopwords: Words that have little or no significance,

especially when constructing meaningful features from text, are

known as stopwords. These are usually words that end up having the

maximum frequency if you do a simple term or word frequency in a

document corpus. Words like “a,” “an,” “the,” and so on are stopwords.

There is no universal stopword list but we use a standard English

language stopwords list from NLTK. You can add your own domain

specific stopwords if needed. The function remove_stopwords(...)

helps remove stopwords and retain words having the most

significance and context in a corpus.

Chapter 5 text ClassifiCation

290

We use all these components and tie them together in the function called

normalize_corpus(...), which can be used to take a document corpus as input

and return the same corpus with cleaned and normalized text documents. This is

already available in our text normalization module. Let’s put this to the test now!

See Figure 5-4.

import nltk

stopword_list = nltk.corpus.stopwords.words('english')

just to keep negation if any in bi-grams

stopword_list.remove('no')

stopword_list.remove('not')

normalize our corpus

norm_corpus = tn.normalize_corpus(corpus=data_df['Article'], html_stripping=True,

 contraction_expansion=True, accented_char_removal=True,

 text_lower_case=True, text_lemmatization=True,

 text_stemming=False, special_char_removal=True,

 remove_digits=True, stopword_removal=True,

 stopwords=stopword_list)

data_df['Clean Article'] = norm_corpus

view sample data

data_df = data_df[['Article', 'Clean Article', 'Target Label', 'Target Name']]

data_df.head(10)

Figure 5-4. The 20 Newsgroups dataset after text preprocessing

Chapter 5 text ClassifiCation

291

We now have a nice preprocessed and normalized corpus of articles. But wait, it’s not

over yet! There might have been some documents that, after preprocessing, might end

up being empty or null. We use the following code to test this assumption and remove

these documents from our corpus.

data_df = data_df.replace(r'^(\s?)+$', np.nan, regex=True)

data_df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 18331 entries, 0 to 18845

Data columns (total 4 columns):

Article 18331 non-null object

Clean Article 18304 non-null object

Target Label 18331 non-null int64

Target Name 18331 non-null object

dtypes: int64(1), object(3)

memory usage: 1.3+ MB

We definitely have some null articles after our preprocessing operation. We can

safely remove these null documents using the following code.

data_df = data_df.dropna().reset_index(drop=True)

data_df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 18304 entries, 0 to 18303

Data columns (total 4 columns):

Article 18304 non-null object

Clean Article 18304 non-null object

Target Label 18304 non-null int64

Target Name 18304 non-null object

dtypes: int64(1), object(3)

memory usage: 572.1+ KB

We can now use this dataset for building our text classification system. Feel free

to store the dataset using the following code if needed so you don’t need to run the

preprocessing step every time.

data_df.to_csv('clean_newsgroups.csv', index=False)

Chapter 5 text ClassifiCation

292

 Building Train and Test Datasets
To build a machine learning system, we need to build our models on training data and

then test and evaluate their performance on test data. Hence, we split our dataset into

train and test datasets. We take a train dataset : test dataset split of 67%/33% of the total

data.

from sklearn.model_selection import train_test_split

train_corpus, test_corpus, train_label_nums, test_label_nums, train_label_

names, test_label_names = train_test_split(np.array(data_df['Clean Article']),

 np.array(data_df['Target Label']),

 np.array(data_df['Target Name']),

 test_size=0.33, random_state=42)

train_corpus.shape, test_corpus.shape

((12263,), (6041,))

You can also observe the distribution of the various articles by the different

newsgroup categories using the following code. We can then get an idea of how many

documents will be used to train the model and how many are used to test the model. See

Figure 5-5.

from collections import Counter

trd = dict(Counter(train_label_names))

tsd = dict(Counter(test_label_names))

(pd.DataFrame([[key, trd[key], tsd[key]] for key in trd],

 columns=['Target Label', 'Train Count', 'Test Count'])

.sort_values(by=['Train Count', 'Test Count'],

 ascending=False))

Chapter 5 text ClassifiCation

293

We now briefly cover the various feature engineering techniques, which we use in

this chapter to build our text classification models.

 Feature Engineering Techniques
There are various feature extraction or feature engineering techniques that can be

applied on text data, but before we jump into then, let’s briefly recap what we mean by

features, why we need them, and how they are useful. In a dataset, there are typically

many data points, which are usually the rows of the dataset, and the columns are various

features or properties of the dataset with specific values for each row or observation.

Figure 5-5. Distribution of train and test articles by the 20 newsgroups

Chapter 5 text ClassifiCation

294

In machine learning terminology, features are unique measurable attributes or

properties for each observation or data point in a dataset. Features are usually numeric

in nature and can be absolute numeric values or categorical features that can be

encoded as binary features for each category in the list using a process called one-hot

encoding. They can be represented as distinct numerical entities using a process called

label-encoding. The process of extracting and selecting features is both an art and a

science and this process is called feature extraction or feature engineering.

Feature engineering is very important and is often known as the secret sauce to

creating superior and better performing machine learning models. Extracted features are

fed into machine learning algorithms for learning patterns that can be applied on future

new data points for getting insights. These algorithms usually expect features in the

form of numeric vectors because each algorithm is at heart a mathematical operation

of optimization and minimizing loss and error when it tries to learn patterns from data

points and observations. Hence, with textual data comes the added challenge of figuring

out how to transform and extract numeric features from textual data.

We covered state-of-the-art feature engineering techniques for text data in detail in

Chapter 4. In the following sections we briefly recap the methods used in this chapter.

But for a deep dive, I recommend readers check out Chapter 4.

 Traditional Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve

models belonging to a family of models, popularly known as the Bag of Words model

in general. While they are effective methods for extracting features from text, due to the

inherent nature of the model being just a bag of unstructured words, we lose additional

information like the semantics, structure, sequence, and context around nearby words in

each text document.

• Bag of Words (term frequency) model: The Bag of Words model

represents each text document as a numeric vector where each

dimension is a specific word from the corpus and the value could be

its frequency in the document, occurrence (denoted by 1 or 0),

or even weighted values. The model’s name is such because

each document is represented literally as a bag of its own words,

disregarding word orders, sequences, and grammar.

Chapter 5 text ClassifiCation

295

• Bag of N-Grams model: An N-gram is basically a collection of word

tokens from a text document such that these tokens are contiguous

and occur in a sequence. Bi-grams indicate n-grams of order 2 (two

words), tri-grams indicate n-grams of order 3 (three words), and

so on. The Bag of N-Grams model is just an extension of the Bag of

Words model so we can also leverage N-gram based features.

• TF-IDF model: TF-IDF stands for Term Frequency-Inverse

Document Frequency and it’s a combination of two metrics,

term frequency (TF) and inverse document frequency (IDF). This

technique was originally developed as a metric for for showing

search engine results based on user queries and has become part of

information retrieval and text feature extraction.

 Advanced Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve models

belonging to a family of models popularly known as the Bag of Words model. This

includes term frequencies, TF-IDF (term frequency-inverse document frequency),

N-grams, and so on. While they are effective methods for extracting features from text,

there are severe limitations where we lose additional information like the semantics,

structure, sequence, and context around nearby words in each text document. This

forms as enough motivation for us to explore more sophisticated models that can

capture this information and give us features that are vector representation of words,

popularly known as embeddings. We use predictive methods, like Neural Network based

Language Models, which try to predict words from its neighboring words by looking

at word sequences in the corpus. In the process, it learns distributed representations

giving us dense word embeddings. These models are commonly also known as word

embedding models.

• Word2Vec model: This model was created by Google in 2013 and is a

predictive deep learning based model to compute and generate high

quality, distributed, and continuous dense vector representations

of words that capture contextual and semantic similarity. You can

usually specify the size of the word embedding vectors and the total

number of vectors is essentially the size of the vocabulary. This

makes the dimensionality of this dense vector space much lower

Chapter 5 text ClassifiCation

296

than the high-dimensional sparse vector space built using traditional

Bag of Words models. There are two different model architectures

that can be leveraged by Word2Vec to create these word embedding

representations. These include The Continuous Bag of Words

(CBOW) model and the Skip-Gram model.

• GloVe model: The GloVe model stands for Global Vectors. It’s an

unsupervised learning model that can be used to obtain dense word

vectors, similar to Word2Vec. However, the technique is different

and training is performed on an aggregated global word-word co-

occurrence matrix, giving us a vector space with meaningful sub-

structures.

• FastText model: The FastText model was introduced by Facebook

in 2016 as an extension and supposedly an improvement of the

vanilla Word2Vec model. It’s based on the original paper entitled

“Enriching Word Vectors with Subword Information” by Mikolov

et al., which is an excellent read to gain an in-depth understanding of

how this model works. Overall, FastText is a framework for learning

word representations and performing robust, fast, and accurate

text classifications. The Word2Vec model typically ignores the

morphological structure of each word and considers a word a single

entity. The FastText model considers each word a Bag of Character

n-grams. This is also called a subword model in the paper.

This should give us enough perspective into the types of feature engineering

techniques that we use in our articles to get effective feature representation in the

form of structured numeric vectors from unstructured textual data. In the next section,

we take a quick conceptual glance at some of the common supervised learning/

classification models that we use later to build our text classification system.

 Classification Models
Classification models are supervised machine learning algorithms that are used to

classify, categorize, or label data points based on what it has observed in the past. Each

classification algorithm is a supervised learning algorithm so it requires training data.

This training data consists of a set of training observations where each observation

Chapter 5 text ClassifiCation

297

is a pair that consists of an input data point, which is usually a feature vector like we

observed earlier, and a corresponding output outcome for that input observation. There

are three stages that classification algorithms go through during the modeling phase:

• Training

• Evaluation

• Tuning

Training is the process where the supervised learning algorithm tries to infer

patterns out of the training data so that it can identify which patterns lead to a specific

outcome. These outcomes are often known as the class labels/class variables/response

variables. We usually carry out the process of feature extraction or feature engineering to

derive meaningful features from the raw data before training. These feature sets are fed

to an algorithm of our choice, which then tries to identify patterns from these features

and their corresponding outcomes. The result of this is an inferred function known as a

model or a classification model. This model is expected to be generalized enough from

learning patterns in the training set so that it can predict the classes or outcomes for new

data points in the future.

Evaluation involves trying to test the prediction performance of our model to see

how well it has trained and learned on the training dataset. For this, we use a validation

dataset and test the performance of our model by predicting on that dataset and testing

our predictions against the actual class labels, also called the ground truth. We also often

use cross validation where the data is divided into folds and a chunk of it is used for

training and the remaining is used to validate the trained model.

A point to remember is that we also tune the model based on the validation results

to get to an optimal configuration, which yields the maximum accuracy and minimum

error. We also evaluate our model against a holdout or test dataset, but we never tune

our model against that dataset because that would lead to the model being biased or

overfit against very specific features from the test dataset. The holdout or test dataset is

somewhat of a representative sample of what new real data samples might look like, for

which the model will generate predictions and how it might perform on these new data

samples. We look at various metrics, which are typically used to evaluate and measure

model performance in a future section.

Tuning is also known as hyperparameter tuning or optimization, where we focus

on trying to optimize a model to maximize its prediction power and reduce errors.

Each model is at heart a mathematical function, which has several parameters

Chapter 5 text ClassifiCation

298

determining model complexity, learning capability, and so on. These are known as

hyperparameters because they cannot be learned directly from data and must be set

prior to running and training the model. Hence, the process of choosing an optimal

set of model hyperparameters such that the performance of the model yields good

prediction accuracy is known as model tuning and we can carry it out in various ways,

like randomized search and grid search. We look at some model tuning aspects during

our hands-on implementations.

Typically, there are various classification algorithms but we will not be venturing into

each algorithm in detail since the scope of this chapter is related to text classification and

this is not a book only focusing on machine learning. However, we will touch upon a few

algorithms, which we use shortly when building our classification models.

• Multinomial Naïve Bayes

• Logistic regression

• Support vector machines

• Random forest

• Gradient boosting machine

There are also several other classification algorithms; however, these are some of

the most common and popular algorithms for text data. The last two models mentioned

in this list are ensemble techniques, which use a collection or ensemble of models to

learn and predict outcomes, including random forests and gradient boosting. Besides

these, deep learning based techniques have also recently become popular which use

multiple hidden layers and combine several neural network models to build a complex

classification model. We now briefly look at some basic concepts surrounding these

algorithms before using them for our classification problem.

 Multinomial Naïve Bayes
This is a special case of the popular Naïve Bayes algorithm used specifically for

prediction and classification tasks where we have more than two classes. Before looking

at multinomial Naïve Bayes, let’s look at the definition and formulation of the Naïve

Bayes algorithm. The Naïve Bayes algorithm is a supervised learning algorithm that

puts into action the very popular Bayes theorem. However there is a “naïve” assumption

here that each feature is completely independent of the others. Mathematically, we can

Chapter 5 text ClassifiCation

299

formulate this as, given a response class variable y and a set of n features in the form of a

feature vector, {x1, x2, … , xn} and using the Bayes theorem, we can denote the probability

of the occurrence of y given the features as follows:

P y x x x
P y P x x x y

P x x xn
n

n
1 2

1 2

1 2

, , ,
, , ,

, , ,
¼() = ()´ ¼()

¼()

under the assumption that

P(xi|y, x1, x2, … , xi − 1, xi + 1, … , xn) = P(xi|y)

and for all i we can represent this as follows:

P y x x x
P y P x y

P x x xn
i

n

i

n
1 2

1

1 2

, , ,
, , ,

¼() = ()´ ()
¼()
=Õ

where i ranges from 1 to n. In simple terms, this can be written as follows:

posterior

prior likelihood

evidence
=

´

and now since P(x1, x2, … , xn) is constant, the model can be expressed as follows:

P y x x x P y P x yn
i

n

i1 2
1

, , ,¼() ()´ ()
=
Õa

This means that under the previous assumptions of independence among the

features where each feature is conditionally independent of every other feature, the

conditional distribution over the class variable to be predicted, y, can be represented

using the following mathematical equation as follows:

P y x x x
Z
P y P x yn

i

n

i1 2
1

1
, , ,¼() = ()´ ()

=
Õ

where the evidence measure, Z = p(x), is a constant scaling factor dependent on

the feature variables. From this equation, we can build the Naïve Bayes classifier by

combining it with a rule known as the MAP decision rule, which stands for maximum

Chapter 5 text ClassifiCation

300

a posteriori. Going into the statistical details would be impossible in the current scope

but by using it, the classifier can be represented as a mathematical function, which can

assign a predicted class label ŷ Ck= for some k using the following representation:

ˆ argmaxy P C P x C
k K

k
i

n

i k= ()´ ()
Î ¼{ } =

Õ
1 2 1, , ,

This classifier is often said to be simple, quite evident from its name and because of

several assumptions that we make about our data and features that might not be so in

the real world. Nevertheless, this algorithm still works remarkably well in many use cases

related to classification, including multi-class document classification, spam filtering,

and so on. They can train really fast compared to other classifiers and work well even

when we do not have sufficient training data. Models often do not perform well when

they have a lot of features and this phenomenon is known as curse of dimensionality.

Naïve Bayes takes care of this problem by decoupling the class variable related

conditional feature distributions, thus leading to each distribution being independently

estimated as a single dimension distribution.

Multinomial Naïve Bayes is an extension of the algorithm for predicting and

classifying data points, where the number of distinct classes or outcomes are more

than two. In this case, the feature vectors are usually assumed to be word counts from

the bag of words model, but TF-IDF-based weights also work. One limitation is that

negative weight based features can’t be fed into this algorithm. This distribution can be

represented as py = {py1, py2, … , pyn} for each class label y and the total number of features

is n which could be represented as the total vocabulary of distinct words or terms in text

analytics. From the equation, pyi = P(xi|y) represents the probability of feature i in any

observation sample that has an outcome or class y. The parameter py can be estimated

with a smoothened version of maximum likelihood estimation (with relative frequency

of occurrences) and represented as follows:

p̂

F

F nyi
yi

y

=
+
+
a
a

where F xyi ix TD
=

Îå is the frequency of occurrence for the feature i in a sample for class

label y in our training dataset TD and F Fy yii

TD
=

=å 1
 is the total frequency of all features

for the class label y. There is some amount of smoothening done with the help of priors

Chapter 5 text ClassifiCation

301

α ≥ 0, which accounts for the features that are not present in the learning data points and

helps get rid of zero probability related issues. There are some specific settings for this

parameter, which are used quite often. The value of α = 1 is known as Laplace smoothing

and α < 1 is known as Lidstone smoothing. The Scikit-Learn library provides an excellent

implementation for Multinomial Naïve Bayes in the class MultinomialNB, which we

leverage when we build our text classifier later. Remember not to set the α value to be

too high blindly because this can lead the model to assume wrongly that some features

that are not present are important features for predicting specific classes due to excessive

smoothing.

 Logistic Regression
The logistic regression model is actually a statistical model developed by statistician

David Cox in 1958. It is also known as the logit or logistic model since it uses the

logistic (popularly also known as sigmoid) mathematical function to estimate the

parameter values. These are the coefficients of all our features such that the overall loss

is minimized when predicting the outcome—in this case, the newsgroup categories.

However, we don’t focus on errors but more about maximizing the likelihood of the

predicted values to the observed values using Maximum-Likelihood Estimation (MLE).

Considering a binary classification problem of predicting two classes, a 0 or a 1, in

the logistic model, the log-odds (the logarithm of the odds) for the class/category labeled

as 1 are basically the equation of the linear regression model (linear combination of one

or more independent features, which can be categorical or continuous). However, we

need to predict discrete classes or categories. Thus, the corresponding probability of the

class labeled 1 can vary between 0 and 1, depicting the confidence of the prediction. The

function that helps us convert the log-odds to probability is the logistic function. The

standard sigmoid or logistic function can be depicted mathematically by this formula:

1

1+ -e x

Where e is the exponent (Euler’s number) and x indicates the typical equation,

which can be derived from the linear regression equation where we try to estimate

the coefficients of our features. This function typically looks like an S-shaped curve, as

depicted in Figure 5-6.

Chapter 5 text ClassifiCation

302

The standard unit of measurement for the log-odds scale is called a logit, from

logistic unit, hence we have the alternative names for this model. To understand how

this model works, you need to dive into the math and the intent of this book is not to give

a course in machine learning. However, we briefly cover this for our more math-oriented

folks! Consider a standard multiple linear regression model, depicted as follows:

y = β0 + β1x1 + β2x2 + … + βnxn

Such that {x1, x2, … , xn} are our features and we are trying to estimate the coefficients,

{β1, β2, … , βn}. Considering we need to predict the categorical classes, we can represent

this as the log-odds, as follows using the logit of the probability p.

logodds = logit(p) = β0 + β1x1 + β2x2 + … + βnxn

This means that if p is the probability of predicting a specific class, the odds of

that is
p

p1-
, which is basically the ratio of the favorable outcomes to the unfavorable

outcomes. Likewise, the logit of p is basically the log-odds. Thus, we can mathematically

derive this as follows:

logit p
p

p
x x xn n() =

-
æ

è
ç

ö

ø
÷ = + + +×××+log

1 0 1 1 2 2b b b b

Figure 5-6. The standard sigmoid or logistic function

Chapter 5 text ClassifiCation

303

If we want to get to the class probability values that the logistic regression model

outputs for us, we can derive the following equation, which is the heart of the logistic

regression model:

p
e x x xn n

=
+ - + + +×××+()

1

1 0 1 1 2 2b b b b

Finally, we can use MLE to optimize and estimate the optimal coefficients for

each feature, which helps in maximizing the likelihood function. In Scikit-Learn, the

LogisticRegression model can be leveraged to use the logistic regression model

for classification. The solvers implemented in the LogisticRegression class are

"liblinear", "newton-cg", "lbfgs", "sag", and "saga". Each of them has its own

distinct implementations. In the case of multi-class classification, just like in our

problem, the training algorithm uses the one-vs-rest (OvR) scheme if the multi_class

option is set to ovr and uses the cross-entropy loss if the multi_class option is set to

multinomial.

 Support Vector Machines
In machine learning, support vector machines, known popularly as SVMs, are

supervised learning algorithms. They are used for classification, regression, novelty

and anomaly, and outlier detection. Considering a binary classification problem, if we

have training data such that each data point or observation belongs to a specific class,

the SVM algorithm can be trained based on this data such that it can assign future data

points into one of the two classes. This algorithm represents the training data samples

as points in space such that points belonging to either class can be separated by a wide

gap between them (hyperplane) and the new data points to be predicted are assigned

classes based on which side of this hyperplane they fall into. This process is for a typical

linear classification process. However, SVM can also perform non-linear classification

by an interesting approach known as a kernel trick, where kernel functions are used to

operate on high-dimensional feature spaces that are non-linear separable. Usually, inner

products between data points in the feature space help achieve this.

The SVM algorithm takes in a set of training data points and constructs a hyperplane

of a collection of hyperplanes for a high-dimensional feature space. The larger the

margins of the hyperplane, the better the separation. This leads to lower generalization

errors of the classifier. Let’s represent this formally and mathematically. Considering

Chapter 5 text ClassifiCation

304

a training dataset of n data points

x y x yn n1 1, ,() ¼ (), , such that the class variable

yi ∈ {−1, 1} where each value indicates the class corresponding to the point

xi . Each data

point

xi is a feature vector. The objective of the SVM algorithm is to find the max-margin

hyperplane which separates the set of data points having class label of yi = 1 from the set

of data points having class label yi = − 1 so that the distance between the hyperplane

and sample data points from either class nearest to it is maximized. These sample data

points are known as the support vectors. Figure 5-7 shows how the vector space with the

hyperplane looks.

From Figure 5-7, you can clearly see the hyperplane and the support vectors. The

hyperplane can be defined as the set of points

x which satisfy w x b
�� �
× + = 0 , where

w is

the normal vector to the hyperplane and
b

w
�� ��� gives us the offset of the hyperplane from

the origin to the support vectors highlighted in Figure 5-7. There are two main types of

margins that help in separating the data points belonging to the different classes.

Figure 5-7. Two-class SVM depicting hyperplane and support vectors

Chapter 5 text ClassifiCation

305

When the data is linearly separable, like in Figure 5-7, we can have hard margins,

which are basically represented by the two parallel hyperplanes depicted by the dotted

lines. This helps in separating the data points belonging to the two different classes. This

is done by taking into account that the distance between them is as large as possible.

The region bounded by these two hyperplanes forms the margin with the max-margin

hyperplane being in the middle. These hyperplanes have the equations w x b
�� �
× + =1

and w x b
�� �
× + = -1 .

Often, the data points are not linearly separable, for which we can use the hinge loss

function, which can be represented as max 0 1, - × +()()y w x bi i

�� �
. In fact, the Scikit-Learn

implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier, where we

use the hinge loss function (set by default) to optimize and build the model. This loss

function helps us get the soft margins and is often known as a soft-margin SVM. You

can also use different kernel functions to convert the existing feature space into an even

higher dimensional feature space, where the data can be separated linearly. This is

popularly known as the kernel trick in SVM! However, we don’t recommend this a lot for

text data problems since you already deal with a huge number of dimensions right from

the start.

For a multi-class classification problem, if we have n classes, for each class a binary

classifier is trained and learned that helps is separating between each class and the

other n-1 classes. During prediction, the scores (distances to hyperplanes) for each

classifier are computed and the maximum score is chosen for selecting the class label.

The stochastic gradient descent is often used for minimizing the loss function in SVM

algorithms. Figure 5-8 shows how three classifiers are trained in total for a three-class

SVM problem over the very popular iris dataset. This figure is built using a Scikit-Learn

model and is obtained from their official documentation, available at http://scikit-

learn.org/.

Chapter 5 text ClassifiCation

http://scikit-learn.org/
http://scikit-learn.org/

306

From Figure 5-8, you can clearly see that a total of three SVM classifiers have been

trained for each of the three classes. They are combined for the final predictions so that

data points belonging to each class can be labeled correctly. Thus, multi-class support is

handled according to a one-vs-the-rest scheme, similar to the logistic regression model.

 Ensemble Models
Ensemble models are essentially models or meta-estimators that are literally made up of

other models or estimators. These sub-models are models that are simple estimators and may

not be able to make accurate predictions to the extent of what you get when you combine

several of these estimators. In the case of random forest, the sub-models are decision trees.

Typically, random forests train many decision trees and combine them to generate a single

prediction. There are a wide variety of ensemble models. We briefly mention two categories

since we will be covering an example from each of these categories shortly.

• Bagging: A very popular ensemble modeling technique. In bagging,

you take subsets of the data (bootstrap samples typically) and train

a model on each subset in parallel. Then the subsets are allowed to

simultaneously vote on the outcome and the final outcome is usually

an average aggregation. The random forest model is perhaps the

most popular example of a bagging model.

Figure 5-8. Multi-class SVM on three classes (courtesy: scikit-learn.org)

Chapter 5 text ClassifiCation

http://scikit-learn.org

307

• Boosting: Another ensemble technique where, rather than building

multiple models in parallel like with bagging, you use sequential

modeling and try to improve one model from the mistakes of the

previous model! Boosting typically uses the output of one model as

an input into the next in a form of sequential processing. Gradient

boosting machines is one of the most popular boosting models.

 Random Forest
Decision trees are a family of supervised machine learning algorithms that can represent

and interpret sets of rules automatically from the underlying data. They use metrics like

information gain and gini-index to build the tree. However, a major drawback of decision

trees is that since they are non-parametric, the more data there is, greater the depth of

the tree. We can end up with really huge and deep trees that are prone to overfitting. The

model might work really well on training data, but instead of learning, it just memorizes

all the training samples and builds very specific rules to them. Hence, it performs really

poorly on the test data. Random forests try to tackle this problem.

A random forest is a meta-estimator or an ensemble model that fits a number of

decision tree classifiers on various sub-samples of the dataset and uses averaging to

improve the predictive accuracy and control over-fitting. The sub-sample size is always

the same as the original input sample size, but the samples are drawn with replacement

(bootstrap samples). In random forests, all the trees are trained in parallel (bagging

model/bootstrap aggregation). Besides this, each tree in the ensemble is built from a

sample drawn with replacement (i.e., a bootstrap sample) from the training set. Also,

when splitting a node during the construction of the tree, the split that is chosen is no

longer the best split among all features. Instead, the split that is picked is the best split

among a random subset of the features. Thus the randomness introduced in a random

forest is both due to random sampling of data and random selection of features when

splitting nodes in each tree. Hence, due to this randomness, the bias of the forest

usually slightly increases (with respect to the bias of a single non-random decision tree).

However, due to averaging, the overall variance of the model decreases significantly as

compared to the increase in bias and hence it gives us an overall better model.

When building a random forest, you can set specific model parameters for both

the base decision trees and the overall forest. For the trees, you usually have the same

parameters as a normal decision tree model like the tree depth, number of leaves,

Chapter 5 text ClassifiCation

308

number of features in each split, samples per leaf, criteria for the node splits, information

gain, and gini impurity. For the forest, you can tune the total number of trees needed, the

number of features to be used per tree, and so on.

 Gradient Boosting Machines
Gradient boosting machines, popularly known as GBMs, can be used for regression

and classification. Typically, GBMs builds an additive model in a forward stage-wise

sequential fashion; they allow for the optimization of arbitrary differentiable loss

functions. GBMs can usually work on any combination of models (weak learners)

and loss functions. Scikit-Learn uses GBRTs (Gradient Boosted Regression Trees),

which are generalized boosting models that can be applied to arbitrary differentiable

loss functions. The beauty of this model is that is accurate and can be used for both

regression and classification problems. GBRT considers additive models that can be

mathematically represented as follows:

F x h x
m

M

m m() = ()
=
å

1

g

Where hm(x) can be defined as the base models or weak learners—in this case the

decision trees. Similar to other boosting algorithms, GBRT builds the additive model

in forward stage wise sequential manner. Mathematically, this can be represented as

follows:

Fm(x) = Fm − 1(x) + γmhm(x)

At each stage, the next decision tree hm(x) is chosen to minimize the loss function L

given the previous decision tree model Fm − 1 and its fit Fm − 1(xi). This can be represented

as follows:

F x F x L y F x h xm m
h

i

n

i m i() = () + () + ()()-
=

-å1
1

1argmin ,

Typically, decision trees are used as the base models and we end up minimizing the

residuals (regression trees) or the negative log likelihood (classification trees).

Chapter 5 text ClassifiCation

309

There are a lot of resources and books dedicated entirely to supervised machine

learning and classification. We encourage readers to check them out to gain more

in-depth knowledge into how these techniques work and how they can be applied to

various problems in analytics. We also recommend readers check out the latest state-of-

the-art ensemble models, like XGBoost, CatBoost, and LightGBM.

 Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics

lifecycle, but it’s even more important to know how well these models are performing.

Performance of classification models is usually based on how well they are predicting

outcomes for new data points. Usually this performance is measured against a test or

holdout dataset, which consists of data points that were not used to influence or train the

classifier in any way. This test dataset has several observations and their corresponding

labels. We extract features in the same way as when training the model. These features

are fed to the already trained model and we obtain predictions for each data point. These

predictions are then matched against the actual labels to see how well or how accurately

the model has predicted. There are several metrics to determine a model’s prediction

performance. We mainly focus on the following metrics.

• Accuracy

• Precision

• Recall

• F1-score

Let’s take a classic example of the very popular Wisconsin Diagnostic Breast Cancer

dataset. This dataset has 30 attributes or features and a corresponding label for each

data point (breast mass) depicting if it has cancer (malignant: label value 1) or no cancer

(benign: label value 0). Let’s assume we already have this data and will be building

a basic logistic regression model and evaluating it. We take the assumption that we

have 398 observations in our train dataset and 171 observations in our test dataset. We

will be leveraging a nifty module we have created for model evaluation. It is named

model_evaluation_utils and you can find it along with the code files and notebooks for

this chapter. We recommend you check out the code, which leverages the Scikit-Learn

metrics module to compute most of the evaluation metrics and plots.

Chapter 5 text ClassifiCation

310

 Confusion Matrix
A confusion matrix is one of the most popular ways to evaluate a classification model.

Although the matrix by itself is not a metric, the matrix representation can be used

to define a variety of metrics, all of which become important in some specific case or

scenario. A confusion matrix can be created for both a binary classification as well as a

multi-class classification model.

A confusion matrix is created by comparing the predicted class label of a data point

with its actual class label. This comparison is repeated for the whole dataset and the

results of this comparison are compiled in a matrix or tabular format. This resultant

matrix is our confusion matrix. Before we go any further, let’s build a logistic regression

model on our breast cancer dataset and look at the confusion matrix for the model

predictions on the test dataset.

from sklearn import linear_model

train and build the model

logistic = linear_model.LogisticRegression()

logistic.fit(X_train,y_train)

predict on test data and view confusion matrix

import model_evaluation_utils as meu

y_pred = logistic.predict(X_test)

meu.display_confusion_matrix(true_labels=y_test, predicted_labels=y_pred,

classes=[0, 1])

 Predicted:

 0 1

Actual: 0 59 4

 1 2 106

The preceding output depicts the confusion matrix with necessary annotations.

We can see that out of 63 observations with label 0 (benign), our model has correctly

predicted 59 observations. Similarly, out of 108 observations with label 1 (malignant),

our model has correctly predicted 106 observations. More detailed analysis is coming

right up!

Chapter 5 text ClassifiCation

311

 Understanding the Confusion Matrix

While the name itself sounds pretty overwhelming, understanding the confusion matrix

is not that confusing once you have the basics right! To reiterate what we learned in the

previous section, the confusion matrix is a tabular structure that keeps a track of correct

classifications as well as misclassifications. This is useful to evaluate the performance

of a classification model for which we know the true data labels and can compare with

the predicted data labels. Each column in the confusion matrix represents classified

instance counts based on predictions from the model and each row of the matrix

represents instance counts based on the actual/true class labels. This structure can also

be reversed, i.e. predictions depicted by rows and true labels by columns. In a typical

binary classification problem, we usually have a class label that’s defined as the positive

class, which is basically the class of our interest. For instance, in our breast cancer

dataset, we are interested in detecting breast cancer, hence label 1 is our positive class.

Figure 5-9 shows a typical confusion matrix for a binary classification problem, where p

denotes the positive class and n denotes the negative class.

Figure 5-9. Typical structure of a confusion matrix

Chapter 5 text ClassifiCation

312

Figure 5-9 should make things more clear with regard to the structure of confusion

matrices. In general, we usually have a positive class as we discussed earlier and the

other class is the negative class. Based on this structure, we can clearly see four terms of

importance.

• True Positive (TP): This is the count of the total number of instances

from the positive class where the true class label was equal to the

predicted class label, i.e., the total instances where we correctly

predicted the positive class label with our model.

• False Positive (FP): This is the count of the total number of instances

from the negative class where our model misclassified them by

predicting them as positive. Hence, the name, “false” positive.

• True Negative (FN): This is the count of the total number of

instances from the negative class, where the true class label was

equal to the predicted class label, i.e., the total instances where we

correctly predicted the negative class label with our model.

• False Negative (FN): This is the count of the total number of

instances from the positive class where our model misclassified them

by predicting them as negative. Hence the name, “false” negative.

Based on this information, can you compute these metrics for our confusion matrix

based on the model predictions on the breast cancer test data?

positive_class = 1

TP = 106

FP = 4

TN = 59

FN = 2

Performance Metrics

The confusion matrix by itself is not a performance measure for classification models.

But it can be used to calculate several metrics that are useful measures for different

scenarios. We describe how the major metrics can be calculated from the confusion

matrix, compute them manually using necessary formulae, compare the results with

functions provided by Scikit-Learn on our predicted results, and give an intuition of

scenarios where each of those metric can be used.

Chapter 5 text ClassifiCation

313

Accuracy is one of the most popular measures of classifier performance. It is defined

as the overall proportion of correct predictions of the model. The formula for computing

accuracy from the confusion matrix is as follows:

Accuracy

TP TN

TP FP TN FN
=

+
+ + +

Accuracy is normally used when our classes are almost balanced and correct

predictions of those classes are equally important. The following code computes

accuracy on our model predictions.

fw_acc = round(meu.metrics.accuracy_score(y_true=y_test, y_pred=y_pred), 5)

mc_acc = round((TP + TN) / (TP + TN + FP + FN), 5)

print('Framework Accuracy:', fw_acc)

print('Manually Computed Accuracy:', mc_acc)

Framework Accuracy: 0.96491

Manually Computed Accuracy: 0.96491

Precision, also known as positive predictive value, is another metric that can be

derived from the confusion matrix. It is defined as the number of predictions made that

are actually correct or relevant out of all the predictions based on the positive class. The

formula for precision is as follows:

Precision

TP

TP FP
=

+

A model with high precision will identify a higher fraction of positive classes as

compared to a model with a lower precision. Precision becomes important in cases

where we are more concerned about finding the maximum number of positive classes

even if the total accuracy reduces. The following code computes precision on our model

predictions.

fw_prec = round(meu.metrics.precision_score(y_true=y_test, y_pred=y_pred), 5)

mc_prec = round((TP) / (TP + FP), 5)

print('Framework Precision:', fw_prec)

print('Manually Computed Precision:', mc_prec)

Framework Precision: 0.96364

Manually Computed Precision: 0.96364

Chapter 5 text ClassifiCation

314

Recall, also known as sensitivity, is a measure of a model to identify the percentage

of relevant data points. It is defined as the number of instances of the positive class that

were correctly predicted. This is also known as hit rate, coverage, or sensitivity. The

formula for recall is as follows:

Recall

TP

TP FN
=

+

Recall becomes an important measure of classifier performance when we want to

catch the most number of instances of a particular class even when it increases our false

positives. For example, consider the case of bank fraud. A model with high recall will give

us higher number of potential fraud cases. But it will also help us raise alarm for most of

the suspicious cases. The following code computes recall on our model predictions.

fw_rec = round(meu.metrics.recall_score(y_true=y_test, y_pred=y_pred), 5)

mc_rec = round((TP) / (TP + FN), 5)

print('Framework Recall:', fw_rec)

print('Manually Computed Recall:', mc_rec)

Framework Recall: 0.98148

Manually Computed Recall: 0.98148

There are some cases in which we want a balanced optimization of both precision

and recall. The F1-score is the harmonic mean of precision and recall and helps us

optimize a classifier for balanced precision and recall performance.

The formula for the F1-score is as follows:

F Score

Precision Recall

Precision Recall
1

2
=

´ ´
+

Let’s compute the F1-score on the predictions made by our model using the

following code.

fw_f1 = round(meu.metrics.f1_score(y_true=y_test, y_pred=y_pred), 5)

mc_f1 = round((2*mc_prec*mc_rec) / (mc_prec+mc_rec), 5)

print('Framework F1-Score:', fw_f1)

print('Manually Computed F1-Score:', mc_f1)

Framework F1-Score: 0.97248

Manually Computed F1-Score: 0.97248

Chapter 5 text ClassifiCation

315

Thus, you can see how our manually computed metrics match the results obtained

from Scikit-Learn functions. This should give you a good idea of how to evaluate

classification models with these metrics.

 Building and Evaluating Our Text Classifier
We have gone through all the steps necessary for building a classification system,

including data retrieval, wrangling, text preprocessing and normalization, feature

extraction and engineering, classification models, and model performance evaluation.

In this section, we put everything together to build and evaluate our text classification

system! Our training and test datasets are cleaned and ready to go. We will use the

following workflows to build our text classifiers.

• Traditional feature representation (BOW, TF-IDF) and classification

models

• Advanced feature representation (Word2Vec, GloVe, FastText) and

classification models

We also use techniques like cross-validation and grid search for evaluating as well as

tuning for our best models.

 Bag of Words Features with Classification Models
Let’s start by using a basic Bag of Words, the term frequency-based feature engineering

model, to extract features from our train and test datasets.

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import cross_val_score

build BOW features on train articles

cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0)

cv_train_features = cv.fit_transform(train_corpus)

transform test articles into features

cv_test_features = cv.transform(test_corpus)

Chapter 5 text ClassifiCation

316

print('BOW model:> Train features shape:', cv_train_features.shape,

 ' Test features shape:', cv_test_features.shape)

BOW model:> Train features shape: (12263, 66865) Test features shape:

(6041, 66865)

We now build several classifiers on these features using the training data and test

their performance on the test dataset using all the classification models we discussed

earlier. We also check model accuracies using five-fold cross validation just to see if

the model performs consistently across the validation folds of data (we use this same

strategy to tune the models later).

Naïve Bayes Classifier

from sklearn.naive_bayes import MultinomialNB

mnb = MultinomialNB(alpha=1)

mnb.fit(cv_train_features, train_label_names)

mnb_bow_cv_scores = cross_val_score(mnb, cv_train_features, train_label_

names, cv=5)

mnb_bow_cv_mean_score = np.mean(mnb_bow_cv_scores)

print('CV Accuracy (5-fold):', mnb_bow_cv_scores)

print('Mean CV Accuracy:', mnb_bow_cv_mean_score)

mnb_bow_test_score = mnb.score(cv_test_features, test_label_names)

print('Test Accuracy:', mnb_bow_test_score)

CV Accuracy (5-fold): [0.68468102 0.68241042 0.67835304 0.67741935

0.6792144]

Mean CV Accuracy: 0.680415648396

Test Accuracy: 0.680185399768

Logistic Regression

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(penalty='l2', max_iter=100, C=1, random_state=42)

lr.fit(cv_train_features, train_label_names)

lr_bow_cv_scores = cross_val_score(lr, cv_train_features, train_label_

names, cv=5)

lr_bow_cv_mean_score = np.mean(lr_bow_cv_scores)

print('CV Accuracy (5-fold):', lr_bow_cv_scores)

Chapter 5 text ClassifiCation

317

print('Mean CV Accuracy:', lr_bow_cv_mean_score)

lr_bow_test_score = lr.score(cv_test_features, test_label_names)

print('Test Accuracy:', lr_bow_test_score)

CV Accuracy (5-fold): [0.70418529 0.69788274 0.69384427 0.6998775

0.69599018]

Mean CV Accuracy: 0.698355996012

Test Accuracy: 0.703856977322

Support Vector Machines

from sklearn.svm import LinearSVC

svm = LinearSVC(penalty='l2', C=1, random_state=42)

svm.fit(cv_train_features, train_label_names)

svm_bow_cv_scores = cross_val_score(svm, cv_train_features, train_label_

names, cv=5)

svm_bow_cv_mean_score = np.mean(svm_bow_cv_scores)

print('CV Accuracy (5-fold):', svm_bow_cv_scores)

print('Mean CV Accuracy:', svm_bow_cv_mean_score)

svm_bow_test_score = svm.score(cv_test_features, test_label_names)

print('Test Accuracy:', svm_bow_test_score)

CV Accuracy (5-fold): [0.64120276 0.64169381 0.64900122 0.64107799

0.63993453]

Mean CV Accuracy: 0.642582064348

Test Accuracy: 0.656679357722

SVM with Stochastic Gradient Descent

from sklearn.linear_model import SGDClassifier

svm_sgd = SGDClassifier(loss='hinge', penalty='l2', max_iter=5, random_

state=42)

svm_sgd.fit(cv_train_features, train_label_names)

svmsgd_bow_cv_scores = cross_val_score(svm_sgd, cv_train_features, train_

label_names, cv=5)

svmsgd_bow_cv_mean_score = np.mean(svmsgd_bow_cv_scores)

print('CV Accuracy (5-fold):', svmsgd_bow_cv_scores)

print('Mean CV Accuracy:', svmsgd_bow_cv_mean_score)

Chapter 5 text ClassifiCation

318

svmsgd_bow_test_score = svm_sgd.score(cv_test_features, test_label_names)

print('Test Accuracy:', svmsgd_bow_test_score)

CV Accuracy (5-fold): [0.66030069 0.62459283 0.65185487 0.63209473

0.64157119]

Mean CV Accuracy: 0.642082864709

Test Accuracy: 0.633007780169

Random Forest

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=10, random_state=42)

rfc.fit(cv_train_features, train_label_names)

rfc_bow_cv_scores = cross_val_score(rfc, cv_train_features, train_label_

names, cv=5)

rfc_bow_cv_mean_score = np.mean(rfc_bow_cv_scores)

print('CV Accuracy (5-fold):', rfc_bow_cv_scores)

print('Mean CV Accuracy:', rfc_bow_cv_mean_score)

rfc_bow_test_score = rfc.score(cv_test_features, test_label_names)

print('Test Accuracy:', rfc_bow_test_score)

CV Accuracy (5-fold): [0.52052011 0.51669381 0.53485528 0.51327072

0.5212766]

Mean CV Accuracy: 0.521323304518

Test Accuracy: 0.52987915908

Gradient Boosting Machines

from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=10, random_state=42)

gbc.fit(cv_train_features, train_label_names)

gbc_bow_cv_scores = cross_val_score(gbc, cv_train_features, train_label_

names, cv=5)

gbc_bow_cv_mean_score = np.mean(gbc_bow_cv_scores)

print('CV Accuracy (5-fold):', gbc_bow_cv_scores)

print('Mean CV Accuracy:', gbc_bow_cv_mean_score)

gbc_bow_test_score = gbc.score(cv_test_features, test_label_names)

print('Test Accuracy:', gbc_bow_test_score)

Chapter 5 text ClassifiCation

319

CV Accuracy (5-fold): [0.55424624 0.53827362 0.54219323 0.55206207

0.55441899]

Mean CV Accuracy: 0.548238828239

Test Accuracy: 0.547922529383

It is interesting to see that simpler models like Naïve Bayes and Logistic Regression

performed much better than the ensemble models. Let’s look at the next model pipeline

now.

 TF-IDF Features with Classification Models
We use TF-IDF features to train our classification models. Assuming TF-IDF weighs

down unimportant features, we might get better performing models. Let’s test our

assumption!

from sklearn.feature_extraction.text import TfidfVectorizer

build BOW features on train articles

tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0)

tv_train_features = tv.fit_transform(train_corpus)

transform test articles into features

tv_test_features = tv.transform(test_corpus)

print('TFIDF model:> Train features shape:', tv_train_features.shape,

 ' Test features shape:', tv_test_features.shape)

TFIDF model:> Train features shape: (12263, 66865) Test features shape:

(6041, 66865)

We now build several classifiers on these features using the training data and test

their performance on the test dataset using all the classification models. We also check

model accuracies using five-fold cross validation, just like we did earlier.

Naïve Bayes

mnb = MultinomialNB(alpha=1)

mnb.fit(tv_train_features, train_label_names)

mnb_tfidf_cv_scores = cross_val_score(mnb, tv_train_features, train_label_

names, cv=5)

mnb_tfidf_cv_mean_score = np.mean(mnb_tfidf_cv_scores)

Chapter 5 text ClassifiCation

320

print('CV Accuracy (5-fold):', mnb_tfidf_cv_scores)

print('Mean CV Accuracy:', mnb_tfidf_cv_mean_score)

mnb_tfidf_test_score = mnb.score(tv_test_features, test_label_names)

print('Test Accuracy:', mnb_tfidf_test_score)

CV Accuracy (5-fold): [0.71759447 0.70969055 0.71585813 0.7121274

0.7111293]

Mean CV Accuracy: 0.713279971122

Test Accuracy: 0.713954643271

Logistic Regression

lr = LogisticRegression(penalty='l2', max_iter=100, C=1, random_state=42)

lr.fit(tv_train_features, train_label_names)

lr_tfidf_cv_scores = cross_val_score(lr, tv_train_features, train_label_

names, cv=5)

lr_tfidf_cv_mean_score = np.mean(lr_tfidf_cv_scores)

print('CV Accuracy (5-fold):', lr_tfidf_cv_scores)

print('Mean CV Accuracy:', lr_tfidf_cv_mean_score)

lr_tfidf_test_score = lr.score(tv_test_features, test_label_names)

print('Test Accuracy:', lr_tfidf_test_score)

CV Accuracy (5-fold): [0.74725721 0.73493485 0.73257236 0.74520212

0.73076923]

Mean CV Accuracy: 0.738147156079

Test Accuracy: 0.745240854163

Support Vector Machines

svm = LinearSVC(penalty='l2', C=1, random_state=42)

svm.fit(tv_train_features, train_label_names)

svm_tfidf_cv_scores = cross_val_score(svm, tv_train_features, train_label_

names, cv=5)

svm_tfidf_cv_mean_score = np.mean(svm_tfidf_cv_scores)

print('CV Accuracy (5-fold):', svm_tfidf_cv_scores)

print('Mean CV Accuracy:', svm_tfidf_cv_mean_score)

svm_tfidf_test_score = svm.score(tv_test_features, test_label_names)

print('Test Accuracy:', svm_tfidf_test_score)

Chapter 5 text ClassifiCation

321

CV Accuracy (5-fold): [0.76635514 0.7536645

0.75743987 0.76439363 0.75695581]

Mean CV Accuracy: 0.75976178901

Test Accuracy: 0.762456546929

SVM with Stochastic Gradient Descent

svm_sgd = SGDClassifier(loss='hinge', penalty='l2', max_iter=5, random_

state=42)

svm_sgd.fit(tv_train_features, train_label_names)

svmsgd_tfidf_cv_scores = cross_val_score(svm_sgd, tv_train_features, train_

label_names, cv=5)

svmsgd_tfidf_cv_mean_score = np.mean(svmsgd_tfidf_cv_scores)

print('CV Accuracy (5-fold):', svmsgd_tfidf_cv_scores)

print('Mean CV Accuracy:', svmsgd_tfidf_cv_mean_score)

svmsgd_tfidf_test_score = svm_sgd.score(tv_test_features, test_label_names)

print('Test Accuracy:', svmsgd_tfidf_test_score)

CV Accuracy (5-fold): [0.76513612 0.75570033 0.75377089 0.76112699

0.75695581]

Mean CV Accuracy: 0.75853802856

Test Accuracy: 0.765767257077

Random Forest

rfc = RandomForestClassifier(n_estimators=10, random_state=42)

rfc.fit(tv_train_features, train_label_names)

rfc_tfidf_cv_scores = cross_val_score(rfc, tv_train_features, train_label_

names, cv=5)

rfc_tfidf_cv_mean_score = np.mean(rfc_tfidf_cv_scores)

print('CV Accuracy (5-fold):', rfc_tfidf_cv_scores)

print('Mean CV Accuracy:', rfc_tfidf_cv_mean_score)

rfc_tfidf_test_score = rfc.score(tv_test_features, test_label_names)

print('Test Accuracy:', rfc_tfidf_test_score)

CV Accuracy (5-fold): [0.53596099 0.5252443

0.53852426 0.51204573 0.54296236]

Mean CV Accuracy: 0.53094752738

Test Accuracy: 0.545936103294

Chapter 5 text ClassifiCation

322

Gradient Boosting

gbc = GradientBoostingClassifier(n_estimators=10, random_state=42)

gbc.fit(tv_train_features, train_label_names)

gbc_tfidf_cv_scores = cross_val_score(gbc, tv_train_features, train_label_

names, cv=5)

gbc_tfidf_cv_mean_score = np.mean(gbc_tfidf_cv_scores)

print('CV Accuracy (5-fold):', gbc_tfidf_cv_scores)

print('Mean CV Accuracy:', gbc_tfidf_cv_mean_score)

gbc_tfidf_test_score = gbc.score(tv_test_features, test_label_names)

print('Test Accuracy:', gbc_tfidf_test_score)

CV Accuracy (5-fold): [0.55790329 0.53827362 0.55768447 0.55859535 0.54541735]

Mean CV Accuracy: 0.551574813725

Test Accuracy: 0.548584671412

It’s interesting to see that the overall accuracy of several models increases by

quite a bit, including logistic regression, Naïve Bayes, and SVM. Interestingly, the

ensemble models don’t perform as well. Using more estimators might improve them,

but still wouldn’t be as good as the other models and it would take a huge amount of

training time.

 Comparative Model Performance Evaluation
We can now do a nice comparison of all the models we have tried so far with the two

different feature engineering techniques. We will build a dataframe from our modeling

results and compare the results. See Figure 5-10.

pd.DataFrame([['Naive Bayes', mnb_bow_cv_mean_score, mnb_bow_test_score,

 mnb_tfidf_cv_mean_score, mnb_tfidf_test_score],

 ['Logistic Regression', lr_bow_cv_mean_score, lr_bow_test_

score, lr_tfidf_cv_mean_score, lr_tfidf_test_score],

 ['Linear SVM', svm_bow_cv_mean_score, svm_bow_test_score,

 svm_tfidf_cv_mean_score, svm_tfidf_test_score],

 ['Linear SVM (SGD)', svmsgd_bow_cv_mean_score, svmsgd_bow_test_

score, svmsgd_tfidf_cv_mean_score, svmsgd_tfidf_test_score],

Chapter 5 text ClassifiCation

323

 ['Random Forest', rfc_bow_cv_mean_score, rfc_bow_test_score,

 rfc_tfidf_cv_mean_score, rfc_tfidf_test_score],

 ['Gradient Boosted Machines', gbc_bow_cv_mean_score, gbc_bow_

test_score, gbc_tfidf_cv_mean_score, gbc_tfidf_test_score]],

 columns=['Model', 'CV Score (TF)', 'Test Score (TF)',

 'CV Score (TF-IDF)', 'Test Score (TF-IDF)'],

).T

Figure 5-10. Comparative model performance evaluation

Figure 5-10 clearly shows us that the best performing models were SVM followed by

Logistic Regression and Naïve Bayes. Ensemble models didn’t perform as well on this

dataset.

 Word2Vec Embeddings with Classification Models
Let’s try using the newer advanced feature engineering techniques with our

classification models. We start by generating Word2Vec embeddings. An important point

to note here is that word embedding models generate a dense embedding vector of fixed

lengths for each word. Hence, we need some scheme to generate fixed embeddings for

each document. One way is to average the word embeddings for all the words in the

document (or even take the TF-IDF weighted average!). Let’s build a scheme to generate

document embeddings from the averaged word embeddings.

def document_vectorizer(corpus, model, num_features):

 vocabulary = set(model.wv.index2word)

 def average_word_vectors(words, model, vocabulary, num_features):

 feature_vector = np.zeros((num_features,), dtype="float64")

 nwords = 0.

Chapter 5 text ClassifiCation

324

 for word in words:

 if word in vocabulary:

 nwords = nwords + 1.

 feature_vector = np.add(feature_vector, model.wv[word])

 if nwords:

 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

 features = [average_word_vectors(tokenized_sentence, model, vocabulary,

num_features) for tokenized_sentence in corpus]

 return np.array(features)

We use Gensim, an excellent Python framework, to generate Word2Vec embeddings

for all words in our corpus.

tokenize corpus

tokenized_train = [tn.tokenizer.tokenize(text)

 for text in train_corpus]

tokenized_test = [tn.tokenizer.tokenize(text)

 for text in test_corpus]

generate word2vec word embeddings

import gensim

build word2vec model

w2v_num_features = 1000

w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_features,

window=100, min_count=2, sample=1e-3, sg=1, iter=5, workers=10)

generate document level embeddings

remember we only use train dataset vocabulary embeddings

so that test dataset truly remains an unseen dataset

generate averaged word vector features from word2vec model

avg_wv_train_features = document_vectorizer(corpus=tokenized_train,

model=w2v_model, num_features=w2v_num_features)

Chapter 5 text ClassifiCation

325

avg_wv_test_features = document_vectorizer(corpus=tokenized_test,

model=w2v_model, num_features=w2v_num_features)

print('Word2Vec model:> Train features shape:', avg_wv_train_features.

shape,' Test features shape:', avg_wv_test_features.shape)

Word2Vec model:> Train features shape: (12263, 1000) Test features shape:

(6041, 1000)

Let’s try using one of our best models, SVM with SGD, to check the model

performance on the test data.

from sklearn.svm import LinearSVC

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import SGDClassifier

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_

iter=500)

svm.fit(avg_wv_train_features, train_label_names)

svm_w2v_cv_scores = cross_val_score(svm, avg_wv_train_features, train_

label_names, cv=5)

svm_w2v_cv_mean_score = np.mean(svm_w2v_cv_scores)

print('CV Accuracy (5-fold):', svm_w2v_cv_scores)

print('Mean CV Accuracy:', svm_w2v_cv_mean_score)

svm_w2v_test_score = svm.score(avg_wv_test_features, test_label_names)

print('Test Accuracy:', svm_w2v_test_score)

CV Accuracy (5-fold): [0.76026006 0.74796417 0.73746433 0.73989383 0.74386252]

Mean CV Accuracy: 0.7458889820674891

Test Accuracy: 0.7381228273464658

Definitely a good model performance but not better than our TF-IDF based model,

which gave much better test accuracy.

Chapter 5 text ClassifiCation

326

 GloVe Embeddings with Classification Models
We now generate GloVe-based word embeddings for each word, generate document-

level embeddings, and use our SVM model to test the model performance. We use

spaCy’s default word embeddings generated from the common crawl corpus.

feature engineering with GloVe model

train_nlp = [tn.nlp(item) for item in train_corpus]

train_glove_features = np.array([item.vector for item in train_nlp])

test_nlp = [tn.nlp(item) for item in test_corpus]

test_glove_features = np.array([item.vector for item in test_nlp])

print('GloVe model:> Train features shape:', train_glove_features.shape,

 ' Test features shape:', test_glove_features.shape)

GloVe model:> Train features shape: (12263, 300) Test features shape:

(6041, 300)

Building our SVM model

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_

iter=500)

svm.fit(train_glove_features, train_label_names)

svm_glove_cv_scores = cross_val_score(svm, train_glove_features, train_

label_names, cv=5)

svm_glove_cv_mean_score = np.mean(svm_glove_cv_scores)

print('CV Accuracy (5-fold):', svm_glove_cv_scores)

print('Mean CV Accuracy:', svm_glove_cv_mean_score)

svm_glove_test_score = svm.score(test_glove_features, test_label_names)

print('Test Accuracy:', svm_glove_test_score)

CV Accuracy (5-fold): [0.68996343 0.67711726 0.67101508 0.67006942

0.66448445]

Mean CV Accuracy: 0.674529928944

Test Accuracy: 0.666777023672

It looks like the performance is not as good and that could be because we’re using

pre-generated word embeddings. Let’s now take a look at FastText!

Chapter 5 text ClassifiCation

327

 FastText Embeddings with Classification Models
We now leverage Gensim again, but use Facebook’s FastText model to generate word

embeddings from which we will build our document embeddings.

from gensim.models.fasttext import FastText

ft_num_features = 1000

sg decides whether to use the skip-gram model (1) or CBOW (0)

ft_model = FastText(tokenized_train, size=ft_num_features, window=100,

 min_count=2, sample=1e-3, sg=1, iter=5, workers=10)

generate averaged word vector features from word2vec model

avg_ft_train_features = document_vectorizer(corpus=tokenized_train,

model=ft_model, num_features=ft_num_features)

avg_ft_test_features = document_vectorizer(corpus=tokenized_test,

model=ft_model, num_features=ft_num_features)

print('FastText model:> Train features shape:', avg_ft_train_features.shape,

 ' Test features shape:', avg_ft_test_features.shape)

FastText model:> Train features shape: (12263, 1000) Test features shape:

(6041, 1000)

Now, just like the previous pipelines, we train and evaluate our SVM model on these

features.

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_iter=500)

svm.fit(avg_ft_train_features, train_label_names)

svm_ft_cv_scores = cross_val_score(svm, avg_ft_train_features, train_label_

names, cv=5)

svm_ft_cv_mean_score = np.mean(svm_ft_cv_scores)

print('CV Accuracy (5-fold):', svm_ft_cv_scores)

print('Mean CV Accuracy:', svm_ft_cv_mean_score)

svm_ft_test_score = svm.score(avg_ft_test_features, test_label_names)

print('Test Accuracy:', svm_ft_test_score)

Chapter 5 text ClassifiCation

328

CV Accuracy (5-fold): [0.76391711 0.74307818 0.74194863 0.74724377

0.74795417]

Mean CV Accuracy: 0.7488283727085712

Test Accuracy: 0.7434199635821884

This is definitely the best performing model out of all the word embedding based

models, but it’s still not better than our TF-IDF based model. Let’s quickly build a two-

hidden layer neural network and see if we get a better model performance.

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(solver='adam', alpha=1e-5, learning_rate='adaptive',

early_stopping=True, activation = 'relu', hidden_layer_sizes=(512, 512),

random_state=42)

mlp.fit(avg_ft_train_features, train_label_names)

svm_ft_test_score = mlp.score(avg_ft_test_features, test_label_names)

print('Test Accuracy:', svm_ft_test_score)

Test Accuracy: 0.7328256911107432

What does this tell us? Word embedding models or deep learning models might be

good, but that doesn’t mean they are a silver bullet for all our problems. Often traditional

models might out-perform them, depending on the problem and the context!

 Model Tuning
Model tuning is perhaps one of the key stages in the machine learning process and

can lead to better performing models. Any machine learning model typically has

hyperparameters, which are high-level concepts much like configuration settings

that you can tune like knobs in a device! A very important point to remember is that

hyperparameters are model parameters that are not directly learned within estimators

and do not depend on the underlying data (as opposed to model parameters or

coefficients like the coefficients of logistic regression, which can change based on the

underlying training data).

Chapter 5 text ClassifiCation

329

It is possible and recommended to search the hyperparameter space for the best

cross-validation score for which we use a five-fold cross validation scheme along with

grid search for finding the best hyperparameter values. A typical search for the best

hyperparameter values during tuning consists of the following major components:

• A model or estimator like LogisticRegression from Scikit-Learn

• A hyperparameter space that we can define with values and ranges

• A method for searching or sampling candidates like Grid Search

• A cross-validation scheme, like five-fold cross-validation

• A score function, like accuracy, for classification models

There are two very common approaches for sampling search candidates also

available in Scikit-Learn. We have GridSearchCV, which exhaustively considers all

parameter combinations set by users. However, RandomizedSearchCV typically samples a

given number of candidates from a parameter space with a specified distribution instead

of taking all combinations. We use Grid Search for our tuning experiments.

To tune the experiments, we also use a Scikit-Learn Pipeline object, which is an

excellent way to chain multiple components together where we sequentially apply a

list of transforms like data preprocessors, feature engineering methods, and a model

estimator for predictions. Intermediate steps of the pipeline must be some form of a

“transformer,” that is, they must implement fit and transform methods.

The purpose of the pipeline and why we want to use it is so that we can assemble

multiple components like feature engineering and modeling so that they can be cross-

validated while setting different hyperparameter values for grid search. Let’s get started

with tuning our Naïve Bayes model!

Tuning our Multinomial Naïve Bayes model

from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import TfidfVectorizer

mnb_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

 ('mnb', MultinomialNB())

])

Chapter 5 text ClassifiCation

330

param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

 'mnb__alpha': [1e-5, 1e-4, 1e-2, 1e-1, 1]

}

gs_mnb = GridSearchCV(mnb_pipeline, param_grid, cv=5, verbose=2)

gs_mnb = gs_mnb.fit(train_corpus, train_label_names)

Fitting 5 folds for each of 10 candidates, totalling 50 fits

[CV] mnb__alpha=1e-05, tfidf__ngram_range=(1, 1)

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent

workers.

[CV] mnb__alpha=1e-05, tfidf__ngram_range=(1, 1), total= 1.5s

[CV] mnb__alpha=1e-05, tfidf__ngram_range=(1, 1)

...

...

[CV] mnb__alpha=1, tfidf__ngram_range=(1, 2)

[CV] mnb__alpha=1, tfidf__ngram_range=(1, 2), total= 6.2s

[Parallel(n_jobs=1)]: Done 50 out of 50 | elapsed: 4.7min finished

We can now inspect the hyperparameter values chosen for our best estimator/model

using the following code.

gs_mnb.best_estimator_.get_params()

{'memory': None,

 'steps': [('tfidf',

 TfidfVectorizer(analyzer='word', max_df=1.0, min_df=1, ngram_range=(1, 2),

 norm='l2', ..., use_idf=True),

 ('mnb', MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True))],

 'tfidf': TfidfVectorizer(analyzer='word', max_df=1.0, min_df=1, ngram_

range=(1, 2),

 norm='l2', ..., use_idf=True),

 'mnb': MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True),

 'tfidf__analyzer': 'word', 'tfidf__binary': False, 'tfidf__decode_error':

'strict',

Chapter 5 text ClassifiCation

331

 'tfidf__dtype': numpy.float64, 'tfidf__encoding': 'utf-8', 'tfidf__input':

'content',

 'tfidf__lowercase': True, 'tfidf__max_df': 1.0, 'tfidf__max_features': None,

 'tfidf__min_df': 1, 'tfidf__ngram_range': (1, 2), 'tfidf__norm': 'l2',

 'tfidf__preprocessor': None, 'tfidf__smooth_idf': True, 'tfidf__stop_

words': None,

 'tfidf__strip_accents': None, 'tfidf__sublinear_tf': False,

 'tfidf__token_pattern': '(?u)\\b\\w\\w+\\b', 'tfidf__tokenizer': None,

'tfidf__use_idf': True,

 'tfidf__vocabulary': None, 'mnb__alpha': 0.01, 'mnb__class_prior': None,

 'mnb__fit_prior': True}

Now you might be wondering how these hyperparameters specifically were selected

for the best estimator. Well, it decided this based on the model performance, with those

hyperparameter values on the five-folds of validation data during cross-validation. See

Figure 5-11.

cv_results = gs_mnb.cv_results_

results_df = pd.DataFrame({'rank': cv_results['rank_test_score'],

 'params': cv_results['params'],

 'cv score (mean)': cv_results['mean_test_score'],

 'cv score (std)': cv_results['std_test_score']}

)

results_df = results_df.sort_values(by=['rank'], ascending=True)

pd.set_option('display.max_colwidth', 100)

results_df

Chapter 5 text ClassifiCation

332

From the table in Figure 5-11, you can see how the best hyperparameters including

bi-gram TF-IDF features gave the best cross-validation accuracy. Note that we are never

tuning our models based on test data scores, because that would end up biasing our

model toward the test dataset. We can now check our tuned model’s performance on the

test data.

best_mnb_test_score = gs_mnb.score(test_corpus, test_label_names)

print('Test Accuracy :', best_mnb_test_score)

Test Accuracy : 0.7735474259228604

Looks like we have achieved a model accuracy of 77.3%, which is an improvement of

6% over the base model! Let’s look at how it performs for logistic regression now.

Tuning our Logistic Regression model

lr_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

 ('lr', LogisticRegression(penalty='l2', max_

iter=100, random_state=42))

])

Figure 5-11. Model performances across different hyperparameter values in the
hyperparameter space

Chapter 5 text ClassifiCation

333

param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

 'lr__C': [1, 5, 10]

}

gs_lr = GridSearchCV(lr_pipeline, param_grid, cv=5, verbose=2)

gs_lr = gs_lr.fit(train_corpus, train_label_names)

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[CV] lr__C=1, tfidf__ngram_range=(1, 1)

[CV] lr__C=1, tfidf__ngram_range=(1, 1), total= 5.9s

[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 7.1s remaining: 0.0s

[CV] lr__C=1, tfidf__ngram_range=(1, 1)

[CV] lr__C=1, tfidf__ngram_range=(1, 1), total= 6.5s

...

...

[CV] lr__C=10, tfidf__ngram_range=(1, 2)

[CV] lr__C=10, tfidf__ngram_range=(1, 2), total= 47.8s

[Parallel(n_jobs=1)]: Done 30 out of 30 | elapsed: 13.0min finished

evaluate best tuned model on the test dataset

best_lr_test_score = gs_lr.score(test_corpus, test_label_names)

print('Test Accuracy :', best_lr_test_score)

Test Accuracy : 0.766926005628

We get an overall test accuracy of approximately 77%, which is almost a 2.5%

improvement from the base logistic regression model. Finally, let’s tune our top two SVM

models—the regular Linear SVM model and the SVM with Stochastic Gradient Descent.

Tuning the Linear SVM model

svm_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

 ('svm', LinearSVC(random_state=42))

])

param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

 'svm__C': [0.01, 0.1, 1, 5]

}

Chapter 5 text ClassifiCation

334

gs_svm = GridSearchCV(svm_pipeline, param_grid, cv=5, verbose=2)

gs_svm = gs_svm.fit(train_corpus, train_label_names)

evaluating best tuned model on the test dataset

best_svm_test_score = gs_svm.score(test_corpus, test_label_names)

print('Test Accuracy :', best_svm_test_score)

Test Accuracy : 0.77685813607

This is definitely the highest overall accuracy we have obtained so far! However, not a

huge improvement from the default linear SVM model performance. The SVM with SGD

gives us a tuned model accuracy of 76.8%.

 Model Performance Evaluation
Choosing the best model for deployment depends on a number of factors, like the model

speed, accuracy, ease of use, understanding, and so on. Based on all the models we

have built, the Naïve Bayes model is the fastest to train and, even though the SVM model

might be slightly better on the test dataset in terms of accuracy, SVMs are notoriously

slow and often hard to scale. Let’s take a detailed performance evaluation of our best,

tuned Naïve Bayes model on the test dataset. We use our nifty model_evaluation_utils

module for the purpose of model evaluation.

import model_evaluation_utils as meu

mnb_predictions = gs_mnb.predict(test_corpus)

unique_classes = list(set(test_label_names))

meu.get_metrics(true_labels=test_label_names, predicted_labels=mnb_

predictions)

Accuracy: 0.7735

Precision: 0.7825

Recall: 0.7735

F1 Score: 0.7696

It is good to see good consistency with the classification metrics. Besides seeing the

holistic view of model performance metrics, often a more granular view into per-class

model performance metrics helps. Let’s take a look at that.

Chapter 5 text ClassifiCation

335

meu.display_classification_report(true_labels=test_label_names,

 predicted_labels=mnb_predictions,

 classes=unique_classes)

 precision recall f1-score support

 comp.os.ms-windows.misc 0.76 0.72 0.74 315

 talk.politics.misc 0.72 0.68 0.70 244

 comp.graphics 0.64 0.75 0.69 289

 comp.windows.x 0.79 0.84 0.81 287

 talk.religion.misc 0.67 0.21 0.32 199

comp.sys.ibm.pc.hardware 0.69 0.76 0.72 324

 comp.sys.mac.hardware 0.78 0.77 0.77 295

 sci.crypt 0.79 0.85 0.82 302

 talk.politics.mideast 0.85 0.87 0.86 326

 misc.forsale 0.83 0.77 0.80 314

 sci.med 0.88 0.88 0.88 322

 rec.motorcycles 0.88 0.74 0.80 351

 sci.electronics 0.80 0.72 0.76 307

 rec.sport.hockey 0.88 0.92 0.90 308

 talk.politics.guns 0.65 0.81 0.72 281

 sci.space 0.84 0.81 0.83 324

 rec.sport.baseball 0.94 0.88 0.91 336

 alt.atheism 0.80 0.57 0.67 268

 rec.autos 0.82 0.74 0.78 328

 soc.religion.christian 0.57 0.92 0.70 321

 micro avg 0.77 0.77 0.77 6041

 macro avg 0.78 0.76 0.76 6041

 weighted avg 0.78 0.77 0.77 6041

This gives us a nice overview into the model performance for each newsgroup class

and interestingly some categories like religion, Christianity, and atheism have slightly

lower performance. Could it be that the model is getting some of these mixed up? The

confusion matrix is a great way to test this assumption. Let’s first look at the newsgroup

name to number mappings. See Figure 5-12.

Chapter 5 text ClassifiCation

336

label_data_map = {v:k for k, v in data_labels_map.items()}

label_map_df = pd.DataFrame(list(label_data_map.items()),

 columns=['Label Name', 'Label Number'])

label_map_df

Figure 5-12. Mapping between class label names and numbers

We can now build a confusion matrix to show the correct and misclassified instances

of each class label, which we represent by numbers for display purposes, due to the long

names. See Figure 5-13.

Chapter 5 text ClassifiCation

337

unique_class_nums = label_map_df['Label Number'].values

mnb_prediction_class_nums = [label_data_map[item] for item in mnb_predictions]

meu.display_confusion_matrix_pretty(true_labels=test_label_nums,

 predicted_labels=mnb_prediction_class_

nums, classes=unique_class_nums)

Figure 5-13. Confusion matrix for the predictions of our Naïve Bayes model on
test data

The diagonal of our confusion matrix has the meat of the numbers, which indicates

that most of our predictions match the actual class labels! Interestingly, class labels 0,

15, and 19 seem to have a lot of misclassifications. Let’s take a closer look at these class

labels to see what their newsgroup names are. See Figure 5-14.

label_map_df[label_map_df['Label Number'].isin([0, 15, 19])]

Chapter 5 text ClassifiCation

338

Just like we suspected, all the newsgroups pertaining to different aspects of religion

have more misclassifications, which that indicates the model must be misclassifying

instances of one of these classes. Let’s dive a bit deeper into this and explore some

specific instances.

Extract test document row numbers

train_idx, test_idx = train_test_split(np.array(range(len(data_df

['Article']))), test_size=0.33, random_state=42)

test_idx

array([4105, 12650, 7039, ..., 4772, 7803, 9616])

We now add two columns to our dataframe in our test dataset. The first column is the

predicted label from our Naïve Bayes model and the second column is the confidence of

the model when making the prediction, which is basically the probability of the model

prediction. See Figure 5-15.

predict_probas = gs_mnb.predict_proba(test_corpus).max(axis=1)

test_df = data_df.iloc[test_idx]

test_df['Predicted Name'] = mnb_predictions

test_df['Predicted Confidence'] = predict_probas

test_df.head()

Figure 5-14. Class label numbers and names for misclassified newsgroups

Chapter 5 text ClassifiCation

339

Based on the dataframe snapshot depicted in Figure 5-15, it looks like everything

is in order with the test dataset articles, actual labels, predicted labels, and confidence

scores. Let’s now take a look at some articles that were from the newsgroup talk.

religion.misc, but our model predicted soc.religion.christian with the highest

confidence. See Figure 5-16.

pd.set_option('display.max_colwidth', 200)

res_df = (test_df[(test_df['Target Name'] == 'talk.religion.misc')

 & (test_df['Predicted Name'] == 'soc.religion.christian')]

 .sort_values(by=['Predicted Confidence'], ascending=False).head(5))

res_df

Figure 5-15. Adding additional metadata to our test dataset with model
predictions and confidence scores

Figure 5-16. Looking at mode misclassification instances for religion.misc and
religion.christian

Chapter 5 text ClassifiCation

340

This should enable you to take a deep dive into which instances might be getting

misclassified and why. It looks like there are definitely some aspects of Christianity

also mentioned in some of these articles, which leads the model to predict the soc.

religion.christian category. Let’s now take a look at some articles that were of the

newsgroup talk.religion.misc but our model predicted alt.atheism with the highest

confidence. See Figure 5-17.

pd.set_option('display.max_colwidth', 200)

res_df = (test_df[(test_df['Target Name'] == 'talk.religion.misc')

 & (test_df['Predicted Name'] == 'alt.atheism')]

 .sort_values(by=['Predicted Confidence'], ascending=False).

head(5))

res_df

Figure 5-17. Looking at mode misclassification instances for religion.misc and
alt.atheism

This should be a no-brainer considering atheism and religion are related in several

aspects when people talk about them, especially on online forums. Do you notice any

other interesting patterns? Go ahead and explore the data further! This brings us to the

end of our discussion and implementation of our text classification system. Feel free

to implement more models using other innovative feature extraction techniques or

supervised learning algorithms and compare their performance.

Chapter 5 text ClassifiCation

341

 Applications
Text classification and categorization are used in several real-world scenarios and

applications. Some of them are as follows:

• News categorization

• Spam filtering

• Music or movie genre categorization

• Sentiment analysis

• Language detection

The possibilities with text data are indeed endless and you can apply classification

to solve various problems and automate otherwise time-consuming operations and

scenarios with a little bit of effort.

 Summary
Text classification is indeed a powerful tool and we have covered almost all aspects

related to it in this chapter. We started off our journey with look at the definition and

scope of text classification. Next, we defined automated text classification as a supervised

learning problem and looked at the various types of text classification. We also briefly

covered some machine learning concepts related to the various types of algorithms.

A typical text classification system blueprint was also defined to describe the various

modules and steps involved when building an end-to-end text classifier. Each module in

the blueprint was then expanded upon.

Text preprocessing and normalization was touched upon in detail in the previous

chapter and we built a normalization module especially for text classification. We saw a

brief but detailed recap of various feature extraction and engineering techniques for text

data from Chapter 4, including Bag of Words, TF-IDF, and advanced word embedding

techniques. You should now be clear about not only the mathematical representations

and concepts but also ways to implement them.

Chapter 5 text ClassifiCation

342

Various supervised learning methods were discussed with focus on state-of-the-art

classifiers like multinomial Naïve Bayes, logistic regression, support vector machines,

and ensemble models like random forest and gradient boosting. We even took a glimpse

of a neural network model! We also looked at ways to evaluate classification model

performance and even implemented those metrics. Finally, we put everything we

learned together into building a robust 20-class text classification system on real data

and evaluated various models and analyzed model performance in detail. We wrapped

up our discussion by looking at some areas where text classification is used frequently.

We have just scratched the surface of text analytics and NLP and we look at more ways to

analyze and derive insights from textual data in the future chapters.

Chapter 5 text ClassifiCation

343
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_6

CHAPTER 6

Text Summarization
and Topic Models
We have come quite a long way in our journey through the world of text analytics and

natural language processing. You have seen how to process and annotate textual data

for various applications. We also looked at state-of-the-art text representation methods

with feature engineering. We also ventured into the world of machine learning and built

our own multi-class text classification system by leveraging various feature extraction

techniques and supervised machine learning algorithms. In this chapter, we tackle a

slightly different problem in the world of text analytics—information summarization.

The world is rapidly evolving with regard to technology, commerce, business, and

media. Gone are the days when we would wait for newspapers to come to our home

so we could be updated about the various events around the world. With the advent of

the Internet and social media, we have ushered in the so-called Information Age. Now

we have various forms of social media that we consume to stay updated about daily

events and stay connected with the world and our friends and family. Social media like

Facebook and Twitter have created a completely different dimension to sharing and

consuming information with very short messages or statuses. Humans tend to have short

attention spans and this leads to us getting bored when reading large text documents

and articles.

This brings us to text summarization, which is an extremely important concept

in text analytics. It’s used by businesses as well as analytical firms to shorten and

summarize huge documents so that they retain the key theme of the document.

Usually we present this summarized information to consumers and clients so they can

understand this information in a matter of seconds. This is analogous to an elevator

pitch, where you need to provide a quick summary that describes a process, product,

service, or business, ensuring that it retains the core important themes and values.

344

This originates from the idea that the pitch should take the time it usually takes to ride an

elevator, which ranges from a few seconds to a couple of minutes.

Imagine that you have a whole corpus of text documents and are tasked with

deriving meaningful insights from them. At the first glance, it might seem difficult

because you do not even know what to do with these documents, let alone how to apply

NLP or data science to them. Since it is more about pattern mining than predictive

analytics, a good way to start is to use unsupervised learning methods specifically

aimed at text summarization and information extraction. In general, there are several

operations that can be executed on text documents, as follows:

• Key-phrase extraction: This focuses on extracting key influential

phrases from the documents.

• Topic modeling: Extract various diverse concepts or topics present in

the documents, retaining the major themes in these documents.

• Document summarization: Summarize entire text documents to

provide a gist that retains the important parts of the whole corpus.

We cover essential concepts, techniques, and practical implementations of all the

three major techniques.

In this chapter, we start with a detailed discussion of the various types of

summarization and information-extraction techniques and cover some foundational

concepts essential for understanding the practical hands-on examples later. We cover

three major techniques, including key-phrase extraction, topic models, and automated

document summarization. All the code examples showcased in this chapter are available

on the book’s official GitHub repository, which you can access at https://github.com/

dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition.

 Text Summarization and Information Extraction
Text summarization and information extraction deals with trying to extract key concepts

and themes from a huge corpus of text, essentially reducing it in the process. Before we

dive deeper into the concepts and techniques, we should first understand the need for

text summarization. The concept of information overload is one of the prime reasons

behind the demand for text summarization. Since print and verbal media came into

prominence, there has been an abundance of books, articles, audio, and video. This

Chapter 6 text Summarization and topiC modelS

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

345

started around the 3rd or 4th Century BC, when people referred to the huge quantity of

books as, “there was no end to the production of books” and this overload of information

was often met with disapproval.

The Renaissance gave us the invention of the printing press by Gutenberg in around

1440 AD and this led to a mass production of books, manuscripts, articles, and pamphlets.

This caused information overload again, with scholars complaining about excess of

information, which was becoming extremely difficult to consume, process, and manage.

With the advances in computers and technology, we ushered into the digital age in

the 20th Century, which gifted us with the Internet. This opened up a whole window

of possibilities, into producing and consuming information with social media, news

websites, electronic mail, and instant messaging capabilities. This has led to an increase

in information and even led to unwanted information in the form of spam, unwanted

statuses, tweets, and even bots that post unwanted content across the web.

Now that we know the current state of information being produced and consumed,

we can define information overload as the presence of excess data or information that

leads to consumers having difficulty in processing that information and making well

informed decisions. This overload occurs when the amount of information as input

to the system starts exceeding the processing capability of the system. Humans have

limited cognitive processing capabilities and are also wired in such a way that we cannot

spend a long time in reading a single piece of information or data since the mind tends

to wander every now and then. Thus, when we get loaded with information, it leads to a

reduction in making qualitative decisions.

Businesses thrive on making well informed decisions and they usually have a huge

amount of data and information. Getting insights from this information is no piece of

cake and automating it is tough because you need to know what to do with the data.

Executives rarely have time to listen to long talks or go through pages of information

regarding important information. The goal of summarization and information extraction

is to get an idea of the key important topics and themes and summarize huge documents

of information into a few lines that can be read, understood, and interpreted. The end

goal is to be able to make well informed decisions in shorter timeframes. We need

efficient and scalable processes and techniques that can perform this on text data. The

most popular techniques are as follows:

• Key-phrase extraction

• Topic modeling

• Automated document summarization

Chapter 6 text Summarization and topiC modelS

346

The first two techniques involve extracting key information in the form of concepts,

topics, and themes from documents, thus reducing them. Automated document

summarization is all about summarizing large text documents into a few lines that

explain the information the document is trying to convey. We cover each technique in

detail in future sections, along with practical examples. First, we briefly talk about what

each technique entails and their scope.

 Keyphrase Extraction
This is perhaps the most simple out of the three techniques. It involves the process of

extracting keywords or phrases from a text document or corpus that capture the main

concepts or themes from the document or corpus. This can be said to be a simplistic

form of topic modeling. You might have seen keywords or phrases described in a

research paper or even some product in an online store that describe the entity in a few

words or phrases capturing the main idea or concept of the entity.

 Topic Modeling
This usually involves using statistical and mathematical modeling techniques to extract

main topics, themes, or concepts from a corpus of documents. Note that we emphasize

a corpus of documents because the more diverse set of documents you have, the more

topics or concepts you can generate. This is unlike a single document, where you will not

get too many topics or concepts if it talks about a singular concept. Topic models are also

often known as probabilistic statistical models and they use specific statistical techniques

including Singular Value Decomposition (SVD) and Latent Dirichlet Allocation (LDA)

to discover connected latent semantic structures in text data to yield topics and

concepts. They are used extensively in text analytics and across diverse domains like

bioinformatics.

 Automated Document Summarization
This is the process of using a computer program or algorithm based on statistical and

machine learning techniques to summarize a document or a corpus of documents in

order to obtain a short summary that captures its essential concepts and themes. A wide

variety of techniques for building automated document summarizers exist, including

Chapter 6 text Summarization and topiC modelS

347

various extraction and abstraction based techniques. The key concept behind all these

algorithms is to find a representative subset of the original dataset so that the core

essence of the dataset from the semantic and conceptual standpoints is contained in

this subset. Document summarization usually involves extracting and constructing an

executive summary from a single document, but the same algorithms can be extended

to multiple documents. However, the idea is not to combine several diverse documents

together because that would defeat the purpose of the algorithm. The same concept is

applied to image and video summarization as well.

We now discuss some important foundational concepts around math and machine

learning before moving to each technique in further detail.

 Important Concepts
There are several important mathematical and machine learning foundational concepts

that we discuss in this section that will be useful later. Some of these will be familiar to

you, but we will repeat them for the sake of completeness so that you can refresh your

memory. We also cover some concepts from natural language processing in this section.

A document is an entity containing a whole body of text data with optional headers

and other metadata information. A corpus usually consists of a collection of documents.

These documents can be simple sentences or complete paragraphs of textual

information. A tokenized corpus refers to a corpus where each document is tokenized or

broken down into tokens, which are usually words.

Text wrangling or preprocessing is the process of cleaning, normalizing, and

standardizing textual data with techniques like removing special symbols and

characters, removing extraneous HTML tags, removing stopwords, correcting spellings,

stemming, and lemmatization.

Feature engineering is a process where we extract meaningful feature or attributes

from raw textual data and feed it into a statistical or machine learning algorithm. This

process is also known as vectorization since the end transformation of this process is

numerical vectors from raw text tokens. The reason is that conventional algorithms

work on numerical vectors and cannot work directly on raw text data. There are various

feature extraction methods, including Bag of Words based binary features, which tell

us if a word or group of words exist in the document, Bag of Words based frequency

features that tell us the frequency of a word or group of words in a document, and term

frequency-inverse document frequency or TF-IDF weighted features, which take into

Chapter 6 text Summarization and topiC modelS

348

account the term frequency and inverse document frequency when weighing each term.

You can look at Chapter 4 for more details on feature extraction.

A feature matrix usually refers to a mapping from a collection of documents to

features where each row indicates a document and each column indicates a particular

feature (usually a word or a set of words). We represent a collection of documents or

sentences through feature matrices after feature extraction and we will often apply

statistical and machine learning techniques on these matrices in our practical examples.

A feature matrix can also be transposed where, instead of a conventional document-term

matrix, we end up with a term-document matrix. We can also represent other features

like document similarity, topic-terms, and topic-documents as feature matrices.

Singular Value Decomposition (SVD) is a technique from linear algebra that’s used

quite frequently in summarization algorithms. SVD is the process of factorization of a

matrix that is real or complex. Formally, we can define SVD as follows. Consider a matrix

M which has dimensions of m × n, where m denotes the number of rows and n denotes

the number of columns. Mathematically, the matrix M can be represented using SVD as

a factorization such that

 M U S Vm n m m m n n n
T

´ ´ ´ ´=

where we have the following decompositions:

• U is a m × m unitary matrix such that UTU = Im × m where I is the

identity matrix. The columns of U indicate left singular vectors.

• S is a diagonal m × n matrix with positive real numbers on the

diagonal of the matrix. This is also often also represented as a vector

of m values which indicate the singular values.

• VT is a n × n unitary matrix such that VTV = In × n, where I is the identity

matrix. The rows of V indicate right singular vectors.

This tells us that U and V are orthogonal. The singular values of S are particularly

important in summarization algorithms. We use SVD particularly for low rank matrix

approximation, where we approximate the original matrix M with a matrix M̂ such that

this new matrix is a truncated version of the original matrix M with a rank k and can

be represented by SVD as ˆ ˆM USVT= , where Ŝ is a truncated version of the original S

matrix and now consists of only the top k largest singular values and the other singular

values are represented by zero. We use a nice implementation from SciPy to extract

Chapter 6 text Summarization and topiC modelS

349

the top k singular values and return the corresponding U, S, and V matrices. The code

snippet we use is in the utils.py file and is depicted here:

from scipy.sparse.linalg import svds

def low_rank_svd(matrix, singular_count=2):

 u, s, vt = svds(matrix, k=singular_count)

 return u, s, vt

We use this implementation in topic modeling as well as document summarization

in future sections. Figure 6-1 shows a nice depiction of this process, which yields k

singular vectors from the original SVD decomposition and shows how we can determine

the low rank matrix approximation.

Figure 6-1. Singular Value Decomposition with low rank matrix approximation

From Figure 6-1, you can clearly see that k singular values are retained in the low

rank matrix approximation and how the original matrix M is decomposed into U, S, and

VT using SVD.

• M is typically known as the term-document matrix and is usually

obtained after feature engineering on the preprocessed text data,

where each row of the matrix represents a term and each column

represents a text document.

Chapter 6 text Summarization and topiC modelS

350

• U is known as the term-topic matrix where each row of the matrix

represents a term and each column represents a topic. It’s useful for

getting the influential terms for each topic when we multiply this by

the singular values.

• S is the matrix or array that consists of the list of singular values

obtained after low-rank SVD, which is typically equal to the number

of topics we decide prior to this operation.

• VT is the topic-document matrix, which if you transpose, you get

the document-topic matrix, which is useful in knowing how much

influence each topic has on each document.

We try to keep the math to a minimum in the rest of the chapter unless it is

absolutely essential to understand how the algorithms work. But we encourage readers

to dive deeper into these techniques for a better understanding of how they work behind

the scenes.

 Keyphrase Extraction
This is one of the simplest yet most powerful techniques of extracting important

information from unstructured text documents. Keyphrase extraction, also known as

terminology extraction, is the process of extracting key terms or phrases from a body of

unstructured text so that the core themes are captured. This technique falls under the

broad umbrella of information retrieval and extraction. Keyphrase extraction is useful in

many areas, some of which are mentioned here:

• Semantic web

• Query based search engines and crawlers

• Recommendation systems

• Tagging systems

• Document similarity

• Translation

Chapter 6 text Summarization and topiC modelS

351

Keyphrase extraction is often the starting point for carrying out more complex tasks

in text analytics or natural language processing and the output can act as features for

more complex systems. There are various approaches for keyphrase extraction; we cover

the following two major techniques:

• Collocations

• Weighted tag-based phrase extraction

An important point to remember is that we will be extracting phrases, which

are usually a collection of words and can sometimes just be single words. If you are

extracting keywords, that is also known as keyword extraction and it is a subset of

keyphrase extraction.

 Collocations
The term collocation is borrowed from analyzing corpora and linguistics. A collocation

can be defined as a sequence or group of words that tend to occur frequently and this

frequency tends to be more than what could be termed a random or chance occurrence.

Various types of collocations can be formed based on parts of speech like nouns, verbs,

and so on. There are various ways to extract collocations and one of the best ways to do

it is to use an n-gram grouping or segmentation approach. This is where we construct

n-grams out of a corpus and then count the frequency of each n-gram and rank them

based on their frequency of occurrence to get the most frequent n-gram collocations.

The idea is to have a corpus of documents (paragraphs or sentences), tokenize them

to form sentences, flatten the list of sentences to form one large sentence or string over

which we slide a window of size n based on the n-gram range, and compute n-grams

across the string. Once they are computed, we count each n-gram based on its frequency

of occurrence and then rank it. This yields the most frequent collocations on the basis

of frequency. We implement this from scratch initially so that you can understand the

algorithm better and then we use some of NLTK’s built-in capabilities to depict it.

Let’ start by loading some necessary dependencies and a corpus on which we will

be computing collocations. We use the NLTK Gutenberg corpus’s book, Lewis Carroll’s

Alice in Wonderland, as our corpus. We also normalize the corpus to standardize the

text content using our handy text_normalizer module, which we built and used in the

previous chapters.

Chapter 6 text Summarization and topiC modelS

352

from nltk.corpus import gutenberg

import text_normalizer as tn

import nltk

from operator import itemgetter

load corpus

alice = gutenberg.sents(fileids='carroll-alice.txt')

alice = [' '.join(ts) for ts in alice]

norm_alice = list(filter(None,

 tn.normalize_corpus(alice, text_lemmatization=False)))

print and compare first line

print(alice[0], '\n', norm_alice[0])

[Alice ' s Adventures in Wonderland by Lewis Carroll 1865]

 alice adventures wonderland lewis carroll

Now we define a function to compute n-grams based on some input list of tokens

and the parameter n, which determines the degree of the n-gram like a uni-gram, bi-

gram, and so on. The following code snippet computes n-grams for an input sequence.

def compute_ngrams(sequence, n):

 return list(

 zip(*(sequence[index:]

 for index in range(n)))

)

This function basically takes in a sequence of tokens and computes a list of lists

having sequences where each list contains all items from the previous list except the

first item removed from the previous list. It constructs n such lists and then zips them

all together to give us the necessary n-grams. We wrap the final result in a list since in

Python 3; zip gives us a generator object and not a raw list. We can see the function in

action on a sample sequence in the following snippet.

In [7]: compute_ngrams([1,2,3,4], 2)

Out[7]: [(1, 2), (2, 3), (3, 4)]

In [8]: compute_ngrams([1,2,3,4], 3)

Out[8]: [(1, 2, 3), (2, 3, 4)]

Chapter 6 text Summarization and topiC modelS

353

The preceding output shows bi-grams and tri-grams for an input sequence. We

now utilize this function and build upon it to generate the top n-grams based on their

frequency of occurrence. For this, we need to define a function to flatten the corpus into

one big string of text. The following function help us do this on a corpus of documents.

def flatten_corpus(corpus):

 return ' '.join([document.strip()

 for document in corpus])

We can now build a function that will help us get the top n-grams from a corpus of text.

def get_top_ngrams(corpus, ngram_val=1, limit=5):

 corpus = flatten_corpus(corpus)

 tokens = nltk.word_tokenize(corpus)

 ngrams = compute_ngrams(tokens, ngram_val)

 ngrams_freq_dist = nltk.FreqDist(ngrams)

 sorted_ngrams_fd = sorted(ngrams_freq_dist.items(),

 key=itemgetter(1), reverse=True)

 sorted_ngrams = sorted_ngrams_fd[0:limit]

 sorted_ngrams = [(' '.join(text), freq)

 for text, freq in sorted_ngrams]

 return sorted_ngrams

We use NLTK’s FreqDist class to create a counter of all the n-grams based on their

frequency and then we sort them based on their frequency and return the top n-grams

based on the specified user limit. We now compute the top bi-grams and tri-grams on

our corpus using the following code snippet.

top 10 bigrams

In [11]: get_top_ngrams(corpus=norm_alice, ngram_val=2,

 ...: limit=10)

Out[11]:

[('said alice', 123),

 ('mock turtle', 56),

 ('march hare', 31),

 ('said king', 29),

Chapter 6 text Summarization and topiC modelS

354

 ('thought alice', 26),

 ('white rabbit', 22),

 ('said hatter', 22),

 ('said mock', 20),

 ('said caterpillar', 18),

 ('said gryphon', 18)]

top 10 trigrams

In [12]: get_top_ngrams(corpus=norm_alice, ngram_val=3,

 ...: limit=10)

Out[12]:

[('said mock turtle', 20),

 ('said march hare', 10),

 ('poor little thing', 6),

 ('little golden key', 5),

 ('certainly said alice', 5),

 ('white kid gloves', 5),

 ('march hare said', 5),

 ('mock turtle said', 5),

 ('know said alice', 4),

 ('might well say', 4)]

This output shows us sequences of two and three words generated by n-grams along

with the number of times they occur throughout the corpus. We can see that most of the

collocations point to people who are speaking something as “said <person>”. We also see

the people who are popular characters in Alice in Wonderland, like the mock turtle, the

king, the rabbit, the hatter, and Alice are depicted in the collocations.

We now look at NLTK’s collocation finders, which enable us to find collocations

using various measures like raw frequencies, pointwise mutual information, and so on.

Just to explain briefly, pointwise mutual information can be computed for two events or

terms as the logarithm of the ratio of the probability of them occurring together by the

product of their individual probabilities, assuming that they are independent of each

other. Mathematically, we can represent it as follows:

pmi x y

p x y

p x p y
,

,() = ()
() ()

log

Chapter 6 text Summarization and topiC modelS

355

This measure is symmetric. The following code snippet shows us how to compute

these collocations using these measures.

bigrams

from nltk.collocations import BigramCollocationFinder

from nltk.collocations import BigramAssocMeasures

finder = BigramCollocationFinder.from_documents([item.split()

 for item

 in norm_alice])

finder

<nltk.collocations.BigramCollocationFinder at 0x1c2c2c4f358>

raw frequencies

In [14]: finder.nbest(bigram_measures.raw_freq, 10)

Out[14]:

[(u'said', u'alice'),

 (u'mock', u'turtle'),

 (u'march', u'hare'),

 (u'said', u'king'),

 (u'thought', u'alice'),

 (u'said', u'hatter'),

 (u'white', u'rabbit'),

 (u'said', u'mock'),

 (u'said', u'caterpillar'),

 (u'said', u'gryphon')]

pointwise mutual information

In [15]: finder.nbest(bigram_measures.pmi, 10)

Out[15]:

[(u'abide', u'figures'),

 (u'acceptance', u'elegant'),

 (u'accounting', u'tastes'),

 (u'accustomed', u'usurpation'),

 (u'act', u'crawling'),

 (u'adjourn', u'immediate'),

 (u'adoption', u'energetic'),

Chapter 6 text Summarization and topiC modelS

356

 (u'affair', u'trusts'),

 (u'agony', u'terror'),

 (u'alarmed', u'proposal')]

trigrams

from nltk.collocations import TrigramCollocationFinder

from nltk.collocations import TrigramAssocMeasures

finder = TrigramCollocationFinder.from_documents([item.split()

 for item

 in norm_alice])

trigram_measures = TrigramAssocMeasures()

raw frequencies

In [17]: finder.nbest(trigram_measures.raw_freq, 10)

Out[17]:

[(u'said', u'mock', u'turtle'),

 (u'said', u'march', u'hare'),

 (u'poor', u'little', u'thing'),

 (u'little', u'golden', u'key'),

 (u'march', u'hare', u'said'),

 (u'mock', u'turtle', u'said'),

 (u'white', u'kid', u'gloves'),

 (u'beau', u'ootiful', u'soo'),

 (u'certainly', u'said', u'alice'),

 (u'might', u'well', u'say')]

pointwise mutual information

In [18]: finder.nbest(trigram_measures.pmi, 10)

Out[18]:

[(u'accustomed', u'usurpation', u'conquest'),

 (u'adjourn', u'immediate', u'adoption'),

 (u'adoption', u'energetic', u'remedies'),

 (u'ancient', u'modern', u'seaography'),

 (u'apple', u'roast', u'turkey'),

 (u'arithmetic', u'ambition', u'distraction'),

 (u'brother', u'latin', u'grammar'),

 (u'canvas', u'bag', u'tied'),

Chapter 6 text Summarization and topiC modelS

357

 (u'cherry', u'tart', u'custard'),

 (u'circle', u'exact', u'shape')]

Now you know how to compute collocations for a corpus using an n-gram generative

approach. We look at a better way of generating keyphrases based on parts of speech

(PoS) tagging and term weighing in the next section.

 Weighted Tag-Based Phrase Extraction
We now look at a slightly different approach to extracting keyphrases. This method

borrows concepts from a couple of papers, namely K. Barker and N. Cornachhia’s “Using

Noun Phrase Heads to Extract Document Keyphrases” and Ian Witten et al.’s “KEA:

Practical Automatic Keyphrase Extraction,” which you can refer to if you are interested in

further details on their experimentations and approaches. We follow a two-step process

in our algorithm, as follows:

 1. Extract all noun phrase chunks using shallow parsing.

 2. Compute TF-IDF weights for each chunk and return the top

weighted phrases.

For the first step, we use a simple pattern based on parts of speech (POS) tags to

extract noun phrase chunks. You will be familiar with this from Chapter 3, where we

explored chunking and shallow parsing. Before discussing our algorithm, let’s load the

corpus on which we will be testing our implementation. We use a sample description

of elephants taken from Wikipedia, available in the elephants.txt file, which you can

obtain from the GitHub repository for this book at https://github.com/dipanjanS/

text-analytics-with-python.

data = open('elephants.txt', 'r+').readlines()

sentences = nltk.sent_tokenize(data[0])

len(sentences)

29

viewing the first three lines

sentences[:3]

Chapter 6 text Summarization and topiC modelS

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

358

['Elephants are large mammals of the family Elephantidae and the order

Proboscidea.', 'Three species are currently recognised: the African bush

elephant (Loxodonta africana), the African forest elephant (L. cyclotis),

and the Asian elephant (Elephas maximus).', 'Elephants are scattered

throughout sub-Saharan Africa, South Asia, and Southeast Asia.']

Let’s now use our nifty text_normalizer module to do some very basic text

preprocessing on our corpus.

norm_sentences = tn.normalize_corpus(sentences, text_lower_case=False,

 text_stemming=False, text_

lemmatization=False,

 stopword_removal=False)

norm_sentences[:3]

['Elephants are large mammals of the family Elephantidae and the order

Proboscidea', 'Three species are currently recognised the African bush

elephant Loxodonta africana the African forest elephant L cyclotis and

the Asian elephant Elephas maximus', 'Elephants are scattered throughout

subSaharan Africa South Asia and Southeast Asia']

Now that we have our corpus ready, we will use the pattern " NP: {<DT>? <JJ>*

<NN.*>+}" to extract all possible noun phrases from our corpus of documents/sentences.

You can always experiment with more sophisticated patterns, later incorporating verb,

adjective, or even adverb phrases. However, we keep things simple and concise here

to focus on the core logic. Once we have our pattern, we will define a function to parse

and extract these phrases using the following snippet. We also load any other necessary

dependencies at this point.

import itertools

stopwords = nltk.corpus.stopwords.words('english')

def get_chunks(sentences, grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',

 stopword_list=stopwords):

 all_chunks = []

 chunker = nltk.chunk.regexp.RegexpParser(grammar)

Chapter 6 text Summarization and topiC modelS

359

 for sentence in sentences:

 tagged_sents = [nltk.pos_tag(nltk.word_tokenize(sentence))]

 chunks = [chunker.parse(tagged_sent)

 for tagged_sent in tagged_sents]

 wtc_sents = [nltk.chunk.tree2conlltags(chunk)

 for chunk in chunks]

 flattened_chunks = list(

 itertools.chain.from_iterable(

 wtc_sent for wtc_sent in wtc_sents)

)

 valid_chunks_tagged = [(status, [wtc for wtc in chunk])

 for status, chunk

 in itertools.groupby(flattened_chunks,

lambda word_pos_chunk: word_pos_

 chunk[2] != 'O')]

 valid_chunks = [' '.join(word.lower()

 for word, tag, chunk in wtc_group

 if word.lower() not in stopword_list)

 for status, wtc_group in valid_

chunks_tagged

 if status]

 all_chunks.append(valid_chunks)

 return all_chunks

In this function, we have a defined grammar pattern for chunking or extracting

noun phrases. We define a chunker over the same pattern and, for each sentence in the

document, we first annotate it with its POS tags and then build a shallow parse tree with

noun phrases as the chunks and all other POS tag based words as chinks, which are not

parts of any chunks. Once this is done, we use the tree2conlltags function to generate

(w,t,c) triples, which are words, POS tags, and the IOB formatted chunk tags (discussed

in Chapter 3). We remove all tags with a chunk tag of O, since they are basically words or

terms that do not belong to any chunk. Finally, from these valid chunks, we combine the

Chapter 6 text Summarization and topiC modelS

360

chunked terms to generate phrases from each chunk group. We can see this function in

action on our corpus in the following snippet.

chunks = get_chunks(norm_sentences)

chunks

[['elephants', 'large mammals', 'family elephantidae', 'order

proboscidea'],

 ['species', 'african bush elephant loxodonta', 'african forest elephant l

cyclotis', 'asian elephant elephas maximus'],

 ['elephants', 'subsaharan africa south asia', 'southeast asia'],

...,

...,

 ['incisors', 'tusks', 'weapons', 'tools', 'objects'],

 ['elephants', 'flaps', 'body temperature'],

 ['pillarlike legs', 'great weight'],

...,

...,

 ['threats', 'populations', 'ivory trade', 'animals', 'ivory tusks'],

 ['threats', 'elephants', 'habitat destruction', 'conflicts', 'local people'],

 ['elephants', 'animals', 'asia'],

 ['past', 'war today', 'display', 'zoos', 'entertainment', 'circuses'],

 ['elephants', 'art folklore religion literature', 'popular culture']]

This output shows us all the valid keyphrases per sentence of our document. You can

already see since we targeted noun phrases, all phrases talk about noun based entities.

We now build on top of our get_chunks() function by implementing the necessary logic

for Step 2, where we will build a TF-IDF based model on our keyphrases using Gensim

and then compute TF-IDF based weights for each keyphrase based on its occurrence in

the corpus. Finally, we sort these keyphrases based on their TF-IDF weights and show

the top N keyphrases, where top_n is specified by the user.

Chapter 6 text Summarization and topiC modelS

361

from gensim import corpora, models

def get_tfidf_weighted_keyphrases(sentences,

 grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',

 top_n=10):

 valid_chunks = get_chunks(sentences, grammar=grammar)

 dictionary = corpora.Dictionary(valid_chunks)

 corpus = [dictionary.doc2bow(chunk) for chunk in valid_chunks]

 tfidf = models.TfidfModel(corpus)

 corpus_tfidf = tfidf[corpus]

 weighted_phrases = {dictionary.get(idx): value

 for doc in corpus_tfidf

 for idx, value in doc}

 weighted_phrases = sorted(weighted_phrases.items(),

 key=itemgetter(1), reverse=True)

 weighted_phrases = [(term, round(wt, 3)) for term, wt in weighted_phrases]

 return weighted_phrases[:top_n]

We can now test this function on our toy corpus by using the following code snippet

to generate the top 30 keyphrases.

top 30 tf-idf weighted keyphrases

get_tfidf_weighted_keyphrases(sentences=norm_sentences, top_n=30)

[('water', 1.0), ('asia', 0.807), ('wild', 0.764), ('great weight', 0.707),

 ('pillarlike legs', 0.707), ('southeast asia', 0.693), ('subsaharan africa

south asia', 0.693), ('body temperature', 0.693), ('flaps', 0.693),

('fissionfusion society', 0.693), ('multiple family groups', 0.693),

('art folklore religion literature', 0.693), ('popular culture', 0.693),

('ears', 0.681), ('males', 0.653), ('males bulls', 0.653), ('family

elephantidae', 0.607), ('large mammals', 0.607), ('years', 0.607),

('environments', 0.577), ('impact', 0.577), ('keystone species', 0.577),

('cetaceans', 0.577), ('elephant intelligence', 0.577), ('primates',

0.577), ('dead individuals', 0.577), ('kind', 0.577), ('selfawareness',

0.577), ('different habitats', 0.57), ('marshes', 0.57)]

Chapter 6 text Summarization and topiC modelS

362

Interestingly, we see various types of elephants being depicted in the keyphrases

like Asian and African elephants and typical attributes of elephants like “great weight”,

“fission fusion society” and “pillar like legs”.

We can also leverage Gensim’s summarization module, which has a keywords

function that extracts keywords from the text. This uses a variation of the TextRank

algorithm, which we explore in the document summarization section.

from gensim.summarization import keywords

key_words = keywords(data[0], ratio=1.0, scores=True, lemmatize=True)

[(item, round(score, 3)) for item, score in key_words][:25]

[('african bush elephant', 0.261), ('including', 0.141), ('family', 0.137),

 ('cow', 0.124), ('forests', 0.108), ('female', 0.103), ('asia', 0.102),

 ('objects', 0.098), ('tigers', 0.098), ('sight', 0.098), ('ivory', 0.098),

 ('males', 0.088), ('folklore', 0.087), ('known', 0.087), ('religion', 0.087),

 ('larger ears', 0.085), ('water', 0.075), ('highly recognisable', 0.075),

 ('breathing lifting', 0.074), ('flaps', 0.073), ('africa', 0.072),

 ('gomphotheres', 0.072), ('animals tend', 0.071), ('success', 0.071),

 ('south', 0.07)]

Thus, you can see how keyphrase extraction can extract key important concepts

from text documents and summarize them. Try these functions on other corpora to see

interesting results!

 Topic Modeling
We have seen how keyphrases can be extracted using a couple of techniques. While

these phrases point out key pivotal points from a document or corpus, this technique

is simplistic and often does not accurately portray the various themes or concepts in

a corpus, particularly when we have different distinguishing themes or concepts in a

corpus of documents.

Chapter 6 text Summarization and topiC modelS

363

Topic models have been designed specifically for the purpose of extracting

various distinguishing concepts or topics from a large corpus that has various types of

documents and each document talks about one or more concepts. These concepts can

be anything from thoughts, opinions, facts, outlooks, statements, and so on. The main

aim of topic modeling is to use mathematical and statistical techniques to discover

hidden and latent semantic structures in a corpus.

Topic modeling involves extracting features from document terms and using

mathematical structures and frameworks like matrix factorization and SVD to generate

clusters or groups of terms that are distinguishable from each other and these cluster of

words form topics or concepts. These concepts can be used to interpret the main themes

of a corpus and make semantic connections among words that co-occur frequently in

various documents. There are various frameworks and algorithms to build topic models.

We cover the following three methods:

• Latent Semantic Indexing

• Latent Dirichlet Allocation

• Non-negative matrix factorization

The first two methods are quite popular and long-standing. The last technique,

non- negative matrix factorization, is a recent but extremely effective technique and gives

excellent results. We leverage Gensim and Scikit-Learn for our practical implementations

and look at how to build our own topic model based on Latent Semantic Indexing.

We do things a bit differently in this new edition of the book in contrast to the previous

edition. Instead of working on toy datasets, we work on a complex real-world dataset just

like we have been doing in the other chapters. In the next few sections, we demonstrate

how to perform topic modeling with the three methods mentioned previously. For

demonstration, we leverage the two most popular frameworks—Gensim and Scikit- Learn.

The intent here is to understand how to leverage these frameworks easily to build topic

models and to understand some of the essential concepts behind the scenes.

Chapter 6 text Summarization and topiC modelS

364

 Topic Modeling on Research Papers
We will do an interesting exercise here—build topic models on past research papers

from the very popular NIPS conference (now known as the NeurIPS conference). The

late professor Sam Roweis compiled an excellent collection of NIPS Conference Papers

from Volume 1 – 12, which you can find at https://cs.nyu.edu/~roweis/data.html.

An interesting fact is that he obtained this by massaging the OCR’d data from NIPS

1-12, which was actually the pre-electronic submission era. Yann LeCun made the data

available. There is an even more updated dataset available up to NIPS 17 at http://

ai.stanford.edu/~gal/data.html. However, that dataset is in the form of a MAT file, so

you might need to do some additional preprocessing before working on it in Python.

 The Main Objective
Considering our discussion so far, our main objective is pretty simple. Given a whole

bunch of conference research papers, can we identify some key themes or topics from

these papers by leveraging unsupervised learning? We do not have the liberty of labeled

categories telling us what the major themes of every research paper are. Besides that, we

are dealing with text data extracted using OCR (optical character recognition). Hence,

you can expect misspelled words, words with characters missing, and so on, which

makes our problem even more challenging. The key objectives of our topic modeling

exercise are to showcase the following:

• Topic modeling with Gensim and Scikit-Learn

• Implementing topic models, using LDA, LSI, and NMF

• How to leverage third-party modeling frameworks like MALLET for

topic models

• Evaluating topic modeling performance

• Tuning topic models for optimal topics

• Interpreting topic modeling results

• Predicting topics for new research papers

The bottom line is that we can identify some major themes from NIPS research

papers using topic modeling, interpret these topics, and even predict topics for new

research papers!

Chapter 6 text Summarization and topiC modelS

https://cs.nyu.edu/~roweis/data.html
http://ai.stanford.edu/~gal/data.html
http://ai.stanford.edu/~gal/data.html

365

 Data Retrieval
We need to retrieve the dataset available on the web. You can even download it directly

from the Jupyter notebook using the following command (or from the terminal by

removing the exclamation mark at the beginning of the command).

!wget https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz

--2018-11-07 18:59:33-- https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz

Resolving cs.nyu.edu (cs.nyu.edu)... 128.122.49.30

Connecting to cs.nyu.edu (cs.nyu.edu)|128.122.49.30|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 12851423 (12M) [application/x-gzip]

Saving to: 'nips12raw_str602.tgz'

nips12raw_str602.tg 100%[===================>] 12.26M 1.75MB/s in 7.4s

2018-11-07 18:59:41 (1.65 MB/s) - 'nips12raw_str602.tgz' saved

[12851423/12851423]

Once the archive is downloaded, you can extract the contents from it automatically

by using the following command directly from the notebook.

!tar -xzf nips12raw_str602.tgz

If you are using the Windows operating system, these commands might not work and

you can simply obtain the research papers manually by going to the website at https://

cs.nyu.edu/~roweis/data/nips12raw_str602.tgz. Download the archive. Once it’s

downloaded, you can use any archive extraction tool to extract the nipstxt folder. Once

the contents are extracted, we can verify them by checking out the folder structure.

import os

import numpy as np

import pandas as pd

DATA_PATH = 'nipstxt/'

print(os.listdir(DATA_PATH))

['nips01', 'nips04', 'MATLAB_NOTES', 'nips10', 'nips02', 'idx', 'nips11',

'nips03', 'nips07', 'README_yann', 'nips05', 'nips12', 'nips06', 'RAW_DATA_

NOTES', 'orig', 'nips00', 'nips08', 'nips09']

Chapter 6 text Summarization and topiC modelS

https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz
https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz

366

 Load and View Dataset
We can now load all the research papers using the following code. Each paper is in its

own text file, hence we need to use file-reading functions from Python.

folders = ["nips{0:02}".format(i) for i in range(0,13)]

Read all texts into a list.

papers = []

for folder in folders:

 file_names = os.listdir(DATA_PATH + folder)

 for file_name in file_names:

 with open(DATA_PATH + folder + '/' + file_name, encoding='utf-8',

 errors='ignore', mode='r+') as f:

 data = f.read()

 papers.append(data)

len(papers)

1740

There are a total of 1,740 research papers, which is not a small number! Let’s take a

look at a fragment of text from one of the research papers to get an idea.

print(papers[0][:1000])

652

Scaling Properties of Coarse-Coded Symbol Memories

Ronald Rosenfeld

David S. Touretzky

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Coarse-coded symbol memories have appeared in several neural network

symbol processing models. In order to determine how these models would

scale, one must first have some understanding of the mathematics of coarse-

coded representations. We define the general structure of coarse-coded

Chapter 6 text Summarization and topiC modelS

367

symbol memories and derive mathematical relationships among their essential

parameters: memory t size, sylmbol-set size and capacitor. The computed

capacity of one of the schemes agrees well with actual measurements of

the coarse-coded working memory of DCPS, Touretzky and Hinton's distributed

connectionist production system.

1 Introduction

A distributed representation is a memory scheme in which each entity

(concept, symbol) is represented by a pattern of activity over many units

[3]. If each unit partic

Look at that! It’s basically how a research paper looks in a PDF, which you often view

in your browser. However, it looks like the OCR hasn’t worked perfectly and we have

some missing characters here and there. This is expected, but also makes this task more

challenging!

 Basic Text Wrangling
We perform some basic text wrangling or preprocessing before diving into topic

modeling. We keep things simple here and perform tokenization, lemmatizing nouns,

and removing stopwords and any terms having a single character.

%%time

import nltk

stop_words = nltk.corpus.stopwords.words('english')

wtk = nltk.tokenize.RegexpTokenizer(r'\w+')

wnl = nltk.stem.wordnet.WordNetLemmatizer()

def normalize_corpus(papers):

 norm_papers = []

 for paper in papers:

 paper = paper.lower()

 paper_tokens = [token.strip() for token in wtk.tokenize(paper)]

 paper_tokens = [wnl.lemmatize(token) for token in paper_tokens if

not token.isnumeric()]

 paper_tokens = [token for token in paper_tokens if len(token) > 1]

Chapter 6 text Summarization and topiC modelS

368

 paper_tokens = [token for token in paper_tokens if token not in

stop_words]

 paper_tokens = list(filter(None, paper_tokens))

 if paper_tokens:

 norm_papers.append(paper_tokens)

 return norm_papers

norm_papers = normalize_corpus(papers)

print(len(norm_papers))

1740

CPU times: user 38.6 s, sys: 92 ms, total: 38.7 s

Wall time: 38.7 s

viewing a processed paper

print(norm_papers[0][:50])

['scaling', 'property', 'coarse', 'coded', 'symbol', 'memory', 'ronald',

'rosenfeld', 'david', 'touretzky', 'computer', 'science', 'department',

'carnegie', 'mellon', 'university', 'pittsburgh', 'pennsylvania',

'abstract', 'coarse', 'coded', 'symbol', 'memory', 'appeared', 'several',

'neural', 'network', 'symbol', 'processing', 'model', 'order', 'determine',

'model', 'would', 'scale', 'one', 'must', 'first', 'understanding',

'mathematics', 'coarse', 'coded', 'representa', 'tions', 'define',

'general', 'structure', 'coarse', 'coded', 'symbol']

We are now ready to start building topic models and will be showcasing methods in

Gensim and Scikit-Learn, as mentioned earlier.

 Topic Models with Gensim
The key tagline of the Gensim framework is topic modeling for humans, which makes it

pretty clear that this framework was built for topic modeling. We can do amazing things

with this framework, including text similarity, semantic analytics, topic models, and text

summarization. Besides this, Gensim offers a lot of capabilities and more flexibility than

Scikit-Learn to build, evaluate, and tune topic models, which we will see very shortly. We

build topic models using the following methods in this section.

Chapter 6 text Summarization and topiC modelS

369

• Latent Semantic Indexing (LSI)

• Latent Dirichlet Allocation (LDA)

Without further ado, let’s get started by looking at ways to generate phrases with

influential bi-grams and remove some terms that may not be useful before feature

engineering.

 Text Representation with Feature Engineering
Before feature engineering and vectorization, we want to extract some useful bi-gram

based phrases from our research papers and remove some unnecessary terms. We

leverage the very useful gensim.models.Phrases class for this. This capability helps us

automatically detect common phrases from a stream of sentences, which are typically

multi-word expressions/word n-grams. This implementation draws inspiration

from the famous paper by Mikolov, et al., “Distributed Representations of Words and

Phrases and their Compositionality,” which you can check out at https://arxiv.org/

abs/1310.4546. We start by extracting and generating words and bi-grams as phrases for

each tokenized research paper. We can build this phrase generation model easily with

the following code and test it on a sample paper.

import gensim

bigram = gensim.models.Phrases(norm_papers, min_count=20, threshold=20,

delimiter=b'_') # higher threshold fewer phrases.

bigram_model = gensim.models.phrases.Phraser(bigram)

sample demonstration

print(bigram_model[norm_papers[0]][:50])

['scaling', 'property', 'coarse_coded', 'symbol', 'memory', 'ronald',

'rosenfeld', 'david_touretzky', 'computer_science', 'department',

'carnegie_mellon', 'university_pittsburgh', 'pennsylvania', 'abstract',

'coarse_coded', 'symbol', 'memory', 'appeared', 'several', 'neural_

network', 'symbol', 'processing', 'model', 'order', 'determine', 'model',

'would', 'scale', 'one', 'must', 'first', 'understanding', 'mathematics',

'coarse_coded', 'representa_tions', 'define', 'general', 'structure',

'coarse_coded', 'symbol', 'memory', 'derive', 'mathematical',

'relationship', 'among', 'essential', 'parameter', 'memor', 'size', 'lmbol']

Chapter 6 text Summarization and topiC modelS

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546

370

We can clearly see that we have single words as well as bi-grams (two words

separated by an underscore), which tells us that our model works. We leverage the min_

count parameter, which tells us that our model ignores all words and bi-grams with total

collected count lower than 20 across the corpus (of the input paper as a list of tokenized

sentences). We also use a threshold of 20, which tells us that the model accepts specific

phrases based on this threshold value so that a phrase of words a followed by b is

accepted if the score of the phrase is greater than the threshold of 20. This threshold is

dependent on the scoring parameter, which helps us understand how these phrases are

scored to understand their influence.

Typically the default scorer is used and it’s pretty straightforward to understand.

You can check out further details in the documentation at https://radimrehurek.com/

gensim/models/phrases.html#gensim.models.phrases.original_scorer and in the

previously mentioned research paper.

Let’s generate phrases for all our tokenized research papers and build a vocabulary

that will help us obtain a unique term/phrase to number mapping (since machine or

deep learning only works on numeric tensors).

norm_corpus_bigrams = [bigram_model[doc] for doc in norm_papers]

Create a dictionary representation of the documents.

dictionary = gensim.corpora.Dictionary(norm_corpus_bigrams)

print('Sample word to number mappings:', list(dictionary.items())[:15])

print('Total Vocabulary Size:', len(dictionary))

Sample word to number mappings: [(0, '8a'), (1, 'abandon'), (2, 'able'),

(3, 'abo'), (4, 'abstract'), (5, 'accommodate'), (6, 'accuracy'),

(7, 'achieved'), (8, 'acknowledgment_thank'), (9, 'across'), (10, 'active'),

(11, 'activity'), (12, 'actual'), (13, 'adjusted'), (14, 'adjusting')]

Total Vocabulary Size: 78892

Wow! Looks like we have a lot of unique phrases in our corpus of research papers,

based on the preceding output. Several of these terms are not very useful since they are

specific to a paper or even a paragraph in a research paper. Hence, it is time to prune

our vocabulary and start removing terms. Leveraging document frequency is a great way

to achieve this. By now, you probably realize that the document frequency of a term is

basically the total number of times that term occurs across all the documents in a corpus.

Chapter 6 text Summarization and topiC modelS

https://radimrehurek.com/gensim/models/phrases.html#gensim.models.phrases.original_scorer
https://radimrehurek.com/gensim/models/phrases.html#gensim.models.phrases.original_scorer

371

Filter out words that occur less than 20 documents, or more than 50% of

the documents.

dictionary.filter_extremes(no_below=20, no_above=0.6)

print('Total Vocabulary Size:', len(dictionary))

Total Vocabulary Size: 7756

We removed all terms that occur fewer than 20 times across all documents and all

terms that occur in more than 60% of all the documents. We are interested in finding

different themes and topics and not recurring themes. Hence, this suits our scenario

perfectly. We can now perform feature engineering by leveraging a simple Bag of Words

model.

Transforming corpus into bag of words vectors

bow_corpus = [dictionary.doc2bow(text) for text in norm_corpus_bigrams]

print(bow_corpus[1][:50])

[(4, 1), (14, 2), (20, 1), (28, 1), (33, 1), (43, 1), (50, 1), (60, 2),

(61, 1), (62, 2), (63, 1), (72, 1), (84, 1), ..., (286, 39), (296, 6),

(306, 1), (307, 2), (316, 1)]

viewing actual terms and their counts

print([(dictionary[idx] , freq) for idx, freq in bow_corpus[1][:50]])

[('achieved', 1), ('allow', 2), ('american_institute', 1), ('another', 1),

('appeared', 1), ('argument', 1), ('assume', 1), ('become', 2),

('becomes', 1), ('behavior', 2), ('behavioral', 1), ('bounded', 1),

('cause', 1), ..., ('group', 39), ('hence', 6), ('implementation', 1),

('implemented', 2), ('independent', 1)]

total papers in the corpus

print('Total number of papers:', len(bow_corpus))

Total number of papers: 1740

Our documents are now processed and have a good enough representation with the

Bag of Words model to begin modeling.

Chapter 6 text Summarization and topiC modelS

372

 Latent Semantic Indexing
Our first technique is Latent Semantic Indexing (LSI), which was developed in the 1970s

as a statistical technique to correlate semantically linked terms from corpora. LSI is not

just used for text summarization, but also in information retrieval and search. LSI uses

the very popular Singular Value Decomposition (SVD) technique, which we discussed in

detail in the “Important Concepts” section. The main principle behind LSI is that similar

terms tend to be used in the same context and hence tend to co-occur more. The term

LSI comes from the fact that this technique has the ability to uncover latent hidden terms

that correlate semantically to form topics.

We now implement an LSI by leveraging Gensim and extract topics from our corpus

on NIPS research papers. It is quite simple to build this model, thanks to Gensim’s clean

and concise API.

%%time

TOTAL_TOPICS = 10

lsi_bow = gensim.models.LsiModel(bow_corpus, id2word=dictionary,

num_topics=TOTAL_TOPICS, onepass=True, chunksize=1740, power_iters=1000)

CPU times: user 54min 30s, sys: 3min 21s, total: 57min 51s

Wall time: 3min 51s

Once the model is built, we can view the major topics or themes in our corpus by

using the following code. Remember we had explicitly set the number of topics to 10 in

this case.

for topic_id, topic in lsi_bow.print_topics(num_topics=10, num_words=20):

 print('Topic #'+str(topic_id+1)+':')

 print(topic)

 print()

Topic #1:

0.215*"unit" + 0.212*"state" + 0.187*"training" + 0.177*"neuron" +

0.162*"pattern" + 0.145*"image" + 0.140*"vector" + 0.125*"feature"

+ 0.122*"cell" + 0.110*"layer" + 0.101*"task" + 0.097*"class" +

0.091*"probability" + 0.089*"signal" + 0.087*"step" + 0.086*"response"

+ 0.085*"representation" + 0.083*"noise" + 0.082*"rule" +

0.081*"distribution"

Chapter 6 text Summarization and topiC modelS

373

Topic #2:

-0.487*"neuron" + -0.396*"cell" + 0.257*"state" + -0.191*"response" +

0.187*"training" + -0.170*"stimulus" + -0.117*"activity" + 0.109*"class" +

-0.099*"spike" + -0.097*"pattern" + -0.096*"circuit" + -0.096*"synaptic"

+ 0.095*"vector" + -0.090*"signal" + -0.090*"firing" + -0.088*"visual" +

0.084*"classifier" + 0.083*"action" + 0.078*"word" + -0.078*"cortical"

Topic #3:

-0.627*"state" + 0.395*"image" + -0.219*"neuron" + 0.209*"feature" +

-0.188*"action" + 0.137*"unit" + 0.131*"object" + -0.130*"control" +

0.129*"training" + -0.109*"policy" + 0.103*"classifier" + 0.090*"class"

+ -0.081*"step" + -0.081*"dynamic" + 0.080*"classification" +

0.078*"layer" + 0.076*"recognition" + -0.074*"reinforcement_learning" +

0.069*"representation" + 0.068*"pattern"

Topic #4:

-0.686*"unit" + 0.433*"image" + -0.182*"pattern" + -0.131*"layer" +

-0.123*"hidden_unit" + -0.121*"net" + -0.114*"training" + 0.112*"feature"

+ -0.109*"activation" + -0.107*"rule" + 0.097*"neuron" + -0.078*"word"

+ 0.070*"pixel" + -0.070*"connection" + 0.067*"object" + 0.065*"state"

+ 0.060*"distribution" + 0.059*"face" + -0.057*"architecture" +

0.055*"estimate"

Topic #5:

-0.428*"image" + -0.348*"state" + 0.266*"neuron" + -0.264*"unit" +

0.181*"training" + 0.174*"class" + -0.168*"object" + 0.167*"classifier"

+ -0.147*"action" + -0.122*"visual" + 0.117*"vector" + 0.115*"node"

+ 0.105*"distribution" + -0.103*"motion" + -0.099*"feature" +

0.097*"classification" + -0.097*"control" + -0.095*"task" + -0.087*"cell" +

-0.083*"representation"

Topic #6:

0.660*"cell" + -0.508*"neuron" + -0.213*"image" + -0.103*"chip" +

-0.097*"unit" + 0.093*"response" + -0.090*"object" + 0.083*"rat"

+ 0.076*"distribution" + -0.070*"circuit" + 0.069*"probability" +

0.064*"stimulus" + -0.061*"memory" + -0.058*"analog" + -0.058*"activation"

+ 0.055*"class" + -0.053*"bit" + -0.052*"net" + 0.051*"cortical" +

0.050*"firing"

Chapter 6 text Summarization and topiC modelS

374

Topic #7:

-0.353*"word" + 0.281*"unit" + -0.272*"training" + -0.257*"classifier"

+ -0.177*"recognition" + 0.159*"distribution" + -0.152*"feature" +

-0.144*"state" + -0.142*"pattern" + 0.141*"vector" + -0.128*"cell" +

-0.128*"task" + 0.122*"approximation" + 0.121*"variable" + 0.110*"equation"

+ -0.107*"classification" + 0.106*"noise" + -0.103*"class" + 0.101*"matrix"

+ -0.098*"neuron"

Topic #8:

-0.303*"pattern" + 0.243*"signal" + 0.236*"control" + 0.202*"training"

+ -0.181*"rule" + -0.178*"state" + 0.167*"noise" + -0.166*"class"

+ 0.162*"word" + -0.155*"cell" + -0.154*"feature" + 0.147*"motion"

+ 0.140*"task" + -0.127*"node" + -0.124*"neuron" + 0.116*"target"

+ 0.114*"circuit" + -0.114*"probability" + -0.110*"classifier" +

 -0.109*"image"

Topic #9:

-0.472*"node" + -0.254*"circuit" + 0.214*"word" + -0.201*"chip" +

0.190*"neuron" + 0.172*"stimulus" + -0.160*"classifier" + -0.152*"current" +

0.147*"feature" + -0.146*"voltage" + 0.145*"distribution" + -0.141*"control"

+ -0.124*"rule" + -0.110*"layer" + -0.105*"analog" + -0.091*"tree" +

0.084*"response" + 0.080*"state" + 0.079*"probability" + 0.079*"estimate"

Topic #10:

0.518*"word" + -0.254*"training" + 0.236*"vector" + -0.222*"task" +

-0.194*"pattern" + -0.156*"classifier" + 0.149*"node" + 0.146*"recognition"

+ -0.139*"control" + 0.138*"sequence" + -0.126*"rule" + 0.125*"circuit"

+ 0.123*"cell" + -0.113*"action" + -0.105*"neuron" + 0.094*"hmm" +

0.093*"character" + 0.088*"chip" + 0.088*"matrix" + 0.085*"structure"

Let’s take a moment to understand these results. A brief recap on the LSI model—

it is based on the principle that words that are used in the same contexts tend to have

similar meanings. You can observe in this output that each topic is a combination

of terms (which basically tend to convey an overall sense of the topic) and weights.

Now the problem here is that we have both positive and negative weights. What does

that mean?

Chapter 6 text Summarization and topiC modelS

375

Based on existing research and my interpretations, considering we are reducing

the dimensionality here to a 10-dimensional space based on the number of topics, the

sign on each term indicates a sense of direction or orientation in the vector space for a

particular topic. The higher the weight, the more important the contribution. So similar

correlated terms have the same sign or direction. Hence, it is perfectly possible for a

topic to have two different sub-themes based on the sign or orientation of terms. Let’s

separate these terms and try to interpret the topics again.

for n in range(TOTAL_TOPICS):

 print('Topic #'+str(n+1)+':')

 print('='*50)

 d1 = []

 d2 = []

 for term, wt in lsi_bow.show_topic(n, topn=20):

 if wt >= 0:

 d1.append((term, round(wt, 3)))

 else:

 d2.append((term, round(wt, 3)))

 print('Direction 1:', d1)

 print('-'*50)

 print('Direction 2:', d2)

 print('-'*50)

 print()

Topic #1:

==

Direction 1: [('unit', 0.215), ('state', 0.212), ('training', 0.187),

('neuron', 0.177), ('pattern', 0.162), ('image', 0.145), ('vector', 0.14),

('feature', 0.125), ('cell', 0.122), ('layer', 0.11), ('task', 0.101),

('class', 0.097), ('probability', 0.091), ('signal', 0.089), ('step',

0.087), ('response', 0.086), ('representation', 0.085), ('noise', 0.083),

('rule', 0.082), ('distribution', 0.081)]

--

Direction 2: []

--

Chapter 6 text Summarization and topiC modelS

376

Topic #2:

==

Direction 1: [('state', 0.257), ('training', 0.187), ('class', 0.109),

('vector', 0.095), ('classifier', 0.084), ('action', 0.083), ('word',

0.078)]

--

Direction 2: [('neuron', -0.487), ('cell', -0.396), ('response', -0.191),

('stimulus', -0.17), ('activity', -0.117), ('spike', -0.099), ('pattern',

-0.097), ('circuit', -0.096), ('synaptic', -0.096), ('signal', -0.09),

('firing', -0.09), ('visual', -0.088), ('cortical', -0.078)]

--

Topic #3:

==

Direction 1: [('image', 0.395), ('feature', 0.209), ('unit', 0.137),

('object', 0.131), ('training', 0.129), ('classifier', 0.103), ('class',

0.09), ('classification', 0.08), ('layer', 0.078), ('recognition', 0.076),

('representation', 0.069), ('pattern', 0.068)]

--

Direction 2: [('state', -0.627), ('neuron', -0.219), ('action', -0.188),

('control', -0.13), ('policy', -0.109), ('step', -0.081), ('dynamic',

-0.081), ('reinforcement_learning', -0.074)]

--

Topic #4:

==

Direction 1: [('image', 0.433), ('feature', 0.112), ('neuron', 0.097),

('pixel', 0.07), ('object', 0.067), ('state', 0.065), ('distribution',

0.06), ('face', 0.059), ('estimate', 0.055)]

--

Direction 2: [('unit', -0.686), ('pattern', -0.182), ('layer', -0.131),

('hidden_unit', -0.123), ('net', -0.121), ('training', -0.114),

('activation', -0.109), ('rule', -0.107), ('word', -0.078), ('connection',

-0.07), ('architecture', -0.057)]

--

Chapter 6 text Summarization and topiC modelS

377

Topic #5:

==

Direction 1: [('neuron', 0.266), ('training', 0.181), ('class', 0.174),

('classifier', 0.167), ('vector', 0.117), ('node', 0.115), ('distribution',

0.105), ('classification', 0.097)]

--

Direction 2: [('image', -0.428), ('state', -0.348), ('unit', -0.264),

('object', -0.168), ('action', -0.147), ('visual', -0.122), ('motion',

-0.103), ('feature', -0.099), ('control', -0.097), ('task', -0.095),

('cell', -0.087), ('representation', -0.083)]

--

Topic #6:

==

Direction 1: [('cell', 0.66), ('response', 0.093), ('rat', 0.083),

('distribution', 0.076), ('probability', 0.069), ('stimulus', 0.064),

('class', 0.055), ('cortical', 0.051), ('firing', 0.05)]

--

Direction 2: [('neuron', -0.508), ('image', -0.213), ('chip', -0.103),

('unit', -0.097), ('object', -0.09), ('circuit', -0.07), ('memory',

-0.061), ('analog', -0.058), ('activation', -0.058), ('bit', -0.053),

('net', -0.052)]

--

Topic #7:

==

Direction 1: [('unit', 0.281), ('distribution', 0.159), ('vector', 0.141),

('approximation', 0.122), ('variable', 0.121), ('equation', 0.11),

('noise', 0.106), ('matrix', 0.101)]

--

Direction 2: [('word', -0.353), ('training', -0.272), ('classifier',

-0.257), ('recognition', -0.177), ('feature', -0.152), ('state', -0.144),

('pattern', -0.142), ('cell', -0.128), ('task', -0.128), ('classification',

-0.107), ('class', -0.103), ('neuron', -0.098)]

--

Chapter 6 text Summarization and topiC modelS

378

Topic #8:

==

Direction 1: [('signal', 0.243), ('control', 0.236), ('training', 0.202),

('noise', 0.167), ('word', 0.162), ('motion', 0.147), ('task', 0.14),

('target', 0.116), ('circuit', 0.114)]

--

Direction 2: [('pattern', -0.303), ('rule', -0.181), ('state', -0.178),

('class', -0.166), ('cell', -0.155), ('feature', -0.154), ('node', -0.127),

('neuron', -0.124), ('probability', -0.114), ('classifier', -0.11),

('image', -0.109)]

--

Topic #9:

==

Direction 1: [('word', 0.214), ('neuron', 0.19), ('stimulus', 0.172),

('feature', 0.147), ('distribution', 0.145), ('response', 0.084), ('state',

0.08), ('probability', 0.079), ('estimate', 0.079)]

--

Direction 2: [('node', -0.472), ('circuit', -0.254), ('chip', -0.201),

('classifier', -0.16), ('current', -0.152), ('voltage', -0.146),

('control', -0.141), ('rule', -0.124), ('layer', -0.11), ('analog',

-0.105), ('tree', -0.091)]

--

Topic #10:

==

Direction 1: [('word', 0.518), ('vector', 0.236), ('node', 0.149),

('recognition', 0.146), ('sequence', 0.138), ('circuit', 0.125), ('cell',

0.123), ('hmm', 0.094), ('character', 0.093), ('chip', 0.088), ('matrix',

0.088), ('structure', 0.085)]

--

Direction 2: [('training', -0.254), ('task', -0.222), ('pattern', -0.194),

('classifier', -0.156), ('control', -0.139), ('rule', -0.126), ('action',

-0.113), ('neuron', -0.105)]

--

Chapter 6 text Summarization and topiC modelS

379

Does this make things better? Well, it’s definitely a lot better than the previous

interpretation. Here we can see clear themes of modeling being applied in chips and

electronic devices, classification and recognition models, neural models talking about

the human brain components like cells, stimuli, neurons, cortical components, and

even themes around reinforcement learning! We explore these in detail later in a more

structured way.

Let’s try to get the three major matrices (U, S, and VT) from our topic model, which

uses SVD (based on the foundational concepts mentioned earlier).

term_topic = lsi_bow.projection.u

singular_values = lsi_bow.projection.s

topic_document = (gensim.matutils.corpus2dense(lsi_bow[bow_corpus],

len(singular_values)).T / singular_values).T

term_topic.shape, singular_values.shape, topic_document.shape

((7756, 10), (10,), (10, 1740))

Just like the preceding output shows, we have a term-topic matrix, singular values, and a

topic-document matrix. We can transpose the topic-document matrix to form a document-

topic matrix and that would help us see the proportion of each topic per document (a larger

proportion means the topic is more dominant in the document). See Figure 6-2.

document_topics = pd.DataFrame(np.round(topic_document.T, 3),

 columns=['T'+str(i) for i in range(1, TOTAL_

TOPICS+1)])

document_topics.head(5)

Figure 6-2. Document-topic matrix from our LSI model

Chapter 6 text Summarization and topiC modelS

380

Ignoring the sign, we can try to find out the most important topics for a few sample

papers and see if they make sense.

document_numbers = [13, 250, 500]

for document_number in document_numbers:

 top_topics = list(document_topics.columns[np.argsort(-

 np.absolute(

 document_topics.iloc[document_

number].values))[:3]])

 print('Document #'+str(document_number)+':')

 print('Dominant Topics (top 3):', top_topics)

 print('Paper Summary:')

 print(papers[document_number][:500])

 print()

Document #13:

Dominant Topics (top 3): ['T6', 'T1', 'T2']

Paper Summary:

9

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent,

symmetrically connected, neuromorphic network that, like the Boltzmann

machine, settles in the presence of noise. These networks learn by

modifying synaptic connection strengths on the basis of correlations

seen loca

Document #250:

Dominant Topics (top 3): ['T3', 'T5', 'T8']

Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations

Chapter 6 text Summarization and topiC modelS

381

Richard S. Zemel

Computer Science Dept.

University of Toronto

...

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T9', 'T8', 'T10']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

Computer Graphics 350-74

California Institute of Technology

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea. This automated method uses computer controlled mea-

surement and test equipment to choose chip paramet

If you look at the description of the terms in each of the selected topics in the

preceding output, they make perfect sense.

• Paper #13 has a dominance of topics 6, 1, and 2, which pretty much

talk about neurons, cells, brain’s cortex, stimulus, and so on (aspects

around neuromorphic networks).

• Paper #250 has a dominance of topics 3, 5, and 8, which talk about

object recognition, image classification, and visual representation

with neural networks. This matches the paper’s theme, which is about

object recognition.

• Paper #500 has a dominance of topics 9, 8, and 10, which talk about

signals, voltage, chips, circuits, and so on. This is in line with the

theme of the paper around parameter settings for analog circuits.

This shows us that the LSI model is quite effective, although a tad difficult to

interpret based on the positive and negative weights, which often make things confusing.

Chapter 6 text Summarization and topiC modelS

382

 Implementing LSI Topic Models from Scratch
Based on what we mentioned earlier, the heart of LSI models involves Singular Value

Decomposition (SVD). Here, we try to implement an LSI topic model from scratch using

low-rank SVD. The first step in SVD is to get the source matrix, which is typically a term-

document matrix. We can obtain it from Gensim by converting the sparse Bag of Words

representation into a dense matrix.

td_matrix = gensim.matutils.corpus2dense(corpus=bow_corpus,

num_terms=len(dictionary))

print(td_matrix.shape)

td_matrix

(7756, 1740)

array([[1., 0., 1., ..., 0., 2., 1.],

 [1., 0., 1., ..., 1., 1., 0.],

 [1., 0., 0., ..., 0., 0., 0.],

 ...,

 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)

Everything seems to be in order, so we can validate our vocabulary by using the

following code just to make sure everything is correct.

vocabulary = np.array(list(dictionary.values()))

print('Total vocabulary size:', len(vocabulary))

vocabulary

Total vocabulary size: 7756

array(['able', 'abstract', 'accommodate', ..., 'support_vector',

 'mozer_jordan', 'kearns_solla'], dtype='<U28')

We now perform low-rank SVD on our term document matrix by leveraging the

following code snippet.

from scipy.sparse.linalg import svds

u, s, vt = svds(td_matrix, k=TOTAL_TOPICS, maxiter=10000)

term_topic = u

Chapter 6 text Summarization and topiC modelS

383

singular_values = s

topic_document = vt

term_topic.shape, singular_values.shape, topic_document.shape

((7756, 10), (10,), (10, 1740))

Getting the weights (direction and importance) for each term in each topic is also

pretty straightforward. The following code helps us compute this.

tt_weights = term_topic.transpose() * singular_values[:, None]

tt_weights.shape

(10, 7756)

We can now easily look at our 10 topics and the top influential terms for them by

using the following code.

top_terms = 20

topic_key_term_idxs = np.argsort(-np.absolute(tt_weights), axis=1)[:, :top_

terms]

topic_keyterm_weights = np.array([tt_weights[row, columns]

 for row, columns in list(zip(np.arange(TOTAL_

TOPICS), topic_key_term_idxs))])

topic_keyterms = vocabulary[topic_key_term_idxs]

topic_keyterms_weights = list(zip(topic_keyterms, topic_keyterm_weights))

for n in range(TOTAL_TOPICS):

 print('Topic #'+str(n+1)+':')

 print('='*50)

 d1 = []

 d2 = []

 terms, weights = topic_keyterms_weights[n]

 term_weights = sorted([(t, w) for t, w in zip(terms, weights)],

 key=lambda row: -abs(row[1]))

 for term, wt in term_weights:

 if wt >= 0:

 d1.append((term, round(wt, 3)))

 else:

 d2.append((term, round(wt, 3)))

Chapter 6 text Summarization and topiC modelS

384

 print('Direction 1:', d1)

 print('-'*50)

 print('Direction 2:', d2)

 print('-'*50)

 print()

Topic #1:

==

Direction 1: [('training', 92.618), ('task', 80.732), ('pattern', 70.619),

('classifier', 56.989), ('control', 50.677), ('rule', 45.926), ('action',

41.202), ('neuron', 38.193)]

--

Direction 2: [('word', -188.488), ('vector', -85.973), ('node', -54.376),

('recognition', -53.232), ('sequence', -50.351), ('circuit', -45.394),

('cell', -44.811), ('hmm', -34.086), ('character', -34.022), ('chip',

-32.16), ('matrix', -32.093), ('structure', -30.993)]

--

Topic #2:

==

Direction 1: [('word', 78.347), ('neuron', 69.793), ('stimulus', 63.234),

('feature', 53.819), ('distribution', 53.119), ('response', 30.954),

('state', 29.343), ('probability', 29.099), ('estimate', 28.908)]

--

Direction 2: [('node', -173.277), ('circuit', -93.0), ('chip', -73.593),

('classifier', -58.717), ('current', -55.844), ('voltage', -53.489),

('control', -51.708), ('rule', -45.293), ('layer', -40.265), ('analog',

-38.344), ('tree', -33.483)]

--

Topic #3:

==

Direction 1: [('pattern', 116.971), ('rule', 69.783), ('state', 68.605),

('class', 64.259), ('cell', 59.979), ('feature', 59.606), ('node', 49.175),

('neuron', 47.998), ('probability', 43.812), ('classifier', 42.612),

('image', 42.061)]

--

Chapter 6 text Summarization and topiC modelS

385

Direction 2: [('signal', -93.805), ('control', -91.041), ('training',

-77.88), ('noise', -64.397), ('word', -62.392), ('motion', -56.699),

('task', -53.883), ('target', -44.765), ('circuit', -44.129)]

--

Topic #4:

==

Direction 1: [('unit', 117.727), ('distribution', 66.719), ('vector',

58.881), ('approximation', 50.931), ('variable', 50.83), ('equation',

46.229), ('noise', 44.247), ('matrix', 42.214)]

--

Direction 2: [('word', -147.792), ('training', -113.693), ('classifier',

-107.386), ('recognition', -73.948), ('feature', -63.454), ('state',

-60.126), ('pattern', -59.562), ('cell', -53.768), ('task', -53.693),

('classification', -44.936), ('class', -43.161), ('neuron', -41.092)]

--

Topic #5:

==

Direction 1: [('neuron', 220.116), ('image', 92.39), ('chip', 44.422),

('unit', 41.922), ('object', 39.001), ('circuit', 30.444), ('memory',

26.475), ('analog', 25.207), ('activation', 24.953), ('bit', 22.997),

('net', 22.699)]

--

Direction 2: [('cell', -285.803), ('response', -40.216), ('rat', -35.975),

('distribution', -33.085), ('probability', -29.79), ('stimulus', -27.789),

('class', -24.02), ('cortical', -22.185), ('firing', -21.66)]

--

Topic #6:

==

Direction 1: [('image', 209.793), ('state', 170.207), ('unit', 129.108),

('object', 82.185), ('action', 72.136), ('visual', 59.502), ('motion',

50.605), ('feature', 48.665), ('control', 47.427), ('task', 46.496),

('cell', 42.366), ('representation', 40.564)]

--

Chapter 6 text Summarization and topiC modelS

386

Direction 2: [('neuron', -130.053), ('training', -88.668), ('class',

-85.213), ('classifier', -81.921), ('vector', -57.532), ('node', -56.341),

('distribution', -51.622), ('classification', -47.645)]

--

Topic #7:

==

Direction 1: [('image', 215.858), ('feature', 55.647), ('neuron', 48.494),

('pixel', 35.095), ('object', 33.585), ('state', 32.544), ('distribution',

29.977), ('face', 29.256), ('estimate', 27.555)]

--

Direction 2: [('unit', -341.829), ('pattern', -90.771), ('layer',

-65.337), ('hidden_unit', -61.12), ('net', -60.035), ('training',

-56.742), ('activation', -54.268), ('rule', -53.377), ('word', -38.903),

('connection', -34.618), ('architecture', -28.439)]

--

Topic #8:

==

Direction 1: [('image', 229.287), ('feature', 121.397), ('unit', 79.44),

('object', 76.204), ('training', 75.152), ('classifier', 59.872), ('class',

52.527), ('classification', 46.696), ('layer', 45.149), ('recognition',

44.192), ('representation', 40.179), ('pattern', 39.252)]

--

Direction 2: [('state', -364.388), ('neuron', -127.022), ('action',

-109.245), ('control', -75.369), ('policy', -63.103), ('step', -47.226),

('dynamic', -46.907), ('reinforcement_learning', -42.747)]

--

Topic #9:

==

Direction 1: [('neuron', 306.151), ('cell', 249.243), ('response',

119.758), ('stimulus', 106.762), ('activity', 73.499), ('spike', 62.039),

('pattern', 60.957), ('circuit', 60.602), ('synaptic', 60.282), ('signal',

56.665), ('firing', 56.597), ('visual', 55.571), ('cortical', 48.867)]

--

Chapter 6 text Summarization and topiC modelS

387

Direction 2: [('state', -161.465), ('training', -117.32), ('class',

-68.732), ('vector', -59.558), ('classifier', -52.589), ('action',

-52.113), ('word', -49.239)]

--

Topic #10:

==

Direction 1: []

--

Direction 2: [('unit', -260.793), ('state', -258.146), ('training',

-227.312), ('neuron', -215.681), ('pattern', -197.232), ('image',

-175.735), ('vector', -170.154), ('feature', -151.547), ('cell',

-148.138), ('layer', -133.593), ('task', -122.389), ('class', -117.849),

('probability', -110.526), ('signal', -108.232), ('step', -105.202),

('response', -104.465), ('representation', -103.255), ('noise', -100.573),

('rule', -99.611), ('distribution', -98.973)]

--

Note that even if the topic numbers have shuffled around, they match the previous

topic model’s output from Gensim very closely! You can also try extracting influential

topics from sample papers using the following code.

document_topics = pd.DataFrame(np.round(topic_document.T, 3),

 columns=['T'+str(i) for i in range(1, TOTAL_

TOPICS+1)])

document_numbers = [13, 250, 500]

for document_number in document_numbers:

 top_topics = list(document_topics.columns[np.argsort(-

 np.absolute(

 document_topics.iloc[document_

number].values))[:3]])

 print('Document #'+str(document_number)+':')

 print('Dominant Topics (top 3):', top_topics)

 print('Paper Summary:')

 print(papers[document_number][:500])

 print()

Chapter 6 text Summarization and topiC modelS

388

Document #13:

Dominant Topics (top 3): ['T5', 'T10', 'T9']

Paper Summary:

9

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent,

symmetrically connected, neuromorphic network that, like the Boltzmann machine

Document #250:

Dominant Topics (top 3): ['T6', 'T8', 'T3']

Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations

Richard S. Zemel

Computer Science Dept.

University of Toronto

...

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T2', 'T3', 'T1']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

...

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea.

Chapter 6 text Summarization and topiC modelS

389

We can clearly observe that even if the topic numbers have changed (since they

were shuffled around based on our new model), the core themes pertaining to each

topic closely match the results we obtained earlier. Clearly SVD is a very powerful

mathematical operation and we will see more of this during document summarization!

 Latent Dirichlet Allocation
The Latent Dirichlet Allocation (LDA) technique is a generative probabilistic model in

which each document is assumed to have a combination of topics similar to a probabilistic

Latent Semantic Indexing model. In this case, the latent topics contain a Dirichlet

prior over them. The math behind in this technique is pretty involved, so we will try to

summarize it since going it specific details is out of the current scope. We recommend

readers to go through this excellent talk at http://chdoig.github.io/pygotham-topic-

modeling/#/ by Christine Doig from which we will be borrowing some excellent pictorial

representations. The plate notation for the LDA model is depicted in Figure 6-3.

You can find more details about the diagram in Figure 6-3 in the official Wikipedia

article at https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation, which talks

Figure 6-3. LDA plate notation (courtesy C. Doug. Introduction to Topic Modeling
in Python)

Chapter 6 text Summarization and topiC modelS

http://chdoig.github.io/pygotham-topic-modeling/#/
http://chdoig.github.io/pygotham-topic-modeling/#/
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

390

about the parameters in detail. Figure 6-3 gives us a good representation of how each of

the parameters connects to the text documents and terms. It is assumed that we have M

documents, N number of words in the documents, and K total number of topics to generate.

The black box in Figure 6-4 represents the core algorithm, which uses the previously

mentioned parameters to extract K topics from the documents. The following steps give

a very simplistic explanation of what happens in the algorithm for everyone’s benefit.

 1. Initialize the necessary parameters.

 2. For each document, randomly initialize each word to one of the K

topics.

 3. Start an iterative process as follows and repeat it several times. For

each document D, for each word W in document, and for each topic T:

• Compute P(T| D), which is proportion of words in D assigned to

topic T.

• Compute P(W| T), which is proportion of assignments to topic T

over all documents having the word W.

• Reassign word W with topic T with probability P(T| D) × P(W| T),

considering all other words and their topic assignments.

Figure 6-4. End-to-end LDA framework (courtesy C. Doug. Introduction to Topic
Modeling in Python)

Chapter 6 text Summarization and topiC modelS

391

Once this runs several iterations, we should have topic mixtures for each document

and then we can generate the constituents of each topic from the terms that point to

that topic. Popularly, the method used here is known as Collapsed Gibbs Sampling. We

use Gensim in the following implementation to build an LDA-based topic model on our

research paper based corpus.

%%time

lda_model = gensim.models.LdaModel(corpus=bow_corpus, id2word=dictionary,

chunksize=1740, alpha='auto',

eta='auto', random_state=42,

iterations=500, num_topics=TOTAL_TOPICS,

passes=20, eval_every=None)

CPU times: user 5min 32s, sys: 10.7 s, total: 5min 43s

Wall time: 2min 31s

Viewing the topics in our trained topic model is quite easy and we can generate them

with the following code.

for topic_id, topic in lda_model.print_topics(num_topics=10, num_words=20):

 print('Topic #'+str(topic_id+1)+':')

 print(topic)

 print()

Topic #1:

0.016*"training" + 0.012*"classifier" + 0.007*"pattern" +

0.007*"classification" + 0.006*"class" + 0.006*"task" + 0.006*"vector" +

0.005*"training_set" + 0.005*"feature" + 0.004*"control" + 0.004*"size"

+ 0.003*"trained" + 0.003*"teacher" + 0.003*"rate" + 0.003*"student"

+ 0.003*"average" + 0.003*"robot" + 0.003*"random" + 0.003*"rule" +

0.003*"search"

Topic #2:

0.008*"vector" + 0.006*"equation" + 0.006*"matrix" + 0.006*"neuron"

+ 0.005*"state" + 0.005*"dynamic" + 0.005*"solution" + 0.005*"unit"

+ 0.004*"node" + 0.004*"pattern" + 0.004*"linear" + 0.004*"let" +

0.003*"layer" + 0.003*"convergence" + 0.003*"rule" + 0.003*"size" +

0.003*"theorem" + 0.003*"threshold" + 0.003*"memory" + 0.003*"theory"

Chapter 6 text Summarization and topiC modelS

392

Topic #3:

0.017*"training" + 0.011*"word" + 0.008*"recognition" + 0.007*"trained"

+ 0.006*"net" + 0.006*"unit" + 0.006*"feature" + 0.006*"speech" +

0.006*"task" + 0.005*"architecture" + 0.005*"class" + 0.005*"character" +

0.004*"layer" + 0.004*"classification" + 0.004*"context" + 0.004*"test"

+ 0.004*"sequence" + 0.004*"hidden_unit" + 0.004*"experiment" +

0.004*"vector"

Topic #4:

0.017*"motion" + 0.009*"rule" + 0.008*"direction" + 0.007*"stimulus"

+ 0.006*"velocity" + 0.006*"task" + 0.006*"human" + 0.006*"unit" +

0.005*"location" + 0.005*"target" + 0.005*"subject" + 0.005*"memory" +

0.005*"prediction" + 0.005*"position" + 0.004*"concept" + 0.004*"field" +

0.004*"response" + 0.004*"cue" + 0.004*"layer" + 0.004*"hand"

Topic #5:

0.008*"distribution" + 0.005*"estimate" + 0.005*"sample" + 0.005*"training"

+ 0.005*"class" + 0.005*"probability" + 0.005*"approximation" +

0.004*"variable" + 0.004*"gaussian" + 0.004*"linear" + 0.004*"vector"

+ 0.004*"prior" + 0.004*"noise" + 0.004*"density" + 0.004*"prediction"

+ 0.003*"kernel" + 0.003*"variance" + 0.003*"mixture" + 0.003*"bound" +

0.003*"regression"

Topic #6:

0.037*"state" + 0.011*"action" + 0.008*"step" + 0.008*"control" +

0.007*"policy" + 0.006*"sequence" + 0.006*"reinforcement_learning" +

0.005*"probability" + 0.005*"optimal" + 0.004*"task" + 0.004*"transition"

+ 0.004*"environment" + 0.003*"variable" + 0.003*"reward" +

0.003*"stochastic" + 0.003*"goal" + 0.003*"machine" + 0.003*"current" +

0.003*"controller" + 0.003*"agent"

Topic #7:

0.012*"circuit" + 0.011*"signal" + 0.011*"chip" + 0.009*"neuron" +

0.008*"current" + 0.007*"voltage" + 0.006*"analog" + 0.006*"control"

+ 0.005*"channel" + 0.004*"noise" + 0.004*"neural" + 0.004*"bit" +

0.004*"implementation" + 0.004*"source" + 0.003*"design" + 0.003*"gain" +

0.003*"processor" + 0.003*"synapse" + 0.003*"device" + 0.003*"array"

Chapter 6 text Summarization and topiC modelS

393

Topic #8:

0.021*"neuron" + 0.019*"cell" + 0.009*"response" + 0.007*"activity" +

0.007*"stimulus" + 0.007*"pattern" + 0.006*"spike" + 0.005*"synaptic" +

0.004*"cortical" + 0.004*"neural" + 0.004*"signal" + 0.004*"firing" +

0.004*"connection" + 0.004*"effect" + 0.004*"layer" + 0.004*"et_al" +

0.004*"cortex" + 0.003*"visual" + 0.003*"simulation" + 0.003*"synapsis"

Topic #9:

0.032*"image" + 0.012*"object" + 0.012*"feature" + 0.006*"pixel" +

0.006*"visual" + 0.005*"representation" + 0.005*"face" + 0.005*"vector" +

0.004*"view" + 0.004*"recognition" + 0.004*"transformation" + 0.004*"local"

+ 0.003*"map" + 0.003*"structure" + 0.003*"region" + 0.003*"filter" +

0.003*"position" + 0.003*"distance" + 0.003*"part" + 0.003*"location"

Topic #10:

0.030*"unit" + 0.009*"pattern" + 0.007*"representation" + 0.007*"activation"

+ 0.006*"hidden_unit" + 0.006*"node" + 0.006*"structure" + 0.006*"layer" +

0.005*"activity" + 0.004*"connection" + 0.004*"task" + 0.004*"component"

+ 0.004*"map" + 0.004*"rule" + 0.004*"architecture" + 0.004*"signal" +

0.004*"level" + 0.003*"response" + 0.003*"connectionist" + 0.003*"training"

The topics are definitely easier to understand and interpret than the LSI model, since

all the weights are the same sign and tell us the importance of each term in the topic. We

can also view the overall mean coherence score of the model.

topics_coherences = lda_model.top_topics(bow_corpus, topn=20)

avg_coherence_score = np.mean([item[1] for item in topics_coherences])

print('Avg. Coherence Score:', avg_coherence_score)

Avg. Coherence Score: -1.0433305600965899

Topic coherence is a complex topic in its own and it can be used to measure the

quality of topic models to some extent. Typically, a set of statements is said to be

coherent if they support each other. Topic models are unsupervised learning based

models that are trained on unstructured text data, making it difficult to measure the

quality of outputs. An excellent resource on the topic coherence framework is the paper

by Michael Röder et al., “Exploring the Space of Topic Coherence Measures,” which you

can access at http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.

pdf. The same framework has been implemented in Python in the Gensim framework.

Chapter 6 text Summarization and topiC modelS

http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf
http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf

394

A detailed article is available at https://rare-technologies.com/what-is-topic-

coherence by Devashish who implemented this neat capability in Gensim!

I use his same easy-to-understand analogy to explain the topic coherence

framework briefly where consider we have a water source and water is distributed to

different people. To measure the water quality, we have to rely on individual customer

reviews. Now assume we have four main hubs for water distribution and we install

some equipment at the four water pipes distributing water in each of the hubs. This

equipment helps us measure the quality of water using quantitative metrics, saving us

time from relying on subjective reviews. Now take this analogy and consider the water

is basically the topics we obtain from a topic model and the topic coherence framework

is the equipment we installed to get a quantitative evaluation of the topic quality. This

coherence framework is a four-stage pipeline, as defined in the research paper we

mentioned earlier, and is depicted in Figure 6-5.

The four main stages in the topic coherence framework pipeline depicted in

Figure 6-5 are described as follows:

 1. Segmentation: This stage is akin to when our water is partitioned

into several glasses assuming that the quality of water in each

glass is different. Here, the words in a topic are placed into subsets

and pairs of words are created.

 2. Probability calculation: The quantity of water in each glass is

measured. The method of probability calculation or estimation

defines the way that the probabilities are derived from the

underlying data. The Boolean document estimates the probability of

Figure 6-5. The unifying coherence framework for topic models

Chapter 6 text Summarization and topiC modelS

https://rare-technologies.com/what-is-topic-coherence
https://rare-technologies.com/what-is-topic-coherence

395

a single word as the number of documents in which the word occurs

by the total number of documents. Similarly, the joint probability

of two words is estimated by the number of documents containing

both words by the total number of documents. The Boolean sliding

window determines word counts using a sliding window.

 3. Confirmation measure: The quality of water (based on a certain

metric) in each glass is measured and a number is assigned to

each glass with regard to its quantity. Considering topic models,

a confirmation measure takes a pair of words or word subsets as

well as the corresponding probabilities and computes how strong

the conditioning word set supports the other word in the pair.

Typically there are two types of measures—extrinsic and intrinsic.

• Direct or extrinsic measures: One of the most popular ones is

the UCI measure. It uses the pointwise mutual information (PMI)

as the pairwise scoring function. In the research paper, they came

up with a direct metric Cp, which gave them the best performance

(details mentioned in the paper).

• Indirect or intrinsic measures: Indirect confirmation measures

claim to capture semantic support that direct measures would

miss. One of the most popular measures is the UMass measure,

which uses the following scoring function.

S ,

,
UMass w w

D w w

D wi j

i j

i

() = ()+
()

log
1

such that D(w) is the document frequency of the term w. The scoring is

basically the empirical conditional log-probability:

log logp w w
p w w

p w
j i

i j

j

|
,() = ()

()

which is smoothened by adding 1 to the document frequency in the

numerator. The research paper claims to have found a new measure Cv,

which is a combination of the indirect cosine measure and with the NPMI

and the Boolean sliding window which gave the best results. This is also

available in Gensim.

Chapter 6 text Summarization and topiC modelS

396

 4. Aggregation: This is the equipment where these quality numbers

are combined in a certain way (e.g., arithmetic mean) to come

up with one quantitative metric. All confirmation measures for

each subset word pairs per topic are aggregated to give a single

coherence score. Just like we obtained -1.04 as the average

coherence score in our previous output (the UMass measure).

This should give you enough context to evaluate and tune the topic models. Let’s

now look at the output of our LDA topic model in an easier to understand format. One

way is to visualize the topics as tuples of terms and weights.

topics_with_wts = [item[0] for item in topics_coherences]

print('LDA Topics with Weights')

print('='*50)

for idx, topic in enumerate(topics_with_wts):

 print('Topic #'+str(idx+1)+':')

 print([(term, round(wt, 3)) for wt, term in topic])

 print()

LDA Topics with Weights

==

Topic #1:

[('training', 0.017), ('word', 0.011), ('recognition', 0.008), ('trained',

0.007), ('net', 0.006), ('unit', 0.006), ('feature', 0.006), ('speech',

0.006), ('task', 0.006), ('architecture', 0.005), ('class', 0.005),

('character', 0.005), ('layer', 0.004), ('classification', 0.004),

('context', 0.004), ('test', 0.004), ('sequence', 0.004), ('hidden_unit',

0.004), ('experiment', 0.004), ('vector', 0.004)]

Topic #2:

[('unit', 0.03), ('pattern', 0.009), ('representation', 0.007),

('activation', 0.007), ('hidden_unit', 0.006), ('node', 0.006),

('structure', 0.006), ('layer', 0.006), ('activity', 0.005), ('connection',

0.004), ('task', 0.004), ('component', 0.004), ('map', 0.004), ('rule',

0.004), ('architecture', 0.004), ('signal', 0.004), ('level', 0.004),

('response', 0.003), ('connectionist', 0.003), ('training', 0.003)]

Chapter 6 text Summarization and topiC modelS

397

...,

...,

Topic #8:

[('state', 0.037), ('action', 0.011), ('step', 0.008), ('control', 0.008),

('policy', 0.007), ('sequence', 0.006), ('reinforcement_learning', 0.006),

('probability', 0.005), ('optimal', 0.005), ('task', 0.004), ('transition',

0.004), ('environment', 0.004), ('variable', 0.003), ('reward', 0.003),

('stochastic', 0.003), ('goal', 0.003), ('machine', 0.003), ('current',

0.003), ('controller', 0.003), ('agent', 0.003)]

Topic #9:

[('motion', 0.017), ('rule', 0.009), ('direction', 0.008), ('stimulus',

0.007), ('velocity', 0.006), ('task', 0.006), ('human', 0.006), ('unit',

0.006), ('location', 0.005), ('target', 0.005), ('subject', 0.005),

('memory', 0.005), ('prediction', 0.005), ('position', 0.005), ('concept',

0.004), ('field', 0.004), ('response', 0.004), ('cue', 0.004), ('layer',

0.004), ('hand', 0.004)]

Topic #10:

[('circuit', 0.012), ('signal', 0.011), ('chip', 0.011), ('neuron', 0.009),

('current', 0.008), ('voltage', 0.007), ('analog', 0.006), ('control',

0.006), ('channel', 0.005), ('noise', 0.004), ('neural', 0.004), ('bit',

0.004), ('implementation', 0.004), ('source', 0.004), ('design', 0.003),

('gain', 0.003), ('processor', 0.003), ('synapse', 0.003), ('device',

0.003), ('array', 0.003)]

We can also view the topics as a list of terms without the weights when we want to

understand the context or theme conveyed by each topic.

print('LDA Topics without Weights')

print('='*50)

for idx, topic in enumerate(topics_with_wts):

 print('Topic #'+str(idx+1)+':')

 print([term for wt, term in topic])

 print()

Chapter 6 text Summarization and topiC modelS

398

LDA Topics without Weights

==

Topic #1:

['training', 'word', 'recognition', 'trained', 'net', 'unit', 'feature',

'speech', 'task', 'architecture', 'class', 'character', 'layer',

'classification', 'context', 'test', 'sequence', 'hidden_unit',

'experiment', 'vector']

Topic #2:

['unit', 'pattern', 'representation', 'activation', 'hidden_unit', 'node',

'structure', 'layer', 'activity', 'connection', 'task', 'component', 'map',

'rule', 'architecture', 'signal', 'level', 'response', 'connectionist',

'training']

...,

...,

Topic #8:

['state', 'action', 'step', 'control', 'policy', 'sequence',

'reinforcement_learning', 'probability', 'optimal', 'task', 'transition',

'environment', 'variable', 'reward', 'stochastic', 'goal', 'machine',

'current', 'controller', 'agent']

Topic #9:

['motion', 'rule', 'direction', 'stimulus', 'velocity', 'task', 'human',

'unit', 'location', 'target', 'subject', 'memory', 'prediction',

'position', 'concept', 'field', 'response', 'cue', 'layer', 'hand']

Topic #10:

['circuit', 'signal', 'chip', 'neuron', 'current', 'voltage', 'analog',

'control', 'channel', 'noise', 'neural', 'bit', 'implementation', 'source',

'design', 'gain', 'processor', 'synapse', 'device', 'array']

We can use perplexity and coherence scores as measures to evaluate the topic

model. Typically, lower the perplexity, the better the model. Similarly, the lower the

UMass score and the higher the Cv score in coherence, the better the model.

Chapter 6 text Summarization and topiC modelS

399

cv_coherence_model_lda = gensim.models.CoherenceModel(model=lda_model,

corpus=bow_corpus,

 texts=norm_corpus_bigrams,

 dictionary=dictionary,

 coherence='c_v')

avg_coherence_cv = cv_coherence_model_lda.get_coherence()

umass_coherence_model_lda = gensim.models.CoherenceModel(model=lda_model,

corpus=bow_corpus,

 texts=norm_corpus_bigrams,

 dictionary=dictionary,

 coherence='u_mass')

avg_coherence_umass = umass_coherence_model_lda.get_coherence()

perplexity = lda_model.log_perplexity(bow_corpus)

print('Avg. Coherence Score (Cv):', avg_coherence_cv)

print('Avg. Coherence Score (UMass):', avg_coherence_umass)

print('Model Perplexity:', perplexity)

Avg. Coherence Score (Cv): 0.47028476052247825

Avg. Coherence Score (UMass): -1.0433305600965896

Model Perplexity: -7.792233498252204

Not bad, but we have nothing to compare this against. Let’s try to build another LDA

topic model based on a separate package called MALLET, which has Gensim wrappers to

make it easy to use from Python!

 LDA Models with MALLET
The MALLET framework is a Java-based package for statistical natural language

processing, document classification, clustering, topic modeling, information extraction,

and other machine learning applications to text. MALLET stands for MAchine Learning

for LanguagE Toolkit. It was developed by Andrew McCallum along with several people

at the University of Massachusetts Amherst. The MALLET topic modeling toolkit

contains efficient, sampling-based implementations of Latent Dirichlet Allocation,

Pachinko Allocation, and Hierarchical LDA. To use MALLET’s capabilities, we need to

download the framework.

Chapter 6 text Summarization and topiC modelS

400

!wget http://mallet.cs.umass.edu/dist/mallet-2.0.8.zip

--2018-11-08 20:06:13-- http://mallet.cs.umass.edu/dist/mallet-2.0.8.zip

Resolving mallet.cs.umass.edu (mallet.cs.umass.edu)... 128.119.246.70

Connecting to mallet.cs.umass.edu (mallet.cs.umass.

edu)|128.119.246.70|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 16184794 (15M) [application/zip]

Saving to: 'mallet-2.0.8.zip'

mallet-2.0.8.zip 100%[===================>] 15.43M 1.35MB/s in 12s

2018-11-08 20:06:25 (1.28 MB/s) - 'mallet-2.0.8.zip' saved

[16184794/16184794]

Windows users can download the package directly from the browser using the same

URL mentioned in the preceding code. Once it’s downloaded, we need to extract the

contents from the archive.

!unzip -q mallet-2.0.8.zip

We are now ready to build our LDA model using MALLET. If you have multiple CPUs,

Gensim can also use them for parallel processing and faster training.

MALLET_PATH = 'mallet-2.0.8/bin/mallet'

lda_mallet = gensim.models.wrappers.LdaMallet(mallet_path=MALLET_PATH,

corpus=bow_corpus,

 num_topics=TOTAL_TOPICS,

id2word=dictionary,

 iterations=500, workers=16)

We can now look at the generated topics by leveraging the following code snippet.

topics = [[(term, round(wt, 3))

 for term, wt in lda_mallet.show_topic(n, topn=20)]

 for n in range(0, TOTAL_TOPICS)]

for idx, topic in enumerate(topics):

 print('Topic #'+str(idx+1)+':')

 print([term for term, wt in topic])

 print()

Chapter 6 text Summarization and topiC modelS

401

Topic #1:

['neuron', 'cell', 'response', 'stimulus', 'activity', 'pattern', 'signal',

'spike', 'effect', 'synaptic', 'frequency', 'neural', 'unit', 'connection',

'layer', 'cortical', 'firing', 'et_al', 'brain', 'temporal']

Topic #2:

['prediction', 'control', 'trajectory', 'target', 'task', 'expert',

'training', 'nonlinear', 'dynamic', 'linear', 'local', 'change',

'adaptive', 'mapping', 'hand', 'movement', 'controller', 'position',

'motor', 'architecture']

...,

...,

Topic #9:

['training', 'unit', 'pattern', 'hidden_unit', 'layer', 'net',

'classifier', 'class', 'training_set', 'classification', 'trained', 'test',

'task', 'back_propagation', 'hidden_layer', 'table', 'generalization',

'feature', 'size', 'architecture']

Topic #10:

['word', 'recognition', 'speech', 'sequence', 'feature', 'context',

'training', 'character', 'hmm', 'module', 'signal', 'letter', 'frame',

'trained', 'experiment', 'classification', 'architecture', 'speaker',

'window', 'class']

We can also evaluate our model using the perplexity and coherence metrics, as we

did before.

cv_coherence_model_lda_mallet = gensim.models. CoherenceModel

(model=lda_mallet,

 corpus=bow_corpus,

 texts=norm_corpus_bigrams,

 dictionary=dictionary,

 coherence='c_v')

avg_coherence_cv = cv_coherence_model_lda_mallet.get_coherence()

Chapter 6 text Summarization and topiC modelS

402

umass_coherence_model_lda_mallet = gensim.models. CoherenceModel

(model=lda_mallet,

 corpus=bow_corpus,

 texts=norm_corpus_bigrams,

 dictionary=dictionary,

 coherence='u_mass')

avg_coherence_umass = umass_coherence_model_lda_mallet.get_coherence()

from STDOUT: <500> LL/token: -8.53533

perplexity = -8.53533

print('Avg. Coherence Score (Cv):', avg_coherence_cv)

print('Avg. Coherence Score (UMass):', avg_coherence_umass)

print('Model Perplexity:', perplexity)

Avg. Coherence Score (Cv): 0.5008326905758488

Avg. Coherence Score (UMass): -1.0635635291342118

Model Perplexity: -8.53533

You can clearly see that the model from MALLET is much better based on these

metrics as compared to the default LDA model from Gensim. Can we find the optimal

number of topics that maximizes the coherence? This is a tough problem, but we can try

doing it iteratively.

 LDA Tuning: Finding the Optimal Number of Topics
Finding the optimal number of topics in a topic model is tough, given that it is like a

model hyperparameter that you always have to set before training the model. We can

use an iterative approach and build several models with differing numbers of topics and

select the one that has the highest coherence score. To implement this method, we build

the following function.

from tqdm import tqdm

def topic_model_coherence_generator(corpus, texts, dictionary,

 start_topic_count=2, end_topic_count=10, step=1,

 cpus=1):

Chapter 6 text Summarization and topiC modelS

403

 models = []

 coherence_scores = []

 for topic_nums in tqdm(range(start_topic_count, end_topic_count+1, step)):

 mallet_lda_model = gensim.models.wrappers. LdaMallet

(mallet_path=MALLET_PATH,

 corpus=corpus,

 num_topics=topic_nums,

 id2word=dictionary,

 iterations=500, workers=cpus)

 cv_coherence_model_mallet_lda = gensim. models.CoherenceModel

(model=mallet_lda_model,

 corpus=corpus,

 texts=texts,

 dictionary=dictionary,

 coherence='c_v')

 coherence_score = cv_coherence_model_mallet_lda.get_coherence()

 coherence_scores.append(coherence_score)

 models.append(mallet_lda_model)

 return models, coherence_scores

Let’s put this function into action now and build several topic models, with the

number of topics ranging from 2 to 30.

lda_models, coherence_scores = topic_model_coherence_generator(corpus=bow_corpus,

 texts=norm_corpus_bigrams,

 dictionary=dictionary,

 start_topic_count=2,

 end_topic_count=30, step=1,

 cpus=16)

100%|██████████| 29/29 [37:48<00:00, 92.53s/it]

Note that this step might take some time to train, depending on your infrastructure

since we will be training several topic models. One way to inspect the output is to sort

the results by the coherence score and look at the number of topics. See Figure 6-6.

Chapter 6 text Summarization and topiC modelS

404

coherence_df = pd.DataFrame({'Number of Topics': range(2, 31, 1),

 'Coherence Score': np.round(coherence_scores, 4)})

coherence_df.sort_values(by=['Coherence Score'], ascending=False).head(10)

Let’s plot a graph showing the number of topics per model and their corresponding

coherence scores.

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight')

%matplotlib inline

x_ax = range(2, 31, 1)

y_ax = coherence_scores

plt.figure(figsize=(12, 6))

plt.plot(x_ax, y_ax, c='r')

plt.axhline(y=0.535, c='k', linestyle='--', linewidth=2)

plt.rcParams['figure.facecolor'] = 'white'

xl = plt.xlabel('Number of Topics')

yl = plt.ylabel('Coherence Score')

Figure 6-6. Sorting the topic models based on the coherence score

Chapter 6 text Summarization and topiC modelS

405

From Figure 6-7, it looks like the score starts increasing rapidly when the number of

topics is five and gradually starts plateauing at 19 or 20. We choose the optimal number

of topics as 20, based on our intuition. We can retrieve the best model now:

best_model_idx = coherence_df[coherence_df['Number of Topics'] == 20].index[0]

best_lda_model = lda_models[best_model_idx]

best_lda_model.num_topics

20

Let’s view all the 20 topics generated by our selected best model, similar to our

previous models.

topics = [[(term, round(wt, 3))

 for term, wt in best_lda_model.show_topic(n, topn=20)]

 for n in range(0, best_lda_model.num_topics)]

for idx, topic in enumerate(topics):

 print('Topic #'+str(idx+1)+':')

 print([term for term, wt in topic])

 print()

Figure 6-7. Topic model tuning the number of topics vs. coherence score

Chapter 6 text Summarization and topiC modelS

406

Topic #1:

['class', 'classification', 'classifier', 'training', 'pattern', 'feature',

'kernel', 'machine', 'training_set', 'test', 'sample', 'vector',

'database', 'error_rate', 'margin', 'experiment', 'support_vector',

'nearest_neighbor', 'decision', 'size']

...,

Topic #8:

['distribution', 'probability', 'prior', 'gaussian', 'variable', 'mixture',

'density', 'bayesian', 'estimate', 'approximation', 'log', 'likelihood',

'sample', 'component', 'expert', 'em', 'posterior', 'probabilistic',

'estimation', 'entropy']

Topic #9:

['visual', 'motion', 'cell', 'response', 'stimulus', 'direction', 'receptive_

field', 'map', 'spatial', 'orientation', 'unit', 'eye', 'field', 'activity',

'location', 'velocity', 'center', 'contrast', 'cortical', 'pattern']

...,

Topic #13:

['image', 'object', 'feature', 'pixel', 'face', 'view', 'recognition',

'representation', 'shape', 'scale', 'part', 'visual', 'region', 'position',

'scene', 'surface', 'vision', 'frame', 'texture', 'location']

Topic #14:

['control', 'action', 'state', 'policy', 'environment', 'controller',

'reinforcement_learning', 'task', 'optimal', 'robot', 'goal', 'step', 'reward',

'td', 'agent', 'adaptive', 'cost', 'reinforcement', 'trial', 'exploration']

...,

Topic #16:

['circuit', 'chip', 'current', 'analog', 'voltage', 'implementation',

'processor', 'bit', 'design', 'device', 'computation', 'parallel', 'digital',

'operation', 'array', 'neural', 'synapse', 'element', 'hardware', 'transistor']

Chapter 6 text Summarization and topiC modelS

407

Topic #17:

['rule', 'representation', 'module', 'structure', 'human', 'movement',

'motor', 'target', 'language', 'subject', 'connectionist', 'position', 'task',

'context', 'trajectory', 'hand', 'role', 'symbol', 'learned', 'theory']

Topic #18:

['vector', 'map', 'distance', 'cluster', 'local', 'dimension',

'clustering', 'mapping', 'dimensional', 'region', 'structure', 'center',

'rbf', 'pca', 'basis_function', 'linear', 'representation', 'global',

'principal_component', 'projection']

Topic #19:

['signal', 'filter', 'frequency', 'source', 'channel', 'noise', 'component',

'response', 'temporal', 'sound', 'auditory', 'detection', 'phase', 'ica',

'adaptation', 'amplitude', 'subject', 'eeg', 'change', 'correlation']

Topic #20:

['prediction', 'training', 'estimate', 'regression', 'test', 'noise',

'selection', 'variance', 'training_set', 'sample', 'ensemble',

'estimation', 'average', 'nonlinear', 'linear', 'estimator', 'cross_

validation', 'pruning', 'bias', 'risk']

A better way of visualizing the topics is to build a term-topic dataframe, as depicted

in Figure 6-8.

topics_df = pd.DataFrame([[term for term, wt in topic]

 for topic in topics],

 columns = ['Term'+str(i) for i in range(1, 21)],

 index=['Topic '+str(t) for t in range(1, best_lda_

model.num_topics+1)]).T

topics_df

Chapter 6 text Summarization and topiC modelS

408

Another easy way to view the topics is to create a topic-term dataframe, whereby

each topic is represented in a row with the terms of the topic being represented as a

comma-separated string.

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame([', '.join([term for term, wt in topic])

 for topic in topics],

 columns = ['Terms per Topic'],

 index=['Topic'+str(t) for t in range(1, best_lda_

model.num_topics+1)]

)

topics_df

Figure 6-8. Generated topics from our LDA topic model

Chapter 6 text Summarization and topiC modelS

409

The dataframe depicted in Figure 6-9 gives us an easy way to visualize and

understand the major themes in our corpus of research papers. Do you notice any

interesting patterns? I observed some very interesting themes around neural networks,

signal processing, dimension reduction, reinforcement learning, neural models in chips,

and image and visual recognition!

 Interpreting Topic Model Results
Let’s look at some interesting ways of diving deeper and interpreting results from our topic

model. An interesting point to remember is, given a corpus of documents (in the form of

features, e.g., Bag of Words) and a trained topic model, you can predict the distribution of

topics in each document (research paper in this case) with the following code.

tm_results = best_lda_model[bow_corpus]

Figure 6-9. Viewing all the topics of our LDA topic model

Chapter 6 text Summarization and topiC modelS

410

We can now get the most dominant topic per research paper with some intelligent

sorting and indexing using the following code.

corpus_topics = [sorted(topics, key=lambda record: -record[1])[0]

 for topics in tm_results]

corpus_topics[:5]

[(16, 0.2115988756613756),

 (5, 0.29989652050187554),

 (9, 0.3307915758896151),

 (8, 0.5447463768115942),

 (9, 0.18093823158652983)]

This provides a plethora of options that can be leveraged to extract useful insights

from our corpus of research papers. To enable this, we construct a master dataframe that

will hold the base statistics, which we use soon to depict different useful insights.

corpus_topic_df = pd.DataFrame()

corpus_topic_df['Document'] = range(0, len(papers))

corpus_topic_df['Dominant Topic'] = [item[0]+1 for item in corpus_topics]

corpus_topic_df['Contribution %'] = [round(item[1]*100, 2) for item in

corpus_topics]

corpus_topic_df['Topic Desc'] = [topics_df.iloc[t[0]]['Terms per Topic']

for t in corpus_topics]

corpus_topic_df['Paper'] = papers

Let’s now take a look at various ways we can transform these results and extract

meaningful insights from our research papers and their topics.

 Dominant Topics Distribution Across Corpus

The first thing we can do is look at the overall distribution of each topic across the corpus

of research papers. Mainly we want to determine the total number of papers and the

total percentage of papers where each of the 20 topics was the most dominant.

pd.set_option('display.max_colwidth', 200)

topic_stats_df = corpus_topic_df.groupby('Dominant Topic').agg({

 'Dominant Topic': {

 'Doc Count': np.size,

Chapter 6 text Summarization and topiC modelS

411

 '% Total Docs': np.size }

 })

topic_stats_df = topic_stats_df['Dominant Topic'].reset_index()

topic_stats_df['% Total Docs'] = topic_stats_df['% Total Docs'].

apply(lambda row: round((row*100) / len(papers), 2))

topic_stats_df['Topic Desc'] = [topics_df.iloc[t]['Terms per Topic'] for t in

range(len(topic_stats_df))]

topic_stats_df

Figure 6-10. Viewing the distribution of dominant topics

Chapter 6 text Summarization and topiC modelS

412

The results in Figure 6-10 show us that most of the papers cover topics of

probabilistic models and Bayesian modeling (Topic #8), followed by papers covering

modeling and simulating how the brain works with neurons, cells, stimulus, and

connections (Topic #10). Even Topic #14, covering reinforcement learning and robotics,

has almost 6.32% representation of the total number of papers. This tells us it’s not a new

thing and people have been researching it for decades!

 Dominant Topics in Specific Research Papers

Another interesting perspective is to select specific papers, view the most dominant topic

in each of those papers, and see if that makes sense.

pd.set_option('display.max_colwidth', 200)

(corpus_topic_df[corpus_topic_df['Document']

 .isin([681, 9, 392, 1622, 17,

 906, 996, 503, 13, 733])])

Figure 6-11. Viewing the dominance of topics in research papers

Chapter 6 text Summarization and topiC modelS

413

Based on the results in Figure 6-11, we can see that they make perfect sense! Papers

on reinforcement learning, signal processing, gaussian mixture models, processor

simulations, word recognitions, and many more have corresponding relevant topics as

the most dominant topics. This tells us that our topic model is working well.

 Relevant Research Papers per Topic Based on Dominance

A better way of representation is to try to retrieve the corresponding research paper that

has the highest representation for each of the 20 topics.

 corpus_topic_df.groupby('Dominant Topic').apply(lambda topic_set:

 (topic_set.sort_

values(by=['Contribution %'],

 ascending=False).iloc[0]))

Chapter 6 text Summarization and topiC modelS

414

We do not show all the topics in Figure 6-12 due to space constraints, but you get the

idea and you can view the entire output in the Jupyter notebook. You can even open each

of the research papers based on the index and read the full contents to see if it makes

sense! Based on the paper titles and the corresponding topics depicted in Figure 6-12,

they do make sense. It looks like our model has captured the relevant latent patterns and

themes in our corpus.

Figure 6-12. Viewing each topic and corresponding paper with its maximum
contribution

Chapter 6 text Summarization and topiC modelS

415

 Predicting Topics for New Research Papers
Even though topic models are unsupervised models, we can estimate or predict

potential topics for new documents based on what it has learned previously on the

so-called “training” corpus. For testing our model, I have manually downloaded some

recent papers from the NIPS 16 conference proceedings. Testing our model on these

papers is going to be an interesting exercise.

import glob

papers manually downloaded from NIPS 16

https://papers.nips.cc/book/advances-in-neural-information-processing-

systems-29-2016

new_paper_files = glob.glob('nips16*.txt')

new_papers = []

for fn in new_paper_files:

 with open(fn, encoding='utf-8', errors='ignore', mode='r+') as f:

 data = f.read()

 new_papers.append(data)

print('Total New Papers:', len(new_papers))

Total New Papers: 4

You will find the papers downloaded in the corresponding folder for this chapter

in the GitHub repository for this book at https://github.com/dipanjanS/text-

analytics- with-python.

We need to build a text wrangling and feature engineering pipeline, which should

match the same steps we followed when training our topic model.

def text_preprocessing_pipeline(documents, normalizer_fn, bigram_model):

 norm_docs = normalizer_fn(documents)

 norm_docs_bigrams = bigram_model[norm_docs]

 return norm_docs_bigrams

def bow_features_pipeline(tokenized_docs, dictionary):

 paper_bow_features = [dictionary.doc2bow(text)

 for text in tokenized_docs]

 return paper_bow_features

Chapter 6 text Summarization and topiC modelS

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

416

norm_new_papers = text_preprocessing_pipeline(documents=new_papers,

 normalizer_fn=normalize_corpus,

 bigram_model=bigram_model)

norm_bow_features = bow_features_pipeline(tokenized_docs=norm_new_papers,

 dictionary=dictionary)

We can now validate if the transformations worked with the following code.

print(norm_new_papers[0][:30])

['cooperative', 'graphical_model', 'josip', 'djolonga', 'dept_

computer', 'science', 'eth', 'zurich', 'josipd', 'inf', 'ethz', 'ch',

'stefanie', 'jegelka', 'csail', 'mit', 'stefje', 'mit_edu', 'sebastian',

'tschiatschek', 'dept_computer', 'science', 'eth', 'zurich', 'stschia',

'inf', 'ethz', 'ch', 'andreas', 'krause']

print(norm_bow_features[0][:30])

[(0, 1), (1, 1), (6, 1), (17, 1), (18, 1), (19, 1), (25, 1), (31, 2), (36,

2), (38, 1), (39, 17), (41, 3), (43, 1), (45, 1), (49, 2), (50, 4), (51,

1), (52, 2), (54, 1), (60, 1), (65, 1), (66, 3), (68, 7), (71, 8), (76, 4),

(77, 2), (87, 1), (88, 3), (105, 1), (106, 1)]

Let’s now build a generic function that can extract the top N topics from any research

paper using our trained model.

def get_topic_predictions(topic_model, corpus, topn=3):

 topic_predictions = topic_model[corpus]

 best_topics = [[(topic, round(wt, 3))

 for topic, wt in sorted(topic_predictions[i],

 key=lambda row: -row[1])

[:topn]]

 for i in range(len(topic_predictions))]

 return best_topics

putting the function in action

topic_preds = get_topic_predictions(topic_model=best_lda_model,

 corpus=norm_bow_features, topn=2)

topic_preds

Chapter 6 text Summarization and topiC modelS

417

[[(7, 0.241), (4, 0.199)],

 [(13, 0.293), (4, 0.248)],

 [(12, 0.238), (9, 0.113)],

 [(2, 0.263), (12, 0.145)]]

We get the top two topics for each research paper because a paper or document

can always be a mixture of multiple topics. Let’s view the results for each paper in an

easy-to- understand format.

results_df = pd.DataFrame()

results_df['Papers'] = range(1, len(new_papers)+1)

results_df['Dominant Topics'] = [[topic_num+1 for topic_num, wt in item]

 for item in topic_preds]

res = results_df.set_index(['Papers'])['Dominant Topics'].apply(pd.Series).

stack().reset_index(level=1, drop=True)

results_df = pd.DataFrame({'Dominant Topics': res.values}, index=res.index)

results_df['Contribution %'] = [topic_wt for topic_list in

 [[round(wt*100, 2)

 for topic_num, wt in item]

 for item in topic_preds]

 for topic_wt in topic_list]

results_df['Topic Desc'] = [topics_df.iloc[t-1]['Terms per Topic']

 for t in results_df['Dominant Topics'].values]

results_df['Paper Desc'] = [new_papers[i-1][:200] for i in results_

df.index.values]

pd.set_option('display.max_colwidth', 300)

results_df

Chapter 6 text Summarization and topiC modelS

418

Looking at the generated topics for the new, previously unseen papers in Figure 6-13,

I would say our model has done an excellent job!

 Topic Models with Scikit-Learn
This section has been incorporated based on all the people who mentioned

they use Scikit-Learn extensively and would love to use it for topic modeling too. The

Scikit- Learn framework does offer a suite of techniques and methods for building topic

models, although the flexibility in tuning or controlling these models is slightly limited

as compared to Gensim. Nevertheless, we will build topic models using the following

methods in this section:

• Latent Semantic Indexing (LSI)

• Latent Dirichlet Allocation (LDA)

• Non-negative Matrix Factorization (NMF)

Figure 6-13. Predicting topics for new papers with our LDA model

Chapter 6 text Summarization and topiC modelS

419

We try to replicate the feature engineering process as much as possible based on

what we did when we built topic models with Gensim. These models work on the same

normalized and preprocessed corpus present in the norm_papers variable.

 Text Representation with Feature Engineering
We represent our text data in the form of a Bag of Words model with uni-grams and

bi- grams, similar to our analyses in the previous section.

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(min_df=20, max_df=0.6, ngram_range=(1,2),

 token_pattern=None, tokenizer=lambda doc: doc,

 preprocessor=lambda doc: doc)

cv_features = cv.fit_transform(norm_papers)

cv_features.shape

(1740, 14408)

validating vocabulary size

vocabulary = np.array(cv.get_feature_names())

print('Total Vocabulary Size:', len(vocabulary))

Total Vocabulary Size: 14408

While the vocabulary is double what we had when we built models using Gensim, we

have still removed unnecessary terms with the document frequency filters.

 Latent Semantic Indexing
The first topic modeling technique we try is the LSI model based on SVD. Since we

determined the optimal number of topics as 20 in the previous section, let’s use the

name for the total topics we want to generate.

%%time

from sklearn.decomposition import TruncatedSVD

TOTAL_TOPICS = 20

Chapter 6 text Summarization and topiC modelS

420

lsi_model = TruncatedSVD(n_components=TOTAL_TOPICS, n_iter=500, random_

state=42)

document_topics = lsi_model.fit_transform(cv_features)

CPU times: user 15min 25s, sys: 1min 3s, total: 16min 28s

Wall time: 1min 1s

topic_terms = lsi_model.components_

topic_terms.shape

(20, 14408)

We can now generate the topics by reusing some of the code we implemented

previously to display the topics and terms.

top_terms = 20

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:,

:top_terms]

topic_keyterm_weights = np.array([topic_terms[row, columns]

 for row, columns in list(zip(np.arange(TOTAL_

TOPICS), topic_key_term_idxs))])

topic_keyterms = vocabulary[topic_key_term_idxs]

topic_keyterms_weights = list(zip(topic_keyterms, topic_keyterm_weights))

for n in range(TOTAL_TOPICS):

 print('Topic #'+str(n+1)+':')

 print('='*50)

 d1 = []

 d2 = []

 terms, weights = topic_keyterms_weights[n]

 term_weights = sorted([(t, w) for t, w in zip(terms, weights)],

 key=lambda row: -abs(row[1]))

 for term, wt in term_weights:

 if wt >= 0:

 d1.append((term, round(wt, 3)))

 else:

Chapter 6 text Summarization and topiC modelS

421

 d2.append((term, round(wt, 3)))

 print('Direction 1:', d1)

 print('-'*50)

 print('Direction 2:', d2)

 print('-'*50)

 print()

Topic #1:

==

Direction 1: [('state', 0.221), ('neuron', 0.169), ('image', 0.138),

('cell', 0.13), ('layer', 0.13), ('feature', 0.127), ('probability',

0.121), ('hidden', 0.114), ('distribution', 0.105), ('rate', 0.098),

('signal', 0.095), ('task', 0.093), ('class', 0.092), ('noise', 0.09),

('net', 0.089), ('recognition', 0.089), ('representation', 0.088),

('field', 0.082), ('rule', 0.082), ('step', 0.08)]

--

Direction 2: []

--

...,

Topic #3:

==

Direction 1: [('state', 0.574), ('neuron', 0.212), ('action', 0.187),

('policy', 0.149), ('control', 0.12), ('dynamic', 0.1), ('cell', 0.083),

('reinforcement', 0.081), ('optimal', 0.075), ('reinforcement learning',

0.068)]

--

Direction 2: [('image', -0.364), ('feature', -0.223), ('object', -0.144),

('recognition', -0.143), ('classifier', -0.111), ('class', -0.106), ('layer',

-0.092), ('classification', -0.085), ('face', -0.073), ('test', -0.069)]

--

Topic #4:

==

Direction 1: [('image', 0.425), ('state', 0.326), ('object', 0.215),

('feature', 0.159), ('action', 0.147), ('visual', 0.143), ('control',

Chapter 6 text Summarization and topiC modelS

422

0.126), ('task', 0.111), ('policy', 0.103), ('recognition', 0.103),

('face', 0.092), ('representation', 0.086), ('motion', 0.086)]

--

Direction 2: [('neuron', -0.216), ('distribution', -0.166), ('class',

-0.112), ('bound', -0.109), ('probability', -0.108), ('spike', -0.104),

('variable', -0.087)]

--

...,

Topic #6:

==

Direction 1: [('cell', 0.548), ('layer', 0.139), ('word', 0.124),

('hidden', 0.111), ('classifier', 0.097), ('direction', 0.09), ('head',

0.078), ('rule', 0.073), ('rat', 0.073), ('speech', 0.071)]

--

Direction 2: [('neuron', -0.416), ('image', -0.336), ('circuit', -0.126),

('noise', -0.124), ('chip', -0.121), ('analog', -0.099), ('object', -0.09),

('spike', -0.075), ('signal', -0.071), ('voltage', -0.069)]

--

...,

Topic #9:

==

Direction 1: [('circuit', 0.244), ('control', 0.242), ('classifier',

0.229), ('chip', 0.167), ('node', 0.137), ('current', 0.132), ('analog',

0.13), ('voltage', 0.129), ('signal', 0.118), ('controller', 0.088)]

--

Direction 2: [('hidden', -0.27), ('neuron', -0.247), ('state',

-0.175), ('distribution', -0.158), ('hidden unit', -0.143), ('layer',

-0.125), ('object', -0.115), ('probability', -0.108), ('image', -0.1),

('representation', -0.098)]

--

Topic #10:

==

Chapter 6 text Summarization and topiC modelS

423

Direction 1: [('circuit', 0.245), ('cell', 0.225), ('node', 0.211),

('state', 0.183), ('image', 0.166), ('chip', 0.163), ('analog', 0.147),

('layer', 0.144), ('net', 0.12), ('voltage', 0.115)]

--

Direction 2: [('task', -0.201), ('rule', -0.193), ('spike', -0.166),

('feature', -0.165), ('control', -0.157), ('neuron', -0.144), ('rate',

-0.134), ('stimulus', -0.116), ('classifier', -0.116), ('action', -0.112)]

--

...,

Topic #18:

==

Direction 1: [('object', 0.419), ('signal', 0.26), ('layer', 0.258),

('rule', 0.209), ('feature', 0.164), ('view', 0.162), ('net', 0.113),

('noise', 0.112), ('bound', 0.105), ('speech', 0.1)]

--

Direction 2: [('memory', -0.18), ('task', -0.161), ('representation',

-0.14), ('hidden', -0.137), ('image', -0.135), ('hidden unit', -0.121),

('tree', -0.117), ('structure', -0.094), ('test', -0.093), ('word', -0.092)]

--

Topic #19:

==

Direction 1: [('class', 0.287), ('memory', 0.275), ('classifier', 0.144),

('response', 0.139), ('sequence', 0.112), ('component', 0.11), ('stimulus',

0.101), ('region', 0.092), ('bound', 0.088)]

--

Direction 2: [('node', -0.292), ('feature', -0.244), ('field', -0.202),

('rate', -0.152), ('word', -0.146), ('spike', -0.139), ('map', -0.132),

('character', -0.127), ('policy', -0.108), ('tree', -0.092), ('noise', -0.088)]

--

Topic #20:

==

Direction 1: [('map', 0.222), ('control', 0.2), ('region', 0.181), ('ii',

0.145), ('feature', 0.132), ('image', 0.122), ('bound', 0.11), ('orientation',

0.109), ('rule', 0.109), ('threshold', 0.094), ('class', 0.092)]

Chapter 6 text Summarization and topiC modelS

424

--

Direction 2: [('object', -0.31), ('motion', -0.252), ('direction', -0.229),

('memory', -0.223), ('classifier', -0.193), ('view', -0.136), ('matrix',

-0.13), ('rate', -0.121), ('distance', -0.11)]

--

Of course, we don’t show all the topics in the preceding output due to space

constraints, but you get the general idea and you can view all the topics in the notebook

if needed. Similar to the previous section, we can also extract key topics for specific

research papers.

dt_df = pd.DataFrame(np.round(document_topics, 3),

 columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

document_numbers = [13, 250, 500]

for document_number in document_numbers:

 top_topics = list(dt_df.columns[np.argsort(-

 np.absolute(dt_df.iloc[document_number].

values))[:3]])

 print('Document #'+str(document_number)+':')

 print('Dominant Topics (top 3):', top_topics)

 print('Paper Summary:')

 print(papers[document_number][:500])

 print()

Document #13:

Dominant Topics (top 3): ['T1', 'T6', 'T4']

Paper Summary:

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent,

symmetrically connected, neuromorphic network that, like the Boltzmann

machine

Document #250:

Dominant Topics (top 3): ['T3', 'T18', 'T4']

Chapter 6 text Summarization and topiC modelS

425

Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations

Richard S. Zemel

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T9', 'T1', 'T10']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea.

If you check out the terms in the topics we obtained in the preceding output, they

actually make sense!

 Latent Dirichlet Allocation
Even Scikit-Learn has included an LDA-based topic model implementation in their

library and the following snippet uses it to build an LDA topic model.

%%time

from sklearn.decomposition import LatentDirichletAllocation

lda_model = LatentDirichletAllocation(n_components =TOTAL_TOPICS,

max_iter=500, max_doc_update_iter=50, learning_method='online',

batch_size=1740, learning_offset=50., random_state=42, n_jobs=16)

document_topics = lda_model.fit_transform(cv_features)

CPU times: user 13min 14s, sys: 1min 41s, total: 14min 56s

Wall time: 55min 32s

Chapter 6 text Summarization and topiC modelS

426

We can then obtain the topic-term matrix and build a dataframe from it to showcase

the topics and terms in an easy-to-interpret format.

topic_terms = lda_model.components_

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:,

:top_terms]

topic_keyterms = vocabulary[topic_key_term_idxs]

topics = [', '.join(topic) for topic in topic_keyterms]

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame(topics,

 columns = ['Terms per Topic'],

 index=['Topic'+str(t) for t in range(1, TOTAL_

TOPICS+1)])

topics_df

Based on the topics depicted in Figure 6-14, we can see some repetition in similar

themes among the topics, which might be an indication that this model is not as good

as our MALLET LDA model. We can now view the research papers having the maximum

contribution of each of the 20 topics, similar to our analyses in the previous sections.

dt_df = pd.DataFrame(document_topics,

 columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

Figure 6-14. Generated topics from our LDA model

Chapter 6 text Summarization and topiC modelS

427

pd.options.display.float_format = '{:,.5f}'.format

pd.set_option('display.max_colwidth', 200)

max_contrib_topics = dt_df.max(axis=0)

dominant_topics = max_contrib_topics.index

contrib_perc = max_contrib_topics.values

document_numbers = [dt_df[dt_df[t] == max_contrib_topics.loc[t]].index[0]

 for t in dominant_topics]

documents = [papers[i] for i in document_numbers]

results_df = pd.DataFrame({'Dominant Topic': dominant_topics, 'Contribution

%': contrib_perc,

 'Paper Num': document_numbers, 'Topic': topics_

df['Terms per Topic'],

 'Paper Name': documents})

results_df

Figure 6-15. Viewing each topic and corresponding paper with its maximum
contribution

Chapter 6 text Summarization and topiC modelS

428

Based on the output depicted in Figure 6-15, we can see that some topics have a very

poor representation of almost 0% in the corpus and so we see the same paper (Paper

#151) being selected as the more relevant paper for these topics. The topics with a good

contribution (almost 100% dominance) showcase papers that are closely correlated

with the theme conveyed by the corresponding topic, including reinforcement learning,

Bayesian and Gaussian mixture models, neural models on VLSI, and transistors.

 Non-Negative Matrix Factorization
The last technique we look at is non-negative matrix factorization (NMF), which is

another matrix decomposition technique similar to SVD but operates on non-negative

matrices and works well for multivariate data. Given a non-negative matrix V, the

objective of NMF is to find two non-negative matrix factors, W and H, such that when

they are multiplied, they can approximately reconstruct V. Mathematically this is

represented as follows:

 V WH»

such that all three matrices are non-negative. To get to this approximation, we usually

use a cost function like the Euclidean distance or L2 norm between two matrices or the

Frobenius norm, which is a slight modification of the L2 norm. This can be represented

as follows:

argmin

,W H
V WH

1

2
2

 -

where we have our three non-negative matrices—V, W, and H—and this can be

further simplified as follows:

1

2

2

i j
ij ijV WH

,
å -()

This implementation is available in the NMF class in the Scikit-Learn decomposition

module, which we use in the section.

We can build an NMF based topic model using the following snippet on our toy

corpus, which gives us the feature names and their weights just like in LDA.

%%time

from sklearn.decomposition import NMF

Chapter 6 text Summarization and topiC modelS

429

nmf_model = NMF(n_components=TOTAL_TOPICS, solver='cd', max_iter=500,

 random_state=42, alpha=.1, l1_ratio=.85)

document_topics = nmf_model.fit_transform(cv_features)

CPU times: user 11min 39s, sys: 47.5 s, total: 12min 26s

Wall time: 46.7 s

Now that we have our model trained, we can look at the generated topics using the

following code.

topic_terms = nmf_model.components_

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:,

:top_terms]

topic_keyterms = vocabulary[topic_key_term_idxs]

topics = [', '.join(topic) for topic in topic_keyterms]

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame(topics,

 columns = ['Terms per Topic'],

 index=['Topic'+str(t) for t in range(1, TOTAL_

TOPICS+1)])

topics_df

Figure 6-16. Generated topics from our NMF model

Chapter 6 text Summarization and topiC modelS

430

Based on the topics depicted in Figure 6-16, there are no major repetitions of topics

and each topic talks about a clear and distinct theme. The results from the NMF topic

model are definitely better than what we obtained from LDA in Scikit-Learn. We can

determine the dominance of topics in each research paper but, in case of NMF these are

determined by absolute scores and not percentages, as depicted in the following output.

See Figure 6-17.

pd.options.display.float_format = '{:,.3f}'.format

dt_df = pd.DataFrame(document_topics,

 columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

dt_df.head(10)

Figure 6-17. Viewing topic dominance per document using the document-topic
matrix

Leveraging the document-topic matrix, we can determine the most relevant paper

for each topic based on the topic dominance scores by using the following code.

pd.options.display.float_format = '{:,.5f}'.format

pd.set_option('display.max_colwidth', 200)

max_score_topics = dt_df.max(axis=0)

dominant_topics = max_score_topics.index

term_score = max_score_topics.values

document_numbers = [dt_df[dt_df[t] == max_score_topics.loc[t]].index[0]

 for t in dominant_topics]

documents = [papers[i] for i in document_numbers]

Chapter 6 text Summarization and topiC modelS

431

results_df = pd.DataFrame({'Dominant Topic': dominant_topics, 'Max Score':

term_score,

 'Paper Num': document_numbers, 'Topic': topics_

df['Terms per Topic'],

 'Paper Name': documents})

results_df

The outputs depicted in Figure 6-18 clearly show that the NMF model is much better

than the LDA model, with each topic being strongly correlated as the central theme of

the research paper where it has maximum dominance. What we have observed is that

non-negative matrix factorization works the best even with small corpora, with few

documents compared to the other methods. But again, this depends on the type of data

you are dealing with.

Figure 6-18. Viewing each topic and corresponding paper with its maximum
contribution

Chapter 6 text Summarization and topiC modelS

432

 Predicting Topics for New Research Papers
We now predict topics for the four research papers from the NIPS 16 conference, similar

to what we did with the Gensim topic models. Start by loading the papers if you don’t

have them loaded already.

import glob

papers manually downloaded from NIPS 16

https://papers.nips.cc/book/advances-in-neural-information-processing-

systems-29-2016

new_paper_files = glob.glob('nips16*.txt')

new_papers = []

for fn in new_paper_files:

 with open(fn, encoding='utf-8', errors='ignore', mode='r+') as f:

 data = f.read()

 new_papers.append(data)

print('Total New Papers:', len(new_papers))

Total New Papers: 4

The next step in the pipeline is to preprocess these documents and extract features

using the same sequence of steps we followed when building the topic models.

norm_new_papers = normalize_corpus(new_papers)

cv_new_features = cv.transform(norm_new_papers)

cv_new_features.shape

(4, 14408)

We can now use our NMF topic model to predict the topics for these new research

papers using the following code (we predict the top two topics for each paper).

topic_predictions = nmf_model.transform(cv_new_features)

best_topics = [[(topic, round(sc, 3))

 for topic, sc in sorted(enumerate(topic_predictions[i]),

 key=lambda row: -row[1])[:2]]

 for i in range(len(topic_predictions))]

best_topics

Chapter 6 text Summarization and topiC modelS

433

[[(0, 1.312), (7, 0.966)],

 [(2, 4.121), (0, 0.864)],

 [(3, 2.154), (1, 1.335)],

 [(3, 3.074), (6, 2.19)]]

Remember that we don’t get proportion of dominance of each topic here, like

with the LDA model, but we get absolute scores. Let’s view the results in an easy-to-

understand format.

results_df = pd.DataFrame()

results_df['Papers'] = range(1, len(new_papers)+1)

results_df['Dominant Topics'] = [[topic_num+1 for topic_num, sc in item]

 for item in best_topics]

res = results_df.set_index(['Papers'])['Dominant Topics'].apply(pd.Series).

stack().reset_index(level=1, drop=True)

results_df = pd.DataFrame({'Dominant Topics': res.values}, index=res.index)

results_df['Topic Score'] = [topic_sc for topic_list in

 [[round(sc*100, 2)

 for topic_num, sc in item]

 for item in best_topics]

 for topic_sc in topic_list]

results_df['Topic Desc'] = [topics_df.iloc[t-1]['Terms per Topic']

 for t in results_df['Dominant Topics'].values]

results_df['Paper Desc'] = [new_papers[i-1][:200] for i in results_

df.index.values]

results_df

Chapter 6 text Summarization and topiC modelS

434

Looking at the generated topics for the new research papers depicted in

Figure 6-19, we can clearly conclude that they do make sense and our NMF model is

working quite well!

 Visualizing Topic Models
We can also visualize our topic models in an interactive way in order to look at each topic

and the theme conveyed by leveraging the pyLDAvis framework. Typically, dimension

reduction techniques like MDS, PDA, and t-SNE are used to visualize the topics in a two-

dimensional visual.

import pyLDAvis

import pyLDAvis.sklearn

import dill

import warnings

warnings.filterwarnings('ignore')

pyLDAvis.enable_notebook()

pyLDAvis.sklearn.prepare(nmf_model, cv_features, cv, mds='mmds')

Figure 6-19. Predicting topics for new papers with our NMF model

Chapter 6 text Summarization and topiC modelS

435

The visualization in Figure 6-20 is interactive in the Jupyter notebook and you

can play around with it by checking out each topic, distribution of words, and topic

distributions. We hope this gives you enough perspective of topic models to get started

with modeling your own corpora.

 Automated Document Summarization
We briefly talked about document summarization at the beginning of this chapter, when

we mentioned extracting the gist from a large document or corpus so that it retains

the core essence or meaning of the corpus. The idea of document summarization is a

bit different from keyphrase extraction or topic modeling. In this case, the end result

is still in the form of some document, but with a few sentences based on the length we

might want the summary to be. This is similar to an abstract or an executive summary

in a research paper. The main objective of automated document summarization is

to perform this summarization without involving human input, except for running

computer programs. Mathematical and statistical models help in building and

automating the task of summarizing documents by observing their content and context.

Figure 6-20. Visualizing topics from our NMF Model

Chapter 6 text Summarization and topiC modelS

436

There are two broad approaches to document summarization using automated

techniques. They are described as follows:

• Extraction-based techniques: These methods use mathematical

and statistical concepts like SVD to extract some key subset of the

content from the original document such that this subset of content

contains the core information and acts as the focal point of the entire

document. This content can be words, phrases, or even sentences.

The end result from this approach is a short executive summary of a

couple of lines extracted from the original document. No new content

is generated in this technique, hence the name extraction-based.

• Abstraction-based techniques: These methods are more complex

and sophisticated. They leverage language semantics to create

representations and use natural language generation (NLG)

techniques where the machine uses knowledge bases and semantic

representations to generate text on its own and create summaries

just like a human would write them. Thanks to deep learning, we can

implement these techniques easily but they require a lot of data and

compute.

Much more research exists for extraction-based techniques since it is comparatively

harder to build abstraction-based summarizers. Recently, substantial advances have

been made in that area with regards to creating abstract summaries mimicking humans.

Deep learning models, especially encoder-decoder architectures, have been very

effective in summarizing text using abstractive methods. Implementing them is out of

our current scope but we will be covering essentials of extractive text summarization

with hands-on examples.

We use the description of a very popular role-playing game (RPG) Skyrim from

Bethesda Softworks for summarization. The following is an excerpt from the document

we will be summarizing (the full document is present in the Jupyter notebook for text

summarization).

DOCUMENT = """

The Elder Scrolls V: Skyrim is an action role-playing video game developed

by Bethesda Game Studios and published by Bethesda Softworks. It is the

fifth main installment in The Elder Scrolls series, following The Elder

Scrolls IV: Oblivion. The game's main story revolves around the player

Chapter 6 text Summarization and topiC modelS

437

character's quest to defeat Alduin the World-Eater, a dragon who is

prophesied to destroy the world. The game is set 200 years after the events

of Oblivion and takes place in the fictional province of Skyrim. Over the

course of the game, the player completes quests and develops the character

by improving skills. The game continues the open-world tradition of

its predecessors by allowing the player to travel anywhere in the

game world at any time, and to ignore or postpone the main storyline

indefinitely. The team opted for a unique and more diverse open world than

Oblivion's Imperial Province of Cyrodiil, which game director and executive

producer Todd Howard considered less interesting by comparison. The game

was released to critical acclaim, with reviewers particularly mentioning

the character advancement and setting, and is considered to be one of the

greatest video games of all time.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from

either a first or third-person perspective. The player may freely roam

over the land of Skyrim which is an open world environment consisting of

wilderness expanses, dungeons, cities, towns, fortresses, and villages.

...

...

A regeneration period limits the player's use of shouts in gameplay.

Skyrim is set around 200 years after the events of The Elder Scrolls IV:

Oblivion, although it is not a direct sequel. The game takes place in

Skyrim, a province of the Empire on the continent of Tamriel, amid a civil

war between two factions: the Stormcloaks, led by Ulfric Stormcloak, and

the Imperial Legion, led by General Tullius. The player character is a

Dragonborn, a mortal born with the soul and power of a dragon. Alduin, a

large black dragon who returns to the land after being lost in time, serves

as the game's primary antagonist. Alduin is the first dragon created by

Akatosh, one of the series' gods, and is prophesied to destroy and consume

the world.

"""

Chapter 6 text Summarization and topiC modelS

438

We need to do some basic preprocessing on this document to remove extra newlines.

We can do this using the following code.

import re

DOCUMENT = re.sub(r'\n|\r', ' ', DOCUMENT)

DOCUMENT = re.sub(r' +', ' ', DOCUMENT)

DOCUMENT = DOCUMENT.strip()

Let’s look at an implementation of document summarization by leveraging Gensim’s

summarization module. It is pretty straightforward, as depicted in the following code.

from gensim.summarization import summarize

print(summarize(DOCUMENT, ratio=0.2, split=False))

The game's main story revolves around the player character's quest to

defeat Alduin the World-Eater, a dragon who is prophesied to destroy the

world.

Over the course of the game, the player completes quests and develops the

character by improving skills.

The game continues the open-world tradition of its predecessors by allowing

the player to travel anywhere in the game world at any time, and to ignore

or postpone the main storyline indefinitely.

The player may freely roam over the land of Skyrim which is an open world

environment consisting of wilderness expanses, dungeons, cities, towns,

fortresses, and villages.

Each city and town in the game world has jobs that the player can engage

in, such as farming.

Over the course of the game, players improve their character's skills which

are numerical representations of their ability in certain areas.

Like other creatures, dragons are generated randomly in the world and will

engage in combat with NPCs, creatures and the player.

We can also limit the summarization based on word count instead of proportions by

using the following code.

print(summarize(DOCUMENT, word_count=75, split=False))

Chapter 6 text Summarization and topiC modelS

439

The game's main story revolves around the player character's quest to defeat

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

Over the course of the game, the player completes quests and develops the

character by improving skills.

The player may freely roam over the land of Skyrim which is an open world

environment consisting of wilderness expanses, dungeons, cities, towns,

fortresses, and villages.

I’m sure even if you have never played Skyrim before or read that huge block of text

talking about the game, this summary gives you a pretty good idea what the game is all

about. This is the power of text summarization, where using a few influential sentences,

we can summarize the core theme of an entire document.

This summarization implementation from Gensim is based on a variation of

a popular algorithm called TextRank. Now that we have seen how interesting text

summarization can be, let’s look at a couple of extraction-based summarization

algorithms. We focus on the following two techniques:

• Latent Semantic Analysis

• TextRank

We first look at the concepts and math behind each technique, then implement them

using Python, and finally test them on our toy document. Before we deep dive into the

techniques, let’s prepare our document by parsing and normalizing it.

 Text Wrangling
We need to do some basic text wrangling or preprocessing on our document. Nothing

too fancy, since the focus is on document summarization.

import nltk

import numpy as np

import re

stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

 # lower case and remove special characters\whitespaces

 doc = re.sub(r'[^a-zA-Z\s]', ", doc, re.I|re.A)

Chapter 6 text Summarization and topiC modelS

440

 doc = doc.lower()

 doc = doc.strip()

 # tokenize document

 tokens = nltk.word_tokenize(doc)

 # filter stopwords out of document

 filtered_tokens = [token for token in tokens if token not in stop_words]

 # re-create document from filtered tokens

 doc = ' '.join(filtered_tokens)

 return doc

normalize_corpus = np.vectorize(normalize_document)

get sentences in the document

sentences = nltk.sent_tokenize(DOCUMENT)

normalize each sentence in the document

norm_sentences = normalize_corpus(sentences)

norm_sentences[:3]

array(['elder scrolls v skyrim action roleplaying video game developed

bethesda game studios

 published bethesda softworks',

 'fifth main installment elder scrolls series following elder scrolls

iv oblivion',

 'games main story revolves around player characters quest defeat

alduin worldeater dragon

 prophesied destroy world'],

 dtype='<U183')

Our corpus is now preprocessed and normalized. Now we can leverage feature

engineering to represent our text data in an efficient vectorized format.

 Text Representation with Feature Engineering
We will be vectorizing our normalized sentences using the TF-IDF feature engineering

scheme. We keep things simple and don’t filter out any words based on document

frequency. But feel free to try that out and maybe even leverage n-grams as features.

Chapter 6 text Summarization and topiC modelS

441

from sklearn.feature_extraction.text import TfidfVectorizer

import pandas as pd

tv = TfidfVectorizer(min_df=0., max_df=1., use_idf=True)

dt_matrix = tv.fit_transform(norm_sentences)

dt_matrix = dt_matrix.toarray()

vocab = tv.get_feature_names()

td_matrix = dt_matrix.T

print(td_matrix.shape)

pd.DataFrame(np.round(td_matrix, 2), index=vocab).head(10)

The output in Figure 6-21 is our standard term-document matrix showing the TF-

IDF weights of each term across the various documents. In our case, each document is

a sentence from our original game description and is represented as a column. We can

now start implementing document summarization with the two techniques mentioned

earlier.

 Latent Semantic Analysis
Here, we summarize our game description by utilizing document sentences. The

terms in each sentence of the document have been extracted to form the term-

document matrix, which we observed in Figure 6-21. We apply low-rank Singular Value

Figure 6-21. Visualizing topics from our NMF model

Chapter 6 text Summarization and topiC modelS

442

Decomposition to this matrix. The core principle behind Latent Semantic Analysis (LSA)

is that in any document, there exists a latent structure among terms that are related

contextually and hence should also be correlated in the same singular space.

The approach we follow in our implementation is taken from the popular paper

published in 2004 by J. Steinberger and K. Jezek entitled, “Using Latent Semantic

Analysis in Text Summarization and Summary Evaluation,” which proposes some

improvements over the excellent work done by Y. Gong, X. Liu, “Generic Text

Summarization Using Relevance Measure and Latent Semantic Analysis,” which was

published in 2001. We recommend you read these two papers if you are interested in

gaining more in-depth knowledge about this technique.

The main idea in our implementation is to use SVD (recall M = USVT) so that U

and V are the orthogonal matrices and S is the diagonal matrix, which can also be

represented as a vector of the singular values. The original matrix can be represented as

a term- document matrix where the rows are terms and each column is a document, i.e.,

a sentence from our document in this case. The values can be any type of weighting like

Bag of Words model-based frequencies, TF-IDFs, or binary occurrences.

We use our low_rank_svd() function to create a low rank matrix approximation for

M based on the number of concepts, k, which will be our number of singular values. The

same k columns from matrix U will point to the term vectors for each of the k concepts

and in case of matrix V, the k rows based on the top k singular values point to sentence

vectors. Once we have U, S, and VT from the SVD for the top k singular values based on

the number of concepts k, we perform the following computations. Remember that the

input parameters we need are the number of concepts k and the number of sentences n

that we want the final summary to contain.

 1. Get the sentence vectors from the matrix V (k rows).

 2. Get the top k singular values from S.

 3. Apply a threshold-based approach to remove singular values that

are less than half of the largest singular value if any exist. This is

a heuristic and you can play around with this value if you want.

Mathematically, it’s S iff S Si i= <0
1

2
.

 4. Multiply each term sentence column from V squared with its

corresponding singular value from S, also squared, to get sentence

weights per topic.

Chapter 6 text Summarization and topiC modelS

443

 5. Compute the sum of the sentence weights across the topics and

take the square root of the final score to get the salience scores for

each sentence in the document.

The salience score computations for each sentence can be mathematically

represented as follows:

SS SV

i

k

i i
T=

=
å

1

where SS denotes the saliency score for each sentence by taking the dot product between

the singular values and the sentence vectors from VT. Once we have these scores, we sort

them in descending order, pick the top n sentences corresponding to the highest scores,

and combine them to form our final summary based on the order in which they were

present in the original document.

Let’s implement our algorithm in Python. The first step is to select the number of

sentences, n, that our summary will contain. Given we have around 35 sentences, we

set our summary to contain eight sentences. The total number of topics or concepts, k,

is set to three considering we have extracted the game description from the summary,

gameplay, and plot sections from the original review in Wikipedia. Then we perform

low-rank SVD.

num_sentences = 8

num_topics = 3

u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)

print(u.shape, s.shape, vt.shape)

term_topic_mat, singular_values, topic_document_mat = u, s, vt

(270, 3) (3,) (3, 35)

Next, we apply a threshold to set any of the existing singular values to 0, which is less

than half of the largest singular value.

remove singular values below threshold

sv_threshold = 0.5

min_sigma_value = max(singular_values) * sv_threshold

singular_values[singular_values < min_sigma_value] = 0

Chapter 6 text Summarization and topiC modelS

444

We can now leverage the formula we described earlier to compute the sentence

saliency scores for each sentence (document) in our game description.

salience_scores = np.sqrt(np.dot(np.square(singular_values),

 np.square(topic_document_mat)))

salience_scores

array([0.53291263, 0.61639562, 0.60427539, 0.52307109, 0.50141128,

 0.32352969, 0.1506046 , 0.25383436, 0.60567083, 0.35902104,

 0.22562997, 0.34608934, 0.15781555, 0.40522541, 0.24505982,

 0.19874104, 0.39317895, 0.45392878, 0.31638528, 0.47353378,

 0.18348908, 0.45731421, 0.13929749, 0.38932101, 0.36829067,

 0.57822992, 0.40853736, 0.26260062, 0.38904585, 0.32776714,

 0.67662776, 0.21866561, 0.34687796, 0.3234621 , 0.46107093])

Now it is just a matter of selecting the top sentences based on their saliency score

and displaying the summary of our game description.

top_sentence_indices = (-salience_scores).argsort()[:num_sentences]

top_sentence_indices.sort()

print('\n'.join(np.array(sentences)[top_sentence_indices]))

The Elder Scrolls V: Skyrim is an action role-playing video game developed

by Bethesda Game Studios and published by Bethesda Softworks.

It is the fifth main installment in The Elder Scrolls series, following The

Elder Scrolls IV: Oblivion.

The game's main story revolves around the player character's quest to defeat

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

The game is set 200 years after the events of Oblivion and takes place in

the fictional province of Skyrim.

Over the course of the game, the player completes quests and develops the

character by improving skills.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from

either a first or third-person perspective.

Skyrim is the first entry in The Elder Scrolls to include dragons in the

game's wilderness.

Skyrim is set around 200 years after the events of The Elder Scrolls IV:

Oblivion, although it is not a direct sequel.

Chapter 6 text Summarization and topiC modelS

445

Thus, you can see how a few matrix transformations give us a concise and excellent

summarized document that covers the main aspects of our game description. This

concludes our discussion of Latent Semantic Analysis. We move on to the next technique

for extraction-based document summarization.

 TextRank
The TextRank summarization algorithm internally uses the popular PageRank

algorithm, which is used by Google for ranking websites and pages. This is used by the

Google search engine when providing relevant web pages based on search queries. To

understand TextRank better, we need to understand some of the concepts surrounding

PageRank. The core algorithm in PageRank is a graph-based scoring or ranking

algorithm, where pages are scored or ranked based on their importance. Websites and

pages contain further links embedded in them which link to more pages having more

links and this continues across the Internet. This can be represented as a graph-based

model where vertices indicate the web pages and edges indicate links among them. This

can be used to form a voting or recommendation system such so when one vertex links

to another one in the graph it is basically casting a vote. Vertex importance is decided

not only on the number of votes or edges but also the importance of the vertices that are

connected to it and their importance. This helps determine the score or rank of each

vertex or page. This is evident in Figure 6-22.

Figure 6-22. PageRank scores for a simple network

Chapter 6 text Summarization and topiC modelS

446

From Figure 6-22, we can see that vertex denoting Page C has a higher score than

Page E even if it has fewer edges compared to Page E, because Page B is an important

page connected to Page C. Thus, we can formally define PageRank as follows. Consider

a directed graph represented as G = (V, E) such that V represents the set of vertices or

pages and E represents the set of edges or links. E is a subset of V × V. Assuming we have

a given page Vi for which we want to compute the PageRank, we can mathematically

define it as follows:

PR V d d
PR V

Out V
i

j In V

j

ji

() = -()+ ´
()

Î ()
å1

(

where for the vertex/page Vi we have PR(Vi), which indicates the PageRank score. In(Vi)

represents the set of pages that point to this vertex/page, Out(Vi) represents the set of

pages that the vertex/page Vi points to, and d is the damping factor and usually has a

value between 0 to 1 (ideally, it is set to 0.85).

Coming back to the TextRank algorithm, when summarizing a document, we will

have sentences, keywords, or phrases as the vertices of the algorithm based on the type

of summarization we are trying to do. We might have multiple links between these

vertices. The modification that we make from the original PageRank algorithm is to have

a weight coefficient (say wij) between the edge connecting two vertices Vi and Vj such

that this weight indicates the strength of this connection between them. Thus we now

formally define the new function for computing TextRank of vertices as follows:

TR V d d
w TR V

wi
V In V

ji j

V Out V jkj i
k j

() = -()+ ´
()

Î () Î ()
å å

1

where TR indicates the weighted PageRank score for a vertex now defined as the

TextRank for that vertex. Thus, we can formulate the algorithm and depict the main steps

we will follow. They are defined as follows:

 1. Tokenize and extract sentences from the document to be

summarized.

 2. Decide on the number of sentences, k, that we want in the final

summary

Chapter 6 text Summarization and topiC modelS

447

 3. Build a document-term feature matrix using weights like TF-IDF

or Bag of Words.

 4. Compute a document similarity matrix by multiplying the matrix

by its transpose.

 5. Use these documents (sentences in our case) as the vertices and

the similarities between each pair of documents as the weight

or score coefficient we talked about earlier and feed them to the

PageRank algorithm.

 6. Get the score for each sentence.

 7. Rank the sentences based on score and return the top k sentences.

Since we already have our document-term feature matrix defined when we

performed document summarization using LSA, we reuse that matrix, which is stored in

the dt_matrix variable. The next step is to compute the document similarity matrix.

similarity_matrix = np.matmul(dt_matrix, dt_matrix.T)

print(similarity_matrix.shape)

np.round(similarity_matrix, 3)

(35, 35)

array([[1. , 0.182, 0. , ..., 0. , 0. , 0.],

 [0.182, 1. , 0.05 , ..., 0. , 0. , 0.084],

 [0. , 0.05 , 1. , ..., 0.101, 0.165, 0.319],

 ...,

 [0. , 0. , 0.101, ..., 1. , 0.066, 0.069],

 [0. , 0. , 0.165, ..., 0.066, 1. , 0.123],

 [0. , 0.084, 0.319, ..., 0.069, 0.123, 1.]])

Now we construct the connected graph among all the sentences from our toy

document by using the document similarity scores and the documents themselves as

the vertices. We use the networkx library to help us plot this graph. Remember that each

document is a sentence in our case and will also be the vertices in the graph.

import networkx

Chapter 6 text Summarization and topiC modelS

448

build the similarity graph

similarity_graph = networkx.from_numpy_array(similarity_matrix)

similarity_graph

<networkx.classes.graph.Graph at 0x1baf8a352b0>

view the similarity graph

import matplotlib.pyplot as plt

%matplotlib inline

plt.figure(figsize=(12, 6))

networkx.draw_networkx(similarity_graph, node_color='lime')

From Figure 6-23, we can see how the sentences of our toy document are now linked

to each other based on document similarities. The graph shows how well connected

some sentences are to others. We now compute the PageRank scores for all the sentences

and build our summary using the top eight sentences.

compute pagerank scores for all the sentences

scores = networkx.pagerank(similarity_graph)

ranked_sentences = sorted(((score, index) for index, score

 in scores.items()),

Figure 6-23. Similarity graph showing connections between sentences

Chapter 6 text Summarization and topiC modelS

449

 reverse=True)

ranked_sentences[:10]

[(0.03729704979721473, 2),

 (0.03490843547537587, 25),

 (0.03460086870923609, 4),

 (0.03240744530656926, 8),

 (0.03218748996523769, 28),

 (0.03183673426880143, 11),

 (0.031566658693076226, 26),

 (0.03150616293402057, 3),

 (0.031376143577383796, 5),

 (0.031123481531894214, 16)]

Once each sentence has been ranked (based on the sentence indices you can see in

the preceding output), we sort them based on their score. We can then easily identify the

top eight sentences to form our summary.

get the top sentence indices for our summary

top_sentence_indices = [ranked_sentences[index][1]

 for index in range(num_sentences)]

top_sentence_indices.sort()

construct the document summary

print('\n'.join(np.array(sentences)[top_sentence_indices]))

The game's main story revolves around the player character's quest to defeat

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

The game is set 200 years after the events of Oblivion and takes place in

the fictional province of Skyrim.

Over the course of the game, the player completes quests and develops the

character by improving skills.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from

either a first or third-person perspective.

The game's main quest can be completed or ignored at the player's

preference after the first stage of the quest is finished.

Chapter 6 text Summarization and topiC modelS

450

Skyrim is the first entry in The Elder Scrolls to include dragons in the

game's wilderness.

Like other creatures, dragons are generated randomly in the world and will

engage in combat with NPCs, creatures and the player.

The player character can absorb the souls of dragons in order to use

powerful spells called "dragon shouts" or "Thu'um".

We finally get our desired summary by using the TextRank algorithm. The content is

also quite meaningful and you will see a lot of similarity with the Gensim output, which

is based on a variation of the TextRank algorithm.

You can see from this output that we were successfully able to summarize our

product description. This short summary depicts the core essence of the product

description like the name of the game and its various features regarding its gameplay

and plot. This concludes our discussion of automated text summarization. We

encourage you to try these techniques on more documents and test it with various

parameters. Consider parameters like more topics and different features, and maybe

even explore deep learning based techniques for abstractive text summarization.

 Summary
In this chapter, we covered some interesting areas in natural language processing and

text analytics with regard to information extraction, document summarization, and topic

modeling. We started with an overview of the evolution of information being generated

in the world and learned about concepts like information overload leading to the need

for text summarization and information retrieval. We talked about the various ways we

can extract key information from textual data and ways of summarizing large documents.

We also covered important mathematical concepts like Singular Value Decomposition

and low rank matrix approximation and utilized them in several of our algorithms.

We covered three approaches to reducing information overload, which included

keyphrase extraction, topic models, and automated document summarization.

Keyphrase extraction included methods like collocations and weighted tagged term

based approaches for getting keyphrases or terms from corpora.

We built several topic modeling techniques including Latent Semantic Indexing,

latent dirichlet allocation and the very recently implemented non-negative matrix

factorization using Gensim and Scikit-Learn. We also tuned our topic models and

Chapter 6 text Summarization and topiC modelS

451

 showcased a method to find the optimal number of topics. Besides that, we looked at

effective ways of interpreting and understanding topic modeling results. Finally, we

looked at two extraction-based techniques for automated document summarization—

Latent Semantic Analysis and TextRank. We implemented each method and observed

results on real- world data to get a good idea of how these methods worked and how

effective simple mathematical operations can be in generating actionable insights.

Chapter 6 text Summarization and topiC modelS

453
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_7

CHAPTER 7

Text Similarity and
Clustering
In the previous chapters, we covered several techniques to analyze text and

extract interesting insights. We looked at supervised machine learning techniques,

which are used to categorize text documents into several assumed categories.

Unsupervised techniques like topic models and document summarization were also

covered, which involved trying to retrieve key themes and information from large

text documents and corpora.

In this chapter, we look at several interesting techniques and use cases that leverage

unsupervised learning and information retrieval concepts. If you refresh your memory

about Chapter 5, text categorization is indeed an interesting problem that has several

applications, most notably in news articles categorization and e-mail classification. But

one constraint in text classification is that we need a good amount of training data with

manually labeled categories, since we use supervised learning algorithms to build our

classification model. Building a labeled dataset is definitely not easy because you need

a sizeable amount of training data. For this, we need to spend time and manual effort in

labeling data, building the model, and then using it to classify new documents. Usually

any enterprise might not have enough time to invest in this (even though the benefits

can be ten-fold!). Can we instead make the machine do this task? Maybe to an extent!

This chapter specifically looks at the content of text documents, analyzing their similarity

using various measures, and clustering similar documents together.

Text data is unstructured and highly noisy. We get the benefits of well labeled

training data and supervised learning when performing text classification.

However, document clustering is an unsupervised learning process, whereby we

are trying to segment and categorize documents into separate categories by making

the machine learn about the various text documents, their features, similarities, and

differences. This makes document clustering more challenging, albeit interesting.

454

Consider having a corpus of documents that talks about various different concepts

and ideas. Humans are wired in such a way that we use our learning from the past

and apply it to distinguish concepts. For example, the sentence "The fox is smarter

than the dog" is more similar to "The dog is faster than the fox" as compared to

"Python is an excellent programming language". We can easily spot and intuitively

determine specific key phrases like Python, fox, dog, programming, and so on, which

helps us determine which sentences or documents are more similar. But can we do

this programmatically?

In this chapter, we focus on several concepts related to text similarity—distance

metrics and unsupervised machine learning algorithms—to answer the following

questions.

• How do we measure similarity between terms and documents?

• How can we use distance measures to find the most relevant

documents?

• When is a distance measure a metric?

• How can we build a recommender system from text similarity?

• How do we group similar documents?

While we focus on trying to answer these questions, we also cover essential concepts

and information needed to understand various techniques for solving these problems.

We also use some practical examples to illustrate concepts related to text similarity,

distance metrics, and document clustering. We depict these using some interesting case

studies of building a movie recommender using document similarity and cluster similar

movies together!

Many of these techniques can be combined with some of the techniques we learned

previously and vice versa. For example, concepts of text representation with feature

engineering and text similarity using distance metrics and features are also used to

build document clusters. You can also use features from topic models to measure text

similarity.

Besides this, clustering can give us a feel for the possible groups or categories that

our data might consist of, based on similar patterns and attributes. This can then be

plugged in to other systems like supervised classification systems. The possibilities

are indeed endless! In this chapter, we first cover some important concepts related to

distance measures, metrics, and unsupervised learning. Once the basics have been

Chapter 7 text Similarity and CluStering

455

covered, our objective is to understand and analyze term similarity, document similarity,

recommendations, and finally document clustering. All the code examples showcased in

this chapter are available on the book's official GitHub repository, which you can access

at https://github.com/dipanjanS/text-analytics-with-python/tree/master/

New- Second- Edition.

 Essential Concepts
Our main objective in this chapter is to understand text similarity and clustering.

Before moving on to the actual techniques and algorithms, this section discusses some

important concepts related to information retrieval, document similarity measures, and

machine learning. Even though some of these concepts might be familiar to you from the

previous chapters, a brief refresher will be useful. Without further ado, let's get started.

 Information Retrieval (IR)
Information retrieval is defined as the process of retrieving relevant sources of

information from a corpus or set of entities that hold information based on some

demand. A demand can in the form of a query or search that users enter in a search

engine. They then get relevant search items pertaining to their query. In fact, search

engines are the most popular application of IR. The relevancy of documents with

information compared to the demand can be measured in several ways. This includes

looking for specific keywords from the search text or using similarity measures to see the

similarity rank or score of the documents with respect to the entered query. This makes

is quite different from string matching or matching regular expressions because more

than often the words in a search string can have different order, context, and semantics

in the collection of documents (entities), and these words can even have multiple

different resolutions or possibilities based on synonyms, antonyms, and negation

modifiers.

 Feature Engineering
Feature engineering or feature extraction is something that you know about quite well

by now. We covered this in detail in Chapter 4. Methods like Bag of Words, TF-IDF,

and word embedding models are typically used to represent documents in the form

Chapter 7 text Similarity and CluStering

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

456

of numeric vectors so that applying mathematical or machine learning techniques

becomes much easier. You can use various document representations using these

feature extraction techniques or even map each letter or a word to a corresponding

unique numeric identifier.

 Similarity Measures
Similarity measures are used in text similarity analysis and clustering. Any

similarity or distance measure measures the degree of closeness between two

entities, which can be any text format like documents, sentences, or even terms.

This measure of similarity can be useful in identifying similar entities and

distinguishing clearly different entities from each other. Similarity measures

are very effective and sometimes choosing the right measure can make a lot of

difference in the performance of your final analytics system. Various scoring or

ranking algorithms have also been invented based on these distance measures.

There are two main factors that determine the degree of similarity between

entities. They are as follows:

• Inherent properties or features of the entities

• Measure formula and properties

There are several distance measures that measure similarity and we will be covering

several of them in future sections. However, an important point to remember is that

all distance measures of similarity are not distance metrics of similarity. The excellent

paper by A. Huang entitled "Similarity Measures for Text Document Clustering" talks

about this in detail. Consider a distance measure d and two entities (let us consider

them to be documents in our context), x and y. The distance between x and y is used to

determine the degree of similarity between them. It can be represented as d(x, y) but the

measure d is called a distance metric of similarity if and only if satisfies the following four

conditions.

• The distance measured between any two entities, say x and y, must

be always non-negative, i.e., d(x, y) ≥ 0.

• The distance between two entities should always be zero if and only if

they are identical, i.e., d(x, y) ≥ 0 if f x = y.

Chapter 7 text Similarity and CluStering

457

• This distance measure should always be symmetric, which means

that the distance from x to y is always the same as the distance from y

to x. Mathematically, this is represented as d(x, y) = d(y, x).

• This distance measure should satisfy the triangle inequality property,

which can be mathematically represented d(x, z) ≤ d(x, y) + d(y, z).

This tells us important criteria and gives us a good framework that we can use to

check if a distance measure can be used as a distance metric for measuring similarity.

Going into more details would be currently out of the scope, but you might be interested

in knowing that the very popular KL-divergence measure also known as Kullback-Leibler

divergence is a distance measure that violates the third property, where this measure

is asymmetric. Hence, it does not make sense to use this as a measure of similarity for

text documents. Otherwise, it’s extremely useful in differentiating between various

distributions and patterns.

 Unsupervised Machine Learning Algorithms
These refer to the family of machine learning algorithms that try to discover latent hidden

structures and patterns in data from their various attributes and features. Besides this,

several unsupervised learning algorithms are also used to reduce the feature space, which

is often of a higher dimension to one with a lower dimension. The data on which these

algorithms operate is essentially unlabeled data, so it does not have any predetermined

category or class. We apply these algorithms with the intent of find patterns and

distinguishing features that might help us in grouping various data points into groups

or clusters. These algorithms are popularly known as clustering algorithms. Even topic

models covered in the previous chapter belong to the unsupervised learning family of

algorithms. This concludes our discussion on the important concepts and background

information necessary for this chapter. We now move on to text normalization and feature

extraction, where we introduce a few concepts specific to this chapter.

 Text Similarity
The main objective of text similarity is to analyze and measure how close two entities of

text are to each other. These entities of text can be simple tokens or terms like words or

whole documents, which may include sentences or paragraphs of text. There are various

Chapter 7 text Similarity and CluStering

458

ways to analyze text similarity and we can classify the intent of text similarity broadly into

the following two areas.

• Lexical similarity: This involves observing the contents of the text

documents with regards to its syntax, structure, and content and

measuring their similarity based on these parameters.

• Semantic similarity: This involves determining the semantics,

meaning, and context of the documents and then determining how

close they are to each other. Dependency grammars and entity

recognition are handy tools that can help in this. We covered word

embedding methods in detail in Chapter 4, which help in capturing

semantic information.

We cover lexical similarity in this chapter. Distance metrics are typically used to

measure similarity scores between text entities and we mainly cover the following two

broad areas of text similarity:

• Term similarity: Similarity between individual tokens or words

• Document similarity: Similarity between entire text documents

The idea is to implement several distance metrics and see how we can measure and

analyze similarity among simple words. Then we look at how things change when we

measure similarity among groups of individual words.

 Analyzing Term Similarity
We will start by analyzing term similarity, or similarity between individual word tokens,

to be more precise. Even though this is not used a lot in practical applications, this

can be an excellent starting point to understanding text similarity. Of course, several

applications and use cases like autocompleters, spell check, and correctors use these

techniques to correct misspelled terms. We saw a fair bit of that during our spell check

implementation in Chapter 3! Here we take a few words and measure the similarity

between then using different word representations as well as distance metrics. The word

representations we use are as follows:

• Character vectorization

• Bag of characters vectorization

Chapter 7 text Similarity and CluStering

459

For character vectorization, it is an extremely simple process of just mapping each

character of the term to a corresponding unique number. We can do that using the

function depicted in the following snippet.

import numpy as np

def vectorize_terms(terms):

 terms = [term.lower() for term in terms]

 terms = [np.array(list(term)) for term in terms]

 terms = [np.array([ord(char) for char in term])

 for term in terms]

 return terms

This function takes a list of words or terms and returns the corresponding character

vectors for the words. To demonstrate this, we use a total of four example terms and

compute the similarity among them shortly.

root = 'Believe'

term1 = 'beleive'

term2 = 'bargain'

term3 = 'Elephant'

terms = [root, term1, term2, term3]

terms

['Believe', 'beleive', 'bargain', 'Elephant']

Let's now perform character vectorization on each of these strings (list of character

tokens) and view their representation in the form of a data frame.

Character vectorization

term_vectors = vectorize_terms(terms)

show vector representations

vec_df = pd.DataFrame(term_vectors, index=terms)

print(vec_df)

Chapter 7 text Similarity and CluStering

460

 0 1 2 3 4 5 6 7

Believe 98 101 108 105 101 118 101 NaN

beleive 98 101 108 101 105 118 101 NaN

bargain 98 97 114 103 97 105 110 NaN

Elephant 101 108 101 112 104 97 110 116.0

Thus you can see how we can easily transform each text term into a corresponding

numeric vector representation. Note that the NaN values indicate that those strings are

one character shorter, as compared to the last string, which is one character longer. We

now use several distance metrics to compute similarity between the root word and the

other three words, as mentioned in the previous snippet. There are a lot of distance

metrics out there that you can use to compute and measure similarities. We cover the

following five metrics in this section.

• Hamming distance

• Manhattan distance

• Euclidean distance

• Levenshtein Edit distance

• Cosine distance and similarity

We look at the concepts for each distance metric and use the power of NumPy arrays

to implement the necessary computations and mathematical formulae. Once we do that,

we put them in action by measuring the similarity of our example terms. Before we do

this, we set up some necessary variables by storing the root term, the other terms with

which its similarity will be measured, and their various vector representations using the

following snippet.

root_term = root

other_terms = [term1, term2, term3]

root_term_vec = vec_df[vec_df.index == root_term].dropna(axis=1).values[0]

other_term_vecs = [vec_df[vec_df.index == term].dropna(axis=1).values[0]

 for term in other_terms]

We are now ready to start computing similarity metrics and will use these terms and

their vector representations to measure similarities.

Chapter 7 text Similarity and CluStering

461

 Hamming Distance
The Hamming distance is a very popular distance metric used frequently in information

theory and communication systems. It is the distance measured between two strings

under the assumption that they are of equal length. Formally it is defined as the number

of positions that have different characters or symbols between two strings of equal

length. Considering two terms u and v of length n, we can mathematically denote

Hamming distance as follows:

hd u v u v

i

n

i i,() = ¹()
=
å

1

You can also normalize it if you want by dividing the number of mismatches by

the total length of the terms. This gives the normalized hamming distance, which is

represented as follows:

norm hd u v

u v

n
i

n

i i
_ (,)=

¹()
=å 1

Note that n denotes the length of the terms. The following function computes

the Hamming distance between two terms and has the capability to compute the

normalized distance.

def hamming_distance(u, v, norm=False):

 if u.shape != v.shape:

 raise ValueError('The vectors must have equal lengths.')

 return (u != v).sum() if not norm else (u != v).mean()

We can measure the Hamming distance between our root term and the other terms

using the following code snippet.

compute Hamming distance

for term, term_vector in zip(other_terms, other_term_vecs):

 print('Hamming distance between root: {} and term: {} is {}'.

format(root_term, term, hamming_distance(root_term_vec,term_vector,

norm=False)))

Hamming distance between root: Believe and term: beleive is 2

Hamming distance between root: Believe and term: bargain is 6

Chapter 7 text Similarity and CluStering

462

Traceback (most recent call last):

 File "<ipython-input-115-3391bd2c4b7e>", line 4, in <module>

 hamming_distance(root_vector, vector_term, norm=False))

ValueError: The vectors must have equal lengths.

compute normalized Hamming distance

for term, term_vector in zip(other_terms, other_term_vecs):

 print('Normalized Hamming distance between root: {} and term: {}

is {}'.format(root_term, term, round(hamming_distance(root_term_vec,

term_vector, norm=True), 2)))

Normalized Hamming distance between root: Believe and term: beleive is 0.29

Normalized Hamming distance between root: Believe and term: bargain is 0.86

Traceback (most recent call last):

 File "<ipython-input-117-7dfc67d08c3f>", line 4, in <module>

 round(hamming_distance(root_vector, vector_term, norm=True), 2))

ValueError: The vectors must have equal lengths

You can see from the output that the terms “Believe” and “beleive” are most

similar, with a Hamming distance of 2 or 0.29, compared to the term “bargain,” giving

scores of 6 or 0.86 (the smaller the score more, the similar the terms). Likewise, the

term “Elephant” throws an exception because its length is different than the root

term (“Believe”). The Hamming distance can't be computed since the strings aren’t

equal length.

 Manhattan Distance
The Manhattan distance metric is similar to the Hamming distance conceptually where,

instead of counting the number of mismatches, we subtract the difference between each

pair of characters at each position of the two strings. Formally, the Manhattan distance

is also known as city block distance, L1 norm, or taxicab metric, and it is defined as the

distance between two points in a grid based on strictly horizontal or vertical paths. This

is instead of the diagonal distance conventionally calculated by the Euclidean distance

metric. Mathematically it can be denoted as follows:

md u v u v u v

i

n

i i,() = - = -
=
å 1

1

Chapter 7 text Similarity and CluStering

463

where u and v are the two terms of length n. The same assumption of the two terms

having equal length from the Hamming distance holds good here. We can also compute

the normalized Manhattan distance by dividing the sum of the absolute differences by

the term length. This can be denoted by

norm md u v

u v

n

u v

n
i

n

i i_ ,() = -
=

-
=å 1 1

where n is the length of each of the terms u and v. The following function helps us

implement the Manhattan distance with the capability to also compute the normalized

Manhattan distance.

def manhattan_distance(u, v, norm=False):

 if u.shape != v.shape:

 raise ValueError('The vectors must have equal lengths.')

 return abs(u - v).sum() if not norm else abs(u - v).mean()

We will now compute the Manhattan distance between our root term and the other

terms using the function depicted in the following code snippet.

compute Manhattan distance

for term, term_vector in zip(other_terms, other_term_vecs):

 print('Manhattan distance between root: {} and term: {} is {}'.

format(root_term, term,manhattan_distance(root_term_vec, term_vector,

norm=False)))

Manhattan distance between root: Believe and term: beleive is 8

Manhattan distance between root: Believe and term: bargain is 38

Traceback (most recent call last):

 File "<ipython-input-120-b228f24ad6a2>", line 4, in <module>

 manhattan_distance(root_vector, vector_term, norm=False))

ValueError: The vectors must have equal lengths.

compute normalized Manhattan distance

for term, term_vector in zip(other_terms, other_term_vecs):

 print('Normalized Manhattan distance between root: {} and term: {} is

{}'.format(root_term, term, round(manhattan_distance(root_term_vec,

term_vector, norm=True), 2)))

Chapter 7 text Similarity and CluStering

464

Normalized Manhattan distance between root: Believe and term: beleive is 1.14

Normalized Manhattan distance between root: Believe and term: bargain is 5.43

Traceback (most recent call last):

 File "<ipython-input-122-d13a48d56a22>", line 4, in <module>

 round(manhattan_distance(root_vector, vector_term, norm=True),2))

ValueError: The vectors must have equal lengths.

From these results, you can see that as expected, “Believe” and “beleive” are most

similar, with a score of 8 or 1.14, as compared to “bargain,” which gives a score of 38 or

5.43. The term “Elephant” yields an error because it has a different length compared to

the base term.

 Euclidean Distance
We briefly mentioned the Euclidean distance when comparing it to the Manhattan

distance in the earlier section. Formally, the Euclidean distance is also known as the

Euclidean norm, L2 norm, or L2 distance. It’s defined as the shortest straight-line

distance between two points. Mathematically, this can be denoted as follows:

ed u v u v u v

i

n

i i,() = - = -()
=
å 2

1

2

where the two points u and v are vectorized text terms in our scenario with a length of n.

The following function helps us compute the Euclidean distance between two terms.

def euclidean_distance(u, v):

 if u.shape != v.shape:

 raise ValueError('The vectors must have equal lengths.')

 distance = np.sqrt(np.sum(np.square(u - v)))

 return distance

We can now compare the Euclidean distance among our terms by using this

function, as depicted in the following code snippet.

Chapter 7 text Similarity and CluStering

465

compute Euclidean distance

for term, term_vector in zip(other_terms, other_term_vecs):

 print('Euclidean distance between root: {} and term: {} is {}'.format(root_

term, term, round(euclidean_distance(root_term_vec, term_vector), 2)))

Euclidean distance between root: Believe and term: beleive is 5.66

Euclidean distance between root: Believe and term: bargain is 17.94

Traceback (most recent call last):

 File "<ipython-input-132-90a4dbe8ce60>", line 4, in <module>

 round(euclidean_distance(root_vector, vector_term),2))

ValueError: The vectors must have equal lengths.

From these outputs, you can see that the terms “Believe” and “beleive” are the

most similar, with a score of 5.66, compared to “bargain” with a score of 17.94. Again,

the “Elephant” string throws a ValueError because it is a different length. So far, all the

distance metrics we used work on strings of the same length and fail when they are not of

equal length. So how do we deal with this problem? We now look at a couple of distance

metrics that measure similarity even with strings of unequal length.

 Levenshtein Edit Distance
The Levenshtein Edit distance, often known as just the Levenshtein distance, belongs to

the family of edit distance based metrics and is used to measure the distance between

two sequence of strings based on their differences, similar to the concept behind

the Hamming distance. The Levenshtein Edit distance between two terms can be

defined as the minimum number of edits needed in the form of additions, deletions,

or substitutions to change or convert one term to the other. These substitutions are

character-based substitutions, where a single character can be edited in a single

operation. As mentioned, the length of the two terms need not be equal. Mathematically,

we can represent the Levenshtein Edit distance between two terms as ldu, v(|u|, |v|),

where u and v are our two terms and |u| and |v| are their lengths. This distance can be

represented by the following formula:

ld i j

i j if i j

ld i j

ld i ju v
u v

u v
,

,

,

max min

min
,

, ,

,

,
() =

() () =
-()+
-

0

1 1

1(()+
- -()+

ì

í
ï

î
ï

ü

ý
ï

þ
ï

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
¹

1

1 1ld i j C

otherwise

u v u vi j, , ïï

Chapter 7 text Similarity and CluStering

466

where i and j are basically indices for the terms u and v. The third equation in the

minimum includes a cost function denoted by Cu vi j¹ and it has the following conditions:

C

if u v

if u vu v

i j

i j
i j¹ =

¹
=

ì
í
î

ü
ý
þ

1

0

This denotes the indicator function, which depicts the cost associated with two

characters being matched for the two terms (the equation represents the match or

mismatch operation). The first equation in the minimum determines the deletion

operation and the second equation determines the insertion operation.

The function ldu, v(i, j) thus covers all the three operations of insertion, deletion,

and addition. It also denotes the Levenshtein distance, as measured between the first i
characters for the term u and the first j characters of the term v. There are also several

interesting boundary conditions with regards to the Levenshtein Edit distance. They are

as follows:

• The minimum value that the edit distance can take between two

terms is the difference in length of the two terms

• The maximum value of the edit distance between two terms can be

the length of the term that’s larger

• If the two terms are equal, the edit distance is zero

• The Hamming distance between two terms is an upper bound for

the Levenshtein Edit distance if and only if the two terms have equal

lengths

• This being a distance metric, it also satisfies the triangle inequality

property, which we discussed earlier when we talked about distance

metrics

There are various ways of implementing Levenshtein distance computations for

terms. Here we start with an example of two of our terms. Considering the root term

“believe” and another term, “beleive” (we ignore case in our computations), the edit

distance would be 2 because we would need the following two operations.

• beleive → beliive (substitution of e to i)

• beliive → believe (substitution of i to e)

Chapter 7 text Similarity and CluStering

467

To implement this, we build a matrix that computes the Levenshtein distance

between all the characters of both terms by comparing each character of the first

term with the characters of the second term. For computation, we follow a dynamic

programming approach, in order to get the edit distance between the two terms based

on the last computed value. For the two terms, the Levenshtein Edit distance matrix that

our algorithm should generate is depicted in Figure 7-1.

You can see from the Figure 7-1 that the edit distances are computed for each pair

of characters in the terms and the final edit distance value (which is highlighted in the

figure) gives us the actual edit distance between the two terms. This algorithm is also

known as the Wagner-Fischer algorithm and is available in the paper by R. Wagner and

M. Fischer entitled, "The String-to-String Correction Problem," which you can refer to

if you are interested in the details. The pseudocode is depicted in the following snippet,

courtesy of the paper.

function levenshtein_distance(char u[1..m], char v[1..n]):

 # for all i and j, d[i,j] will hold the Levenshtein distance between

the first i characters of u and the first j characters of v, note that

d has (m+1)*(n+1) values

 int d[0..m, 0..n]

 # set each element in d to zero

 d[0..m, 0..n] := 0

 # source prefixes can be transformed into empty string by dropping all

characters

Figure 7-1. Levenshtein Edit distance matrix between terms

Chapter 7 text Similarity and CluStering

468

 for i from 1 to m:

 d[i, 0] := i

 # target prefixes can be reached from empty source prefix by inserting

every character

 for j from 1 to n:

 d[0, j] := j

 # build the edit distance matrix

 for j from 1 to n:

 for i from 1 to m:

 if s[i] = t[j]:

 substitutionCost := 0

 else:

 substitutionCost := 1

 d[i, j] := minimum(d[i-1, j] + 1, # deletion

 d[i, j-1] + 1, # insertion

 d[i-1, j-1] + substitutionCost) # substitution

 # the final value of the matrix is the edit distance between the terms

 return d[m, n]

You can see from the function definition pseudocode, how we have captured the

necessary formulae we used earlier to define the Levenshtein Edit distance. We will now

implement this pseudocode in Python. The algorithm uses O(mn) space, since it stores

the entire distance matrix, but it is enough to just store the previous and current row of

distances to get to the final result. We will do the same in our code, but we will also store

the results in a matrix so that we can visualize them in the end. The following function

implements the Levenshtein Edit distance.

import copy

import pandas as pd

def levenshtein_edit_distance(u, v):

 # convert to lower case

 u = u.lower()

 v = v.lower()

 # base cases

 if u == v: return 0

Chapter 7 text Similarity and CluStering

469

 elif len(u) == 0: return len(v)

 elif len(v) == 0: return len(u)

 # initialize edit distance matrix

 edit_matrix = []

 # initialize two distance matrices

 du = [0] * (len(v) + 1)

 dv = [0] * (len(v) + 1)

 # du: the previous row of edit distances

 for i in range(len(du)):

 du[i] = i

 # dv : the current row of edit distances

 for i in range(len(u)):

 dv[0] = i + 1

 # compute cost as per algorithm

 for j in range(len(v)):

 cost = 0 if u[i] == v[j] else 1

 dv[j + 1] = min(dv[j] + 1, du[j + 1] + 1, du[j] + cost)

 # assign dv to du for next iteration

 for j in range(len(du)):

 du[j] = dv[j]

 # copy dv to the edit matrix

 edit_matrix.append(copy.copy(dv))

 # compute the final edit distance and edit matrix

 distance = dv[len(v)]

 edit_matrix = np.array(edit_matrix)

 edit_matrix = edit_matrix.T

 edit_matrix = edit_matrix[1:,]

 edit_matrix = pd.DataFrame(data=edit_matrix,

 index=list(v),

 columns=list(u))

 return distance, edit_matrix

This function returns both the final Levenshtein Edit distance and the complete edit

matrix between the two terms, u and v, which are taken as input. Remember we need

to pass the terms directly in their raw string format and not their vector representations.

Also we do not consider case of strings here and convert them to lowercase. The following

Chapter 7 text Similarity and CluStering

470

snippet computes the Levenshtein Edit distance between our example terms using the

previous function.

for term in other_terms:

 edit_d, edit_m = levenshtein_edit_distance(root_term, term)

 print('Computing distance between root: {} and term: {}'.format

(root_term, term))

 print('Levenshtein edit distance is {}'.format(edit_d))

 print('The complete edit distance matrix is depicted below')

 print(edit_m)

 print('-'*30)

Computing distance between root: Believe and term: beleive

Levenshtein edit distance is 2

The complete edit distance matrix is depicted below

 b e l i e v e

b 0 1 2 3 4 5 6

e 1 0 1 2 3 4 5

l 2 1 0 1 2 3 4

e 3 2 1 1 1 2 3

i 4 3 2 1 2 2 3

v 5 4 3 2 2 2 3

e 6 5 4 3 2 3 2

Computing distance between root: Believe and term: bargain

Levenshtein edit distance is 6

The complete edit distance matrix is depicted below

 b e l i e v e

b 0 1 2 3 4 5 6

a 1 1 2 3 4 5 6

r 2 2 2 3 4 5 6

g 3 3 3 3 4 5 6

a 4 4 4 4 4 5 6

i 5 5 5 4 5 5 6

n 6 6 6 5 5 6 6

Chapter 7 text Similarity and CluStering

471

Computing distance between root: Believe and term: Elephant

Levenshtein edit distance is 7

The complete edit distance matrix is depicted below

 b e l i e v e

e 1 1 2 3 4 5 6

l 2 2 1 2 3 4 5

e 3 2 2 2 2 3 4

p 4 3 3 3 3 3 4

h 5 4 4 4 4 4 4

a 6 5 5 5 5 5 5

n 7 6 6 6 6 6 6

t 8 7 7 7 7 7 7

You can see from this output that “Believe” and “beleive” are closest to each

other with an edit distance of 2, and the distances between “Believe,” “bargain,” and

“Elephant” are 6, indicating a total of six edit operations are needed. The edit distance

matrices provide a more detailed insight into how the algorithm computes the distances

per iteration.

 Cosine Distance and Similarity
The Cosine distance is a metric that can be derived from the Cosine similarity and

vice versa. Considering we have two terms represented in their vectorized forms (bag

of character vectors that we shall depict shortly, whereby the order of the characters

doesn’t matter). Cosine similarity gives us the measure of the cosine of the angle

between them when they are represented as non-zero positive vectors in an inner

product space. Thus, term vectors that have a similar orientation will have scores closer

to 1 (cos0∘), indicating the vectors are very close to each other in the same direction

(near to zero degree angle between them). Term vectors with a similarity score close to 0

(cos90∘) indicate unrelated terms with a near orthogonal angle between then.

Term vectors with a similarity score close to -1 (cos180∘) indicate terms that are completely

oppositely oriented. Figure 7-2 illustrates this more clearly, where u and v are our term

vectors in the vector space.

Chapter 7 text Similarity and CluStering

472

Thus, you can see from the position of the vectors that the plots show more

clearly how the vectors are close or far apart and the cosine of the angle between

them gives us the Cosine similarity metric. Now we can formally define Cosine

similarity as the dot product of the two term vectors, u and v, divided by the product

of their L2 norms. Mathematically, we can represent the dot product between two

vectors as follows:

 u v u v· cos= () q

where θ is the angle between u and v and ∥u∥ represents the L2 norm for vector u and

∥v∥ is the L2 norm for vector v. Thus, we can derive the Cosine similarity from the

formula as follows:

cs u v
u v

u v

u v

u v

i

n

i i

i

n

i i

n

i

,() = () = ×
= =

= =

å
å å

cos q

1

1

2

1

2

where cs(u, v) is the Cosine similarity score between u and v. Here ui and vi are the

various features of the two vectors and the total number of these features or components

is n. In our case, we use the bag of characters vectorization to build these term vectors

and n is the number of unique characters across the terms under analysis.

Bag of characters vectorization is very similar to the bag of words model except here

we compute the frequency of each character in the word. Sequence or word orders are

not taken into account here. The following function helps compute this.

Figure 7-2. Cosine similarity representations for term vectors

Chapter 7 text Similarity and CluStering

473

from scipy.stats import itemfreq

def boc_term_vectors(word_list):

 word_list = [word.lower() for word in word_list]

 unique_chars = np.unique(

 np.hstack([list(word)

 for word in word_list]))

 word_list_term_counts = [{char: count

 for char, count in np.stack(

 np.unique(list(word), return_

counts=True), axis=1)}

 for word in word_list]

 boc_vectors = [np.array([int(word_term_counts.get(char, 0))

 for char in unique_chars])

 for word_term_counts in word_list_term_counts]

 return list(unique_chars), boc_vectors

In this function, we take a list of words or terms and extract the unique characters

from it. This becomes our feature list, just like we do with a bag of words. Instead of

characters, unique words will be our features. Once we have this list of unique_chars we

get the count for each character in each word and build our bag of characters vectors.

The following code leverages the previous function to build the bag of character vectors

for our sample terms.

Bag of characters vectorization

import pandas as pd

feature_names, feature_vectors = boc_term_vectors(terms)

boc_df = pd.DataFrame(feature_vectors, columns=feature_names, index=terms)

print(boc_df)

 a b e g h i l n p r t v

Believe 0 1 3 0 0 1 1 0 0 0 0 1

beleive 0 1 3 0 0 1 1 0 0 0 0 1

bargain 2 1 0 1 0 1 0 1 0 1 0 0

Elephant 1 0 2 0 1 0 1 1 1 0 1 0

Chapter 7 text Similarity and CluStering

474

Just like we expected, each vector is basically an unordered bag of characters

depicting the frequency of each character in the corresponding word. Let's store these in

specific variables before we compute cosine distances.

root_term_boc = boc_df[vec_df.index == root_term].values[0]

other_term_bocs = [boc_df[vec_df.index == term].values[0]

 for term in other_terms]

An important point to note here is that the Cosine similarity score usually ranges

from -1 to +1, but if we use the bag of characters based character frequencies for terms

or bag of words based word frequencies for documents, the score will range from 0 to

1. This is because the frequency vectors can never be negative and hence the angle

between the two vectors cannot exceed 90∘. The Cosine distance is complementary to

the similarity score and can be computed by the formula:

cd u v cs u v
u v

u v

u v

u

i

n

i i

i

n

i

, ,() = - () = - () = -
×

= - =

=

å
å

1 1 1 1 1

1

2
cos q

ii

n

iv=å 1

2

where cd(u, v) denotes the Cosine distance between the term vectors u and v. The

following function implements computation of Cosine distance based on the formulae.

def cosine_distance(u, v):

 distance = 1.0 - (np.dot(u, v) /

 (np.sqrt(sum(np.square(u))) * np.sqrt(sum(np.square(v))))

)

 return distance

We now test the similarity between our example terms using their bag of character

representations we created earlier and available in the boc_root_vector and the

boc_vector_terms variables:

for term, boc_term in zip(other_terms, other_term_bocs):

 print('Analyzing similarity between root: {} and term: {}'.format

(root_term, term))

 distance = round(cosine_distance(root_term_boc, boc_term), 2)

 similarity = round(1 - distance, 2)

 print('Cosine distance is {}'.format(distance))

 print('Cosine similarity is {}'.format(similarity))

 print('-'*40)

Chapter 7 text Similarity and CluStering

475

Analyzing similarity between root: Believe and term: beleive

Cosine distance is -0.0

Cosine similarity is 1.0

--

Analyzing similarity between root: Believe and term: bargain

Cosine distance is 0.82

Cosine similarity is 0.18

--

Analyzing similarity between root: Believe and term: Elephant

Cosine distance is 0.39

Cosine similarity is 0.61

--

These vector representations do not take the order of characters into account

and hence the similarity between the terms "Believe" and "beleive" is 1.0 or a perfect

100%. You can see how this can be used in combination with a semantic dictionary like

WordNet to provide correct spelling suggestions. It does this by suggesting semantically

and syntactically correct words from a vocabulary when users misspell a word by

measuring the similarity between the words.

You can even try out different features here instead of single character frequencies, like

taking two characters at a time and computing their frequencies to build the term vectors.

This will take into account some of the sequences that characters maintain in various

terms. Try out different possibilities and compare the results! This distance measure works

really well when measuring similarity between large documents or sentences and we will

see that in the following section when we discuss document similarity.

 Analyzing Document Similarity
We analyzed similarity between terms using various similarity and distance metrics in

the previous sections. We also saw how vectorization was useful so that mathematical

computations become much easier, especially when computing distances between

vectors. In this section, we try to analyze similarities between documents. By now, you

must already know that a document is defined as a body of text, which can comprise

sentences or paragraphs of text. For analyzing document similarity, we will be doing

some basic text preprocessing, vectorizing documents using the TF-IDF scheme, similar

Chapter 7 text Similarity and CluStering

476

to what we did previously when we classified text documents or summarized entire

documents. Once we have the vector representations of the various documents, we can

compute similarity between the documents using some standard distance or similarity

metrics. The metrics we cover in this section are as follows:

• Cosine similarity

• Okapi BM25 ranking

Just like usual, we cover the concepts behind each metric, look at the mathematical

representations and definitions, and then implement them using Python. To make things

interesting, we actually showcase these with a real-world example of trying to build a

movie recommender system! Consider this a mini-simulation of what happens when you

search for or watch a movie online and similar movies are recommended to you based

on the movie description and content. In the real world, you obviously will have more

parameters and features like ratings, genre, user preference history, and so on, but the

recommender we build will actually showcase how document similarity can help build

simple but amazing recommenders.

 Building a Movie Recommender
Recommender systems are one of the popular and most adopted applications of

machine learning. They are typically used to recommend entities to users. These

entities can be anything like products, movies, services, and so on. Popular examples of

recommendations include:

• Amazon suggesting products on its website

• Amazon Prime, Netflix, and Hotstar recommending movies/shows

• YouTube recommending videos to watch

Recommender systems can typically be implemented in three ways:

• Simple rule-based recommenders: Based on specific global metrics

and thresholds like movie popularity, global ratings, etc.

• Content-based recommenders: Based on providing similar entities

based on a specific entity of interest. Content metadata can be used

here, such as movie description, genre, cast, director, and so on.

Chapter 7 text Similarity and CluStering

477

• Collaborative filtering recommenders: We don't need metadata but

we try to predict recommendations and ratings based on past ratings

of different users and specific items.

We build a movie recommendation system whereby, based on data/metadata

pertaining to different movies, we try to recommend similar movies of interest. See

Figure 7-3.

Since our focus in not on recommendation engines but on NLP, we leverage the text-

based metadata for each movie to try to recommend similar movies based on specific

movies of interest. This falls under content-based recommenders. We follow a step-by-

step approach to building this recommender system with document similarity.

 Load and View Dataset
We will be using the very popular TMDB 5,000 movies dataset for this experiment, which

you can find on Kaggle at https://www.kaggle.com/tmdb/tmdb-movie-metadata/

home. But we will also be providing a nice compressed version of the same dataset in our

official GitHub repository, which you can obtain from https://github.com/dipanjanS/

text-analytics-with-python. Let's load and view this dataset now. See Figure 7-4.

import pandas as pd

df = pd.read_csv('tmdb_5000_movies.csv.gz', compression='gzip')

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4803 entries, 0 to 4802

Figure 7-3. Typical movie or TV show recommendations

Chapter 7 text Similarity and CluStering

https://www.kaggle.com/tmdb/tmdb-movie-metadata/home
https://www.kaggle.com/tmdb/tmdb-movie-metadata/home
https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

478

Data columns (total 20 columns):

budget 4803 non-null int64

genres 4803 non-null object

homepage 1712 non-null object

id 4803 non-null int64

keywords 4803 non-null object

original_language 4803 non-null object

original_title 4803 non-null object

overview 4800 non-null object

popularity 4803 non-null float64

production_companies 4803 non-null object

production_countries 4803 non-null object

release_date 4802 non-null object

revenue 4803 non-null int64

runtime 4801 non-null float64

spoken_languages 4803 non-null object

status 4803 non-null object

tagline 3959 non-null object

title 4803 non-null object

vote_average 4803 non-null float64

vote_count 4803 non-null int64

dtypes: float64(3), int64(4), object(13)

memory usage: 750.5+ KB

df.head()

Chapter 7 text Similarity and CluStering

479

Obviously for our simple content-based document similarity movie recommender, we

do not need all these fields for our analysis (although they might be useful if you want to

build a more sophisticated system). We will also combine the text content from the movie

tagline and overview columns into a new column called description. See Figure 7-5.

df = df[['title', 'tagline', 'overview', 'genres', 'popularity']]

df.tagline.fillna(", inplace=True)

df['description'] = df['tagline'].map(str) + ' ' + df['overview']

df.dropna(inplace=True)

df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 4800 entries, 0 to 4802

Data columns (total 6 columns):

title 4800 non-null object

tagline 4800 non-null object

overview 4800 non-null object

genres 4800 non-null object

popularity 4800 non-null float64

description 4800 non-null object

Figure 7-4. The TMDB 5,000 movies dataset

Chapter 7 text Similarity and CluStering

480

dtypes: float64(1), object(5)

memory usage: 262.5+ KB

df.head()

Now, we will build our own movie recommender system. The major components

going into its pipeline are as follows:

• Text preprocessing

• Feature engineering

• Document similarity computation

• Find top similar movies based on a sample movie

• Build a movie recommender

Recommendations are all about understanding the underlying features that make

us favor one choice over the other. Similarity between items (in this case, movies) is one

way to understand why we choose one movie over another. There are different ways to

calculate similarity between two items. One of the most widely used measures is Cosine

similarity, which we used earlier and we will be using again shortly.

 Text Preprocessing
We will do some basic text preprocessing on our movie descriptions before we build our

features. Nothing too fancy, since the intent here is to focus on document similarity and

not on text processing.

import nltk

import re

import numpy as np

Figure 7-5. The TMDB 5,000 movies dataset with relevant attributes

Chapter 7 text Similarity and CluStering

481

stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

 # lower case and remove special characters\whitespaces

 doc = re.sub(r'[^a-zA-Z0-9\s]', ", doc, re.I|re.A)

 doc = doc.lower()

 doc = doc.strip()

 # tokenize document

 tokens = nltk.word_tokenize(doc)

 # filter stopwords out of document

 filtered_tokens = [token for token in tokens if token not in stop_words]

 # re-create document from filtered tokens

 doc = ' '.join(filtered_tokens)

 return doc

normalize_corpus = np.vectorize(normalize_document)

norm_corpus = normalize_corpus(list(df['description']))

len(norm_corpus)

4800

Let's move on to text representation, which can be done by leveraging some feature

engineering scheme like TF-IDF.

 Extract TF-IDF Features
We talked about the TF-IDF representation scheme in extensive detail in Chapter 4. Here,

we leverage it to vectorize our preprocessed movie descriptions, thereby converting them

into numeric vectors.

from sklearn.feature_extraction.text import TfidfVectorizer

tf = TfidfVectorizer(ngram_range=(1, 2), min_df=2)

tfidf_matrix = tf.fit_transform(norm_corpus)

tfidf_matrix.shape

(4800, 20667)

Chapter 7 text Similarity and CluStering

482

We take uni-gram and bi-grams as our features and remove terms that occur only in

one document across the whole corpus. Now that we have our documents normalized

and vectorized with tf-idf-based vector representations, we look at how to compute

document similarity with cosine similarity.

 Cosine Similarity for Pairwise Document Similarity
We have seen the concepts with regard to computing Cosine similarity and implemented

them for term similarity. Here, we reuse the same concepts to compute the Cosine

similarity scores for documents instead of terms. The document vectors will be the bag

of words model-based vectors with TF-IDF values instead of term frequencies. Thus, we

should end up getting an N x N matrix where N is equal to the number of movies, which

is 4,800. See Figure 7-6.

from sklearn.metrics.pairwise import cosine_similarity

doc_sim = cosine_similarity(tfidf_matrix)

doc_sim_df = pd.DataFrame(doc_sim)

doc_sim_df.head()

Figure 7-6. Pairwise document cosine similarity

Now, we build a workflow to determine the most similar and recommended movies

for a sample movie before building our movie recommender system. Before we do this,

let's build a list of all movie titles in our dataset.

movies_list = df['title'].values

movies_list, movies_list.shape

(array(['Avatar', "Pirates of the Caribbean: At World's End", 'Spectre',

 ..., 'Signed, Sealed, Delivered', 'Shanghai Calling',

 'My Date with Drew'], dtype=object), (4800,))

Chapter 7 text Similarity and CluStering

483

We can typically index into our pairwise similarity matrix to get document

similarities for the recommendations.

 Find Top Similar Movies for a Sample Movie
Let's take Minions, one of the most popular movies, and try to find the most similar

movies to recommend. The following are the major steps that will be helpful to us later

to build a generic function.

 Find Movie ID

Since we have a list of movies, finding the position index of the movie in our dataset is

pretty straightforward.

movie_idx = np.where(movies_list == 'Minions')[0][0]

movie_idx

546

 Get Movie Similarities

We will now use this positional index to obtain the vector of pairwise movie similarities

for all movies with the movie Minions having an index 546.

movie_similarities = doc_sim_df.iloc[movie_idx].values

movie_similarities

array([0.0104544 , 0.01072835, 0. , ..., 0.00690954, 0. ,

 0.])

 Get Top Five Similar Movie IDs

It is now time to get the top five movies that are the most similar to the movie Minions.

Remember that we are not interested in showing the similarity values, but in getting the

movie indices.

similar_movie_idxs = np.argsort(-movie_similarities)[1:6]

similar_movie_idxs

array([506, 614, 241, 813, 154], dtype=int64)

Chapter 7 text Similarity and CluStering

484

 Get Top Five Similar Movies

We can easily obtain the top five similar movies to Minions since we already have the

movie index positions.

similar_movies = movies_list[similar_movie_idxs]

similar_movies

array(['Despicable Me 2', 'Despicable Me',

 'Teenage Mutant Ninja Turtles: Out of the Shadows', 'Superman',

 'Rise of the Guardians'], dtype=object)

Not bad! The top two movies are definitely very similar to Minions and are in fact all

a part of the Despicable Me franchise.

 Build a Movie Recommender
It's time now to put together everything we have learned and build our movie

recommender. We will build a movie recommender function to recommend movies.

This function will require the movie title, movie title list, and document similarity matrix

dataframe as inputs to the function.

def movie_recommender(movie_title, movies=movies_list, doc_sims=doc_sim_df):

 # find movie id

 movie_idx = np.where(movies == movie_title)[0][0]

 # get movie similarities

 movie_similarities = doc_sims.iloc[movie_idx].values

 # get top 5 similar movie IDs

 similar_movie_idxs = np.argsort(-movie_similarities)[1:6]

 # get top 5 movies

 similar_movies = movies[similar_movie_idxs]

 # return the top 5 movies

 return similar_movies

Chapter 7 text Similarity and CluStering

485

 Get a List of Popular Movies
We can sort our movies dataset based on popularity score and select some of the most

popular movies. We can then view their recommendations for some interesting results!

See Figure 7-7.

pop_movies = df.sort_values(by='popularity', ascending=False)

pop_movies.head()

I selected the following movies based on their popularity score and how interesting

they might be. Feel free to substitute them with your own movies.

popular_movies = ['Minions', 'Interstellar', 'Deadpool', 'Jurassic World',

'Pirates of the Caribbean: The Curse of the Black Pearl',

'Dawn of the Planet of the Apes', 'The Hunger Games:

Mockingjay - Part 1', 'Terminator Genisys', 'Captain

America: Civil War', 'The Dark Knight', 'The Martian',

'Batman v Superman: Dawn of Justice', 'Pulp Fiction', 'The

Godfather', 'The Shawshank Redemption', 'The Lord of the

Rings: The Fellowship of the Ring', 'Harry Potter and the

Chamber of Secrets', 'Star Wars', 'The Hobbit: The Battle

of the Five Armies', 'Iron Man']

Let's get the top five recommended movies for each of these movies using our movie

recommender function now.

for movie in popular_movies:

 print('Movie:', movie)

 print('Top 5 recommended Movies:', movie_recommender(movie_

title=movie))

 print()

Figure 7-7. Popular movies

Chapter 7 text Similarity and CluStering

486

Movie: Minions

Top 5 recommended Movies: ['Despicable Me 2' 'Despicable Me'

 'Teenage Mutant Ninja Turtles: Out of the Shadows' 'Superman'

 'Rise of the Guardians']

...

...

Movie: Jurassic World

Top 5 recommended Movies: ['Jurassic Park' 'The Lost World: Jurassic Park'

'The Nut Job'

 "National Lampoon's Vacation" 'Vacation']

Movie: Pirates of the Caribbean: The Curse of the Black Pearl

Top 5 recommended Movies: ["Pirates of the Caribbean: Dead Man's Chest"

'The Pirate'

 'Pirates of the Caribbean: On Stranger Tides'

 'The Pirates! In an Adventure with Scientists!' 'Joyful Noise']

...

...

Movie: Captain America: Civil War

Top 5 recommended Movies: ['Captain America: The Winter Soldier' 'This

Means War'

 'Avengers: Age of Ultron' 'Iron Man 2' 'Escape from Tomorrow']

Movie: The Dark Knight

Top 5 recommended Movies: ['The Dark Knight Rises' 'Batman Forever' 'Batman

Returns'

 'Batman: The Dark Knight Returns, Part 2' 'Slow Burn']

Movie: The Martian

Top 5 recommended Movies: ['The Last Days on Mars' 'Swept Away' 'Alive'

'All Is Lost' 'Red Planet']

...

...

Chapter 7 text Similarity and CluStering

487

Movie: The Lord of the Rings: The Fellowship of the Ring

Top 5 recommended Movies: ['The Lord of the Rings: The Two Towers'

 'The Hobbit: The Desolation of Smaug'

 'The Lord of the Rings: The Return of the King'

 "What's the Worst That Could Happen?" 'The Hobbit: An Unexpected Journey']

Movie: Harry Potter and the Chamber of Secrets

Top 5 recommended Movies: ['Harry Potter and the Prisoner of Azkaban'

 'Harry Potter and the Goblet of Fire'

 'Harry Potter and the Order of the Phoenix'

 'Harry Potter and the Half-Blood Prince'

 "Harry Potter and the Philosopher's Stone"]

Movie: Star Wars

Top 5 recommended Movies: ['The Empire Strikes Back' 'Return of the Jedi'

'Shrek the Third'

 'The Ice Pirates' 'The Tale of Despereaux']

Movie: The Hobbit: The Battle of the Five Armies

Top 5 recommended Movies: ['The Hobbit: The Desolation of Smaug' 'The

Hobbit: An Unexpected Journey'

 "Dragon Nest: Warriors' Dawn"

 'A Funny Thing Happened on the Way to the Forum' 'X-Men: Apocalypse']

Movie: Iron Man

Top 5 recommended Movies: ['Iron Man 2' 'Avengers: Age of Ultron' 'Hostage'

'Iron Man 3'

 'Baahubali: The Beginning']

Based on the results, you can clearly see our simple document similarity based

recommender is performing really well! We recommend using Scikit-Learn's cosine_

similarity() utility function, which is quite useful. You can also use Gensim's

similarities module or the cossim() function directly, available in the gensim.

matutils module.

Chapter 7 text Similarity and CluStering

488

 Okapi BM25 Ranking for Pairwise Document Similarity
There are several techniques that are quite popular in information retrieval and search

engines, including PageRank and Okapi BM25. The term BM stands for best matching.

This technique is also known just as BM25, but for the sake of completeness, we refer to

it as Okapi BM25, because while the concepts behind the BM25 function were originally

theoretical, the City University in London built the Okapi Information Retrieval system

in the 1980-90s, which implemented this technique to retrieve documents on actual real-

world data.

This technique can also be called a framework or model based on probabilistic

relevancy and was developed by several people in the 1970-80s, including computer

scientists S. Robertson and K. Jones. There are several functions that rank documents

based on different factors and BM25 is one of them. Its newer variant is BM25F and some

other variants include BM15 and BM25+.

The Okapi BM25 technique can be formally defined as a document ranking

and retrieval function based on a bag of words-based model for retrieving relevant

documents based on a user input query. This query can be a document containing a

sentence or collection of sentences or it can even be a couple of words. Okapi BM25 is

actually not just a single function but is a framework consisting of a whole collection of

scoring functions that are combined.

Consider we have a query document QD such that QD = (q1, q2, … , qn) containing n

terms or keywords and we have a corpus document CD in the corpus of documents from

which we want to get the most relevant documents to the query document based on

similarity scores. Assuming we have these, we can mathematically define the BM25 score

between these two documents as follows:

bm CD QD idf q
f q CD k

f q CD k b bi

n

i
i

i

25
1

11

1

1

,
,

,
() = ()× ()× +()

() + × - +=
å

(××
CD

avgdl

where the function bm25(CD, QD) computes the BM25 rank or score of the document

CD, based on the query document QD. The function idf(qi) gives us the inverse

document frequency (idf) of the term qi in the corpus, which contains CD and from

which we want to retrieve the relevant documents. If you remember, we computed idfs

Chapter 7 text Similarity and CluStering

489

in Chapter 4 when we implemented the tf-idf feature extractor. Just to refresh your

memory, it can represented by

idf t

C

df t
() = +

+ ()
1

1
log

where idf(t) represents the idf for the term t, C represents the count of the total number

of documents in our corpus, and df(t) represents the number of documents in which the

term t is present. There are various other methods of implementing idf, but we will be

using this one.

On a side note, the end outcome from the different implementations is very similar.

The function f(qi, CD) gives us the frequency of the term qi in the corpus document CD.

The expression |CD| indicates the total length of the document CD, which is measured by

the number of words and the term avgdl represents the average document length of the

corpus from which we will be retrieving documents. Besides there, you will also observe

there are two free parameters—k1 is usually in the range of [1.2, 2.0] and b is usually taken

as 0.75. We will be taking the value of k1 to be 2.5 in our implementation and b to be 0.85,

based on the popular implementation of the BM25 algorithm in the Gensim framework.

There are several steps that we must go through to successfully implement and

compute BM25 scores for documents:

 1. Calculate frequencies of terms in documents and in corpus.

 2. Compute the inverse document frequencies of terms.

 3. Get bag of words-based features for corpus documents and query

documents.

 4. Build a function to compute the BM25 score of a given document

in relation to a specific document from the corpus.

 5. Build a function that leverages the function from Step 4, which

computes and returns BM25 scores of a given document in

relation to every other document in the corpus (like a vector of

similarities for each document).

 6. Build a function that returns pairwise BM25 similarity scores

(weights) for all the documents in the corpus (leverages the

function from Step 5).

Chapter 7 text Similarity and CluStering

490

The code we implement here has actually been adopted from the Gensim framework

and we definitely recommend it if you are interested in leveraging BM25 similarity. We

show the internals of the similarity framework so you can correlate it with the earlier

defined concepts. The following class helps implement all the components from Steps 1

through 5 in our defined workflow.

"""

Data:

.. data:: PARAM_K1 - Free smoothing parameter for BM25.

.. data:: PARAM_B - Free smoothing parameter for BM25.

.. data:: EPSILON - Constant used for negative idf of document in corpus.

"""

import math

from six import iteritems

from six.moves import xrange

PARAM_K1 = 2.5

PARAM_B = 0.85

EPSILON = 0.2

class BM25(object):

 """Implementation of Best Matching 25 ranking function.

 Attributes

 corpus_size : int

 Size of corpus (number of documents).

 avgdl : float

 Average length of document in `corpus`.

 corpus : list of list of str

 Corpus of documents.

 f : list of dicts of int

 Dictionary with terms frequencies for each document in `corpus`.

 Words used as keys and frequencies as values.

 df : dict

 Dictionary with terms frequencies for whole `corpus`.

 Words used as keys and frequencies as values.

Chapter 7 text Similarity and CluStering

491

 idf : dict

 Dictionary with inversed terms frequencies for whole `corpus`.

 Words used as keys and frequencies as values.

 doc_len : list of int

 List of document lengths.

 """

 def __init__(self, corpus):

 """

 Parameters

 corpus : list of list of str

 Given corpus.

 """

 self.corpus_size = len(corpus)

 self.avgdl = sum(float(len(x)) for x in corpus) / self.corpus_size

 self.corpus = corpus

 self.f = []

 self.df = {}

 self.idf = {}

 self.doc_len = []

 self.initialize()

 def initialize(self):

 """Calculates frequencies of terms in documents and in corpus.

 Also computes inverse document frequencies."""

 for document in self.corpus:

 frequencies = {}

 self.doc_len.append(len(document))

 for word in document:

 if word not in frequencies:

 frequencies[word] = 0

 frequencies[word] += 1

 self.f.append(frequencies)

Chapter 7 text Similarity and CluStering

492

 for word, freq in iteritems(frequencies):

 if word not in self.df:

 self.df[word] = 0

 self.df[word] += 1

 for word, freq in iteritems(self.df):

 self.idf[word] = math.log(self.corpus_size - freq + 0.5) -

math.log(freq + 0.5)

 def get_score(self, document, index, average_idf):

 """Computes BM25 score of given `document` in relation to item of

corpus

 selected by `index`.

 Parameters

 document : list of str

 Document to be scored.

 index : int

 Index of document in corpus selected to score with `document`.

 average_idf : float

 Average idf in corpus.

 Returns

 float

 BM25 score.

 """

 score = 0

 for word in document:

 if word not in self.f[index]:

 continue

 idf = self.idf[word] if self.idf[word] >= 0 else EPSILON *

average_idf

 score += (idf * self.f[index][word] * (PARAM_K1 + 1)

 / (self.f[index][word] + PARAM_K1 * (1 - PARAM_B +

PARAM_B * self.doc_len[index] / self.avgdl)))

 return score

Chapter 7 text Similarity and CluStering

493

 def get_scores(self, document, average_idf):

 """Computes and returns BM25 scores of given `document` in

relation to every item in corpus.

 Parameters

 document : list of str

 Document to be scored.

 average_idf : float

 Average idf in corpus.

 Returns

 list of float

 BM25 scores.

 """

 scores = []

 for index in xrange(self.corpus_size):

 score = self.get_score(document, index, average_idf)

 scores.append(score)

 return scores

We can now implement the function from Step 6 in our workflow to compute

pairwise document BM25 similarity scores, which is exactly what we need!

def get_bm25_weights(corpus):

 """Returns BM25 scores (weights) of documents in corpus.

 Each document has to be weighted with every document in given corpus.

 Parameters

 corpus : list of list of str

 Corpus of documents.

 Returns

 list of list of float

 BM25 scores.

Chapter 7 text Similarity and CluStering

494

 Examples

 >>> from gensim.summarization.bm25 import get_bm25_weights

 >>> corpus = [

 ... ["black", "cat", "white", "cat"],

 ... ["cat", "outer", "space"],

 ... ["wag", "dog"]

 ...]

 >>> result = get_bm25_weights(corpus)

 """

 bm25 = BM25(corpus)

 average_idf = sum(float(val) for val in bm25.idf.values()) / len(bm25.idf)

 weights = []

 for doc in corpus:

 scores = bm25.get_scores(doc, average_idf)

 weights.append(scores)

 return weights

To use this function based on the documentation, we need to tokenize our corpus

first, as depicted in the following code.

norm_corpus_tokens = np.array([nltk.word_tokenize(doc) for doc in norm_

corpus])

norm_corpus_tokens[:3]

array([list(['enter', 'world', 'pandora', '22nd', 'century', 'paraplegic',

'marine', 'dispatched', 'moon', 'pandora', 'unique',

'mission', 'becomes', 'torn', 'following', 'orders',

'protecting', 'alien', 'civilization']),

 list(['end', 'world', 'adventure', 'begins', 'captain', 'barbossa',

'long', 'believed', 'dead', 'come', 'back', 'life', 'headed',

'edge', 'earth', 'turner', 'elizabeth', 'swann', 'nothing',

'quite', 'seems']),

Chapter 7 text Similarity and CluStering

495

 list(['plan', 'one', 'escapes', 'cryptic', 'message', 'bonds',

'past', 'sends', 'trail', 'uncover', 'sinister',

'organization', 'battles', 'political', 'forces', 'keep',

'secret', 'service', 'alive', 'bond', 'peels', 'back',

'layers', 'deceit', 'reveal', 'terrible', 'truth', 'behind',

'spectre'])], dtype=object)

We can now use our previously defined get_bm25_weights(…) function to build

the pairwise document similarity matrix. Remember that this takes a fair bit of time to

compute, depending on the corpus size. See Figure 7-8.

%%time

wts = get_bm25_weights(norm_corpus_tokens)

Wall time: 2min 28s

viewing our pairwise similarity matrix

bm25_wts_df = pd.DataFrame(wts)

bm25_wts_df.head()

We can now use our movie recommender function to get the top five movie

recommendations for the popular movies we selected earlier.

for movie in popular_movies:

 print('Movie:', movie)

 print('Top 5 recommended Movies:', movie_recommender(movie_title=movie,

 doc_sims=bm25_wts_df))

 print()

Figure 7-8. Our pairwise BM25 document similarity matrix

Chapter 7 text Similarity and CluStering

496

Movie: Minions

Top 5 recommended Movies: ['Despicable Me 2' 'Despicable Me'

 'Teenage Mutant Ninja Turtles: Out of the Shadows' 'Intolerance'

 'Superman']

Movie: Interstellar

Top 5 recommended Movies: ['Space Pirate Captain Harlock' 'Prometheus'

'Starship Troopers' 'Gattaca'

 'Space Cowboys']

...

...

Movie: The Lord of the Rings: The Fellowship of the Ring

Top 5 recommended Movies: ['The Lord of the Rings: The Two Towers'

 'The Lord of the Rings: The Return of the King'

 'The Hobbit: The Desolation of Smaug' 'The Hobbit: An Unexpected Journey'

 "What's the Worst That Could Happen?"]

Movie: Harry Potter and the Chamber of Secrets

Top 5 recommended Movies: ['Harry Potter and the Goblet of Fire'

 'Harry Potter and the Prisoner of Azkaban'

 'Harry Potter and the Half-Blood Prince'

 'Harry Potter and the Order of the Phoenix'

 "Harry Potter and the Philosopher's Stone"]

Movie: Star Wars

Top 5 recommended Movies: ['The Empire Strikes Back' 'Return of the Jedi'

'Shanghai Noon'

 'The Ice Pirates' 'The Tale of Despereaux']

Movie: The Hobbit: The Battle of the Five Armies

Top 5 recommended Movies: ['The Hobbit: The Desolation of Smaug' 'The

Hobbit: An Unexpected Journey'

 "Dragon Nest: Warriors' Dawn" 'Harry Potter and the Order of the Phoenix'

 '300: Rise of an Empire']

Chapter 7 text Similarity and CluStering

497

Movie: Iron Man

Top 5 recommended Movies: ['Iron Man 2' 'Avengers: Age of Ultron' 'Iron Man 3'

'Batman Begins'

 'Street Fighter']

We recommend using Gensim's bm25 module under the gensim.summarization

module. If you are interested, you should definitely give it a try.

Try loading a bigger corpus of documents and testing these functions on some

sample query strings and documents. In fact, information retrieval frameworks like Solr

and ElasticSearch are built on top of Lucene, which use these types of ranking algorithms

to return relevant documents from an index of stored documents. You can build your

own search engine using them! Interested readers can check out this link https://www.

elastic.co/blog/found-bm-vs-lucene-default-similarity by elastic.co, which

is the company behind the popular ElasticSearch product. The performance of BM25 is

much better than the default similarity ranking implementation of Lucene.

 Document Clustering
Document clustering or cluster analysis is an interesting area in natural language

processing and text analytics that applies unsupervised machine learning concepts and

techniques. The main premise of document clustering is similar to that of document

categorization, whereby you start with a whole corpus of documents and you are

tasked with segregating them into various groups based on some distinctive properties,

attributes, and features of the documents. Document classification needs labeled

training data to build a model and then categorize documents. Document clustering

uses unsupervised machine learning algorithms to group the documents into various

clusters. The properties of these clusters are such that documents inside one cluster are

more similar and related to each other as compared to documents belonging to other

clusters. Figure 7-9, courtesy of Scikit-Learn, visualizes an example of clustering data

points into three clusters based on its features.

Chapter 7 text Similarity and CluStering

https://www.elastic.co/blog/found-bm-vs-lucene-default-similarity
https://www.elastic.co/blog/found-bm-vs-lucene-default-similarity

498

This cluster analysis depicts three clusters among the data points, which are

visualized using the different colors. An important point to remember here is that

clustering is an unsupervised learning technique and, from Figure 7-9, it is pretty clear

that there will always be some overlap among the clusters since there exists no such

definition of a perfect cluster. All the techniques are based on math, heuristics, and some

inherent attributes related to generating clusters. They are never a 100% perfect. Hence,

there exist several techniques or methods in finding clusters. Some of the more popular

clustering algorithms are briefly described as follows:

• Hierarchical clustering models: These clustering models are also

known as connectivity-based clustering methods and they are based

on the concept that similar objects will be closer in the vector space

and unrelated objects will be farther away. Clusters are formed

by connecting objects based on their distance and they can be

visualized using a dendrogram. The output of these models is a

complete exhaustive hierarchy of clusters. They are subdivided into

agglomerative and divisive clustering models.

Figure 7-9. Sample cluster analysis results (Courtesy: Scikit-Learn)

Chapter 7 text Similarity and CluStering

499

• Partition-based or centroid-based clustering models: These

models build clusters in such a way that each cluster has a central

representative member that represents each cluster and has the features

that distinguish that particular cluster from the rest. There are various

algorithms in this, such as k-means, k-mediods, and so on where we

need to set the number of clusters (k) in advance. Distance metrics, like

squares of distances from each data point to the centroid, need to be

minimized. The disadvantage of these models is that you need to specify

the k number of clusters in advance, which may lead to local minima

and you might not get a true clustered representation of your data.

• Distribution-based clustering models: These models use concepts

from probability distributions when clustering data points. The

idea is that objects with similar distributions can be clustered into

the same group or cluster. Gaussian Mixture Models (GMM) use

algorithms like the Expectation-Maximization algorithm for building

these clusters. Feature and attribute correlations and dependencies

can be captured using these models also, but it is prone to overfitting.

• Density-based clustering models: These clustering models generate

clusters from data points, which are grouped together at areas of

high density compared to the rest of the data points, which may

occur randomly across the vector space in sparsely populated areas.

These sparse areas are treated as noise and are used as border points

to separate clusters. Two popular algorithms in this area include

DBSCAN and OPTICS.

There are also several other newer clustering models, like BIRCH and

CLARANS. Entire books and journals have been written just on clustering alone, as it is

a really interesting topic with a lot of value. Covering every method would be impossible

for us in the current scope, hence, we will cover a total of three clustering algorithms and

illustrate them with real-world data for better understanding:

• K-means clustering

• Affinity propagation

• Ward's Agglomerative Hierarchical clustering

Chapter 7 text Similarity and CluStering

500

We cover each algorithm’s theoretical concepts as we have done previously with

other methods. We also apply each clustering algorithm to real-world data pertaining

to movies and their descriptions from the TMDB movie dataset we used in the previous

section.

 Clustering Movies
We will be clustering a total of 4,800 movies, which we previously cleaned and

preprocessed. It’s available as the dataframe df and the preprocessed corpus is available

as the variable norm_corpus. The main idea is to cluster these movies into groups using

their descriptions as raw input. We will extract features from these description like TF-

IDF or document similarity and use unsupervised learning algorithms on them to cluster

them. The movie titles we will be showing in the output are just for representation and

will be useful when we want to see the movies in each cluster. The data to be fed to the

clustering algorithms are the features extracted from the movie descriptions, just to

make things clearer.

 Feature Engineering
Before we can jump into each of the clustering methods, we will follow the same

process of text preprocessing and feature engineering as before. We have already done

preprocessing during the document similarity analysis in the previous section, hence

we will be using the same norm_corpus variable containing our preprocessed movie

descriptions. We will now extract bag of words-based features similar to what we did

during the document similarity computations, but with some modifications.

import nltk

from sklearn.feature_extraction.text import CountVectorizer

stop_words = nltk.corpus.stopwords.words('english')

stop_words = stop_words + ['one', 'two', 'get']

cv = CountVectorizer(ngram_range=(1, 2), min_df=10, max_df=0.8, stop_

words=stop_words)

cv_matrix = cv.fit_transform(norm_corpus)

cv_matrix.shape

(4800, 3012)

Chapter 7 text Similarity and CluStering

501

Based on the code and output depicted in the preceding snippet, we keep text

tokens in our normalized text and extract bag of words count based features for

unigrams and bigrams such that each feature occurs in at least 10 documents and

at most 80% of the documents using the terms min_df and max_df. We can see that

we have a total of 4,800 rows for the 4,800 movies and a total of 3,012 features for

each movie. Now that we have our features and documents ready, we can start the

clustering analysis.

 K-Means Clustering
The k-means clustering algorithm is a centroid-based clustering model that tries to

cluster data into groups or clusters of equal variance. The criteria or measure that this

algorithm tries to minimize is inertia, also known as within-cluster sum-of-squares.

Perhaps the one main disadvantage of this algorithm is that the number of clusters (k)

needs to be specified in advance, as it is with all centroid-based clustering models. This

algorithm is perhaps the most popular clustering algorithm, due to its ease of use as well

as it being scalable with large amounts of data.

We can now formally define the k-means clustering algorithm along with its

mathematical notations. Say we have a dataset X with N data points or samples and

we want to group them into K clusters, where K is a user-specified parameter. The

k-means clustering algorithm will segregate the N data points into K disjoint separate

clusters, Ck, and each of these clusters can be described by the means of the cluster

samples. These means become the cluster centroids μk such that these centroids are

not bound by the condition that they have to be actual data points from the N samples

in X. The algorithm chooses these centroids and builds the clusters in such a way that

the inertia or within-cluster sums of squares are minimized. Mathematically this can

be represented as follows:

min
i

K

x C
n i

n i

x
= Î
å å -

1

2
 m

with regards to clusters Ci and centroids μi such that i ∈ {1, 2, … , k}. This optimization is

an NP hard problem for all you algorithm enthusiasts out there. Lloyd's algorithm is a

solution to this problem. It’s an iterative procedure consisting of the following steps.

 1. Choose initial k centroids μk by taking k random samples from the

dataset X.

Chapter 7 text Similarity and CluStering

502

 2. Update clusters by assigning each data point or sample to its nearest

centroid point. Mathematically we can represent this as follows:

Ck = {xn : ‖xn − μk‖ ≤ all ‖xn − μl‖}

where Ck denotes the clusters.

 3. Recalculate and update clusters based on the new cluster data

points for each cluster obtained from Step 2. Mathematically this

can be represented as follows:

mk
k x C

nC
x

n k

=
Î
å1

where μk denotes the centroids.

These steps are repeated in an iterative fashion until the outputs of Step 2 and 3

no longer change. One caveat of this method is that even though the optimization

is guaranteed to converge, it might lead to a local minimum. Hence, in reality, this

algorithm is run multiple times with several epochs and iterations and the results might

be averaged from them if needed.

The convergence and occurrence of local minimum are highly dependent on the

initialization of the initial centroids in Step 1. One way is to make multiple iterations with

multiple random initializations and take the average. Another way would be to use the

kmeans++ scheme, as implemented in Scikit-Learn, which initializes the initial centroids

to be far apart from each other and has proven to be effective. We now use k-means

clustering to cluster the movie data.

from sklearn.cluster import KMeans

NUM_CLUSTERS = 6

km = KMeans(n_clusters=NUM_CLUSTERS, max_iter=10000, n_init=50, random_

state=42).fit(cv_matrix)

km

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=10000,

 n_clusters=6, n_init=50, n_jobs=None, precompute_distances='auto',

 random_state=42, tol=0.0001, verbose=0)

df['kmeans_cluster'] = km.labels_

Chapter 7 text Similarity and CluStering

503

This snippet uses our implemented k-means function to cluster the movies based

on the bag of words features from the movie descriptions. We assign the cluster

label for each movie from the outcome of this cluster analysis by storing it in the df

dataframe in the kmeans_cluster column. You can see that we have taken k to be 6 in

our analysis. We can now view the total number of movies for each of the six clusters

using the following snippet.

viewing distribution of movies across the clusters

from collections import Counter

Counter(km.labels_)

Counter({2: 429, 1: 2832, 3: 539, 5: 238, 4: 706, 0: 56})

You can see that there are six cluster labels, as expected, 0 to 5, and each has some

movies belonging to the cluster. It looks like we have a good distribution of movies

in each cluster. We will now do some deeper analysis of our clustering results by

showcasing important features that were responsible for the movies being clustered

together. We will also look at some of the most popular movies from each cluster!

movie_clusters = (df[['title', 'kmeans_cluster', 'popularity']]

 .sort_values(by=['kmeans_cluster', 'popularity'],

 ascending=False)

 .groupby('kmeans_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

feature_names = cv.get_feature_names()

topn_features = 15

ordered_centroids = km.cluster_centers_.argsort()[:, ::-1]

get key features for each cluster

get movies belonging to each cluster

for cluster_num in range(NUM_CLUSTERS):

 key_features = [feature_names[index]

 for index in ordered_centroids[cluster_num, :topn_

features]]

 movies = movie_clusters[movie_clusters['kmeans_cluster'] ==

 cluster_num]['title'].values.tolist()

 print('CLUSTER #'+str(cluster_num+1))

Chapter 7 text Similarity and CluStering

504

 print('Key Features:', key_features)

 print('Popular Movies:', movies)

 print('-'*80)

CLUSTER #1

Key Features: ['film', 'movie', 'story', 'first', 'love', 'making',

'director', 'new', 'time', 'feature', 'made', 'young', '3d', 'american',

'america']

Popular Movies: ['Contact', 'Snatch', 'The Pianist', 'Boyhood', 'Tropic

Thunder', 'Movie 43', 'Night of the Living Dead', 'Almost Famous', 'My

Week with Marilyn', 'Jackass 3D', 'Inside Job', 'Grindhouse', 'The Young

Victoria', 'Disaster Movie', 'Jersey Boys', 'Seed of Chucky', 'Bowling for

Columbine', 'Walking With Dinosaurs', 'Me and You and Everyone We Know',

'Urban Legends: Final Cut']

CLUSTER #2

Key Features: ['young', 'man', 'story', 'love', 'family', 'find', 'must',

'time', 'back', 'friends', 'way', 'years', 'help', 'father', 'take']

Popular Movies: ['Interstellar', 'Guardians of the Galaxy', 'Pirates of the

Caribbean: The Curse of the Black Pearl', 'Dawn of the Planet of the Apes',

'The Hunger Games: Mockingjay - Part 1', 'Big Hero 6', 'Whiplash', 'The

Martian', 'Frozen', "Pirates of the Caribbean: Dead Man's Chest", 'Gone

Girl', 'X-Men: Apocalypse', 'Rise of the Planet of the Apes', 'The Lord

of the Rings: The Fellowship of the Ring', 'Pirates of the Caribbean: On

Stranger Tides', "One Flew Over the Cuckoo's Nest", 'Star Wars', 'Brave',

'The Lord of the Rings: The Return of the King', 'Pulp Fiction']

CLUSTER #3

Key Features: ['world', 'young', 'find', 'story', 'man', 'new', 'must',

'save', 'way', 'time', 'life', 'evil', 'love', 'family', 'finds']

Popular Movies: ['Minions', 'Jurassic World', 'Captain America: Civil War',

'Avatar', 'The Avengers', "Pirates of the Caribbean: At World's End",

'The Maze Runner', 'Tomorrowland', 'Ant-Man', 'Spirited Away', 'Chappie',

'Monsters, Inc.', 'The Matrix', 'Man of Steel', 'Skyfall', 'The Adventures

of Tintin', 'Nightcrawler', 'Allegiant', 'V for Vendetta', 'Penguins of

Madagascar']

Chapter 7 text Similarity and CluStering

505

CLUSTER #4

Key Features: ['new', 'york', 'new york', 'city', 'young', 'family',

'love', 'man', 'york city', 'find', 'friends', 'years', 'home', 'must',

'story']

Popular Movies: ['Terminator Genisys', 'Fight Club', 'Teenage Mutant Ninja

Turtles', 'Pixels', 'Despicable Me 2', 'Avengers: Age of Ultron', 'Night at

the Museum: Secret of the Tomb', 'Batman Begins', 'The Dark Knight Rises',

'The Lord of the Rings: The Two Towers', 'The Godfather: Part II', 'How to

Train Your Dragon 2', '12 Years a Slave', 'The Wolf of Wall Street', 'Men

in Black II', "Pan's Labyrinth", 'The Bourne Legacy', 'The Amazing Spider-

Man 2', 'The Devil Wears Prada', 'Non-Stop']

CLUSTER #5

Key Features: ['life', 'love', 'man', 'family', 'story', 'young', 'new',

'back', 'years', 'finds', 'hes', 'time', 'find', 'way', 'father']

Popular Movies: ['Deadpool', 'Mad Max: Fury Road', 'Inception', 'The

Godfather', 'Forrest Gump', 'The Shawshank Redemption', 'Harry Potter and

the Chamber of Secrets', 'Inside Out', 'Twilight', 'Maleficent', "Harry

Potter and the Philosopher's Stone", 'Bruce Almighty', 'The Hobbit: An

Unexpected Journey', 'The Twilight Saga: Eclipse', 'Titanic', 'Fifty Shades

of Grey', 'Blade Runner', 'Psycho', 'Up', 'The Lion King']

CLUSTER #6

Key Features: ['war', 'world', 'world war', 'ii', 'war ii', 'story',

'young', 'man', 'love', 'army', 'find', 'american', 'battle', 'first',

'must']

Popular Movies: ['The Dark Knight', 'Batman v Superman: Dawn of Justice',

'The Imitation Game', 'Fury', 'The Hunger Games: Mockingjay - Part

2', 'X-Men: Days of Future Past', 'Transformers: Age of Extinction',

"Schindler's List", 'The Good, the Bad and the Ugly', 'American Sniper',

'Thor', 'Shutter Island', 'Underworld', 'Indiana Jones and the Kingdom

of the Crystal Skull', 'Captain America: The First Avenger', 'The Matrix

Revolutions', 'Inglourious Basterds', '300: Rise of an Empire', 'The Matrix

Reloaded', 'Oblivion']

Chapter 7 text Similarity and CluStering

506

This output depicts the key features for each cluster and the movies in each cluster.

Each cluster is depicted by the main themes, which define that cluster by its top features.

You can see popular movies being clustered together based on some key common

features. Can you notice any interesting patterns?

We can also use other feature schemes, like pairwise document similarity, to group

similar movies in clusters. The following code helps achieve this.

from sklearn.metrics.pairwise import cosine_similarity

cosine_sim_features = cosine_similarity(cv_matrix)

km = KMeans(n_clusters=NUM_CLUSTERS, max_iter=10000, n_init=50, random_

state=42).fit(cosine_sim_features)

Counter(km.labels_)

Counter({4: 427, 3: 724, 1: 1913, 2: 504, 0: 879, 5: 353})

df['kmeans_cluster'] = km.labels_

movie_clusters = (df[['title', 'kmeans_cluster', 'popularity']]

 .sort_values(by=['kmeans_cluster', 'popularity'],

 ascending=False)

 .groupby('kmeans_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

get movies belonging to each cluster

for cluster_num in range(NUM_CLUSTERS):

 movies = movie_clusters[movie_clusters['kmeans_cluster'] == cluster_

num]['title'].values.tolist()

 print('CLUSTER #'+str(cluster_num+1))

 print('Popular Movies:', movies)

 print('-'*80)

CLUSTER #1

Popular Movies: ['Pirates of the Caribbean: The Curse of the Black Pearl',

'Whiplash', 'The Martian', 'Frozen', 'Gone Girl', 'The Lord of the Rings:

The Fellowship of the Ring', 'Pirates of the Caribbean: On Stranger Tides',

'Pulp Fiction', 'The Fifth Element', 'Quantum of Solace', 'Furious 7',

Chapter 7 text Similarity and CluStering

507

'Cinderella', 'Man of Steel', 'Gladiator', 'Aladdin', 'The Amazing Spider-

Man', 'Prisoners', 'The Good, the Bad and the Ugly', 'American Sniper',

'Finding Nemo']

CLUSTER #2

Popular Movies: ['Interstellar', 'Guardians of the Galaxy', 'Dawn of the

Planet of the Apes', 'The Hunger Games: Mockingjay - Part 1', 'Big Hero 6',

'The Dark Knight', "Pirates of the Caribbean: Dead Man's Chest", 'X-Men:

Apocalypse', 'Rise of the Planet of the Apes', "One Flew Over the Cuckoo's

Nest", 'The Hunger Games: Mockingjay - Part 2', 'Star Wars', 'Brave', 'The

Lord of the Rings: The Return of the King', 'The Hobbit: The Battle of the

Five Armies', 'Iron Man', 'X-Men: Days of Future Past', 'Transformers: Age

of Extinction', 'Spider-Man 3', 'Lucy']

CLUSTER #3

Popular Movies: ['Terminator Genisys', 'Fight Club', 'Teenage Mutant Ninja

Turtles', 'Pixels', 'Despicable Me 2', 'Avengers: Age of Ultron', 'Night at

the Museum: Secret of the Tomb', 'Batman Begins', 'The Dark Knight Rises',

'The Lord of the Rings: The Two Towers', 'The Godfather: Part II', 'How to

Train Your Dragon 2', '12 Years a Slave', 'The Wolf of Wall Street', 'Men

in Black II', "Pan's Labyrinth", 'The Bourne Legacy', 'The Amazing Spider-

Man 2', 'The Devil Wears Prada', 'Non-Stop']

CLUSTER #4

Popular Movies: ['Deadpool', 'Mad Max: Fury Road', 'Inception', 'The

Godfather', "Pirates of the Caribbean: At World's End", 'Forrest Gump',

'The Shawshank Redemption', 'Harry Potter and the Chamber of Secrets',

'Inside Out', 'Twilight', 'Maleficent', "Harry Potter and the Philosopher's

Stone", 'Bruce Almighty', 'The Hobbit: An Unexpected Journey', 'The

Twilight Saga: Eclipse', 'Fifty Shades of Grey', 'Blade Runner', 'Psycho',

'Up', 'The Lion King']

Chapter 7 text Similarity and CluStering

508

CLUSTER #5

Popular Movies: ['Minions', 'Jurassic World', 'Captain America: Civil War',

'Batman v Superman: Dawn of Justice', 'Avatar', 'The Avengers', 'Fury',

'The Maze Runner', 'Tomorrowland', 'Ant-Man', 'Spirited Away', 'Chappie',

'Monsters, Inc.', "Schindler's List", 'The Matrix', 'Skyfall', 'The

Adventures of Tintin', 'Nightcrawler', 'Thor', 'Allegiant']

CLUSTER #6

Popular Movies: ['The Imitation Game', 'Titanic', 'The Pursuit of

Happyness', 'The Prestige', 'The Grand Budapest Hotel', 'The Fault in Our

Stars', 'Catch Me If You Can', 'Cloud Atlas', 'The Conjuring 2', 'Apollo

13', 'Aliens', 'The Usual Suspects', 'GoodFellas', 'The Princess and the

Frog', 'The Theory of Everything', "The Huntsman: Winter's War", 'Mary

Poppins', 'The Lego Movie', 'Starship Troopers', 'The Big Short']

Obviously, we used pairwise document similarity as features, hence we do not have

specific term-based features that we can depict for each cluster as before. However, we

can still see each cluster of similar movies in the preceding output.

 Affinity Propagation
The k-means algorithm, while very popular, has the drawback of the user having to

define the number of clusters. What if the number of clusters changes? There are some

ways of checking the cluster quality and determining the value of the optimum k might

be. Interested readers can check out the Elbow method and the Silhouette coefficient,

which are popular methods of determining the optimum k.

Here, we talk about an algorithm that tried to build clusters based on inherent

properties of the data without any assumptions about the number of clusters. The

Affinity Propagation (AP) algorithm is based on the concept of "message passing" among

the various data points to be clustered and there is no assumption about the number of

possible clusters.

AP creates these clusters from the data points by passing messages between

pairs of data points until convergence is achieved. The entire dataset is then

represented by a small number of exemplars, which act as representatives for samples.

Chapter 7 text Similarity and CluStering

509

These exemplars are analogous to the centroids that you obtain from k-means or

k-medoids. The messages sent between pairs represent how suitable one of the

points might be, in being the exemplar or representative of the other data point.

This keeps getting updated in every iteration until convergence is achieved with the

final exemplars being the representatives of each cluster. Remember one drawback

of this method is that it is computationally intensive. Messages are passed between

each pair of data points across the entire dataset and can take substantial time to

converge for large datasets.

We can now define the steps involved in the AP algorithm (courtesy of

Scikit-Learn). Consider that we have a dataset X with n data points, such that

X = {x1, x2, … , xn}, and we let sim(x, y) be the similarity function, which quantifies the

similarity between two points x and y. In our implementation, we use the Cosine

similarity again for this. The AP algorithm iteratively proceeds by executing two

message-passing steps as follows.

 1. Responsibility updates are sent around and can be

mathematically represented as

r i k sim i k a i k sim i k

k k
, , , ,()¬ ()- () + (){ }¢ ¢

¢¹
max

where the responsibility matrix is R and r(i, k) is a measure that

quantifies how well xk can serve as being the representative or

exemplar for xi in comparison to the other candidates.

 2. Availability updates are then sent around that can be

mathematically represented as

a i k r k k r i k
i i k

, , , , ,
,

()¬ ()+ ()()
æ

è
çç

ö

ø
÷÷¢

¢Ï{ }
åmin max0 0

for i ≠ k and availability for i = k is represented as

a k k r i k
i k

, , ,()¬ ()()¢
¹
å
’

max 0

where the availability matrix is A and a(i, k) represents how appropriate it

would be for xi to pick xk as its exemplar considering all the other points

preference to pick xk as an exemplar.

Chapter 7 text Similarity and CluStering

510

These two steps keep occurring for each iteration until convergence is achieved. One

of the main disadvantages of this algorithm is the fact that you might end up with too

many clusters. We will showcase only the top ten largest clusters here:

from sklearn.cluster import AffinityPropagation

ap = AffinityPropagation(max_iter=1000)

ap.fit(cosine_sim_features)

res = Counter(ap.labels_)

res.most_common(10)

[(183, 1355), (182, 93), (159, 80), (54, 74), (81, 57),

 (16, 51), (26, 47), (24, 45), (48, 43), (89, 42)]

Let's now try to showcase the top popular movies for each of the ten clusters (we do

not consider the clusters with a smaller number of movies here).

df['affprop_cluster'] = ap.labels_

filtered_clusters = [item[0] for item in res.most_common(8)]

filtered_df = df[df['affprop_cluster'].isin(filtered_clusters)]

movie_clusters = (filtered_df[['title', 'affprop_cluster', 'popularity']]

 .sort_values(by=['affprop_cluster', 'popularity'],

 ascending=False)

 .groupby('affprop_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

get key features for each cluster

get movies belonging to each cluster

for cluster_num in range(len(filtered_clusters)):

 movies = movie_clusters[movie_clusters['affprop_cluster'] == filtered_

clusters[cluster_num]]['title'].values.tolist()

 print('CLUSTER #'+str(filtered_clusters[cluster_num]))

 print('Popular Movies:', movies)

 print('-'*80)

CLUSTER #183

Popular Movies: ['Interstellar', 'Dawn of the Planet of the Apes', 'Big

Hero 6', 'The Dark Knight', "Pirates of the Caribbean: Dead Man's Chest",

'The Hunger Games: Mockingjay - Part 2', 'Star Wars', 'Brave', 'The Lord

of the Rings: The Return of the King', 'The Hobbit: The Battle of the Five

Chapter 7 text Similarity and CluStering

511

Armies', 'Iron Man', 'Transformers: Age of Extinction', 'Lucy', 'Mission:

Impossible - Rogue Nation', 'Maze Runner: The Scorch Trials', 'Spectre',

'The Green Mile', 'Terminator 2: Judgment Day', 'Exodus: Gods and Kings',

'Harry Potter and the Goblet of Fire']

CLUSTER #182

Popular Movies: ['Inception', 'Harry Potter and the Chamber of Secrets',

'The Hobbit: An Unexpected Journey', 'Django Unchained', 'American Beauty',

'Snowpiercer', 'Trainspotting', 'First Blood', 'The Bourne Supremacy', 'Yes

Man', 'The Secret Life of Walter Mitty', 'RED', 'Casino', 'The Passion of

the Christ', 'Annie', 'Fantasia', 'Vicky Cristina Barcelona', 'The Butler',

'The Secret Life of Pets', 'Edge of Darkness']

CLUSTER #159

Popular Movies: ['Gone Girl', 'Pulp Fiction', 'Gladiator', 'Saving Private

Ryan', 'The Game', 'Jack Reacher', 'The Fugitive', 'The Purge: Election

Year', 'The Thing', 'The Rock', '3:10 to Yuma', 'Wild Card', 'Blackhat',

'Knight and Day', 'Equilibrium', 'Black Hawk Down', 'Immortals', '1408',

'The Call', 'Up in the Air']

CLUSTER #54

Popular Movies: ['Despicable Me 2', 'The Lord of the Rings: The Two

Towers', 'The Bourne Legacy', 'Horrible Bosses 2', 'Sherlock Holmes: A

Game of Shadows', "Ocean's Twelve", 'Raiders of the Lost Ark', 'Star Trek

Beyond', 'Fantastic 4: Rise of the Silver Surfer', 'Sherlock Holmes', 'Dead

Poets Society', 'Batman & Robin', 'Madagascar: Escape 2 Africa', 'Paul

Blart: Mall Cop 2', 'Kick-Ass 2', 'Anchorman 2: The Legend Continues', 'The

Pacifier', "The Devil's Advocate", 'Tremors', 'Wild Hogs']

CLUSTER #81

Popular Movies: ['Whiplash', 'Sicario', 'Jack Ryan: Shadow Recruit', 'The

Untouchables', 'Young Frankenstein', 'Point Break', '8 Mile', 'The Final

Destination', 'Savages', 'Scooby-Doo', 'The Artist', 'The Last King of

Scotland', 'Sinister 2', 'Another Earth', 'The Darkest Hour', 'Wall Street:

Money Never Sleeps', 'The Score', 'Doubt', 'Revolutionary Road', 'Crimson Tide']

Chapter 7 text Similarity and CluStering

512

CLUSTER #16

Popular Movies: ['The Shawshank Redemption', 'Inside Out', 'Batman Begins',

'Psycho', 'Cars', 'Ice Age: Dawn of the Dinosaurs', 'The Chronicles of

Narnia: Prince Caspian', 'Kung Fu Panda 2', 'The Witch', 'Madagascar',

'Wild', 'Shame', 'Scream 2', '16 Blocks', 'Last Action Hero', 'Garden

State', '25th Hour', 'The House Bunny', 'The Jacket', 'Any Given Sunday']

CLUSTER #26

Popular Movies: ['Minions', 'Avatar', 'Penguins of Madagascar', 'Iron

Man 3', 'London Has Fallen', 'The Great Gatsby', 'Transcendence', 'The

5th Wave', 'Zombieland', 'Hotel Transylvania', 'Ghost Rider: Spirit of

Vengeance', 'Warm Bodies', 'Paul', 'The Road', 'Alexander', 'This Is the

End', "Bridget Jones's Diary", 'G.I. Joe: The Rise of Cobra', 'Hairspray',

'Step Up Revolution']

CLUSTER #24

Popular Movies: ['Spider-Man', 'Chronicle', '21 Jump Street', '22 Jump

Street', 'Project X', 'Kick-Ass', 'Grown Ups', 'American Wedding', 'Kiss

Kiss Bang Bang', 'I Know What You Did Last Summer', 'Here Comes the Boom',

'Dazed and Confused', 'Not Another Teen Movie', 'WarGames', 'Fast Times at

Ridgemont High', 'American Graffiti', 'The Gallows', 'Dumb and Dumberer:

When Harry Met Lloyd', 'Bring It On', 'The New Guy']

An important point to note here is that a few keywords from the exemplars or

centroids for each cluster may not always depict the true theme of that cluster. A good

idea is to build topic models on each cluster and see what kind of topics you can extract

from each cluster that would make a better representation of each cluster (another

example where you can see how to connect various text analytics techniques).

 Ward's Agglomerative Hierarchical Clustering
The Hierarchical clustering family of algorithms is a bit different from the other

clustering models discussed earlier. Hierarchical clustering tries to build a nested

hierarchy of clusters by merging or splitting them in succession. There are two main

strategies for Hierarchical clustering:

Chapter 7 text Similarity and CluStering

513

• Agglomerative: These algorithms follow a bottom-up approach. All

data points initially belong to their own individual cluster and then

from this bottom layer, we start merging clusters, thereby building a

hierarchy of clusters as we go up.

• Divisive: These algorithms follow a top-down approach. All the

data points initially belong to a single huge cluster and then we

start recursively dividing them up as we gradually move down. This

produces a hierarchy of clusters going from the top down.

Merges and splits usually happen using a greedy algorithm and the end result of the

hierarchy of clusters can be visualized as a tree structure, called a dendrogram. Figure 7-10

shows how a dendrogram is constructed using Agglomerative Hierarchical clustering.

Figure 7-10. Agglomerative Hierarchical clustering representation

Figure 7-10 clearly highlights how six separate data points start off as six clusters

and then we slowly start grouping them in each step, following a bottom-up approach.

We use an Agglomerative Hierarchical clustering algorithm in this section. In the

Chapter 7 text Similarity and CluStering

514

Agglomerative clustering, for deciding which clusters we should combine when starting

from the individual data point clusters, we need two things:

• A distance metric to measure the similarity or dissimilarity degree

between data points. We will be using the cosine distance/similarity

in our implementation

• A linkage criterion, which determines the metric to be used for the

merging strategy of clusters. We will be using Ward's method here.

The Ward's linkage criterion minimizes the sum of squared differences within all the

clusters and is a variance minimizing approach. This is also known as Ward's minimum

variance method and was initially presented by J. Ward. The idea is to minimize the

variances within each cluster using an objective function like the L2 norm distance

between two points. We can start by computing the initial cluster distances between

each pair of points using this formula:

d d C C C Cij i j i j= { }() = -,

2

where initially Ci indicates cluster i with one document and at each iteration. We find

the pairs of clusters that lead to the least increase in variance for that cluster once

merged. A weighted squared Euclidean distance, or L2 norm, as depicted in the previous

formula, would suffice for this algorithm. We use Cosine similarity to compute the

cosine distances between each pair of movies for our dataset. The following function

implements Ward's Agglomerative Hierarchical clustering:

from scipy.cluster.hierarchy import ward, dendrogram

from sklearn.metrics.pairwise import cosine_similarity

def ward_hierarchical_clustering(feature_matrix):

 cosine_distance = 1 - cosine_similarity(feature_matrix)

 linkage_matrix = ward(cosine_distance)

 return linkage_matrix

To view the results of the Hierarchical clustering, we need to plot a dendrogram

using the linkage matrix. Hence, we implement the following function to build and plot a

dendrogram from the Hierarchical clustering linkage matrix.

Chapter 7 text Similarity and CluStering

515

def plot_hierarchical_clusters(linkage_matrix, movie_data, p=100,

figure_size=(8,12)):

 # set size

 fig, ax = plt.subplots(figsize=figure_size)

 movie_titles = movie_data['title'].values.tolist()

 # plot dendrogram

 R = dendrogram(linkage_matrix, orientation="left", labels=movie_titles,

 truncate_mode='lastp',

 p=p,

 no_plot=True)

 temp = {R["leaves"][ii]: movie_titles[ii] for ii in range(len(R["leaves"]))}

 def llf(xx):

 return "{}".format(temp[xx])

 ax = dendrogram(

 linkage_matrix,

 truncate_mode='lastp',

 orientation="left",

 p=p,

 leaf_label_func=llf,

 leaf_font_size=10.,

)

 plt.tick_params(axis= 'x',

 which='both',

 bottom='off',

 top='off',

 labelbottom='off')

 plt.tight_layout()

 plt.savefig('movie_hierachical_clusters.png', dpi=200)

We are now ready to perform hierarchical clustering on our movie data! The

following code snippet shows Ward's clustering in action.

linkage_matrix = ward_hierarchical_clustering(cv_matrix)

plot_hierarchical_clusters(linkage_matrix,

 p=100,

 movie_data=df,

 figure_size=(12, 14))

Chapter 7 text Similarity and CluStering

516

Figure 7-11. Ward's clustering dendrogram on our movies

Chapter 7 text Similarity and CluStering

517

The dendrogram in Figure 7-11 shows us the clustering analysis results. The colors

indicate there are three main clusters, which are further subdivided into more granular

clusters, thereby maintaining a hierarchy. If you have trouble reading the small fonts or

can’t see the colors, you can view the same figure in the file named movie_hierachical_

clusters.png available with the code files in this chapter. We only show the last 100

movies in the dendrogram due to the lack of space for visualization.

 Summary
We covered a lot of content in this chapter, including several topics in the

challenging but very interesting unsupervised machine learning domain. You now

know how text similarity can be computed and various kinds of distance measures

and metrics. We also looked at important concepts related to distance metrics and

measures and properties that make a measure into a metric. We also looked at

concepts related to unsupervised machine learning and how we can incorporate

such techniques in document clustering.

Various ways of measuring term and document similarity were also covered and we

also implemented several of these techniques by successfully converting mathematical

equations into code using the power of Python and several open source libraries. We

touched upon document clustering in detail, looking at the various concepts and types

of clustering models.

Finally we took a real-world example of clustering the top-100 greatest movies of

all time using IMDB movie synopses data and used different clustering models like

k-means, affinity propagation, and Ward's hierarchical clustering to build, analyze, and

visualize clusters. This should be enough for you to get started analyzing document

similarity and clustering. You can even start combining various techniques from the

chapters covered so far. (Hint: Topic models with clustering, building classifiers by

combining supervised and unsupervised learning, and augmenting recommendation

systems using document clusters to just name a few!)

Chapter 7 text Similarity and CluStering

519
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_8

CHAPTER 8

Semantic Analysis
Natural language understanding has gained significant importance in the last decade

with the advent of machine learning and further advances like deep learning and

artificial intelligence. Computers, or machines in general, can be programmed to

learn specific things or perform specific operations. However, the key limitation is

their inability to perceive, understand, and comprehend things like humans do. With

the resurgence in popularity of neural networks and advances made in computer

architecture, we now have deep learning and artificial intelligence evolving at a rapid

pace and we have been engineering machines into learning, perceiving, understanding,

and performing actions on their own. You may have seen or heard several of these efforts

in the form of self-driving cars, computers beating experienced players in their own

games like Chess and Go, and more recently chatbots. So far, we have looked at various

computational, language processing, and machine learning techniques to classify,

cluster, and summarize text. We also developed certain methods and programs to

analyze and understand text syntax and structure. This chapter deals with methods that

try to answer the question, “Can we analyze and understand the meaning and sentiment

behind a body of text?”

Natural language processing has a wide variety of applications. People try to use

natural language understanding to infer the meaning and context behind text and to

solve various problems. We discussed several of these applications briefly in Chapter 1.

To refresh your memory, the following applications require extensive understanding

from the semantic perspective.

• Question answering systems

• Contextual recognition

• Speech recognition (for some applications)

520

Text semantics specifically deals with understanding the meaning of text or

language. Words, when combined into sentences, have some lexical relations and

contextual relations. This leads to various types of relationships and hierarchies.

Semantics sits at the heart of all this in that it tries to analyze and understand these

relationships and infer meaning from them. We explore various types of semantic

relationships in natural language and look at some NLP-based techniques for inferring

and extracting meaningful semantic information from text. Semantics is purely

concerned with context and meaning and the textual structure holds little significance

here. However, sometimes the syntax or arrangement of words helps us infer the context

of words and helps us differentiate things like “lead” as a metal from “lead” as in the lead

of a movie!

In this chapter, we cover several aspects of semantic analysis. We start by exploring

WordNet, which is a lexical database, and introduce a new concept called synsets. We

also explore various semantic relationships and representations in natural language.

We cover techniques like word sense disambiguation and named entity recognition

(NER), wherein you will even build your own NER from scratch! Let’s get started. All the

code examples showcased in this chapter are available on the book’s official GitHub

repository, which you can access at https://github.com/dipanjanS/text-analytics-

with-python/tree/master/New-Second-Edition.

 Semantic Analysis
We have seen how terms or words are grouped into phrases, which further form clauses

and finally sentences. Chapter 3 showed us various structural components in natural

language, including parts of speech, chunking, and grammar. All these concepts

fall under the syntactic and structural analysis of text data. While we do explore

relationships of words, phrases, and clauses, these are purely based on their position,

syntax, and structure. Semantic analysis is more about understanding the actual context

and meaning behind words in text and how they relate to other words and convey some

information as a whole.

As mentioned in Chapter 1, semantics is the study of meaning. Linguistic semantics

is a complete branch under linguistics that deals with studying of meaning in natural

language. This includes exploring relationships between words, phrases, and symbols.

Chapter 8 SemantiC analySiS

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

521

Besides this, there are also various ways to represent semantics associated with

statements and propositions. We broadly cover the following topics under semantic

analysis:

• Exploring WordNet and synsets

• Analyzing lexical semantic relations

• Word sense disambiguation

• Named entity recognition

• Analyzing semantic representations

The main objective of these topics is to give you a clear understanding of the

methodologies that you can leverage for semantic analysis as well as understand how to

use them. You can refresh your memory by revisiting the “Language Semantics” section

in Chapter 1. We will be revisiting several concepts from there again in this chapter with

real-world examples. Without any further delay, let’s get started!

 Exploring WordNet
WordNet is a huge lexical database for the English language. This database is a part of

Princeton University and you can get more detailed information at https://wordnet.

princeton.edu/, which is the official website for WordNet. It was originally created in

1985, in the Princeton University’s Cognitive Science Laboratory under the direction

of Professor G.A. Miller. This lexical database consists of nouns, adjectives, verbs, and

adverbs. Related lexical terms are grouped into sets based on common concepts. These

sets are known as cognitive synonym sets or synsets and each expresses a unique,

distinct concept.

At a high level, WordNet can be compared to a thesaurus or a dictionary that

provides words and their synonyms, but on a lower level, it is much more than that.

Synsets and their corresponding terms have detailed relationships and hierarchies

based on their semantic meaning. WordNet is used extensively as a lexical database,

in text analytics, natural language processing, and artificial intelligence based

applications.

The WordNet database consists of over 155,000 words and they are represented

in across 117,000 synsets and contain over 206,000 word-sense pairs. The database is

roughly 12MB and can be accessed through various interfaces and APIs. The official

Chapter 8 SemantiC analySiS

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

522

website has a web application interface for accessing various details related to words,

synsets, and concepts. You can access it at http://wordnetweb.princeton.edu/perl/

webwn or download it from https://wordnet.princeton.edu/wordnet/download/,

which contained various packages, files, and tools related to WordNet. We will be

accessing WordNet programmatically using the interface provided by the NLTK package.

We start by exploring synsets and then various semantic relationships using synsets.

 Understanding Synsets
We start exploring WordNet by looking at synsets, since they are perhaps one of the most

important structures and they tie everything together. In general, based on concepts

from NLP and information retrieval, synsets are defined as a collection of data entities

that are considered semantically similar. This doesn’t mean that they will be exactly

the same, but they will be centered on similar context and concepts. Specifically in

the context of WordNet, synsets are defined as a set or collection of synonyms that are

interchangeable and revolve around a specific concept. Synsets not only consist of

simple words but also collocations. Polysemous word forms (words that sound and look

the same but have different but relatable meanings) are assigned to different synsets

based on their meaning. Synsets are connected to other synsets using semantic relations,

which we explore in a future section. Typically each synset has the term, a definition

explaining the meaning of the term, some optional examples, and related lemmas

(collection of synonyms) to the term. Some terms may have multiple synsets associated

with them, where each synset has a particular context.

Let’s look at a real example by using NLTK’s WordNet interface to explore synsets

associated with the word, “fruit”. We can do this using the following code snippet.

from nltk.corpus import wordnet as wn

import pandas as pd

term = 'fruit'

synsets = wn.synsets(term)

display total synsets

print 'Total Synsets:', len(synsets)

Total Synsets: 5

Chapter 8 SemantiC analySiS

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/wordnet/download/

523

We can see that there are a total of five synsets associated with the word “fruit”. What

can these synsets indicate? We can dig deeper into each synset and its components using

the following code snippet (see Figure 8-1).

pd.options.display.max_colwidth = 200

fruit_df = pd.DataFrame([{'Synset': synset,

 'Part of Speech': synset.lexname(),

 'Definition': synset.definition(),

 'Lemmas': synset.lemma_names(),

 'Examples': synset.examples()}

 for synset in synsets])

fruit_df = fruit_df[['Synset', 'Part of Speech', 'Definition', 'Lemmas',

'Examples']]

fruit_df

The output shows us details pertaining to each synset associated with the word

“fruit” and the definitions give us the sense of each synset and the lemma associated

with it. The part of speech for each synset is also mentioned, which includes nouns

and verbs. Some examples in the output depict how the term is used in actual

sentences. Now that we understand synsets better, let’s start exploring various semantic

relationships.

 Analyzing Lexical Semantic Relationships
Text semantics itself indicates the study of meaning and context. Synsets give a nice

abstraction over various terms and provide useful information like definition, examples,

parts of speech, and lemmas. But can we explore semantic relationships among entities

using synsets? The answer is definitely yes. We cover many of the concepts related

Figure 8-1. Exploring WordNet synsets

Chapter 8 SemantiC analySiS

524

to semantic relations that we covered in detail in the “Lexical Semantic Relations”

subsection under the “Language Semantics” section in Chapter 1. It would be useful

for you to skim through that section to understand each of the concepts better when

we illustrate them with real-world examples here. We use NLTK’s WordNet resource

here, but you can also use the same WordNet resource from the pattern package, as it

includes a similar interface to NLTK.

 Entailments

The term entailment usually refers to some event or action that logically involves or is

associated with some other action or event that has taken place or will take place. Ideally

this applies very well to verbs indicating some specific action. The following snippet

shows how to get entailments.

entailments

for action in ['walk', 'eat', 'digest']:

 action_syn = wn.synsets(action, pos='v')[0]

 print(action_syn, '-- entails -->', action_syn.entailments())

Synset('walk.v.01') -- entails --> [Synset('step.v.01')]

Synset('eat.v.01') -- entails --> [Synset('chew.v.01'),

Synset('swallow.v.01')]

Synset('digest.v.01') -- entails --> [Synset('consume.v.02')]

You can see how related synsets depict the concept of entailment in this output.

Related actions are depicted in entailment, where actions like walking involve or entail

stepping and eating entails chewing and swallowing.

 Homonyms and Homographs

On a high level, homonyms refer to words having the same written form or pronunciation

but with different meanings. They are a superset of homographs, which are words with

the same spelling but with different pronunciation or meanings. The following code

snippet shows us how we can get homonyms/homographs.

for synset in wn.synsets('bank'):

 print(synset.name(),'-',synset.definition())

Chapter 8 SemantiC analySiS

525

bank.n.01 - sloping land (especially the slope beside a body of water)

depository_financial_institution.n.01 - a financial institution that

accepts deposits and channels the money into lending activities

bank.n.03 - a long ridge or pile

bank.n.04 - an arrangement of similar objects in a row or in tiers

...

...

deposit.v.02 - put into a bank account

bank.v.07 - cover with ashes so to control the rate of burning

trust.v.01 - have confidence or faith in

This output shows a part of the result obtained for the various homographs for the

word “bank”. You can see that there are various different meanings associated with the

word “bank,” which is the core idea behind homographs.

 Synonyms and Antonyms

Synonyms are words with similar meanings and antonyms are words with opposite

or contrasting meanings, as you might know already. The following snippet depicts

synonyms and antonyms.

term = 'large'

synsets = wn.synsets(term)

adj_large = synsets[1]

adj_large = adj_large.lemmas()[0]

adj_large_synonym = adj_large.synset()

adj_large_antonym = adj_large.antonyms()[0].synset()

print('Synonym:', adj_large_synonym.name())

print('Definition:', adj_large_synonym.definition())

print('Antonym:', adj_large_antonym.name())

print('Definition:', adj_large_antonym.definition())

print()

Synonym: large.a.01

Definition: above average in size or number or quantity or magnitude or extent

Antonym: small.a.01

Definition: limited or below average in number or quantity or magnitude or extent

Chapter 8 SemantiC analySiS

526

term = 'rich'

synsets = wn.synsets(term)[:3]

for synset in synsets:

 rich = synset.lemmas()[0]

 rich_synonym = rich.synset()

 rich_antonym = rich.antonyms()[0].synset()

 print('Synonym:', rich_synonym.name())

 print('Definition:', rich_synonym.definition())

 print('Antonym:', rich_antonym.name())

 print('Definition:', rich_antonym.definition())

 print()

Synonym: rich_people.n.01

Definition: people who have possessions and wealth (considered as a group)

Antonym: poor_people.n.01

Definition: people without possessions or wealth (considered as a group)

Synonym: rich.a.01

Definition: possessing material wealth

Antonym: poor.a.02

Definition: having little money or few possessions

Synonym: rich.a.02

Definition: having an abundant supply of desirable qualities or substances

(especially natural resources)

Antonym: poor.a.04

Definition: lacking in specific resources, qualities or substances

These outputs show sample synonyms and antonyms for the word “large” and the

word “rich”. Additionally, we explore several synsets associated with the term or concept

“rich,” which give us distinct synonyms and their corresponding antonyms.

 Hyponyms and Hypernyms

Synsets represent terms with unique semantics and concepts and they are related to

each other based on some similarity. Several of these synsets also represent abstract and

generic concepts, besides concrete entities. Usually they are interlinked in the form of a

Chapter 8 SemantiC analySiS

527

hierarchical structure representing “is-a” relationships. Hyponyms and hypernyms help

us explore related concepts by navigating through this hierarchy. To be more specific,

hyponyms refer to entities or concepts that are a subclass of a higher order concept and

have very specific sense or context compared to their superclass. The following snippet

shows the hyponyms for the word “tree”.

term = 'tree'

synsets = wn.synsets(term)

tree = synsets[0]

print('Name:', tree.name())

print('Definition:', tree.definition())

Name: tree.n.01

Definition: a tall perennial woody plant having a main trunk and branches

forming a distinct elevated crown; includes both gymnosperms and

angiosperms

hyponyms = tree.hyponyms()

print('Total Hyponyms:', len(hyponyms))

print('Sample Hyponyms')

for hyponym in hyponyms[:10]:

 print(hyponym.name(), '-', hyponym.definition())

 print()

Total Hyponyms: 180

Sample Hyponyms

aalii.n.01 - a small Hawaiian tree with hard dark wood

acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia

african_walnut.n.01 - tropical African timber tree with wood that resembles

mahogany

albizzia.n.01 - any of numerous trees of the genus Albizia

alder.n.02 - north temperate shrubs or trees having toothed leaves and

conelike fruit; bark is used in tanning and dyeing and the wood is rot-

resistant

Chapter 8 SemantiC analySiS

528

angelim.n.01 - any of several tropical American trees of the genus Andira

angiospermous_tree.n.01 - any tree having seeds and ovules contained in the

ovary

anise_tree.n.01 - any of several evergreen shrubs and small trees of the

genus Illicium

arbor.n.01 - tree (as opposed to shrub)

aroeira_blanca.n.01 - small resinous tree or shrub of Brazil

This output tells us that there are a total of 180 hyponyms for the word “tree” and we

see some of the sample hyponyms and their definitions. We can see that each hyponym

is a specific type of tree, as expected. Hyponyms are entities or concepts that act as

superclasses to hyponyms and have a more generic sense or context. The following

snippet shows the immediate superclass hyponym for “tree”.

hypernyms = tree.hypernyms()

print(hypernyms)

[Synset('woody_plant.n.01')]

You can even navigate up the entire entity/concept hierarchy and depict all the

hyponyms or parent classes for “tree” by using the following code snippet.

get total hierarchy pathways for 'tree'

hypernym_paths = tree.hypernym_paths()

print('Total Hypernym paths:', len(hypernym_paths))

Total Hypernym paths: 1

print the entire hypernym hierarchy

print('Hypernym Hierarchy')

print(' -> '.join(synset.name() for synset in hypernym_paths[0]))

Hypernym Hierarchy

entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_

thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_

plant.n.01 -> tree.n.01

Chapter 8 SemantiC analySiS

529

From this output, you can see that entity is the most generic concept in which “tree”

is present and the complete hypernym hierarchy showing the corresponding hypernym

or superclass at each level is shown. As you navigate further down, you get more specific

concepts/entities, and if you go in the reverse direction, you will get more generic

concepts/entities.

 Holonyms and Meronyms

Holonyms contain a specific entity of interest. Basically, they are defined as the

relationship between entity that denotes the whole and a term denoting a specific part of

the whole. The following snippet shows holonyms for “tree”.

member_holonyms = tree.member_holonyms()

print('Total Member Holonyms:', len(member_holonyms))

print('Member Holonyms for [tree]:-')

for holonym in member_holonyms:

 print(holonym.name(), '-', holonym.definition())

 print()

Total Member Holonyms: 1

Member Holonyms for [tree]:-

forest.n.01 - the trees and other plants in a large densely wooded area

From the output, we can see that “forest” is a holonym for “tree,” which is semantically

correct. This makes sense because a forest is a collection of trees. Meronyms are semantic

relationships that relate a term or entity as a part or constituent of another term or entity.

The following snippet depicts different types of meronyms for the word tree.

part_meronyms = tree.part_meronyms()

print('Total Part Meronyms:', len(part_meronyms))

print('Part Meronyms for [tree]:-')

for meronym in part_meronyms:

 print(meronym.name(), '-', meronym.definition())

 print()

Total Part Meronyms: 5

Part Meronyms for [tree]:-

burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree

crown.n.07 - the upper branches and leaves of a tree or other plant

Chapter 8 SemantiC analySiS

530

limb.n.02 - any of the main branches arising from the trunk or a bough of a tree

stump.n.01 - the base part of a tree that remains standing after the tree

has been felled

trunk.n.01 - the main stem of a tree; usually covered with bark; the bole

is usually the part that is commercially useful for lumber

substance based meronyms for tree

substance_meronyms = tree.substance_meronyms()

print('Total Substance Meronyms:', len(substance_meronyms))

print('Substance Meronyms for [tree]:-')

for meronym in substance_meronyms:

 print(meronym.name(), '-', meronym.definition())

 print()

Total Substance Meronyms: 2

Substance Meronyms for [tree]:-

heartwood.n.01 - the older inactive central wood of a tree or woody plant;

usually darker and denser than the surrounding sapwood

sapwood.n.01 - newly formed outer wood lying between the cambium and the

heartwood of a tree or woody plant; usually light colored; active in water

conduction

This output depicts meronyms that include various constituents of trees, like

“stump” and “trunk” and various derived substances from trees, like “heartwood” and

“sapwood”.

 Semantic Relationships and Similarity

In the previous sections, we looked at various concepts related to lexical semantic

relationships. We will now look at ways to connect similar entities based on their

semantic relationships and measure semantic similarity between them. Semantic

similarity is different from the conventional similarity metrics we discussed in Chapter 6.

We will use some sample synsets related to living entities, as depicted in the following

snippet, for our analysis.

tree = wn.synset('tree.n.01')

lion = wn.synset('lion.n.01')

Chapter 8 SemantiC analySiS

531

tiger = wn.synset('tiger.n.02')

cat = wn.synset('cat.n.01')

dog = wn.synset('dog.n.01')

create entities and extract names and definitions

entities = [tree, lion, tiger, cat, dog]

entity_names = [entity.name().split('.')[0] for entity in entities]

entity_definitions = [entity.definition() for entity in entities]

print entities and their definitions

for entity, definition in zip(entity_names, entity_definitions):

 print(entity, '-', definition)

 print()

tree - a tall perennial woody plant having a main trunk and branches

forming a distinct elevated crown; includes both gymnosperms and

angiosperms

lion - large gregarious predatory feline of Africa and India having a tawny

coat with a shaggy mane in the male

tiger - large feline of forests in most of Asia having a tawny coat with

black stripes; endangered

cat - feline mammal usually having thick soft fur and no ability to roar:

domestic cats; wildcats

dog - a member of the genus Canis (probably descended from the common wolf)

that has been domesticated by man since prehistoric times; occurs in many

breeds

Now that we know our entities a bit better, we will try to correlate these entities based

on common hypernyms. For each pair of entities, we will try to find the lowest common

hypernym in the relationship hierarchy tree. Correlated entities are expected to have

very specific hypernyms and unrelated entities should have very abstract or generic

hypernyms. The following code snippet depicts this.

Chapter 8 SemantiC analySiS

532

common_hypernyms = []

for entity in entities:

 # get pairwise lowest common hypernyms

 common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0]

 .name().split('.')[0]

 for compared_entity in entities])

build pairwise lower common hypernym matrix

common_hypernym_frame = pd.DataFrame(common_hypernyms,

 index=entity_names,

 columns=entity_names)

common_hypernym_frame

Ignoring the main diagonal of the matrix, for each pair of entities, we can see their

lowest common hypernym that depicts the nature of relationship between them (see

Figure 8-2). Trees are unrelated to the other animals except both being living organisms.

Hence, we get the “organism” relationship among them. Cats are related to lions and

tigers with respect to them being feline creatures and we can see the same in the output.

Tigers and lions are connected to each other with the “big cat” relationship. Finally, we

can see that dogs have the relationship of “carnivore” with the other animals since they

all typically eat meat.

We can also measure the semantic similarity between these entities using various

semantic concepts. We will use path similarity, which returns a value between [0, 1]

based on the shortest path that connects two terms based on their hypernym/hyponym

based taxonomy. The following snippet shows how to generate this similarity matrix (see

Figure 8-3).

Figure 8-2. Pairwise common hypernym matrix

Chapter 8 SemantiC analySiS

533

similarities = []

for entity in entities:

 # get pairwise similarities

 similarities.append([round(entity.path_similarity(compared_entity), 2)

 for compared_entity in entities])

build pairwise similarity matrix

similarity_frame = pd.DataFrame(similarities, index=entity_names,

 columns=entity_names)

similarity_frame

From the output in Figure 8-3, as expected, lion and tiger are the most similar with a

value of 0.33, followed by their semantic similarity with cat, having a value of 0.25. Tree

has the lowest semantic similarity values when compared to the other animals. This

concludes our discussion of analyzing lexical semantic relations. We encourage you

explore more concepts with different examples by leveraging WordNet.

 Word Sense Disambiguation
In the previous section, we looked at homographs and homonyms, which are basically

words that look or sound similar but have very different meanings. This meaning is

contextual based on how the word has been used and depends on the word semantics,

also called word sense. Identifying the correct sense or semantics of a word based

on its usage is called word sense disambiguation, with the assumption that the word

Figure 8-3. Pairwise similarity matrix

Chapter 8 SemantiC analySiS

534

has multiple meanings based on its context. This is a very popular problem in NLP

and is used in various applications, like improving relevance of search engine results,

coherence, and so on.

There are various ways to solve this problem, including lexical and dictionary based

methods and supervised and unsupervised machine learning methods. Covering

everything would be out of the current scope, hence we will be depicting word sense

disambiguation using the Lesk algorithm, which is a classic algorithm invented by M. E.

Lesk in 1986. The basic principle behind this algorithm is to leverage dictionary or

vocabulary definitions for a word we want to disambiguate in a body of text and compare

the words in these definitions with a section of text surrounding our word of interest.

We will be using the WordNet definitions for words instead of a dictionary. The main

objective is to return the synset with the maximum number of overlapping words or

terms between the context sentence and the different definitions from each synset for

the word we target for disambiguation. The following snippet leverages NLTK to depict

how to use word sense disambiguation for various examples.

from nltk.wsd import lesk

from nltk import word_tokenize

sample text and word to disambiguate

samples = [('The fruits on that plant have ripened', 'n'),

 ('He finally reaped the fruit of his hard work as he won the

race', 'n')]

perform word sense disambiguation

word = 'fruit'

for sentence, pos_tag in samples:

 word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)

 print('Sentence:', sentence)

 print('Word synset:', word_syn)

 print('Corresponding definition:', word_syn.definition())

 print()

Sentence: The fruits on that plant have ripened

Word synset: Synset('fruit.n.01')

Corresponding definition: the ripened reproductive body of a seed plant

Chapter 8 SemantiC analySiS

535

Sentence: He finally reaped the fruit of his hard work as he won the race

Word synset: Synset('fruit.n.03')

Corresponding definition: the consequence of some effort or action

sample text and word to disambiguate

samples = [('Lead is a very soft, malleable metal', 'n'),

 ('John is the actor who plays the lead in that movie', 'n'),

 ('This road leads to nowhere', 'v')]

word = 'lead'

perform word sense disambiguation

for sentence, pos_tag in samples:

 word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)

 print('Sentence:', sentence)

 print('Word synset:', word_syn)

 print('Corresponding defition:', word_syn.definition())

 print()

Sentence: Lead is a very soft, malleable metal

Word synset: Synset('lead.n.02')

Corresponding definition: a soft heavy toxic malleable metallic element;

bluish white when freshly cut but tarnishes readily to dull grey

Sentence: John is the actor who plays the lead in that movie

Word synset: Synset('star.n.04')

Corresponding definition: an actor who plays a principal role

Sentence: This road leads to nowhere

Word synset: Synset('run.v.23')

Corresponding definition: cause something to pass or lead somewhere

We try to disambiguate two words—“fruit” and “lead”—in various text documents in

these examples. You can see how we use the Lesk algorithm to get the correct word sense

for the word we are disambiguating, based on its usage and context in each document.

This tells you how “fruit” can mean both an entity that’s consumed as well as some

consequence which one faces on applying efforts. We also see how “lead” can mean the

soft metal, causing something/someone to go somewhere, or even an actor who plays

the main role in a play or movie!

Chapter 8 SemantiC analySiS

536

 Named Entity Recognition
In any text document, there are particular terms that represent entities that are more

informative and have a unique context compared to the rest of the text. These entities

are known as named entities, and they more specifically represent real-world objects

like people, places, organizations, and so on, which are usually denoted by proper

names. We can find these by looking at the noun phrases in text documents. Named

entity recognition, also called entity chunking/extraction, is a popular technique used in

information extraction to identify and segment named entities and classify or categorize

them under various predefined classes. SpaCy has some excellent capabilities for named

entity recognition and you can find details on the general tagging scheme they use on

their website at https://spacy.io/api/annotation#named-entities. We present the

main named entity tags in the table depicted in Figure 8-4.

Figure 8-4. Common named entities

Chapter 8 SemantiC analySiS

https://spacy.io/api/annotation#named-entities

537

SpaCy offers a fast NER tagger based on a number of techniques. The exact algorithm

hasn’t been talked about in much detail, but the documentation marks it as “The exact

algorithm is a pastiche of well-known methods, and is not currently described in any

single publication”. Let’s try doing named entity recognition (NER) on a sample corpus

now. For this, we define a sample news document as follows.

text = """Three more countries have joined an "international grand

committee" of parliaments, adding to calls for Facebook’s boss, Mark

Zuckerberg, to give evidence on misinformation to the coalition. Brazil,

Latvia and Singapore bring the total to eight different parliaments across

the world, with plans to send representatives to London on 27 November

with the intention of hearing from Zuckerberg. Since the Cambridge

Analytica scandal broke, the Facebook chief has only appeared in front of

two legislatures: the American Senate and House of Representatives, and

the European parliament. Facebook has consistently rebuffed attempts from

others, including the UK and Canadian parliaments, to hear from Zuckerberg.

He added that an article in the New York Times on Thursday, in which the

paper alleged a pattern of behaviour from Facebook to "delay, deny and

deflect" negative news stories, "raises further questions about how recent

data breaches were allegedly dealt with within Facebook."

"""

Getting the named entities is pretty easy now, thanks to spaCy. We do some basic

text processing and obtained the NER tags using spaCy as follows.

import spacy

import re

text = re.sub(r'\n', ", text) # remove extra newlines

nlp = spacy.load('en')

text_nlp = nlp(text)

print named entities in article

ner_tagged = [(word.text, word.ent_type_) for word in text_nlp]

print(ner_tagged)

Chapter 8 SemantiC analySiS

538

[('Three', 'CARDINAL'), ('more', ''), ('countries', ''), ('have', ''),

('joined', ''), ('an', ''), ('''', ''), ('international', ''), ('grand', ''),

('committee', ''), ('"', ''), ('of', ''), ('parliaments', ''), (',', ''),

('adding', ''), ('to', ''), ('calls', ''), ('for', ''), ('Facebook', 'ORG'),

("s', ''), ('boss', ''), (',', ''), ('Mark', 'PERSON'), ('Zuckerberg', 'PERSON'),

(',', ''), ('to', ''), ('give', ''), ('evidence', ''), ('on', ''),

('misinformation', ''), ('to', ''), ('the', ''), ('coalition', ''), ('.', ''),

('Brazil', 'GPE'), (',', ''), ('Latvia', 'GPE'), ('and', ''), ('Singapore', 'GPE'),

('bring', ''), ('the', ''), ('total', ''), ('to', ''), ('eight', 'CARDINAL'),

('different', ''), ('parliaments', ''), ('across', ''), ('the', ''),

('world', ''), (',', ''), ('with', ''), ('plans', ''), ('to', ''),

('send', ''), ('representatives', ''), ('to', ''), ('London', 'GPE'),

('on', ''), ('27', 'DATE'), ('November', 'DATE'), ('with', ''),

('the', ''), ('intention', ''), ('of', ''), ('hearing', ''), ('from', ''),

('Zuckerberg', 'PERSON'), ('.', ''), ('Since', ''), ('the', ''),

('Cambridge', 'GPE'), ('Analytica', ''), ('scandal', ''), ('broke', ''),

(',', ''), ('the', ''), ('Facebook', 'ORG'), ('chief', ''), ('has', ''),

('only', ''), ('appeared', ''), ('in', ''), ('front', ''), ('of', ''),

('two', 'CARDINAL'), ('legislatures', ''), (':', ''), ('the', ''),

('American', 'NORP'), ('Senate', 'ORG'), ('and', ''), ('House', 'ORG'),

('of', 'ORG'), ('Representatives', 'ORG'), (',', ''), ('and', ''),

('the', ''), ('European', 'NORP'), ('parliament', ''), ('.', ''),

('Facebook', 'ORG'), ('has', ''), ('consistently', ''), ('rebuffed', ''),

('attempts', ''), ('from', ''), ('others', ''), (',', ''), ('including', ''),

('the', ''), ('UK', 'GPE'), ('and', ''), ('Canadian', 'NORP'),

('parliaments', ''), (',', ''), ('to', ''), ('hear', ''), ('from', ''),

('Zuckerberg', 'PERSON'), ('.', ''), ('He', ''), ('added', ''), ('that', ''),

('an', ''), ('article', ''), ('in', ''), ('the', 'ORG'), ('New', 'ORG'),

('York', 'ORG'), ('Times', 'ORG'), ('on', ''), ('Thursday', 'DATE'), (',', ''),

('in', ''), ('which', ''), ('the', ''), ('paper', ''), ('alleged', ''),

('a', ''), ('pattern', ''), ('of', ''), ('behaviour', ''), ('from', ''),

('Facebook', 'ORG'), ('to', ''), ('''', ''), ('delay', ''), (',', ''),

('deny', ''), ('and', ''), ('deflect', ''), ('"', ''), ('negative', ''),

('news', ''), ('stories', ''), (',', ''), ('''', ''), ('raises', ''),

('further', ''), ('questions', ''), ('about', ''), ('how', ''), ('recent', ''),

Chapter 8 SemantiC analySiS

539

('data', ''), ('breaches', ''), ('were', ''), ('allegedly', ''), ('dealt', ''),

('with', ''), ('within', ''), ('Facebook', 'ORG'), ('.', ''), ('"', '')]

You can clearly see several entities being identified in the text tokens in the

preceding output. SpaCy also provides with a nice framework to view this in a visual

manner as follows.

from spacy import displacy

visualize named entities

displacy.render(text_nlp, style='ent', jupyter=True)

Figure 8-5. Named entities tagged by spaCy

We can see all the major named entities tagged in the nice visualization depicted

in Figure 8-5. Most of them make perfect sense, while some are slightly wrong. We can

also programmatically extract the named entities, which is often more useful using the

following code.

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in ner_tagged:

 if tag:

 temp_entity_name = ' '.join([temp_entity_name, term]).strip()

 temp_named_entity = (temp_entity_name, tag)

Chapter 8 SemantiC analySiS

540

 else:

 if temp_named_entity:

 named_entities.append(temp_named_entity)

 temp_entity_name = "

 temp_named_entity = None

print(named_entities)

[('Three', 'CARDINAL'), ('Facebook', 'ORG'), ('Mark Zuckerberg', 'PERSON'),

('Brazil', 'GPE'), ('Latvia', 'GPE'), ('Singapore', 'GPE'), ('eight', 'CARDINAL'),

('London', 'GPE'), ('27 November', 'DATE'), ('Zuckerberg', 'PERSON'),

('Cambridge', 'GPE'), ('Facebook', 'ORG'), ('two', 'CARDINAL'),

('American Senate', 'ORG'), ('House of Representatives', 'ORG'),

('European', 'NORP'), ('Facebook', 'ORG'), ('UK', 'GPE'), ('Canadian', 'NORP'),

('Zuckerberg', 'PERSON'), ('the New York Times', 'ORG'), ('Thursday',

'DATE'), ('Facebook', 'ORG'), ('Facebook', 'ORG')]

viewing the top entity types

from collections import Counter

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORG', 8), ('GPE', 6), ('CARDINAL', 3), ('PERSON', 3), ('DATE', 2),

('NORP', 2)]

This gives us a good idea of how to leverage spaCy for named entity recognition.

Let’s try to leverage the base Stanford NLP NER tagger now, using the relevant JAR files

and the corresponding NLTK wrapper. Stanford’s Named Entity Recognizer is based

on an implementation of linear chain Conditional Random Field (CRF) sequence

models. Prerequisites obviously include downloading the official Stanford NER Tagger

JAR dependencies, which you can obtain at http://nlp.stanford.edu/software/

stanford-ner-2014-08-27.zip. Or you can download the latest version from https://

nlp.stanford.edu/software/CRF-NER.shtml#Download. Once it is downloaded, load it

in NLTK as follows.

import os

from nltk.tag import StanfordNERTagger

JAVA_PATH = r'C:\Program Files\Java\jre1.8.0_192\bin\java.exe'

os.environ['JAVAHOME'] = JAVA_PATH

Chapter 8 SemantiC analySiS

http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
https://nlp.stanford.edu/software/CRF-NER.shtml#Download
https://nlp.stanford.edu/software/CRF-NER.shtml#Download

541

STANFORD_CLASSIFIER_PATH = 'E:/stanford/stanford-ner-2014-08-27/

classifiers/english.all.3class.distsim.crf.ser.gz'

STANFORD_NER_JAR_PATH = 'E:/stanford/stanford-ner-2014-08-27/stanford-ner.jar'

sn = StanfordNERTagger(STANFORD_CLASSIFIER_PATH,

 path_to_jar=STANFORD_NER_JAR_PATH)

Now we can perform NER tagging and extract the relevant entities using the

following code snippet.

text_enc = text.encode('ascii', errors='ignore').decode('utf-8')

ner_tagged = sn.tag(text_enc.split())

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in ner_tagged:

 if tag != 'O':

 temp_entity_name = ' '.join([temp_entity_name, term]).strip()

 temp_named_entity = (temp_entity_name, tag)

 else:

 if temp_named_entity:

 named_entities.append(temp_named_entity)

 temp_entity_name = "

 temp_named_entity = None

print(named_entities)

[('Facebook', 'ORGANIZATION'), ('Latvia', 'LOCATION'), ('Singapore',

'LOCATION'), ('London', 'LOCATION'), ('Cambridge Analytica',

'ORGANIZATION'), ('Facebook', 'ORGANIZATION'), ('Senate', 'ORGANIZATION'),

('Facebook', 'ORGANIZATION'), ('UK', 'LOCATION'), ('New York Times',

'ORGANIZATION'), ('Facebook', 'ORGANIZATION')]

get most frequent entities

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORGANIZATION', 7), ('LOCATION', 4)]

Chapter 8 SemantiC analySiS

542

There is one limitation, however. This model is only trained on instances of PERSON,

ORGANIZATION, and LOCATION types, which is kind of limiting compared to spaCy.

Luckily, a newer version of Stanford Core NLP is available and the newer APIs in NLTK

recommend using it. However, to use Stanford’s Core NLP from NLTK in Python, we

need to download and start a Core NLP server locally. Why do we need this? NLTK is

slowly deprecating the old Stanford parsers in favor of the more active Stanford Core

NLP project. It might even get removed after NLTK version 3.4, so best to stay updated.

You can find out further details in this GitHub issue for NLTK at https://github.com/

nltk/nltk/issues/1839.

We will start by downloading Stanford’s Core NLP suite from https://stanfordnlp.

github.io/CoreNLP/. After you download and extract the directory, go there and start

the Core NLP server using the following command from the terminal.

E:\> java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer

-preload tokenize,ssplit,pos,lemma,ner,parse,depparse -status_port 9000

-port 9000 -timeout 15000

If it runs successfully, you should see the following messages on the terminal when it

starts up.

E:\stanford\stanford-corenlp-full-2018-02-27>java -mx4g -cp "*" edu.

stanford.nlp.pipeline.StanfordCoreNLPServer -preload tokenize,ssplit,pos,le

mma,ner,parse,depparse -status_port 9000 -port 9000 -timeout 15000

[main] INFO CoreNLP - --- StanfordCoreNLPServer#main() called ---

...

...

[main] INFO edu.stanford.nlp.pipeline.TokensRegexNERAnnotator -

TokensRegexNERAnnotator ner.fine.regexner: Read 580641 unique entries

out of 581790 from edu/stanford/nlp/models/kbp/regexner_caseless.tab, 0

TokensRegex patterns.

...

...

[main] INFO CoreNLP - Starting server...

[main] INFO CoreNLP - StanfordCoreNLPServer listening at

/0:0:0:0:0:0:0:0:9000

If you’re interested, you can head over to http://localhost:9000 and play around

with their intuitive user interface, as depicted in Figure 8-6.

Chapter 8 SemantiC analySiS

https://github.com/nltk/nltk/issues/1839
https://github.com/nltk/nltk/issues/1839
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/

543

You can visualize text annotations and tags interactively using the user interface

depicted in Figure 8-6. We will now use it in Python through NLTK as follows.

from nltk.parse import CoreNLPParser

import nltk

NER Tagging

ner_tagger = CoreNLPParser(url='http://localhost:9000', tagtype='ner')

tags = list(ner_tagger.raw_tag_sents(nltk.sent_tokenize(text)))

tags = [sublist[0] for sublist in tags]

tags = [word_tag for sublist in tags for word_tag in sublist]

Extract Named Entities

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in tags:

 if tag != 'O':

 temp_entity_name = ' '.join([temp_entity_name, term]).strip()

 temp_named_entity = (temp_entity_name, tag)

Figure 8-6. Exploring Stanford Core NLP

Chapter 8 SemantiC analySiS

544

 else:

 if temp_named_entity:

 named_entities.append(temp_named_entity)

 temp_entity_name = "

 temp_named_entity = None

print(named_entities)

[('Three', 'NUMBER'), ('Facebook', 'ORGANIZATION'), ('boss',

'TITLE'), ('Mark Zuckerberg', 'PERSON'), ('Brazil', 'COUNTRY'),

('Latvia', 'COUNTRY'), ('Singapore', 'COUNTRY'), ('eight', 'NUMBER'),

('London', 'CITY'), ('27 November', 'DATE'), ('Zuckerberg', 'PERSON'),

('Cambridge Analytica', 'ORGANIZATION'), ('Facebook', 'ORGANIZATION'),

('two', 'NUMBER'), ('American Senate', 'ORGANIZATION'), ('House of

Representatives', 'ORGANIZATION'), ('European', 'NATIONALITY'),

('Facebook', 'ORGANIZATION'), ('UK', 'COUNTRY'), ('Canadian',

'NATIONALITY'), ('Zuckerberg', 'PERSON'), ('New York Times',

'ORGANIZATION'), ('Thursday', 'DATE'), ('Facebook', 'ORGANIZATION'),

('Facebook', 'ORGANIZATION')]

Find out top named entity types

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORGANIZATION', 9), ('COUNTRY', 4), ('NUMBER', 3), ('PERSON', 3),

 ('DATE', 2), ('NATIONALITY', 2), ('TITLE', 1), ('CITY', 1)]

Thus you can see that Core NLP has many more tag types compared to the previous

version. In fact, it recognizes named entities (PERSON, LOCATION, ORGANIZATION, and

MISC), numerical entities (MONEY, NUMBER, ORDINAL, and PERCENT), and temporal entities

(DATE, TIME, DURATION, and SET). There are 12 classes in all.

 Building an NER Tagger from Scratch
There are various off-the-shelf solutions that offer capabilities to perform named entity

extraction (some of which we discussed in the previous sections). Yet there are times

when the requirements are beyond the capabilities of off-the-shelf classifiers. In this

section, we go through an exercise to build our own NER using conditional random

fields. We use a popular framework called sklearn_crfsuite to develop our NER.

Chapter 8 SemantiC analySiS

545

The key point to remember here is that NER is a sequence modeling problem at its

core. It is more related to the classification suite of problems, wherein we need a labeled

dataset to train a classifier. Without any training data, there is no NER model! There are

various labeled datasets for NER class of problems. We utilize a preprocessed version

of the GMB (Groningen Meaning Bank) corpus for this tutorial. The preprocessed

version is available at https://www.kaggle.com/abhinavwalia95/entity-annotated-

corpus. However, we also provide it in our GitHub repository at https://github.com/

dipanjanS/text-analytics-with-python for ease of use. Loading the dataset, we can

check the major fields as follows.

import pandas as pd

df = pd.read_csv('ner_dataset.csv.gz', compression='gzip',

encoding='ISO-8859-1')

df = df.fillna(method='ffill')

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1048575 entries, 0 to 1048574

Data columns (total 4 columns):

Sentence # 1048575 non-null object

Word 1048575 non-null object

POS 1048575 non-null object

Tag 1048575 non-null object

dtypes: object(4)

memory usage: 32.0+ MB

We can also take a look at the actual dataset by using the following code. See

Figure 8-7.

df.T

Figure 8-7. The GMB NER dataset

Chapter 8 SemantiC analySiS

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus
https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus
https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

546

To get a deeper understanding of the data we are dealing with and the total number

of annotated tags, we can use the following code.

df['Sentence #'].nunique(), df.Word.nunique(), df.POS.nunique(), df.Tag.

nunique()

(47959, 35178, 42, 17)

This tells us that we have 47,959 sentences that contain 35,178 unique words. These

sentences have a total of 42 unique POS tags and 17 unique NER tags. We can check out

the unique NER tag distribution in our corpus as follows.

df.Tag.value_counts()

O 887908

B-geo 37644

B-tim 20333

B-org 20143

I-per 17251

B-per 16990

I-org 16784

B-gpe 15870

I-geo 7414

I-tim 6528

B-art 402

B-eve 308

I-art 297

I-eve 253

B-nat 201

I-gpe 198

I-nat 51

Name: Tag, dtype: int64

Chapter 8 SemantiC analySiS

547

The preceding output shows the unbalanced distribution of different tags in the

dataset. The GMB dataset utilizes IOB tagging (Inside, Outside Beginning). IOB is a

common tagging format for tagging tokens, which we discussed in Chapter 3. To refresh

your memory:

• I- prefix before a tag indicates that the tag is inside a chunk.

• B- prefix before a tag indicates that the tag is the beginning of a

chunk.

• O- tag indicates that a token belongs to no chunk (outside).

The NER tags in this dataset can be explained using the following notation, which is

similar to the NER tags you have seen so far.

• geo = Geographical entity

• org = Organization

• per = Person

• gpe = Geopolitical entity

• tim = Time indicator

• art = Artifact

• eve = Event

• nat = Natural phenomenon

Anything outside these classes is called other, denoted as O. Now, as mentioned

earlier, NER belongs to the sequence modeling class of problems. There are different

algorithms to tackle sequence modeling, and CRF (Conditional Random Fields) is

one such example. CRFs are proven to perform extremely well on NER and related

domains. In this tutorial, we will attempt to develop our own NER based on CRFs.

Discussion CRFs in detail are beyond the scope given this is not a hardcore machine

learning book. To whet your appetite though, a CRF is an undirected graphical model

whose nodes can be divided into exactly two disjoint sets X and Y, the observed

and output variables, respectively; the conditional distribution p(Y | X) is then

modeled. We recommend interested readers check out the following literature on

CRFs to gain a deep dive: https://repository.upenn.edu/cgi/viewcontent.

cgi?article=1162&context=cis_papers.

Chapter 8 SemantiC analySiS

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers

548

Feature engineering is critical for building any machine learning or statistical model

because without features, there is no learning. Similarly, the CRF model trains sequences

of input features to learn transitions from one state (label) to another. To enable such an

algorithm, we need to define features, which take into account different transitions. We

will develop a function called word2features(), where we will transform each word into

a feature dictionary depicting the following attributes or features:

• Lowercase version of the word

• Suffix containing the last three characters

• Suffix containing the last two characters

• Flags to determine uppercase, title case, numeric data, and POS tags

We also attach attributes related to previous and next words or tags to determine

beginning of sentence (BOS) or end of sentence (EOS). These are features based on best

practices and you can add your own features with experimentation. Always remember

that feature engineering is an art as well as a science.

def word2features(sent, i):

 word = sent[i][0]

 postag = sent[i][1]

 features = {

 'bias': 1.0,

 'word.lower()': word.lower(),

 'word[-3:]': word[-3:],

 'word[-2:]': word[-2:],

 'word.isupper()': word.isupper(),

 'word.istitle()': word.istitle(),

 'word.isdigit()': word.isdigit(),

 'postag': postag,

 'postag[:2]': postag[:2],

 }

 if i > 0:

 word1 = sent[i-1][0]

 postag1 = sent[i-1][1]

Chapter 8 SemantiC analySiS

549

 features.update({

 '-1:word.lower()': word1.lower(),

 '-1:word.istitle()': word1.istitle(),

 '-1:word.isupper()': word1.isupper(),

 '-1:postag': postag1,

 '-1:postag[:2]': postag1[:2],

 })

 else:

 features['BOS'] = True

 if i < len(sent)-1:

 word1 = sent[i+1][0]

 postag1 = sent[i+1][1]

 features.update({

 '+1:word.lower()': word1.lower(),

 '+1:word.istitle()': word1.istitle(),

 '+1:word.isupper()': word1.isupper(),

 '+1:postag': postag1,

 '+1:postag[:2]': postag1[:2],

 })

 else:

 features['EOS'] = True

 return features

convert input sentence into features

def sent2features(sent):

 return [word2features(sent, i) for i in range(len(sent))]

get corresponding outcome NER tag label for input sentence

def sent2labels(sent):

 return [label for token, postag, label in sent]

Let’s now define a function to extract our word token, POS tag, and NER tag triplets

from sentences. We will be applying this to all our input sentences.

Chapter 8 SemantiC analySiS

550

agg_func = lambda s: [(w, p, t) for w, p, t in zip(s['Word'].values.tolist(),

 s['POS'].values.tolist(),

 s['Tag'].values.tolist())]

grouped_df = df.groupby('Sentence #').apply(agg_func)

We can now view a sample annotated sentence from our dataset with the following

code.

sentences = [s for s in grouped_df]

sentences[0]

('of', 'IN', 'O'), ('demonstrators', 'NNS', 'O'), ('have', 'VBP', 'O'),

('marched', 'VBN', 'O'), ('through', 'IN', 'O'), ('London', 'NNP', 'B-geo'),

('to', 'TO', 'O'), ('protest', 'VB', 'O'), ('the', 'DT', 'O'),

('war', 'NN', 'O'), ('in', 'IN', 'O'), ('Iraq', 'NNP', 'B-geo'), ('and', 'CC', 'O'),

('demand', 'VB', 'O'),('the', 'DT', 'O'), ('withdrawal', 'NN', 'O'),

('of', 'IN', 'O'), ('British', 'JJ', 'B-gpe'), ('troops', 'NNS', 'O'),

('from', 'IN', 'O'), ('that', 'DT', 'O'), ('country', 'NN', 'O'), ('.', '.', 'O')]

The preceding output shows a standard tokenized sentence with POS and NER

tags. Let’s look at how each annotated tokenized sentence can be used for our feature

engineering with the function we defined earlier.

sent2features(sentences[0][5:7])

[{'bias': 1.0, 'word.lower()': 'through', 'word[-3:]': 'ugh', 'word[-2:]': 'gh',

 'word.isupper()': False, 'word.istitle()': False, 'word.isdigit()': False,

 'postag': 'IN', 'postag[:2]': 'IN', 'BOS': True, '+1:word.lower()': 'london',

 '+1:word.istitle()': True, '+1:word.isupper()': False, '+1:postag': 'NNP',

 '+1:postag[:2]': 'NN'},

 {'bias': 1.0, 'word.lower()': 'london', 'word[-3:]': 'don', 'word[-2:]': 'on',

 'word.isupper()': False, 'word.istitle()': True, 'word.isdigit()': False,

 'postag': 'NNP', 'postag[:2]': 'NN', '-1:word.lower()': 'through',

 '-1:word.istitle()': False, '-1:word.isupper()': False, '-1:postag': 'IN',

 '-1:postag[:2]': 'IN', 'EOS': True}]

sent2labels(sentences[0][5:7])

['O', 'B-geo']

Chapter 8 SemantiC analySiS

551

The preceding output shows features on two sample word tokens and their

corresponding NER tag labels. Let’s now prepare our train and test datasets by feature

engineering on the input sentences and getting the corresponding NER tag labels to

predict.

from sklearn.model_selection import train_test_split

import numpy as np

X = np.array([sent2features(s) for s in sentences])

y = np.array([sent2labels(s) for s in sentences])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,

random_state=42)

X_train.shape, X_test.shape

((35969,), (11990,))

It is now time to start training our model. For this, we use sklearn-crfsuite like

we mentioned before. The sklearn-crfsuite framework is a thin CRFsuite (python-

crfsuite) wrapper that provides a Scikit-Learn compatible sklearn_crfsuite.CRF

estimator. Thus, you can use Scikit-Learn model selection utilities (cross-validation and

hyperparameter optimization) with it and save/load CRF models using joblib. You can

install the library using the pip install sklearn_crfsuite command.

We will now train the model using the default configurations mentioned in the

sklearn-crfsuite API docs, which you can access at https://sklearn-crfsuite.

readthedocs.io/en/latest/api.html. The intent here is NER tagging, so we will not

focus too much on tuning our model. Some key hyperparameters and model arguments

are mentioned here:

• algorithm: The training algorithm. We use L-BFGS for gradient

descent for optimization and getting model parameters

• c1: Coefficient for Lasso (L1) regularization

• c2: Coefficient for Ridge (L2) regularization

• all_possible_transitions: Specify whether CRFsuite generates

transition features that do not occur in the training data

Chapter 8 SemantiC analySiS

https://github.com/scrapinghub/python-crfsuite
https://github.com/scrapinghub/python-crfsuite
https://sklearn-crfsuite.readthedocs.io/en/latest/api.html
https://sklearn-crfsuite.readthedocs.io/en/latest/api.html

552

import sklearn_crfsuite

crf = sklearn_crfsuite.CRF(algorithm='lbfgs',

 c1=0.1,

 c2=0.1,

 max_iterations=100,

 all_possible_transitions=True,

 verbose=True)

crf.fit(X_train, y_train)

loading training data to CRFsuite: 100%|██| 35969/35969 [00:15<00:00,

2384.94it/s]

type: CRF1d

Number of features: 133629

Seconds required: 3.486

L-BFGS optimization

c1: 0.100000

c2: 0.100000

num_memories: 6

max_iterations: 100

epsilon: 0.000010

stop: 10

delta: 0.000010

linesearch: MoreThuente

linesearch.max_iterations: 20

Iter 1 time=4.01 loss=1264028.26 active=132637 feature_norm=1.00

Iter 2 time=3.99 loss=994059.01 active=131294 feature_norm=4.42

...

...

Iter 99 time=2.07 loss=32324.92 active=58249 feature_norm=219.98

Iter 100 time=2.09 loss=32316.67 active=58226 feature_norm=220.04

L-BFGS terminated with the maximum number of iterations

Total seconds required for training: 228.530

Storing the model

Number of active features: 58226 (133629)

Chapter 8 SemantiC analySiS

553

Number of active attributes: 29279 (90250)

Number of active labels: 17 (17)

You can now save this model using the following code, which leverages the joblib

framework.

from sklearn.externals import joblib

joblib.dump(crf, 'ner_model.pkl')

If this model is taking too long to train, you can load the pretrained model provided

in our GitHub repository at https://github.com/dipanjanS/text-analytics-with-

python using the following code.

crf = joblib.load('ner_model.pkl')

Let’s evaluate our model performance for NER tagging on the test data now! The

following code shows a sample prediction and the actual labels. Looks like we are

doing well!

y_pred = crf.predict(X_test)

print(y_pred[0])

['O', 'O', 'O', 'O', 'B-per', 'I-per', 'O', 'B-org', 'O', 'O', 'B-gpe',

'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O',

'O', 'O', 'O']

print(y_test[0])

['O', 'O', 'O', 'O', 'B-per', 'I-per', 'O', 'B-org', 'O', 'O', 'B-gpe',

'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O',

'O', 'O', 'O']

The following code helps us evaluate our model performance on the entire test

dataset and get key classification model performance metrics.

from sklearn_crfsuite import metrics as crf_metrics

labels = list(crf.classes_)

labels.remove('O')

print(crf_metrics.flat_classification_report(y_test, y_pred,

labels=labels))

Chapter 8 SemantiC analySiS

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

554

 precision recall f1-score support

 B-org 0.81 0.73 0.77 5116

 B-per 0.85 0.84 0.84 4239

 I-per 0.85 0.90 0.88 4273

 B-geo 0.86 0.91 0.89 9403

 I-geo 0.81 0.80 0.81 1826

 B-tim 0.93 0.89 0.91 5095

 I-org 0.82 0.79 0.80 4195

 B-gpe 0.97 0.94 0.96 3961

 I-tim 0.84 0.81 0.82 1604

 B-nat 0.50 0.24 0.32 55

 B-eve 0.51 0.33 0.40 80

 B-art 0.36 0.14 0.20 102

 I-art 0.24 0.07 0.10 90

 I-eve 0.45 0.19 0.27 74

 I-gpe 0.86 0.53 0.66 36

 I-nat 0.57 0.22 0.32 18

 micro avg 0.86 0.85 0.86 40167

 macro avg 0.70 0.58 0.62 40167

weighted avg 0.86 0.85 0.85 40167

We have intentionally left out the Others tag to understand the performance of

the model on the remaining tags, which are of key interest. The evaluation statistics

showcase a model that seems to have learned the transitions quite well, giving us an

overall F1-score of 85%! We can achieve even better results by fine tuning the feature

engineering step along with hyper-parameter tuning.

 Building an End-to-End NER Tagger with Our
Trained NER Model
There is no fun (or value!) if we cannot use our model to tag new sentences in the future,

assuming we would want to put this model in production. Let’s try to build an end-to-

end workflow to perform NER tagging on our sample document. Just to refresh your

memory, our sample document is as follows.

Chapter 8 SemantiC analySiS

555

import re

text = """Three more countries have joined an "international grand

committee" of parliaments, adding to calls forFacebook’s boss, Mark

Zuckerberg, to give evidence on misinformation to the coalition. Brazil,

Latvia and Singapore bring the total to eight different parliaments across

the world, with plans to send representatives to London on 27 November

with the intention of hearing from Zuckerberg. Since the Cambridge

Analytica scandal broke, the Facebook chief has only appeared in front of

two legislatures: the American Senate and House of Representatives, and

the European parliament. Facebook has consistently rebuffed attempts from

others, including the UK and Canadian parliaments, to hear from Zuckerberg.

He added that an article in the New York Times on Thursday, in which the

paper alleged a pattern of behaviour from Facebook to "delay, deny and

deflect" negative news stories, "raises further questions about how recent

data breaches were allegedly dealt with within Facebook."

"""

text = re.sub(r'\n', ", text)

The first step in the pipeline is to tokenize our text and perform POS tagging, as

depicted in the following code.

import nltk

text_tokens = nltk.word_tokenize(text)

text_pos = nltk.pos_tag(text_tokens)

text_pos[:10]

[('Three', 'CD'), ('more', 'JJR'), ('countries', 'NNS'), ('have', 'VBP'),

('joined', 'VBN'), ('an', 'DT'), ('"', 'NNP'), ('international', 'JJ'),

('grand', 'JJ'), ('committee', 'NN')]

The next step is to extract features from the POS tagged text document, which we can

do using our previously defined function.

features = [sent2features(text_pos)]

features[0][0]

Chapter 8 SemantiC analySiS

556

{'bias': 1.0, 'word.lower()': 'three', 'word[-3:]': 'ree', 'word[-2:]': 'ee',

 'word.isupper()': False, 'word.istitle()': True, 'word.isdigit()': False,

 'postag': 'CD', 'postag[:2]': 'CD', 'BOS': True, '+1:word.lower()': 'more',

 '+1:word.istitle()': False, '+1:word.isupper()': False, '+1:postag': 'JJR',

 '+1:postag[:2]': 'JJ'}

It is now time to use the CRF model we just trained to predict the features we

engineered from our sample document.

labels = crf.predict(features)

doc_labels = labels[0]

doc_labels[10:20]

['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-art', 'I-art']

The final step involves combining the actual text tokens with their corresponding

NER tags and retrieving relevant named entities from the NER tags. See Figure 8-8.

text_ner = [(token, tag) for token, tag in zip(text_tokens, doc_labels)]

print(text_ner)

[('Three', 'O'), ('more', 'O'), ('countries', 'O'), ..., ('Facebook',

'B-art'), ("', 'I-art'), ('s', 'O'), ('boss', 'O'), (',', 'O'), ('Mark',

'B-per'), ('Zuckerberg', 'I-per'), (',', 'O'), ('to', 'O'), ('give', 'O'),

('evidence', 'O'), ('on', 'O'), ('misinformation', 'O'), ('to', 'O'),

('the', 'O'), ('coalition', 'O'), ('.', 'O'), ('Brazil', 'B-geo'), ...]

extract and display all named entities

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in text_ner:

 if tag != 'O':

 temp_entity_name = ' '.join([temp_entity_name, term]).strip()

 temp_named_entity = (temp_entity_name, tag)

 else:

 if temp_named_entity:

 named_entities.append(temp_named_entity)

Chapter 8 SemantiC analySiS

557

 temp_entity_name = "

 temp_named_entity = None

import pandas as pd

pd.DataFrame(named_entities, columns=['Entity', 'Tag'])

Figure 8-8. Named entities from our NER model

Congratulations! You have built your own NER tagger from scratch and it is

performing quite well. This should enable you to build more sophisticated NER taggers,

maybe in your own specialized domains.

Chapter 8 SemantiC analySiS

558

 Analyzing Semantic Representations
We usually communicate in the form of messages, either in spoken form or written

form, with other people or interfaces. These messages are typically a collection of

words, phrases, and sentences. They have their own semantics and context. So far we

talked about semantics and relations between various lexical units. But how do we

represent the meaning of semantics conveyed by a message or messages? How do

humans understand what someone is telling them? How do we believe in statements

and propositions and evaluate outcomes and what action to take? It is easy because

the brain helps us in logic and reasoning, but computationally can we do the same?

The answer is yes we can. Frameworks like propositional logic and first order logic help

us in the representation of semantics. We discussed this in detail in Chapter 1, in the

subsection “Representation of Semantics” under the “Language Semantics” section.

We encourage you to go through that section once more to refresh your memory. In

the following sections, we look at ways to represent propositional and first order logic

to prove or disprove propositions, statements, and predicates using practical examples

and code.

 Propositional Logic
We already explained that propositional logic is the study of propositions, statements,

and sentences. A proposition is usually declarative, having a binary value of either

true or false. There are also various logical operators like conjunction, disjunction,

implication, and equivalence and we also study the effects of applying these operators

to multiple propositions to understand their behavior and outcome. Let’s consider our

example from Chapter 1 with regards to two propositions P and Q, such that they can be

represented as follows.

P: He is hungry

Q: He will eat a sandwich

We will now try to build truth tables for operations on these propositions using NLTK

based on the various logical operators discussed in Chapter 1 (refer to the “Propositional

Logic” section for more details) and then derive outcomes computationally.

import nltk

import pandas as pd

import os

Chapter 8 SemantiC analySiS

559

assign symbols and propositions

symbol_P = 'P'

symbol_Q = 'Q'

proposition_P = 'He is hungry'

propositon_Q = 'He will eat a sandwich'

assign various truth values to the propositions

p_statuses = [False, False, True, True]

q_statuses = [False, True, False, True]

assign the various expressions combining the logical operators

conjunction = '(P & Q)'

disjunction = '(P | Q)'

implication = '(P -> Q)'

equivalence = '(P <-> Q)'

expressions = [conjunction, disjunction, implication, equivalence]

expressions

['(P & Q)', '(P | Q)', '(P -> Q)', '(P <-> Q)']

evaluate each expression using propositional logic

results = []

for status_p, status_q in zip(p_statuses, q_statuses):

 dom = set([])

 val = nltk.Valuation([(symbol_P, status_p),

 (symbol_Q, status_q)])

 assignments = nltk.Assignment(dom)

 model = nltk.Model(dom, val)

 row = [status_p, status_q]

 for expression in expressions:

 # evaluate each expression based on proposition truth values

 result = model.evaluate(expression, assignments)

 row.append(result)

 results.append(row)

build the result table

columns = [symbol_P, symbol_Q, conjunction,

Chapter 8 SemantiC analySiS

560

 disjunction, implication, equivalence]

result_frame = pd.DataFrame(results, columns=columns)

display results

print('P:', proposition_P)

print('Q:', propositon_Q)

print()

print('Expression Outcomes:-')

print(result_frame)

P: He is hungry

Q: He will eat a sandwich

Expression Outcomes:-

 P Q (P & Q) (P | Q) (P -> Q) (P <-> Q)

0 False False False False True True

1 False True False True True False

2 True False False True False False

3 True True True True True True

This output depicts the various truth values of the two propositions. When we

combine them with various logical operators, you will find that the results match what

we manually evaluated in Chapter 1. For example, P & Q indicates that “he is hungry

and he will eat a sandwich” is true only when both of the individual propositions are

true. We use NLTK’s Valuation class to create a dictionary of the propositions and their

various outcome states. We use the Model class to evaluate each expression, where the

evaluate() function internally calls the recursive function satisfy(), which helps to

evaluate the outcome of each expression with the propositions based on the assigned

truth values.

 First Order Logic
Propositional logic (PL) has several limitations, like the inability to represent facts or

complex relationships and inferences. PL also has limited expressive power because,

for each new proposition, we need a unique symbolic representation and it becomes

very difficult to generalize facts. This is where first order logic (FOL) works really well

with features like functions, quantifiers, relations, connectives, and symbols. It provides

a more rich and powerful representation for semantic information. The “First Order

Chapter 8 SemantiC analySiS

561

Logic” subsection under “Representation of Semantics” in Chapter 1 provides detailed

information about how first order logic works.

In this section, we build several FOL representations similar to what we did manually

in Chapter 1 using mathematical representations. Here, we build them in our code using

similar syntax and leverage NLTK and some theorem provers to prove the outcomes of

various expressions based on predefined conditions and relationships, similar to what

we did for PL.

The key takeaway for you from this section should be getting to know how

to represent FOL representations in Python and how to perform first order logic

inferences using proofs based on some goal and predefined rules and events. There

are several theorem provers that you can use to evaluate expressions and proving

theorems. The NLTK package has three provers, namely Prover9, TableauProver, and

ResolutionProver. The first one is free and available for download at https://www.

cs.unm.edu/~mccune/prover9/download/. You can extract the contents in a location of

your choice. We use both ResolutionProver and Prover9 in our examples. The following

snippet helps set up the necessary dependencies for FOL expressions and evaluations.

import nltk

import os

for reading FOL expressions

read_expr = nltk.sem.Expression.fromstring

initialize theorem provers (you can choose any)

os.environ['PROVER9'] = r'E:/prover9/bin'

prover = nltk.Prover9()

I use the following one for our examples

prover = nltk.ResolutionProver()

Now that we have our dependencies ready, let’s evaluate a few FOL expressions.

Consider a simple expression that says “If an entity jumps over another entity, the

reverse cannot happen”. Assuming the entities to be x and y, we can represent this is

FOL as ∀x ∀y (jumps_over(x, y) → ¬jumps_over(y, x)), which signifies that for all

x and y, if x jumps over y, it implies that y cannot jump over x. Consider now that we

have two entities—fox and dog—and the fox jumps over the dog. This event can be

represented by jumps_over(fox, dog). Our objective is to evaluate the outcome of

Chapter 8 SemantiC analySiS

https://www.cs.unm.edu/~mccune/prover9/download/
https://www.cs.unm.edu/~mccune/prover9/download/

562

jumps_over(dog, fox) considering this expression and the event that occurred. The

following snippet shows how we can do this.

set the rule expression

rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))')

set the event occurred

event = read_expr('jumps_over(fox, dog)')

set the outcome we want to evaluate -- the goal

test_outcome = read_expr('jumps_over(dog, fox)')

get the result

prover.prove(goal=test_outcome,

 assumptions=[event, rule],

 verbose=True)

[1] {-jumps_over(dog,fox)} A

[2] {jumps_over(fox,dog)} A

[3] {-jumps_over(z4,z3), -jumps_over(z3,z4)} A

[4] {-jumps_over(dog,fox)} (2, 3)

Out[9]: False

This output depicts the final result for our goal test_outcome is false, i.e., the dog

cannot jump over the fox if the fox has already jumped over the dog. This is based on

our rule expression and the events that are assigned to the assumptions parameter in the

prover. The sequence of steps that lead to the result is also shown in the output.

Let’s now consider another FOL expression rule: ∀x studies(x, exam) → pass(x,

exam). This tells us that for all instances of x, if x studies for the exam, he/she will pass

the exam. Let’s represent this rule and consider two students—John and Pierre—and

assume that John does not study for the exam, but Pierre does. Can we then determine

whether they will pass the exam based on the expression rule? The following snippet

shows the result.

set the rule expression

rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')

set the events and outcomes we want to determine

event1 = read_expr('-studies(John, exam)')

Chapter 8 SemantiC analySiS

563

test_outcome1 = read_expr('pass(John, exam)')

get results

prover.prove(goal=test_outcome1,

 assumptions=[event1, rule],

 verbose=True)

[1] {-pass(John,exam)} A

[2] {-studies(John,exam)} A

[3] {-studies(z6,exam), pass(z6,exam)} A

[4] {-studies(John,exam)} (1, 3)

Out[10]: False

set the events and outcomes we want to determine

event2 = read_expr('studies(Pierre, exam)')

test_outcome2 = read_expr('pass(Pierre, exam)')

get results

prover.prove(goal=test_outcome2,

 assumptions=[event2, rule],

 verbose=True)

[1] {-pass(Pierre,exam)} A

[2] {studies(Pierre,exam)} A

[3] {-studies(z8,exam), pass(z8,exam)} A

[4] {-studies(Pierre,exam)} (1, 3)

[5] {pass(Pierre,exam)} (2, 3)

[6] {} (1, 5)

Out[11]: True

Thus, you can see from these evaluations that Pierre does pass the exam because he

studied for the exam. However, John who doesn’t pass the exam since he did not study

for it. Let’s consider a more complex example with several entities that perform several

actions, as follows.

• There are two dogs, Rover (r) and Alex (a)

• There is one cat, Garfield (g)

Chapter 8 SemantiC analySiS

564

• There is one fox, Felix (f)

• Two animals—Alex (a) and Felix (f)—run, as denoted by the runs() function

• Two animals—Rover (r) and Garfield (g)—sleep, as denoted by the

sleeps() function

• Two animals—Felix (f) and Alex (a)—can jump over the other two, as

denoted by the jumps_over() function

Taking all these assumptions, the following snippet builds a FOL-based model with

the domain and assignment values based on the entities and functions. Once we build

this model, we evaluate various FOL-based expressions to determine their outcomes

and prove the theorems, like we did earlier.

define symbols (entities\functions) and their values

rules = """

 rover => r

 felix => f

 garfield => g

 alex => a

 dog => {r, a}

 cat => {g}

 fox => {f}

 runs => {a, f}

 sleeps => {r, g}

 jumps_over => {(f, g), (a, g), (f, r), (a, r)}

 """

val = nltk.Valuation.fromstring(rules)

view the valuation object of symbols and their assigned values (dictionary)

Val

{'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps':

set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog':

set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a', 'r'),

('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'}

define domain and build FOL based model

dom = {'r', 'f', 'g', 'a'}

Chapter 8 SemantiC analySiS

565

m = nltk.Model(dom, val)

evaluate various expressions

m.evaluate('jumps_over(felix, rover) & dog(rover) & runs(rover)', None)

False

m.evaluate('jumps_over(felix, rover) & dog(rover) & -runs(rover)', None)

True

m.evaluate('jumps_over(alex, garfield) & dog(alex) & cat(garfield) &

sleeps(garfield)', None)

True

assign rover to x and felix to y in the domain

g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])

evaluate more expressions based on above assigned symbols

m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)

True

m.evaluate('exists y. (fox(y) & runs(y))', g)

True

This snippet depicts the evaluation of expressions based on the valuation of different

symbols, based on the rules and domain. We create FOL-based expressions and see

their outcomes based on the predefined assumptions. For example, the first expression

returns false because Rover never runs() and the second and third expressions are

true because they satisfy all the conditions, like Felix and Alex can jump over Rover or

Garfield, Rover is a dog, which does not run, and Garfield is a cat.

The second set of expressions is evaluated based on assigning Felix and Rover to

specific symbols in our domain (dom) and passing that variable (g) when evaluating the

expressions. We can even satisfy open formulae or expressions using the satisfiers()

function, as depicted here:

who are the animals who run?

formula = read_expr('runs(x)')

m.satisfiers(formula, 'x', g)

Chapter 8 SemantiC analySiS

566

{'a', 'f'}

animals who run and are also a fox?

formula = read_expr('runs(x) & fox(x)')

m.satisfiers(formula, 'x', g)

{'f'}

These outputs are self-explanatory, wherein we evaluate open ended questions

like which animals run? Which animals can run and are also foxes? We get the relevant

symbols in our outputs, which we can map back to the actual animal names (Hint: a:

alex, f: felix). We encourage you to experiment with more propositions and FOL

expressions by building your own assumptions, domain, and rules.

 Summary
In this chapter, we covered a variety of topics focused on semantic analysis of textual

data. We revisited several of our concepts from Chapter 1 with regards to language

semantics. We looked at the WordNet corpus in detail and explored the concept of

synsets with practical examples. We also analyzed various lexical semantic relations from

Chapter 1 using synsets and real-world examples. We looked at relationships including

entailments, homonyms and homographs, synonyms and antonyms, hyponyms and

hypernyms, and holonyms and meronyms.

Semantic relations and similarity computation techniques were also discussed in

detail, with examples that leveraged common hypernyms among various synsets. Some

popular techniques widely used in semantic and information extraction were also

discussed, which included word sense disambiguation and named entity recognition.

We looked at state-of-the-art pretrained NER models from spaCy and NLTK, including

leveraging Stanford Core NLP NER models. We also learned how to build our own NER

tagging model from scratch! Besides semantic relations, we also revisited concepts

related to semantic representations, namely propositional logic and first order logic. We

leveraged the use of theorem provers and evaluated propositions and logical expressions

computationally. The next chapter focuses on one of the most popular applications in

NLP, sentiment analysis. Stay tuned!

Chapter 8 SemantiC analySiS

567
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_9

CHAPTER 9

Sentiment Analysis
In this chapter, we cover one of the most interesting and widely used aspects pertaining

to natural language processing (NLP), text analytics, and machine learning. The

problem at hand is sentiment analysis or opinion mining, where we want to analyze

some textual documents and predict their sentiment or opinion based on the content of

these documents. Sentiment analysis is perhaps one of the most popular applications of

natural language processing and text analytics, with a vast number of websites, books,

and tutorials on this subject. Sentiment analysis seems to work best on subjective text,

where people express opinions, feelings, and their mood. From a real-world industry

standpoint, sentiment analysis is widely used to analyze corporate surveys, feedback

surveys, social media data, and reviews for movies, places, commodities, and many

more. The idea is to analyze the reactions of people about a specific entity and take

insightful actions based on their sentiments.

A text corpus consists of multiple text documents and each document can be

as simple as a single sentence to as complex as a complete document with multiple

paragraphs. Textual data, in spite of being highly unstructured, can be classified into two

major types of documents. Factual documents typically depict some form of statements

or facts with no specific feelings or emotion attached to them. These are also known as

objective documents. Subjective documents, on the other hand, express feelings, mood,

emotions, and opinions.

Sentiment analysis is also popularly known as opinion analysis or opinion mining.

The key idea is to use techniques from text analytics, NLP, machine learning, and

linguistics to extract important information or data points from unstructured text. This

in turn can help us derive qualitative outputs like the overall sentiment being on a

positive, neutral, or negative scale and quantitative outputs like the sentiment polarity,

subjectivity, and objectivity proportions. Sentiment polarity is typically a numeric

score assigned to the positive and negative aspects of a text document and is based on

568

subjective parameters like specific words and phrases expressing feelings and emotion.

Neutral sentiments typically have a 0 polarity, since it does not express any specific

sentiment, positive sentiments have polarity > 0, and negative sentiments are < 0. Of

course, you can always change these thresholds based on the type of text you are dealing

with. There are no hard constraints on this.

In this chapter, we focus on analyzing a large corpus of movie reviews and deriving

sentiment from them. We cover a wide variety of techniques for analyzing sentiment,

including the following:

• Unsupervised lexicon-based models

• Traditional supervised machine learning models

• Newer supervised deep learning models

• Advanced supervised deep learning models

Besides looking at various approaches and models, we also briefly recap important

aspects in the machine learning pipeline around text preprocessing and normalization.

Besides this, we also perform an in-depth analysis of our predictive models, including

model interpretation and topic models.

The key idea here is to understand how we tackle a problem like sentiment analysis

on unstructured text, learn various techniques and models, and understand how to

interpret the results. This will enable you to use these methodologies in the future on

your own datasets. All the code examples showcased in this chapter are available on the

book’s official GitHub repository at https://github.com/dipanjanS/text-analytics-

with-python/tree/master/New-Second-Edition. Let’s get started!

 Problem Statement
The main objective in this chapter is to predict the sentiment of a number of movie

reviews obtained from the Internet Movie Database (IMDB). This dataset contains

50,000 movie reviews that have been labeled with positive and negative sentiment

class labels based on the review content. There are additional movie reviews that are

unlabeled. The dataset can be obtained from http://ai.stanford.edu/~amaas/

data/sentiment/, courtesy of Stanford University and Andrew L. Maas, Raymond

E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. This dataset

was also used in their famous paper, “Learning Word Vectors for Sentiment Analysis,”

Chapter 9 Sentiment analySiS

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/

569

from proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics (ACL 2011). They have datasets in the form of raw text as well as already

processed Bag of Words formats.

We use the raw labeled movie reviews for our analyses in this chapter. Hence our

task is to predict the sentiment of 15,000 labeled movie reviews and use the remaining

35,000 reviews to train our supervised models. We will still predict sentiments for 15,000

reviews in the case of unsupervised models to maintain consistency and enable ease of

comparison.

 Setting Up Dependencies
We will be using several Python libraries and frameworks specific to text analytics,

NLP, and machine learning. While most of them are mentioned in each section, you

need to make sure you have Pandas, NumPy, SciPy, and Scikit-Learn installed, which

are used for data processing and machine learning. Deep learning frameworks used in

this chapter include Keras with the TensorFlow backend. NLP libraries we use include

spaCy, NLTK, and Gensim. We also use our custom developed text preprocessing

and normalization module from Chapter 3, which you can find in the files named

contractions.py and text_normalizer.py. Utilities related to supervised model fitting,

prediction, and evaluation are present in model_evaluation_utils.py, so make sure

you place these modules in the same directory and the other Python files and Jupyter

notebooks for this chapter.

 Getting the Data
The dataset will be available along with the code files for this chapter in the GitHub

repository for this book at https://github.com/dipanjanS/text-analytics-with-

python under the file called movie_reviews.csv. It contains 50,000 labeled IMDB

movie reviews. This should be present in the corresponding notebooks folder for this

chapter under the directory for the Second Edition of the book. You can also download

the data from http://ai.stanford.edu/~amaas/data/sentiment/ if needed. Once

you have the CSV file, you can easily load it in Python using the read_csv(...) utility

function from Pandas.

Chapter 9 Sentiment analySiS

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python
http://ai.stanford.edu/~amaas/data/sentiment/

570

 Text Preprocessing and Normalization
One of the key steps before diving into the process of feature engineering and modeling

involves cleaning, preprocessing, and normalizing text to bring text components like

phrases and words to a standard format. We talked about this several times because

it is one of the most crucial stages for any NLP pipeline. Preprocessing enables

standardization across a document corpus, which helps build meaningful features and

reduce noise that can be introduced due to many factors, such as irrelevant symbols,

special characters, XML and HTML tags, and so on. Our text_normalizer module built

in Chapter 3 contains all the necessary utilities for our text normalization needs. You can

also refer to a sample Jupyter notebook named Text Normalization Demo.ipynb for a

more interactive experience. Just to refresh your memory, the main components in our

text normalization pipeline are described in this section.

• Cleaning text: Our text often contains unnecessary content like

HTML tags, which do not add much value when analyzing sentiment.

Hence, we need to make sure we remove them before extracting

features. The BeautifulSoup library does an excellent job in providing

necessary functions for this. Our strip_html_tags(...) function

cleans and strips out HTML code.

• Removing accented characters: In our dataset, we are dealing

with reviews in the English language so we need to make sure that

accented characters are converted and standardized into ASCII

characters. A simple example is converting é to e. Our remove_

accented_chars(...) function helps us in this respect.

• Expanding contractions: In the English language, contractions are

shortened versions of words. These shortened versions of existing

words or phrases are created by removing specific letters and

sounds. More often than not, vowels are removed from the words.

Examples include do not to don’t and I would to I’d. Contractions

pose a problem in text normalization because we have to deal with

special characters like the apostrophe and we also have to convert

each contraction to its expanded, original form. Our expand_

contractions(...) function uses regular expressions and various

contractions mapped in our contractions.py module to expand all

contractions in our text corpus.

Chapter 9 Sentiment analySiS

571

• Removing special characters: Another important task in text

cleaning and normalization is to remove special characters and

symbols that add to the noise in unstructured text. Simple regexes

can be used to achieve this. Our remove_special_characters(...)

function removes special characters. In our code, we have retained

numbers but you can also remove numbers if you do not want them

in your normalized corpus.

• Stemming and lemmatization: Word stems are usually the base

form of possible words, which can be created by attaching affixes, like

prefixes and suffixes, to the stem to create new words. This is known

as inflection. The reverse process of obtaining the base form of a word

is known as stemming. A simple example is WATCHES, WATCHING,

and WATCHED, which have the word root stem WATCH. The NLTK

package offers a wide range of stemmers, like the PorterStemmer

and LancasterStemmer. Lemmatization is very similar to stemming,

where we remove word affixes to get to the base form of a word.

However, the base form is known as the root word not the root stem.

The difference being that the root word is always a lexicographically

correct word (present in the dictionary) but the root stem may not

correct. We use lemmatization only in our normalization pipeline

to retain lexicographically correct words. The lemmatize_text(...)

function helps us in this regard.

• Removing stopwords: Words that have little or no significance,

especially when constructing meaningful features from text, are

known as stopwords. These are usually words that end up having the

maximum frequency if you do a simple term or word frequency in a

document corpus. Words like “a,” “an,” “the,” and so on are stopwords.

There is no universal stopword list, but we use a standard English

language stopwords list from NLTK. You can also add your own

domain specific stopwords if needed. The remove_stopwords(...)

function removes stopwords and retains words having the most

significance and context in a corpus.

Chapter 9 Sentiment analySiS

572

We use these components and tie them together in the following function called

normalize_corpus(...), which can be used to take a document corpus as input

and return the same corpus with cleaned and normalized text documents. Refer to

Chapter 3 to do a more detailed recap around text preprocessing. Now that we have our

normalization module ready, we can start modeling and analyzing our corpus.

 Unsupervised Lexicon-Based Models
We talked about unsupervised learning methods in the past, which refer to specific

modeling methods that can be applied directly to data features without the presence of

labeled data. One of the major challenges in any organization is getting labeled datasets

due the lack of time as well as resources to do this tedious task. Unsupervised methods

are very useful in this scenario and we look at some of these methods in this section.

Even though we have labeled data, this section should give you a good idea of how

lexicon based models work and you can apply them to your own datasets when you do

not have labeled data.

Unsupervised sentiment analysis models use well curated knowledgebases,

ontologies, lexicons, and databases, which have detailed information pertaining to

subjective words, phrases including sentiment, mood, polarity, objectivity, subjectivity,

and so on. A lexicon model typically uses a lexicon, also known as a dictionary or

vocabulary of words specifically aligned to sentiment analysis. These lexicons contain

a list of words associated with positive and negative sentiment, polarity (magnitude of

negative or positive score), parts of speech (POS) tags, subjectivity classifiers (strong,

weak, neutral), mood, modality, and so on. You can use these lexicons and compute

the sentiment of a text document by matching the presence of specific words from

the lexicon and then looking at other factors like presence of negation parameters,

surrounding words, overall context, phrases, and aggregate overall sentiment polarity

scores to decide the final sentiment score. There are several popular lexicon models

used for sentiment analysis. Some of them are as follows:

• Bing Liu’s lexicon

• MPQA subjectivity lexicon

• Pattern lexicon

• TextBlob lexicon

• AFINN lexicon

Chapter 9 Sentiment analySiS

573

• SentiWordNet lexicon

• VADER lexicon

This is not an exhaustive list of lexicon models but these are definitely among the

most popular ones available today. We cover the last three lexicon models in more detail

with hands-on code and examples using our movie review dataset. We use the last 15,000

reviews and predict their sentiment to see how well our model performs based on model

evaluation metrics like accuracy, precision, recall, and F1-score (which we covered in detail

in Chapter 5). Since we have labeled data, it will be easy for us to see how well our sentiment

values for these movie reviews match our lexicon-model based predicted sentiment

values. You can refer to the Jupyter notebook titled Sentiment Analysis - Unsupervised

Lexical.ipynb for an interactive experience. Before we start our analysis, let’s load the

necessary dependencies and configuration settings using the following snippet.

In [1]: import pandas as pd

 ...: import numpy as np

 ...: import text_normalizer as tn

 ...: import model_evaluation_utils as meu

 ...:

 ...: np.set_printoptions(precision=2, linewidth=80)

Now, we can load our IMDB review dataset and subset out the last 15,000 reviews for our

analysis. We don’t need to normalize them since most of the frameworks we will be using

handle this internally, but for some we might use some basic preprocessing steps as needed.

In [2]: dataset = pd.read_csv('movie_reviews.csv.bz2',

 compression='bz2')

 ...:

 ...: reviews = np.array(dataset['review'])

 ...: sentiments = np.array(dataset['sentiment'])

 ...:

 ...: # extract data for model evaluation

 ...: test_reviews = reviews[35000:]

 ...: test_sentiments = sentiments[35000:]

 ...: sample_review_ids = [7626, 3533, 13010]

We also extract some sample reviews so that we can run our models on them and

interpret their results in detail.

Chapter 9 Sentiment analySiS

574

 Bing Liu's Lexicon
This lexicon contains over 6,800 words, which have been divided into two files named

positive-words.txt, containing around 2,000 words/phrases, and negative-words.

txt, which contains over 4,800 words/phrases. The lexicon has been developed and

curated by Bing Liu over several years and has also been explained in detail in his

original paper by Nitin Jindal and Bing Liu, entitled “Identifying Comparative Sentences

in Text Documents,” from the proceedings of the 29th Annual International ACM SIGIR,

Seattle 2006. If you want to use this lexicon, you can get it from https://www.cs.uic.

edu/~liub/FBS/sentiment-analysis.html#lexicon, which includes a link to download

it as an archive (RAR format).

 MPQA Subjectivity Lexicon
The term MPQA stands for Multi-Perspective Question Answering and it contains a

diverse set of resources pertaining to opinion corpora, subjectivity lexicon, subjectivity

sense annotations, argument lexicon, debate corpora, opinion finder, and many more.

This is developed and maintained by the University of Pittsburgh and their official website

at http://mpqa.cs.pitt.edu/ contains all the necessary information. The subjectivity

lexicon is a part of their opinion finder framework and contains subjectivity clues and

contextual polarity. Details about this can be found in the paper by Theresa Wilson, Janyce

Wiebe, and Paul Hoffmann, entitled “Recognizing Contextual Polarity in Phrase-Level

Sentiment Analysis” from the proceedings of HLT-EMNLP-2005. You can download the

subjectivity lexicon from their official website at http://mpqa.cs.pitt.edu/lexicons/

subj_lexicon/. It contains subjectivity clues present in the dataset named subjclueslen1-

HLTEMNLP05.tff. The following snippet shows some sample lines from the lexicon.

type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n

priorpolarity=negative

type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y

priorpolarity=negative

...

...

type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n

priorpolarity=positive

type=strongsubj len=1 word1=zest pos1=noun stemmed1=n

priorpolarity=positive

Chapter 9 Sentiment analySiS

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

575

Each line consists of a specific word and its associated polarity, POS tag information,

length (right now only words of length 1 are present), subjective context, and stem

information.

 Pattern Lexicon
The pattern package is a complete natural language processing framework available

in Python and can be used for text processing, sentiment analysis, and more. This has

been developed by CLiPS (Computational Linguistics and Psycholinguistics), a research

center associated with the Linguistics Department of the Faculty of Arts of the University

of Antwerp. The pattern uses its own sentiment module, which internally uses a lexicon

that you can access from their official GitHub repository at https://github.com/

clips/pattern/blob/master/pattern/text/en/en-sentiment.xml. It this contains the

complete subjectivity-based lexicon database. Each line in the lexicon typically looks like

the following sample.

<word form="absurd" wordnet_id="a-02570643" pos="JJ" sense="incongruous"

polarity="-0.5" subjectivity="1.0" intensity="1.0" confidence="0.9" />

Thus you get important metadata information like WordNet corpus identifiers,

polarity scores, word sense, POS tags, intensity, subjectivity scores, and so on. These

can in turn be used to compute sentiment over a text document based on polarity and

subjectivity. Unfortunately, the pattern has still not been ported officially for Python

3.x and it works on Python 2.7.x. However, you can load up this lexicon and do your

own modeling as needed. Even better, the popular framework TextBlob uses this for

sentiment analysis and is available in Python 3!

 TextBlob Lexicon
As mentioned, the pattern package has a nice module for sentiment analysis but is

sadly only available for Python 2.7.x. However, our focus is on building applications on

Python 3.x, so we can use TextBlob out of the box! The lexicon that TextBlob uses is the

same one as pattern and is available in their source code on GitHub (https://github.

com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml). Some sample

examples are shown from the lexicon as follows.

Chapter 9 Sentiment analySiS

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml
https://github.com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml

576

<word form="abhorrent" wordnet_id="a-1625063" pos="JJ" sense="offensive

to the mind" polarity="-0.7" subjectivity="0.8" intensity="1.0"

reliability="0.9" />

<word form="able" cornetto_synset_id="n_a-534450" wordnet_id="a-01017439"

pos="JJ" sense="having a strong healthy body" polarity="0.5"

subjectivity="1.0" intensity="1.0" confidence="0.9" />

Typically, specific adjectives have a polarity score (negative/positive, -1.0 to +1.0)

and a subjectivity score (objective/subjective, +0.0 to +1.0). The reliability score specifies

if an adjective was hand-tagged (1.0) or inferred (0.7). Words are tagged per sense, e.g.,

ridiculous (pitiful) = negative, ridiculous (humorous) = positive. The Cornetto id (lexical

unit id) and Cornetto synset id refer to the Cornetto lexical database for Dutch. The

WordNet id refers to the WordNet3 lexical database for English. The part-of-speech

tags (POS) use the Penn Treebank convention. Let’s look at how we can use TextBlob for

sentiment analysis.

for review, sentiment in zip(test_reviews[sample_review_ids], test_

sentiments[sample_review_ids]):

 print('REVIEW:', review)

 print('Actual Sentiment:', sentiment)

 print('Predicted Sentiment polarity:', textblob.TextBlob(review).

sentiment.polarity)

 print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay -

no sense at all... SKIP IT!

Actual Sentiment: negative

Predicted Sentiment polarity: -0.3625

--

REVIEW: I don't care if some people voted this movie to be bad. If you want

the Truth this is a Very Good Movie! It has every thing a movie should

have. You really should Get this one.

Actual Sentiment: positive

Predicted Sentiment polarity: 0.16666666666666674

--

Chapter 9 Sentiment analySiS

577

REVIEW: Worst horror film ever but funniest film ever rolled in one you

have got to see this film it is so cheap it is unbelievable but you have to

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

Predicted Sentiment polarity: -0.037239583333333326

--

You can check the sentiment of some specific movie reviews and the sentiment

polarity score as predicted by TextBlob. Typically, a positive score denotes positive

sentiment and a negative score denotes negative sentiment. You can use a specific

custom threshold to determine what should be positive or negative. We use a custom

threshold of 0.1 based on multiple experiments. The following code computes the

sentiment on the entire test data. See Figure 9-1.

sentiment_polarity = [textblob.TextBlob(review).sentiment.polarity for

review in test_reviews]

predicted_sentiments = ['positive' if score >= 0.1 else 'negative'

 for score in sentiment_polarity]

meu.display_model_performance_metrics(true_labels=test_sentiments,

 predicted_labels=predicted_sentiments,

 classes=['positive', 'negative'])

Figure 9-1. Model performance metrics for pattern lexicon based model

We get an overall F1-score and accuracy of 77%, which is good considering it’s an

unsupervised model! Looking at the confusion matrix, we can clearly see that we have an

equal number of reviews almost being misclassified as positive and negative, which gives

consistent results with regard to precision and recall for each class.

Chapter 9 Sentiment analySiS

578

 AFINN Lexicon
The AFINN lexicon is perhaps one of the simplest and most popular lexicons and can be

used extensively for sentiment analysis. Developed and curated by Finn Årup Nielsen,

you can find more details on this lexicon in the paper by Finn Årup Nielsen, entitled “A

New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs,” from the

proceedings of the ESWC2011 workshop. The current version of the lexicon is AFINN- en- 165.

txt and it contains over 3,300 words with a polarity score associated with each word.

You can find this lexicon at the author’s official GitHub repository along with

previous versions of this lexicon including AFINN-111 at https://github.com/

fnielsen/afinn/blob/master/afinn/data/. The author has also created a nice wrapper

library on top of this in Python called afinn, which we will be using for our analysis

needs. You can import the library and instantiate an object using the following code.

In [3]: from afinn import Afinn

 ...:

 ...: afn = Afinn(emoticons=True)

We can now use this object and compute the polarity of our chosen four sample

reviews using the following snippet.

In [4]: for review, sentiment in zip(test_reviews[sample_review_ids], test_

sentiments[sample_review_ids]):

 ...: print('REVIEW:', review)

 ...: print('Actual Sentiment:', sentiment)

 ...: print('Predicted Sentiment polarity:', afn.score(review))

 ...: print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay -

no sense at all... SKIP IT!

Actual Sentiment: negative

Predicted Sentiment polarity: -7.0

--

REVIEW: I don't care if some people voted this movie to be bad. If you want

the Truth this is a Very Good Movie! It has every thing a movie should

have. You really should Get this one.

Actual Sentiment: positive

Predicted Sentiment polarity: 3.0

Chapter 9 Sentiment analySiS

https://github.com/fnielsen/afinn/blob/master/afinn/data/
https://github.com/fnielsen/afinn/blob/master/afinn/data/

579

--

REVIEW: Worst horror film ever but funniest film ever rolled in one you

have got to see this film it is so cheap it is unbelievable but you have to

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

Predicted Sentiment polarity: -3.0

--

We can compare the actual sentiment label for each review and check out the

predicted sentiment polarity score. A negative polarity typically denotes negative

sentiment. To predict sentiment on our complete test dataset of 15,000 reviews (I used

the raw text documents because AFINN takes into account other aspects like emoticons

and exclamations), we can now use the following snippet. I used a threshold of >= 1.0 to

determine if the overall sentiment is positive. You can choose your own threshold based

on analyzing your own corpora.

In [5]: sentiment_polarity = [afn.score(review) for review in test_reviews]

 ...: predicted_sentiments = ['positive' if score >= 1.0 else 'negative'

for score in sentiment_polarity]

Now that we have our predicted sentiment labels, we can evaluate our model

performance based on standard performance metrics using our utility function. See

Figure 9-2.

In [6]: meu.display_model_performance_metrics(true_labels=test_sentiments,

predicted_labels=predicted_sentiments, classes=['positive', 'negative'])

Figure 9-2. Model performance metrics for AFINN lexicon based model

Chapter 9 Sentiment analySiS

580

We get an overall F1-score of 71%, which is quite decent considering it’s an

unsupervised model. Looking at the confusion matrix, we can clearly see that quite a

number of negative sentiment-based reviews have been misclassified as positive (3,189)

and this leads to the lower recall of 57% for the negative sentiment class. Performance for

the positive class is better with regard to recall or hit-rate, where we correctly predicted

6,376 out of 7,510 positive reviews, but the precision is 67% because of the many wrong

positive predictions made in case of the negative sentiment reviews.

 SentiWordNet Lexicon
The WordNet corpus is one of the most popular corpora for the English language and is

used extensively in natural language processing and semantic analysis. WordNet gave us

the concept of synsets or synonym sets. The SentiWordNet lexicon is based on WordNet

synsets and can be used for sentiment analysis and opinion mining. The SentiWordNet

lexicon typically assigns three sentiment scores for each WordNet synset. These include

a positive polarity score, a negative polarity score, and an objectivity score. Further

details are available on the official website at http://sentiwordnet.isti.cnr.it,

including research papers and download links for the lexicon. We use the NLTK library,

which provides a Pythonic interface into SentiWordNet. Consider we have the adjective

“awesome”. We can get the sentiment scores associated with the synset for this word

using the following snippet.

In [8]: from nltk.corpus import sentiwordnet as swn

 ...:

 ...: awesome = list(swn.senti_synsets('awesome', 'a'))[0]

 ...: print('Positive Polarity Score:', awesome.pos_score())

 ...: print('Negative Polarity Score:', awesome.neg_score())

 ...: print('Objective Score:', awesome.obj_score())

Positive Polarity Score: 0.875

Negative Polarity Score: 0.125

Objective Score: 0.0

Let’s now build a generic function to extract and aggregate sentiment scores for a

complete textual document based on matched synsets in that document.

Chapter 9 Sentiment analySiS

http://sentiwordnet.isti.cnr.it

581

def analyze_sentiment_sentiwordnet_lexicon(review, verbose=False):

 # tokenize and POS tag text tokens

 tagged_text = [(token.text, token.tag_) for token in tn.nlp(review)]

 pos_score = neg_score = token_count = obj_score = 0

 # get wordnet synsets based on POS tags

 # get sentiment scores if synsets are found

 for word, tag in tagged_text:

 ss_set = None

 if 'NN' in tag and list(swn.senti_synsets(word, 'n')):

 ss_set = list(swn.senti_synsets(word, 'n'))[0]

 elif 'VB' in tag and list(swn.senti_synsets(word, 'v')):

 ss_set = list(swn.senti_synsets(word, 'v'))[0]

 elif 'JJ' in tag and list(swn.senti_synsets(word, 'a')):

 ss_set = list(swn.senti_synsets(word, 'a'))[0]

 elif 'RB' in tag and list(swn.senti_synsets(word, 'r')):

 ss_set = list(swn.senti_synsets(word, 'r'))[0]

 # if senti-synset is found

 if ss_set:

 # add scores for all found synsets

 pos_score += ss_set.pos_score()

 neg_score += ss_set.neg_score()

 obj_score += ss_set.obj_score()

 token_count += 1

 # aggregate final scores

 final_score = pos_score - neg_score

 norm_final_score = round(float(final_score) / token_count, 2)

 final_sentiment = 'positive' if norm_final_score >= 0 else 'negative'

 if verbose:

 norm_obj_score = round(float(obj_score) / token_count, 2)

 norm_pos_score = round(float(pos_score) / token_count, 2)

 norm_neg_score = round(float(neg_score) / token_count, 2)

 # to display results in a nice table

Chapter 9 Sentiment analySiS

582

 sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score,

norm_pos_score, norm_neg_score,

norm_final_score]],

 columns=pd.MultiIndex (levels=[

['SENTIMENT STATS:'],

 ['Predicted Sentiment', 'Objectivity',

 'Positive', 'Negative', 'Overall']],

 labels=[[0,0,0,0,0],[0,1,2,3,4]]))

 print(sentiment_frame)

 return final_sentiment

Our function takes in a movie review, tags each word with its corresponding POS tag,

extracts the sentiment scores for any matched synset token based on its POS tag, and

finally aggregates the scores. This process will be clearer when we run it on our sample

documents.

In [10]: for review, sentiment in zip(test_reviews[sample_review_ids],

test_sentiments[sample_review_ids]):

 ...: print('REVIEW:', review)

 ...: print('Actual Sentiment:', sentiment)

 ...: pred = analyze_sentiment_sentiwordnet_lexicon(review,

verbose=True)

 ...: print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay -

no sense at all... SKIP IT!

Actual Sentiment: negative

 SENTIMENT STATS:

 Predicted Sentiment Objectivity Positive Negative Overall

0 negative 0.76 0.09 0.15 -0.06

--

REVIEW: I don't care if some people voted this movie to be bad. If you want

the Truth this is a Very Good Movie! It has every thing a movie should

have. You really should Get this one.

Actual Sentiment: positive

 SENTIMENT STATS:

Chapter 9 Sentiment analySiS

583

 Predicted Sentiment Objectivity Positive Negative Overall

0 positive 0.76 0.19 0.06 0.13

--

REVIEW: Worst horror film ever but funniest film ever rolled in one you

have got to see this film it is so cheap it is unbelievable but you have to

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

 SENTIMENT STATS:

 Predicted Sentiment Objectivity Positive Negative Overall

0 positive 0.8 0.12 0.07 0.05

--

We can clearly see the predicted sentiment along with sentiment polarity scores and

an objectivity score for each sample movie review depicted in formatted dataframes.

Let’s use this model to predict the sentiment of all our test reviews and evaluate its

performance. A threshold of >=0 has been used for the overall sentiment polarity to be

classified as positive (whereas < 0 is a negative sentiment). See Figure 9-3.

In [11]: norm_test_reviews = tn.normalize_corpus(test_reviews)

 ...: predicted_sentiments = [analyze_sentiment_sentiwordnet_

lexicon(review, verbose=False) for review in norm_test_reviews]

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 predicted_labels=predicted_sentiments,

 ...: classes=['positive', 'negative'])

Figure 9-3. Model performance metrics for SentiWordNet lexicon based model

We get an overall F1-score of 60%, which is definitely a step down from our previous

models. We can see a large number of negative reviews being misclassified as positive.

Maybe playing around with the thresholds here might help!

Chapter 9 Sentiment analySiS

584

 VADER Lexicon
The VADER lexicon, developed by C.J. Hutto, is based on a rule-based sentiment analysis

framework, specifically tuned to analyze sentiments in social media. VADER stands for

Valence Aware Dictionary and sEntiment Reasoner. Details about this framework can

be read in the original paper by Hutto, C.J., and Gilbert, E.E. (2014), entitled “VADER:

A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,” from

the proceedings of the Eighth International Conference on Weblogs and Social Media

(ICWSM-14). You can use the library based on NLTK’s interface under the nltk.

sentiment.vader module.

You can also download the actual lexicon or install the framework from https://

github.com/cjhutto/vaderSentiment, which also contains detailed information about

VADER. This lexicon, present in the file titled vader_lexicon.txt, contains necessary

sentiment scores associated with words, emoticons, and slangs (like wtf, lol, nah, and

so on). There were a total of over 9,000 lexical features from which over 7,500 curated

lexical features were finally selected in the lexicon with proper validated valence scores.

Each feature was rated on a scale from "[-4] Extremely Negative" to "[4] Extremely

Positive", with allowance for "[0] Neutral (or Neither, N/A)".

The process of selecting lexical features was done by keeping all features that had

a non-zero mean rating and whose standard deviation was less than 2.5, which was

determined by the aggregate of ten independent raters. We depict a sample from the

VADER lexicon as follows:

:(-1.9 1.13578 [-2, -3, -2, 0, -1, -1, -2, -3, -1, -4]

:) 2.0 1.18322 [2, 2, 1, 1, 1, 1, 4, 3, 4, 1]

...

terrorizing -3.0 1.0 [-3, -1, -4, -4, -4, -3, -2, -3, -2, -4]

thankful 2.7 0.78102 [4, 2, 2, 3, 2, 4, 3, 3, 2, 2]

Each line in the preceding lexicon sample depicts a unique term, which can either

be an emoticon or a word. The first token indicates the word/emoticon, the second

token indicates the mean sentiment polarity score, the third token indicates the standard

deviation, and the final token indicates a list of scores given by 10 independent scorers.

Now let’s use VADER to analyze our movie reviews! We build our own modeling function

as follows.

Chapter 9 Sentiment analySiS

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

585

from nltk.sentiment.vader import SentimentIntensityAnalyzer

def analyze_sentiment_vader_lexicon(review,

 threshold=0.1,

 verbose=False):

 # preprocess text

 review = tn.strip_html_tags(review)

 review = tn.remove_accented_chars(review)

 review = tn.expand_contractions(review)

 # analyze the sentiment for review

 analyzer = SentimentIntensityAnalyzer()

 scores = analyzer.polarity_scores(review)

 # get aggregate scores and final sentiment

 agg_score = scores['compound']

 final_sentiment = 'positive' if agg_score >= threshold\

 else 'negative'

 if verbose:

 # display detailed sentiment statistics

 positive = str(round(scores['pos'], 2)*100)+'%'

 final = round(agg_score, 2)

 negative = str(round(scores['neg'], 2)*100)+'%'

 neutral = str(round(scores['neu'], 2)*100)+'%'

 sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,

 negative, neutral]],

 columns=pd.MultiIndex(levels=

 [['SENTIMENT STATS:'],

['Predicted Sentiment', 'Polarity Score',

 'Positive', 'Negative', 'Neutral']],

 labels=[[0,0,0,0,0],[0,1,2,3,4]]))

 print(sentiment_frame)

 return final_sentiment

Chapter 9 Sentiment analySiS

586

In our modeling function, we do some basic preprocessing but keep the

punctuations and emoticons intact. Besides this, we use VADER to get the sentiment

polarity and proportion of the review text with regard to positive, neutral, and negative

sentiment. We also predict the final sentiment based on a user-input threshold for the

aggregated sentiment polarity. Typically, VADER recommends using positive sentiment

for aggregated polarity >= 0.5, neutral between [-0.5, 0.5], and negative for polarity < -0.5.

We use a threshold of >= 0.4 for positive and < 0.4 for negative in our corpus. The

following is the analysis on our sample reviews.

In [13]: for review, sentiment in zip(test_reviews[sample_review_ids],

test_sentiments[sample_review_ids]):

 ...: print('REVIEW:', review)

 ...: print('Actual Sentiment:', sentiment)

 ...: pred = analyze_sentiment_vader_lexicon(review, threshold=0.4,

verbose=True)

 ...: print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay -

no sense at all... SKIP IT!

Actual Sentiment: negative

 SENTIMENT STATS:

 Predicted Sentiment Polarity Score Positive Negative Neutral

0 negative -0.8 0.0% 40.0% 60.0%

--

REVIEW: I don't care if some people voted this movie to be bad. If you want

the Truth this is a Very Good Movie! It has every thing a movie should

have. You really should Get this one.

Actual Sentiment: positive

 SENTIMENT STATS:

 Predicted Sentiment Polarity Score Positive Negative Neutral

0 negative -0.16 16.0% 14.0% 69.0%

--

REVIEW: Worst horror film ever but funniest film ever rolled in one you

have got to see this film it is so cheap it is unbelievable but you have to

see it really!!!! P.s watch the carrot

Chapter 9 Sentiment analySiS

587

Actual Sentiment: positive

 SENTIMENT STATS:

 Predicted Sentiment Polarity Score Positive Negative Neutral

0 positive 0.49 11.0% 11.0% 77.0%

--

We can see the detailed statistics pertaining to the sentiment and polarity for each

sample movie review. Let’s try our model on the complete test movie review corpus and

evaluate the model performance.

In [14]: predicted_sentiments = [analyze_sentiment_vader_lexicon(review,

threshold=0.4, verbose=False) for review in test_reviews]

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 predicted_labels=predicted_sentiments,

 ...: classes=['positive', 'negative'])

Figure 9-4 shows an overall F1-score and model accuracy of 71%, which is quite

similar to the AFINN-based model. The AFINN-based model wins out on the average

precision by only 1%; otherwise, both models have a similar performance.

 Classifying Sentiment with Supervised Learning
Another way to build a model to understand the text content and predict the sentiment

of the text-based reviews is to use supervised machine learning. To be more specific,

we use classification models for solving this problem. We covered the concepts relevant

to supervised learning and classification in Chapter 1 under the section “Supervised

Learning”. With regard to details on building and evaluating classification models, you

Figure 9-4. Model performance metrics for VADER lexicon based model

Chapter 9 Sentiment analySiS

588

can head over to Chapter 5 and refresh your memory if needed. We build an automated

sentiment text classification system in subsequent sections. The major steps to achieve

this are as follows:

 1. Prepare train and test datasets (optionally a validation dataset).

 2. Preprocess and normalize text documents.

 3. Feature engineering.

 4. Model training.

 5. Model prediction and evaluation.

These are the major steps for building our system. The last optional step is to deploy

the model in your server or on the cloud. Figure 9-5 shows a detailed workflow for building

a standard text classification system with supervised learning (classification) models.

In our scenario, documents indicate the movie reviews and classes indicate

the review sentiments, which can either be positive or negative, making it a binary

classification problem. We will build models using traditional machine learning

Figure 9-5. Blueprint for building an automated text classification system

Chapter 9 Sentiment analySiS

589

methods and the newer deep learning in the subsequent sections. You can refer to

the the Jupyter notebook titled Sentiment Analysis - Supervised.ipynb for an

interactive experience. Let’s load the necessary dependencies and settings before

getting started.

In [1]: import pandas as pd

 ...: import numpy as np

 ...: import text_normalizer as tn

 ...: import model_evaluation_utils as meu

 ...: import nltk

 ...: np.set_printoptions(precision=2, linewidth=80)

We can now load our IMDB movie reviews dataset, use the first 35,000 reviews for

training models, and save the remaining 15,000 reviews as the test dataset to evaluate

model performance. Besides this, we also use our normalization module to normalize

our review datasets (Steps 1 and 2 in our workflow).

In [2]: dataset = pd.read_csv('movie_reviews.csv.bz2',

 compression='bz2')

 ...:

 ...: # take a peek at the data

 ...: print(dataset.head())

 ...: reviews = np.array(dataset['review'])

 ...: sentiments = np.array(dataset['sentiment'])

 ...:

 ...: # build train and test datasets

 ...: train_reviews = reviews[:35000]

 ...: train_sentiments = sentiments[:35000]

 ...: test_reviews = reviews[35000:]

 ...: test_sentiments = sentiments[35000:]

 ...:

 ...: # normalize datasets

 ...: stop_words = nltk.corpus.stopwords.words('english')

 ...: stop_words.remove('no')

 ...: stop_words.remove('but')

 ...: stop_words.remove('not')

 ...:

Chapter 9 Sentiment analySiS

590

 ...: norm_train_reviews = tn.normalize_corpus(train_reviews)

 ...: norm_test_reviews = tn.normalize_corpus(test_reviews)

 review sentiment

0 One of the other reviewers has mentioned that ... positive

1 A wonderful little production.

The... positive

2 I thought this was a wonderful way to spend ti... positive

3 Basically there's a family where a little boy ... negative

4 Petter Mattei's "Love in the Time of Money" is... positive

Our datasets are now prepared and normalized so we can proceed from Step 3 in our

text classification workflow to build our classification system.

 Traditional Supervised Machine Learning Models
We use traditional classification models in this section to classify the sentiment of our

movie reviews. Our feature engineering techniques (Step 3) will be based on the Bag of

Words model and the TF-IDF model, which were discussed extensively in the section

titled “Feature Engineering on Text Data” in Chapter 4. The following snippet helps us

engineer features using both these models on our train and test datasets.

In [3]: from sklearn.feature_extraction.text import CountVectorizer,

TfidfVectorizer

 ...:

 ...: # build BOW features on train reviews

 ...: cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_

range=(1,2))

 ...: cv_train_features = cv.fit_transform(norm_train_reviews)

 ...: # build TFIDF features on train reviews

 ...: tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0, ngram_

range=(1,2), sublinear_tf=True)

 ...: tv_train_features = tv.fit_transform(norm_train_reviews)

 ...:

 ...: # transform test reviews into features

 ...: cv_test_features = cv.transform(norm_test_reviews)

 ...: tv_test_features = tv.transform(norm_test_reviews)

 ...:

Chapter 9 Sentiment analySiS

591

 ...: print('BOW model:> Train features shape:', cv_train_features.shape,

 ' Test features shape:', cv_test_features.shape)

 ...: print('TFIDF model:> Train features shape:', tv_train_features.

shape, ' Test features shape:', tv_test_features.shape)

BOW model:> Train features shape: (35000, 2090724) Test features shape:

(15000, 2090724)

TFIDF model:> Train features shape: (35000, 2090724) Test features shape:

(15000, 2090724)

We take into account word as well as bi-grams for our feature sets. We can now use

some traditional supervised machine learning algorithms, which work very well on text

classification. We recommend using logistic regression, support vector machines, and

multinomial Naïve Bayes models when you work on your own datasets in the future.

In this chapter, we built models using logistic regression as well as SVM. The following

snippet helps in initializing these classification model estimators.

In [4]: from sklearn.linear_model import SGDClassifier, LogisticRegression

 ...:

 ...: lr = LogisticRegression(penalty='l2', max_iter=100, C=1)

 ...: svm = SGDClassifier(loss='hinge', max_iter=100)

Without going into too many theoretical complexities, the logistic regression model

is a supervised linear machine learning model used for classification regardless of its

name. In this model, we try to predict the probability that a given movie review will

belong to one of the discrete classes (binary classes in our scenario). The function used

by the model for learning is represented here:

P y positive X XT=() = ()| s q

P y negative X XT(|= = - ()) 1 s q

Where the model tries to predict the sentiment class using the feature vector X and

s z
e z() =

+ -

1

1
, which is popularly known as the sigmoid function or logistic function.

The main objective of this model is to search for an optimal value of θ such that the

Chapter 9 Sentiment analySiS

592

probability of the positive sentiment class is maximum when the feature vector X is for

a positive movie review and small when it is for a negative movie review. The logistic

function helps model the probability to describe the final prediction class. The optimal

value of θ can be obtained by minimizing an appropriate cost/loss function using

standard methods like gradient descent. Logistic regression is also popularly known as

the MaxEnt (maximum entropy) classifier.

We now use our utility function train_predict_model(...) from our model_

evaluation_utils module to build a logistic regression model on our training features

and evaluate the model performance on our test features (Steps 4 and 5).

In [5]: # Logistic Regression model on BOW features

 ...: lr_bow_predictions = meu.train_predict_model(classifier=lr,

 ...: train_features=cv_train_features, train_labels=train_sentiments,

 ...: test_features=cv_test_features, test_labels=test_sentiments)

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 ...: predicted_labels=lr_bow_predictions,

 ...: classes=['positive', 'negative'])

We get an overall F1-score and model accuracy of 90.5%, as depicted in Figure 9-6,

which is excellent! We can now build a logistic regression model similarly on our TF-IDF

features using the following snippet.

In [6]: # Logistic Regression model on TF-IDF features

 ...: lr_tfidf_predictions = meu.train_predict_model(classifier=lr,

 ...: train_features=tv_train_features, train_labels=train_sentiments,

 ...: test_features=tv_test_features, test_labels=test_sentiments)

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 ...: predicted_labels=lr_tfidf_predictions,

 ...: classes=['positive', 'negative'])

Figure 9-6. Model performance metrics for logistic regression on Bag of Words
features

Chapter 9 Sentiment analySiS

593

We get an overall F1-score and model accuracy of 89%, as depicted in Figure 9-7,

which is great but our previous model is slightly better. You can similarly use the support

vector machine model estimator object svm, which we created earlier, and use the same

snippet to train and predict using an SVM model. We obtained a maximum accuracy

and F1-score of 90% with the SVM model (refer to the Jupyter notebook for step-by-step

code snippets). Thus you can see how effective and accurate these supervised machine

learning classification algorithms are in building a text sentiment classifier.

 Newer Supervised Deep Learning Models
Deep learning has revolutionized the machine learning landscape over the last decade.

In this section, we build some deep neural networks and train them on some advanced

text features based on word embeddings to build a text sentiment classification system,

similar to what we did in the previous section. Let’s load the following necessary

dependencies before we start our analysis.

In [7]: import gensim

 ...: import keras

 ...: from keras.models import Sequential

 ...: from keras.layers import Dropout, Activation, Dense

 ...: from keras.layers.normalization import BatchNormalization

 ...: from sklearn.preprocessing import LabelEncoder

Using TensorFlow backend.

So far, our models in Scikit-Learn directly accepted the sentiment class labels as

positive and negative and internally performed these operations. However, for our

deep learning models, we need to encode them explicitly. The following snippet helps us

tokenize our movie reviews and convert the text-based sentiment class labels into one-

hot encoded vectors (forms a part of Step 2).

Figure 9-7. Model performance metrics for logistic regression on TF-IDF
features

Chapter 9 Sentiment analySiS

594

In [8]: le = LabelEncoder()

 ...: num_classes=2

 ...: # tokenize train reviews & encode train labels

 ...: tokenized_train = [tn.tokenizer.tokenize(text)

 ...: for text in norm_train_reviews]

 ...: y_tr = le.fit_transform(train_sentiments)

 ...: y_train = keras.utils.to_categorical(y_tr, num_classes)

 ...: # tokenize test reviews & encode test labels

 ...: tokenized_test = [tn.tokenizer.tokenize(text)

 ...: for text in norm_test_reviews]

 ...: y_ts = le.fit_transform(test_sentiments)

 ...: y_test = keras.utils.to_categorical(y_ts, num_classes)

 ...:

 ...: # print class label encoding map and encoded labels

 ...: print('Sentiment class label map:', dict(zip(le.classes_,

le.transform(le.classes_))))

 ...: print('Sample test label transformation:\n'+'-'*35,

 ...: '\nActual Labels:', test_sentiments[:3], '\nEncoded Labels:',

y_ts[:3],'\nOne hot encoded Labels:\n', y_test[:3])

Sentiment class label map: {'positive': 1, 'negative': 0}

Sample test label transformation:

Actual Labels: ['negative' 'positive' 'negative']

Encoded Labels: [0 1 0]

One hot encoded Labels:

 [[1. 0.]

 [0. 1.]

 [1. 0.]]

Thus, we can see from the preceding outputs how our sentiment class labels have

been encoded into numeric representations, which in turn have been converted into

one-hot encoded vectors. The feature engineering techniques we use in this section (Step 3)

are slightly more advanced word vectorization techniques and are based on the concept

of word embeddings. We use the Word2Vec and GloVe models to generate embeddings.

Chapter 9 Sentiment analySiS

595

The Word2Vec model was built by Google and we covered this in detail in Chapter 4

under the section “Word Embeddings”. We set the size parameter to 500 in this scenario,

representing the feature vector size to be 512 for each word.

In [9]: # build word2vec model

 ...: w2v_num_features = 512

 ...: w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_

features, window=150, min_count=10, sample=1e-3)

We use the document word vector averaging scheme on this model from Chapter 4 to

represent each movie review as an averaged vector of all the word vector representations

for the different words in the review. The following function helps us compute averaged

word vector representations for any corpus of text documents.

def averaged_word2vec_vectorizer(corpus, model, num_features):

 vocabulary = set(model.wv.index2word)

 def average_word_vectors(words, model, vocabulary, num_features):

 feature_vector = np.zeros((num_features,), dtype="float64")

 nwords = 0.

 for word in words:

 if word in vocabulary:

 nwords = nwords + 1.

 feature_vector = np.add(feature_vector, model[word])

 if nwords:

 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

 features = [average_word_vectors(tokenized_sentence, model, vocabulary,

num_features) for tokenized_sentence in corpus]

 return np.array(features)

We can now use this function to generate averaged word vector representations on

our two movie review datasets.

In [10]: # generate averaged word vector features from word2vec model

 ...: avg_wv_train_features = averaged_word2vec_vectorizer(corpus=

tokenized_train, model=w2v_model, num_features= w2v_num_features)

 ...: avg_wv_test_features = averaged_word2vec_vectorizer(corpus=

tokenized_test, model=w2v_model, num_features= w2v_num_features)

Chapter 9 Sentiment analySiS

596

The GloVe model, which stands for Global Vectors, is an unsupervised model

for obtaining word vector representations. Created at Stanford University, this

model is trained on various corpora like Wikipedia, Common Crawl, and Twitter

and corresponding pretrained word vectors are available and can be used for our

analysis needs. Interested readers can refer to the original paper by Jeffrey Pennington,

Richard Socher, and Christopher D. Manning, entitled “GloVe: Global Vectors for Word

Representation” for more details. The spaCy library provided 300-dimensional word

vectors trained on the Common Crawl corpus using the GloVe model. They provide a

simple standard interface to get feature vectors of size 300 for each word as well as the

averaged feature vector of a complete text document. The following snippet leverages

spaCy to get the GloVe embeddings for our two datasets.

In [11]: # feature engineering with GloVe model

 ...: train_nlp = [tn.nlp_vec(item) for item in norm_train_reviews]

 ...: train_glove_features = np.array([item.vector for item in train_nlp])

 ...:

 ...: test_nlp = [tn.nlp_vec(item) for item in norm_test_reviews]

 ...: test_glove_features = np.array([item.vector for item in test_nlp])

You can check the feature vector dimensions for our datasets based on each of these

models using the following code.

In [12]: print('Word2Vec model:> Train features shape:', avg_wv_train_

features.shape, ' Test features shape:', avg_wv_test_features.shape)

 ...: print('GloVe model:> Train features shape:', train_glove_features.

shape, ' Test features shape:', test_glove_features.shape)

Word2Vec model:> Train features shape: (35000, 512) Test features shape:

(15000, 512)

GloVe model:> Train features shape: (35000, 300) Test features shape:

(15000, 300)

We can see from the preceding output that, as expected, the Word2Vec model

features are of size 500 and the GloVe features are of size 300.

We can now proceed to Step 4 of our classification system workflow, where we build

and train a deep neural network on these features. We use a fully-connected four layer

deep neural network (multi-layer perceptron or deep ANN) for our model. We do not

count the input layer in any deep architecture, hence our model will consist of three

Chapter 9 Sentiment analySiS

597

hidden layers of 512 neurons or units and one output layer with two units, which will

be used to predict a positive or negative sentiment based on the input layer features.

Figure 9-8 depicts our deep neural network model for sentiment classification.

Figure 9-8. Fully connected deep neural network model for sentiment
classification

We call this a fully connected deep neural network (DNN) because neurons or units

in each pair of adjacent layers are fully pairwise connected. These networks are also

known as deep artificial neural networks (ANNs) or multi-layer perceptrons (MLPs)

since they have more than one hidden layer. The following function leverages Keras on

top of TensorFlow to build the desired DNN model.

def construct_deepnn_architecture(num_input_features):

 dnn_model = Sequential()

 dnn_model.add(Dense(512, input_shape=(num_input_features,), kernel_

initializer='glorot_uniform'))

 dnn_model.add(BatchNormalization())

 dnn_model.add(Activation('relu'))

 dnn_model.add(Dropout(0.2))

 dnn_model.add(Dense(512, kernel_initializer='glorot_uniform'))

 dnn_model.add(BatchNormalization())

 dnn_model.add(Activation('relu'))

 dnn_model.add(Dropout(0.2))

Chapter 9 Sentiment analySiS

598

 dnn_model.add(Dense(512, kernel_initializer='glorot_uniform'))

 dnn_model.add(BatchNormalization())

 dnn_model.add(Activation('relu'))

 dnn_model.add(Dropout(0.2))

 dnn_model.add(Dense(2))

 dnn_model.add(Activation('softmax'))

 dnn_model.compile(loss='categorical_crossentropy', optimizer='adam',

 metrics=['accuracy'])

 return dnn_model

From the preceding function, you can see that we accept a num_input_features

parameter, which decides the number of units needed in the input layer (512 for

Word2Vec and 300 for GloVe features). We build a Sequential model, which helps us in

linearly stacking our hidden and output layers.

We use 512 units for all our hidden layers and the activation function relu indicates

a rectified linear unit. This function is typically defined as relu(x) = max (0, x) where

x is typically the input to a neuron. This is popularly known as the ramp function in

electronics and electrical engineering. This function is preferred now as compared to

the previously popular sigmoid function because it tries to solve the vanishing gradient

problem. This problem occurs when x > 0 and as x increases, the gradient from sigmoids

becomes very small (almost vanishing), but relu prevents this from happening. Besides

this, it also helps in faster convergence of gradient descent.

Note that we also use a novel technique called batch normalization. Batch

normalization is a technique for improving the performance and stability of neural

networks. The key idea is to normalize the inputs of each layer in such a way that they

have a mean output activation of 0 and standard deviation of 1. Remember that it is

called batch normalization because during training, we normalize the activations of

the previous layer for each batch, i.e., we apply a transformation such that we try to

maintain the mean activation close to 0 and the standard deviation close to 1. This helps

in regularization to some extent. Batch normalization tries to keep the distribution fed to

a neural unit constant. This helps to keep gradients in proper bounds, which otherwise

can lead to vanishing gradients, especially when using activation functions like sigmoid.

Chapter 9 Sentiment analySiS

599

We also use regularization in the network in the form of Dropout layers. By adding

a dropout rate of 0.2, it randomly sets 20% of the input feature units to 0 at each update

during training the model. This form of regularization helps prevent overfitting the

model.

The final output layer consists of two units with a softmax activation function.

The softmax function is basically a generalization of the logistic function we saw earlier,

which can be used to represent a probability distribution over n possible class outcomes.

In our case, n = 2 where the class can either be positive or negative and the softmax

probabilities will help us determine the same. The binary softmax classifier is also

interchangeably known as the binary logistic regression function.

The compile(...) method is used to configure the learning or training process of the

DNN model before we train it. This involves providing a cost or loss function in the loss

parameter. This will be the goal or objective that the model will try to minimize. There

are various loss functions based on the type of problem you want to solve, for example

the mean squared error for regression and categorical cross-entropy for classification.

Check out https://keras.io/losses/ for a list of possible loss functions. We will be

using categorical_crossentropy which helps us minimize the error or loss from the

softmax output. We need an optimizer for converging our model and minimizing the

loss or error function. The gradient descent or stochastic gradient descent is a popular

optimizer.

We use the adam optimizer which only requires first order gradients and very little

memory. Adam also uses momentum where each update is based not only on the

gradient computation of the current point, but also includes a fraction of the previous

update. This helps in faster convergence. Interested readers can refer to the original

paper from https://arxiv.org/pdf/1412.6980v8.pdf for further details on the adam

optimizer. Finally, the metrics parameter specifies model performance metrics, which

are used to evaluate the model when training (but not used to modify the training

loss itself). Let’s now build a DNN model based on our Word2Vec input feature

representations for our training reviews.

In [13]: w2v_dnn = construct_deepnn_architecture(num_input_features=w2v_

num_features)

Chapter 9 Sentiment analySiS

https://keras.io/losses/
https://arxiv.org/pdf/1412.6980v8.pdf

600

You can also visualize the DNN model architecture with the help of Keras, by using

the following code. See Figure 9-9.

In [14]: from IPython.display import SVG

 ...: from keras.utils.vis_utils import model_to_dot

 ...:

 ...: SVG(model_to_dot(w2v_dnn, show_shapes=True, show_layer_

names=False, rankdir='TB').create(prog='dot', format='svg'))

We now train our model on our training reviews dataset of Word2Vec features

represented by avg_wv_train_features (Step 4). We use the fit(...) function from

Keras for the training process. There are some parameters that you should be aware

of. The epoch parameter indicates one complete forward and backward pass of all the

training examples. The batch_size parameter indicates the total number of samples

propagated through the DNN model at a time for one backward and forward pass for

training the model and updating the gradient. Thus if you have 1,000 observations and

your batch size is 100, each epoch will consist of 10 iterations, where 100 observations

will be passed through the network at a time and the weights on the hidden layer units

will be updated.

We also specify a validation_split of 0.1 to extract 10% of the training data and

use it as a validation dataset for evaluating the performance at each epoch. The shuffle

parameter shuffles the samples in each epoch when training the model.

In [18]: batch_size = 100

 ...: w2v_dnn.fit(avg_wv_train_features, y_train, epochs=10, batch_

size=batch_size, shuffle=True, validation_split=0.1, verbose=1)

Train on 31500 samples, validate on 3500 samples

Epoch 1/10 31500/31500 - loss: 0.3378 - acc: 0.8598 - val_loss: 0.3114 - val_acc: 0.8714

Figure 9-9. Visualizing the DNN model architecture using Keras

Chapter 9 Sentiment analySiS

601

Epoch 2/10 31500/31500 - loss: 0.2877 - acc: 0.8808 - val_loss: 0.2968 - val_acc: 0.8806

Epoch 3/10 31500/31500 - loss: 0.2766 - acc: 0.8854 - val_loss: 0.3043 - val_acc: 0.8726

Epoch 4/10 31500/31500 - loss: 0.2702 - acc: 0.8888 - val_loss: 0.2964 - val_acc: 0.8786

...

...

Epoch 9/10 31500/31500 - loss: 0.2456 - acc: 0.8964 - val_loss: 0.3180 - val_acc: 0.8680

Epoch 10/10 31500/31500 - loss: 0.2385 - acc: 0.9014 - val_loss: 0.3126 - val_acc: 0.8717

The preceding snippet tells us that we have trained our DNN model on the training

data for 10 epochs with 100 as the batch size. We get a validation accuracy of close to

88%, which is quite good. It’s time now to put our model to the real test! Let’s evaluate

our model performance on the test review Word2Vec features (Step 5).

In [19]: y_pred = w2v_dnn.predict_classes(avg_wv_test_features)

 ...: predictions = le.inverse_transform(y_pred)

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 ...: predicted_labels=predictions, classes=['positive', 'negative'])

Figure 9-10. Model performance metrics for deep neural networks on Word2Vec
features

The results in Figure 9-10 show us that we have obtained a model accuracy and

F1-score of 88%, which is great! You can use a similar workflow and build and train

a DNN model for our GloVe based features and evaluate the model performance.

The following snippet depicts the workflow for Steps 4 and 5 of our text classification

system blueprint.

Chapter 9 Sentiment analySiS

602

build DNN model

glove_dnn = construct_deepnn_architecture(num_input_features=300)

train DNN model on GloVe training features

batch_size = 100

glove_dnn.fit(train_glove_features, y_train, epochs=5, batch_size=batch_size,

 shuffle=True, validation_split=0.1, verbose=1)

get predictions on test reviews

y_pred = glove_dnn.predict_classes(test_glove_features)

predictions = le.inverse_transform(y_pred)

Evaluate model performance

meu.display_model_performance_metrics(true_labels=test_sentiments,

predicted_labels=predictions, classes=['positive', 'negative'])

We obtained an overall model accuracy and F1-score of 86% with the GloVe features,

which is still good but not better than what we obtained using our Word2Vec features.

You can refer to the Sentiment Analysis - Supervised.ipynb Jupyter notebook to

see the step-by-step output obtained for this code. This concludes our discussion on

building text sentiment classification systems leveraging newer deep learning models

and methodologies. Onwards to learning about advanced deep learning models!

 Advanced Supervised Deep Learning Models
We used fully connected deep neural network and word embeddings in the previous

section. Another new and interesting approach to supervised deep learning is the use

of recurrent neural networks (RNNs) and long short-term memory networks (LSTMs)

which also considers the sequence of data (words, events and so on). These are more

advanced models than your regular fully connected deep networks and usually take

more time to train. We leverage Keras on top of TensorFlow and try to build a LSTM-

based classification model and use word embeddings as our features. You can refer to

the Jupyter notebook titled Sentiment Analysis - Advanced Deep Learning.ipynb for

an interactive experience.

Chapter 9 Sentiment analySiS

603

We work on our normalized and preprocessed train and test review datasets, norm_

train_reviews and norm_test_reviews, which we created in our previous analyses.

Assuming you have them loaded, we will first tokenize these datasets such that each text

review is decomposed into its corresponding tokens (workflow Step 2).

In [1]: tokenized_train = [tn.tokenizer.tokenize(text) for text in norm_

train_reviews]

 ...: tokenized_test = [tn.tokenizer.tokenize(text) for text in norm_

test_reviews]

For feature engineering (Step 3), we create word embeddings. However, we will

create them using Keras instead of using prebuilt ones like Word2Vec or GloVe. Word

embeddings tend to vectorize text documents into fixed sized vectors such that these

vectors try to capture contextual and semantic information.

To generate embeddings, we use the Embedding layer from Keras, which requires

documents to be represented as tokenized and numeric vectors. We already have

tokenized text vectors in our tokenized_train and tokenized_text variables.

However, we would need to convert them into numeric representations. Besides this,

we would also need the vectors to be of uniform size even though the tokenized text

reviews will be of variable length due to the difference in number of tokens in each

review. For this, one strategy is to take the length of the longest review (with maximum

number of tokens/words) and set it as the vector size. Let’s call this max_len. Reviews

of shorter length can be padded with a PAD term in the beginning to increase their

length to max_len.

We would need to create a word to index vocabulary mapping for representing

each tokenized text review in a numeric form. Note you also need to create a numeric

mapping for the padding term, which we will call PAD_INDEX, and assign it the numeric

index of 0. For unknown terms, in case they are encountered later in the test dataset or

newer, previously unseen reviews, we would need to assign them to some index too.

This is because we will vectorize, engineer, and build models only on the training data.

Hence, if a new term should come up (which was originally not a part of the model

training), we will consider it as an out of vocabulary (OOV) term and assign it to a

constant index (we name this term NOT_FOUND_INDEX and assign it the index of

vocab_size+1).

Chapter 9 Sentiment analySiS

604

The following snippet helps us create this vocabulary from our tokenized_train

corpus of training text reviews.

In [2]: from collections import Counter

 ...:

 ...: # build word to index vocabulary

 ...: token_counter = Counter([token for review in tokenized_train for

token in review])

 ...: vocab_map = {item[0]: index+1

 for index, item in enumerate(dict(token_counter).items())}

 ...: max_index = np.max(list(vocab_map.values()))

 ...: vocab_map['PAD_INDEX'] = 0

 ...: vocab_map['NOT_FOUND_INDEX'] = max_index+1

 ...: vocab_size = len(vocab_map)

 ...: # view vocabulary size and part of the vocabulary map

 ...: print('Vocabulary Size:', vocab_size)

 ...: print('Sample slice of vocabulary map:', dict(list(vocab_map.

items())[10:20]))

Vocabulary Size: 82358

Sample slice of vocabulary map: {'martyrdom': 6, 'palmira': 7, 'servility': 8,

'gardening': 9, 'melodramatically': 73505, 'renfro': 41282, 'carlin': 41283,

'overtly': 41284, 'rend': 47891, 'anticlimactic': 51}

In this case, we used all the terms in our vocabulary. You can easily filter and use

more relevant terms here (based on their frequency) by using the most_common(count)

function from Counter and taking the first count terms from the list of unique terms in

the training corpus. We now encode the tokenized text reviews based on the vocab_map.

Besides this, we also encode the text sentiment class labels into numeric representations.

In [3]: from keras.preprocessing import sequence

 ...: from sklearn.preprocessing import LabelEncoder

 ...:

 ...: # get max length of train corpus and initialize label encoder

 ...: le = LabelEncoder()

 ...: num_classes=2 # positive -> 1, negative -> 0

 ...: max_len = np.max([len(review) for review in tokenized_train])

 ...:

Chapter 9 Sentiment analySiS

605

 ...: ## Train reviews data corpus

 ...: # Convert tokenized text reviews to numeric vectors

 ...: train_X = [[vocab_map[token] for token in tokenized_review]

 for tokenized_review in tokenized_train]

 ...: train_X = sequence.pad_sequences(train_X, maxlen=max_len) # pad

 ...: ## Train prediction class labels

 ...: # Convert text sentiment labels (negative\positive) to binary

encodings (0/1)

 ...: train_y = le.fit_transform(train_sentiments)

 ...:

 ...: ## Test reviews data corpus

 ...: # Convert tokenized text reviews to numeric vectors

 ...: test_X = [[vocab_map[token] if vocab_map.get(token) else vocab_

map['NOT_FOUND_INDEX']

 ...: for token in tokenized_review]

 ...: for tokenized_review in tokenized_test]

 ...: test_X = sequence.pad_sequences(test_X, maxlen=max_len)

 ...: ## Test prediction class labels

 ...: # Convert text sentiment labels (negative\positive) to binary

encodings (0/1)

 ...: test_y = le.transform(test_sentiments)

 ...:

 ...: # view vector shapes

 ...: print('Max length of train review vectors:', max_len)

 ...: print('Train review vectors shape:', train_X.shape,

 ' Test review vectors shape:', test_X.shape)

Max length of train review vectors: 1442

Train review vectors shape: (35000, 1442) Test review vectors shape:

(15000, 1442)

From the preceding code snippet and the output, it is clear that we encoded each

text review into a numeric sequence vector such that the size of each review vector is

1,442, which is basically the maximum length of reviews from the training dataset. We

pad shorter reviews and truncate extra tokens from longer reviews such that the shape

Chapter 9 Sentiment analySiS

606

of each review is constant, as depicted in the output. We can now proceed to Step 3 and

a part of Step 4 of the classification workflow by introducing the Embedding layer and

coupling it with the deep network architecture based on LSTMs.

from keras.models import Sequential

from keras.layers import Dense, Embedding, Dropout, SpatialDropout1D

from keras.layers import LSTM

EMBEDDING_DIM = 128 # dimension for dense embeddings for each token

LSTM_DIM = 64 # total LSTM units

model = Sequential()

model.add(Embedding(input_dim=vocab_size, output_dim=EMBEDDING_DIM, input_

length=max_len))

model.add(SpatialDropout1D(0.2))

model.add(LSTM(LSTM_DIM, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adam",

 metrics=["accuracy"])

The Embedding layer helps us generate the word embeddings from scratch. This layer

is also initialized with some weights and is updated based on our optimizer, similar to

weights on the neuron units in other layers when the network tries to minimize the loss

in each epoch. Thus, the embedding layer tries to optimize its weights such that we get

the best word embeddings that will generate minimum error in the model and capture

semantic similarity and relationships among words. How do we get the embeddings?

Let’s say we have a review with three terms ['movie', 'was', 'good'] and a vocab_map

consisting of word to index mappings for 82,358 words. The word embeddings are

generated somewhat similar to what’s shown in Figure 9-11.

Chapter 9 Sentiment analySiS

607

Based on our model architecture, the Embedding layer takes in three parameters:

• input_dim, which is equal to the vocabulary size (vocab_size) of

82,358

• output_dim, which is 128, representing the dimension of dense

embedding (depicted by rows in the embedding layer in Figure 9-11)

• input_len, which specifies the length of the input sequences (movie

review sequence vectors), which is 1,442

In the example depicted in Figure 9-11, since we have one review, the dimension

is (1, 3). This review is converted into a numeric sequence (2, 57, 121) based on the

VOCAB_MAP. Then the specific columns representing the indices in the review sequence

are selected from the embedding layer (vectors at column indices 2, 57, and 121) to

generate the final word embeddings. This gives us an embedding vector of dimension

(1, 128, 3) also represented as (1, 3, 128) when each row is represented based on each

sequence word embedding vector. Many deep learning frameworks like Keras represent

the embedding dimensions as (m, n) where m represents all the unique terms in our

vocabulary (82,358) and n represents the output_dim, which is 128 in this case. Consider

a transposed version of the layer depicted in Figure 9-11 and you are good to go!

Figure 9-11. Understanding how word embeddings are generated

Chapter 9 Sentiment analySiS

608

If you have the encoded review terms sequence vector represented in one-hot

encoded format (3, 82358) and do a matrix multiplication with the embedding layer

represented as (82358, 128), where each row represents the embedding for a word in the

vocabulary, you will directly obtain the word embeddings for the review sequence vector

as (3, 128). The weights in the embedding layer are updated and optimized in each

epoch based on the input data when propagated through the whole network, like we

mentioned earlier such that overall loss and error is minimized to get maximum model

performance.

These dense word embeddings are then passed to the LSTM layer having 64 units.

We introduced the LSTM architecture briefly in Chapter 1. LSTMs try to overcome

the shortcomings of RNN models, especially with regard to handling long-term

dependencies and problems that occur when the weight matrix associated with the

units (neurons) become too small (leading to vanishing gradient) or too large (leading to

exploding gradient). These architectures are more complex than regular deep networks

and going into detailed internals and math concepts are out of the current scope, but we

will try to cover the essentials here without making it math heavy.

Readers interested in researching the internals of LSTMs can check out the original

paper which inspired it all, by Hochreiter, S., and Schmidhuber, J. entitled, “Long

Short-Term Memory,” from Neural Computation, 9(8), 1735-1780. We depict the basic

architecture of RNNs and compare it to LSTMs in Figure 9-12.

Chapter 9 Sentiment analySiS

609

The RNN units usually have a chain of repeating modules (this happens when we

unroll the loop) so that the module has a simple structure of maybe one layer with the

tanh activation. LSTMs are also a special type of RNN, with a similar structure, but the

LSTM unit has four neural network layers instead of just one. The detailed architecture

of the LSTM cell is shown in Figure 9-13.

Figure 9-12. Basic structure of RNN and LSTM units (Source: Christopher Olah's
blog: colah.github.io)

Chapter 9 Sentiment analySiS

610

The notation t indicates one time step, C depicts the cell states, and h indicates the

hidden states. The gates i f o andCt, , ,
Ú

 help remove or add information to the cell state.

The gates i, f, and o represent the input, output, and forget gates, respectively. Each of

them is modulated by the sigmoid layer, which outputs numbers from 0 to 1 controlling

how much of the output from these gates should pass. This protects and controls the cell

state. The detailed workflow of how information flows through the LSTM cell is depicted

in Figure 9-14 in four steps.

 1. The first step talks about the forget gate layer f which helps us

decide what information we should throw away from the cell

state. This is done by looking at the previous hidden state ht − 1 and

current inputs xt as depicted in the equation. The sigmoid layer

helps control how much of this should be kept or forgotten.

 2. The second step depicts the input gate layer i which helps decide

what information will be stored in the current cell state. The

sigmoid layer in the input gate helps decide which values will be

updated based on ht − 1 & xt. The tanh layer helps create a vector

of the new candidate values Ct

Ú

, based on ht − 1 & xt, which can

be added to the current cell state. Thus the tanh layer creates the

values and the input gate with sigmoid layer helps choose which

values should be updated.

Figure 9-13. Detailed architecture of an LSTM cell (Source: Christopher Olah's
blog: colah.github.io)

Chapter 9 Sentiment analySiS

611

 3. The third step involves updating the old cell state Ct − 1 to the new

cell state Ct by leveraging what we obtained in the first two steps.

We multiply the old cell state by the forget gate (ft × Ct − 1) and then

add the new candidate values scaled by the input gate to sigmoid

layer i Ct t´æ
è
ç

ö
ø
÷

Ú

.

 4. The fourth and final step helps us decide what the final output

should be, which is basically a filtered version of our cell state.

The output gate with the sigmoid layer o helps us select which

parts of the cell state will pass to the final output. This is multiplied

with the cell state values when passed through the tanh layer to

give us the final hidden state values h o Ct t t= ´ æ
è
ç

ö
ø
÷

Ú

tanh .

These steps are depicted in Figure 9-14 with necessary annotations and equations.

I want to thank our good friend Christopher Olah for providing us with detailed

information as well as the images for depicting the internal workings of LSTM

networks. We recommend checking out Christopher’s blog at http://colah.github.

io/posts/2015-08-Understanding-LSTMs for more details. A shout out also goes to

Edwin Chen, for explaining RNNs and LSTMs in an easy-to-understand format. We

also recommend referring to Edwin’s blog at http://blog.echen.me/2017/05/30/

exploring-lstms for information on the workings of RNNs and LSTMs.

Chapter 9 Sentiment analySiS

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://blog.echen.me/2017/05/30/exploring-lstms
http://blog.echen.me/2017/05/30/exploring-lstms

612

The final layer in our deep network is the Dense layer with 1 unit and the sigmoid

activation function. We basically use the binary_crossentropy function with the adam

optimizer, since this is a binary classification problem and the model will ultimately

predict a 0 or a 1, which we can decode back to a negative or positive sentiment

prediction with our label encoder.

You can also use the categorical_crossentropy loss function here, but you would

need to then use a Dense layer with two units instead with a softmax function. Now

that our model is compiled and ready, we can head on to Step 4 of our classification

workflow—training the model. We use a similar strategy from our previous deep network

models, where we train our model on the training data with five epochs, batch size of 100

reviews, and a 10% validation split of training data to measure validation accuracy.

Figure 9-14. Walkthrough of data flow in an LSTM cell (Source: Christopher
Olah's blog: colah.github.io)

Chapter 9 Sentiment analySiS

613

In [4]: batch_size = 100

 ...: model.fit(train_X, train_y, epochs=5, batch_size=batch_size,

 ...: shuffle=True, validation_split=0.1, verbose=1)

Train on 31500 samples, validate on 3500 samples

Epoch 1/5 31500/31500 - 2491s - loss: 0.4081 - acc: 0.8184 - val_loss:

0.3006 - val_acc: 0.8751

Epoch 2/5 31500/31500 - 2489s - loss: 0.2253 - acc: 0.9158 - val_loss:

0.3209 - val_acc: 0.8780

Epoch 3/5 31500/31500 - 2656s - loss: 0.1431 - acc: 0.9493 - val_loss:

0.3483 - val_acc: 0.8671

Epoch 4/5 31500/31500 - 2604s - loss: 0.1023 - acc: 0.9658 - val_loss:

0.3803 - val_acc: 0.8729

Epoch 5/5 31500/31500 - 2701s - loss: 0.0694 - acc: 0.9761 - val_loss:

0.4430 - val_acc: 0.8706

Training LSTMs on CPU is notoriously slow and, as you can see, my model took

approximately 3.6 hours to train just five epochs on an i5 3rd Gen Intel CPU with 8GB of

memory. Of course, a cloud-based environment like Google Cloud Platform or AWS on

GPU took me approximately less than an hour to train the same model. So I recommend

you to choose a GPU-based deep learning environment, especially when working with

RNNs or LSTM-based network architectures. Based on the preceding output, we can see

that with just five epochs, we have decent validation accuracy. Time to put our model to

the test! Let’s see how well it predicts the sentiment for our test reviews and use the same

model evaluation framework we used in our previous models (Step 5).

In [5]: # predict sentiments on test data

 ...: pred_test = model.predict_classes(test_X)

 ...: predictions = le.inverse_transform(pred_test.flatten())

 ...: # evaluate model performance

 ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

 ...: predicted_labels=predictions,

classes=['positive', 'negative'])

Chapter 9 Sentiment analySiS

614

The results depicted in Figure 9-15 show us that we obtained a model accuracy and

F1-score of 88%, which is quite good! With more quality data, you can expect to get even

better results. Try experimenting with different architectures and see if you get better

results!

 Analyzing Sentiment Causation
We built both supervised and unsupervised models to predict the sentiment of movie

reviews based on the review text content. While feature engineering and modeling is

definitely the need of the hour, you also need to know how to analyze and interpret the

root cause behind how model predictions work. In this section, we analyze sentiment

causation. The idea is to find the root cause or key factors causing positive or negative

sentiment. The first area of focus is model interpretation, where we try to understand,

interpret, and explain the mechanics behind predictions made by our classification

models. The second area of focus is to apply topic modeling and extract key topics from

positive and negative sentiment reviews.

 Interpreting Predictive Models
One of the challenges with machine learning models is the transition from a pilot or

proof-of-concept phase to the production phase. Business and key stakeholders often

perceive machine learning models as complex black boxes and pose the question,

why should I trust your model? Explaining the complex mathematical or theoretical

concepts doesn’t serve the purpose. Is there some way that we can explain these models

in an easy-to-interpret manner? This topic in fact has gained extensive attention very

recently in 2016. Refer to the original research paper by M.T. Ribeiro, S. Singh, and

Figure 9-15. Model performance metrics for LSTM-based deep learning model on
word embeddings

Chapter 9 Sentiment analySiS

615

C. Guestrin titled "Why Should I Trust You?: Explaining the Predictions of Any Classifier,”

from https://arxiv.org/pdf/1602.04938.pdf to understand more about model

interpretation and the LIME framework.

There are various ways to interpret the predictions made by our predictive sentiment

classification models. We want to understand why a positive review was correctly

predicted as having a positive sentiment or a negative review as having a negative

sentiment. Besides this, no model is a 100% accurate, so we also want to understand

the reason for misclassifications or wrong predictions. The code used in this section is

available in the the Jupyter notebook named Sentiment Causal Analysis - Model

Interpretation.ipynb for an interactive experience.

Let’s first build a basic text classification pipeline for the model that worked best for

us so far. This is the logistic regression model based on the Bag of Words feature model.

We leverage the pipeline module from Scikit-Learn to build this machine learning

pipeline using the following code.

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import make_pipeline

build BOW features on train reviews

cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_

range=(1,2))

cv_train_features = cv.fit_transform(norm_train_reviews)

build Logistic Regression model

lr = LogisticRegression()

lr.fit(cv_train_features, train_sentiments)

Build Text Classification Pipeline

lr_pipeline = make_pipeline(cv, lr)

save the list of prediction classes (positive, negative)

classes = list(lr_pipeline.classes_)

We build our model based on norm_train_reviews, which contains the normalized

training reviews that we used in all our earlier analyses. Now that we have our

classification pipeline ready, you can deploy the model by using pickle or joblib to

save the classifier and feature objects, similar to what we discussed in the “Model

Chapter 9 Sentiment analySiS

https://arxiv.org/pdf/1602.04938.pdf

616

Deployment” section in Chapter 5. Assuming our pipeline is in production, how do

we use it for new movie reviews? Let’s try to predict the sentiment for two new sample

reviews (which were not used in training the model).

normalize sample movie reviews

new_corpus = ['The Lord of the Rings is an Excellent movie!',

 'I didn\'t like the recent movie on TV. It was NOT good and a

waste of time!']

norm_new_corpus = tn.normalize_corpus(new_corpus, stopwords=stop_words)

norm_new_corpus

['lord rings excellent movie', 'not like recent movie tv not good waste time']

predict movie review sentiment

lr_pipeline.predict(norm_new_corpus)

array(['positive', 'negative'], dtype=object)

Our classification pipeline predicts the sentiment of both reviews correctly! Also

closely observe the second sentence—it can handle negation, which is a desired quality.

This is a good start, but how do we interpret the model predictions? One way is to use

the model prediction class probabilities as a measure of confidence. You can use the

following code to get the prediction probabilities for our sample reviews.

In [4]: pd.DataFrame(lr_pipeline.predict_proba(norm_new_corpus),

columns=classes)

Out[4]:

 negative positive

0 0.217474 0.782526

1 0.912649 0.087351

Thus, we can say that the first movie review has a prediction confidence or

probability of 78% to have positive sentiment as compared to the second movie review

with a 91% probability to have negative sentiment.

Let’s now kick it up a notch. Instead of playing around with toy examples, we run

the same analysis on actual reviews from the test_reviews dataset (we use norm_test_

reviews, which has the normalized text reviews). Besides prediction probabilities, we

use the skater framework for easy interpretation of the model decisions. You need to

Chapter 9 Sentiment analySiS

617

load the following dependencies from the skater package first. We also define a helper

function, which takes in a document index, a corpus, its response predictions, and an

explainer object and helps with the model interpretation analysis.

from skater.core.local_interpretation.lime.lime_text import

LimeTextExplainer

explainer = LimeTextExplainer(class_names=classes)

helper function for model interpretation

def interpret_classification_model_prediction(doc_index, norm_corpus,

corpus, prediction_labels, explainer_obj):

 # display model prediction and actual sentiments

 print("Test document index: {index}\nActual sentiment: {actual}

 \nPredicted sentiment: {predicted}"

 .format(index=doc_index, actual=prediction_labels[doc_index],

 predicted=lr_pipeline.predict([norm_corpus[doc_index]])))

 # display actual review content

 print("\nReview:", corpus[doc_index])

 # display prediction probabilities

 print("\nModel Prediction Probabilities:")

 for probs in zip(classes, lr_pipeline.predict_proba([norm_corpus[doc_

index]])[0]):

 print(probs)

 # display model prediction interpretation

 exp = explainer.explain_instance(norm_corpus[doc_index],

 lr_pipeline.predict_proba, num_

features=10, labels=[1])

 exp.show_in_notebook()

The preceding snippet leverages skater to explain our text classifier to analyze its

decision making process in an easy-to-interpret form. Even though the model might be a

complex one from a global perspective, it is easier to explain and approximate the model

behavior on local instances. This is done by learning the model around the vicinity of

the data point of interest X by sampling instances around X and assigning weights based

on their proximity to X. Thus, these locally learned linear models help explain complex

models in an easier way with class probabilities and contribution of top features to the

class probabilities, which aid in the decision making process.

Chapter 9 Sentiment analySiS

618

Let’s take a movie review from our test dataset where both the actual and predicted

sentiment is negative and analyze it with the helper function we created in the preceding

snippet.

In [6]: doc_index = 100

 ...: interpret_classification_model_prediction(doc_index=doc_index,

corpus=norm_test_reviews, corpus=test_reviews, prediction_

labels=test_sentiments, explainer_obj=explainer)

Test document index: 100

Actual sentiment: negative

Predicted sentiment: ['negative']

Review: Worst movie, (with the best reviews given it) I've ever seen. Over

the top dialog, acting, and direction. more slasher flick than thriller.

With all the great reviews this movie got I'm appalled that it turned out

so silly. shame on you martin scorsese

Model Prediction Probabilities:

('negative', 0.827942236512913)

('positive', 0.17205776348708696)

Figure 9-16. Model interpretation for our classification model's correct prediction
for a negative review

Chapter 9 Sentiment analySiS

619

The results depicted in Figure 9-16 show us the class prediction probabilities and

the top 10 features that contributed the maximum to the prediction decision-making

process. These key features are also highlighted in the normalized movie review text.

Our model performs quite well in this scenario and we can see the key features that

contributed to the negative sentiment of this review including bad, silly, dialog, and

shame, which make sense. Besides this, the word “great” contributed the maximum to

the positive probability of 0.17 and in fact if we had removed this word from our review

text, the positive probability would have dropped significantly.

The following code runs a similar analysis on a test movie review with both actual

and predicted sentiment of the positive value.

In [7]: doc_index = 2000

 ...: interpret_classification_model_prediction(doc_index=doc_index,

corpus=norm_test_reviews, corpus=test_reviews,prediction_labels=

 test_sentiments, explainer_obj=explainer)

Test document index: 2000

Actual sentiment: positive

Predicted sentiment: ['positive']

Review: I really liked the Movie "JOE." It has really become a cult

classic among certain age groups.

The Producer of this movie is

a personal friend of mine. He is my Stepsons Father-In-Law. He lives in

Manhattan's West side, and has a Bungalow. in Southampton, Long Island. His

son-in-law live next door to his Bungalow.

Presently, he does

not do any Producing, But dabbles in a business with HBO movies.

As a person, Mr. Gil is a real gentleman and I wish he would have

continued in the production business of move making.

Model Prediction Probabilities:

('negative', 0.014587305153566432)

('positive', 0.9854126948464336)

Chapter 9 Sentiment analySiS

620

The results depicted in Figure 9-17 show us the top features responsible for the

model making a decision of predicting this review as positive. Based on the content, the

reviewer really liked this movie and it was a real cult classic among certain age groups.

In our final analysis, we look at the model interpretation of an example where the model

makes a wrong prediction.

In [8]: doc_index = 347

 ...: interpret_classification_model_prediction(doc_index=doc_index,

corpus=norm_test_reviews, corpus=test_reviews, prediction_labels=

test_sentiments, explainer_obj=explainer)

Test document index: 347

Actual sentiment: negative

Predicted sentiment: ['positive']

Review: When I first saw this film in cinema 11 years ago, I loved it.

I still think the directing and cinematography are excellent, as is

the music. But it's really the script that has over the time started to

bother me more and more. I find Emma Thompson's writing self-absorbed

and unfaithful to the original book; she has reduced Marianne to a side-

character, a second fiddle to her much too old, much too severe Elinor -

she in the movie is given many sort of 'focus moments', and often they

appear to be there just to show off Thompson herself.

I do

Figure 9-17. Model interpretation for our classification model's correct prediction
for a positive review

Chapter 9 Sentiment analySiS

621

understand her cutting off several characters from the book, but leaving

out the one scene where Willoughby in the book is redeemed? For someone

who red and cherished the book long before the movie, those are the things

always difficult to digest.

As for the actors, I love Kate

Winslet as Marianne. She is not given the best script in the world to work

with but she still pulls it up gracefully, without too much sentimentality.

Alan Rickman is great, a bit old perhaps, but he plays the role

beautifully. And Elizabeth Spriggs, she is absolutely fantastic as always.

Model Prediction Probabilities:

('negative', 0.028707732768304406)

('positive', 0.9712922672316956)

Figure 9-18. Model interpretation for our classification model's incorrect prediction

The preceding output tells us that our model predicted the movie review indicating

a positive sentiment when in fact the actual sentiment label is negative for the same

review. The results in Figure 9-18 tell us that the reviewer shows signs of positive

sentiment in the movie review, especially in parts where he/she tells us that “I loved

it. I still think the directing and cinematography are excellent, as is the music… Alan

Rickman is great, a bit old perhaps, but he plays the role beautifully. And Elizabeth

Spriggs, she is absolutely fantastic as always.” The feature words from the same have

been depicted in the top features contributing to positive sentiment.

Chapter 9 Sentiment analySiS

622

The model interpretation also correctly identifies the aspects of the review

contributing to negative sentiment, such as “But it’s really the script that has over

time started to bother me more and more.” Hence, this is one of the more complex

reviews because it indicates positive and negative sentiment. The final interpretation

is in the reader’s hands. You can now use this same framework to interpret your own

classification models and understand where your model might be performing well and

where it might need improvements!

 Analyzing Topic Models
Another way of analyzing key terms, concepts, or topics responsible for sentiment is

to use a different approach known as topic modeling. We covered some basics of topic

modeling in the section titled “Topic Models” under “Feature Engineering on Text

Data” in Chapter 4. The main aim of topic models is to extract and depict key topics

or concepts that are otherwise latent and not very prominent in huge corpora of text

documents. We saw the use of Latent Dirichlet Allocation (LDA) and Non-Negative

Matrix Factorization (NMF) for topic modeling in Chapter 6. In this section, we use Non-

Negative Matrix Factorization. Refer to the Jupyter notebook titled Sentiment Causal

Analysis - Topic Models.ipynb for an interactive experience.

The first step in this analysis is to combine all our normalized train and test reviews

and separate these reviews into positive and negative sentiment reviews. Once we do

this, we will extract features from these two datasets using the TF-IDF feature vectorizer.

The following snippet helps us achieve this.

In [11]: from sklearn.feature_extraction.text import TfidfVectorizer

 ...:

 ...: # consolidate all normalized reviews

 ...: norm_reviews = norm_train_reviews+norm_test_reviews

 ...: # get tf-idf features for only positive reviews

 ...: positive_reviews = [review for review, sentiment in zip(norm_

reviews, sentiments) if sentiment == 'positive']

 ...: ptvf = TfidfVectorizer(use_idf=True, min_df=0.02, max_df=0.75,

 ngram_range=(1,2), sublinear_tf=True)

 ...: ptvf_features = ptvf.fit_transform(positive_reviews)

 ...: # get tf-idf features for only negative reviews

Chapter 9 Sentiment analySiS

623

 ...: negative_reviews = [review for review, sentiment in zip(norm_

reviews, sentiments) if sentiment == 'negative']

 ...: ntvf = TfidfVectorizer(use_idf=True, min_df=0.02, max_df=0.75,

 ngram_range=(1,2), sublinear_tf=True)

 ...: ntvf_features = ntvf.fit_transform(negative_reviews)

 ...: # view feature set dimensions

 ...: print(ptvf_features.shape, ntvf_features.shape)

(25000, 933) (25000, 925)

From the preceding output dimensions, you can see that we have filtered out a lot

of the features we used previously when building our classification models by making

min_df to be 0.02 and max_df to be 0.75. This is to speed up the topic modeling process

and remove features that either occur too much or not very often. Let’s now import the

necessary dependencies for the topic modeling process.

In [12]: import pyLDAvis

 ...: import pyLDAvis.sklearn

 ...: from sklearn.decomposition import NMF

 ...: import topic_model_utils as tmu

 ...:

 ...: pyLDAvis.enable_notebook()

 ...: total_topics = 10

The NMF class from Scikit-Learn helps us do the topic modeling. We also use

pyLDAvis to build interactive visualizations of topic models. The core principle behind

Non-Negative Matrix Factorization (NNMF) is to apply matrix decomposition (similar to

SVD) to a non-negative feature matrix X so that the decomposition can be represented

as X ≈ WH, where W and H are both non-negative matrices which, if multiplied, should

approximately reconstruct the feature matrix X. A cost function like L2 norm can be used

to get this approximation. Let’s apply NNMF to get 10 topics from our positive sentiment

reviews.

build topic model on positive sentiment review features

pos_nmf = NMF(n_components=total_topics, solver='cd', max_iter=500,

 random_state=42, alpha=.1, l1_ratio=.85)

pos_nmf.fit(ptvf_features)

Chapter 9 Sentiment analySiS

624

extract features and component weights

pos_feature_names = np.array(ptvf.get_feature_names())

pos_weights = pos_nmf.components_

extract and display topics and their components

pos_feature_names = np.array(ptvf.get_feature_names())

feature_idxs = np.argsort(-pos_weights)[:, :15]

topics = [pos_feature_names[idx] for idx in feature_idxs]

for idx, topic in enumerate(topics):

 print('Topic #'+str(idx+1)+':')

 print(', '.join(topic))

 print()

Topic #1:

but, one, make, no, take, way, even, get, seem, like, much, scene, may,

character, go

Topic #2:

movie, watch, see, like, think, really, good, but, see movie, great, movie

not, would, get, enjoy, say

Topic #3:

show, episode, series, tv, season, watch, dvd, television, first, good,

see, would, air, great, remember

Topic #4:

family, old, young, year, life, child, father, mother, son, year old, man,

friend, kid, boy, girl

Topic #5:

performance, role, actor, play, great, cast, good, well, excellent,

character, story, star, also, give, acting

Topic #6:

film, see, see film, film not, watch, good film, watch film, dvd, great

film, film but, film see, release, year, film make, great

Chapter 9 Sentiment analySiS

625

Topic #7:

love, love movie, story, love story, fall love, fall, beautiful, song,

wonderful, music, heart, romantic, romance, favorite, character

Topic #8:

funny, laugh, hilarious, joke, humor, moment, fun, guy, get, but, line,

show, lot, time, scene

Topic #9:

ever, ever see, movie ever, one good, one, see, good, ever make, good

movie, movie, make, amazing, never, every, movie one

Topic #10:

comedy, romantic, laugh, hilarious, fun, humor, comic, joke, drama, light,

romance, star, british, classic, one

While some of the topics might be very generic, we can see that some of the topics clearly

indicate the specific aspects from the reviews, which led to them having a positive sentiment.

You can leverage pyLDAvis to visualize these topics in an interactive visualization.

In [14]: pyLDAvis.sklearn.prepare(pos_nmf, ptvf_features, ptvf, mds='mmds')

Figure 9-19. Visualizing topic models on positive sentiment movie reviews

Chapter 9 Sentiment analySiS

626

The visualization in Figure 9-19 shows us the 10 topics from positive movie reviews

and we can see the top relevant terms for Topic 5 from our previous output (pyLDAvis

gives its own ordering to topics). From the topics and the terms, we can see terms like

movie cast, actors, performance, play, characters, music, wonderful, script, good, and

so on contribute to positive sentiment in various topics. This is quite interesting and

gives you good insight into components of the reviews that contribute to the positive

sentiment of the reviews. This visualization is completely interactive if you are using

the Jupyter notebook. You can click on any of the bubbles representing topics in the

Intertopic Distance Map on the left to see the most relevant terms in each of the topics in

the bar chart on the right.

The plot on the left is rendered using multi-dimensional scaling (MDS). Similar

topics should be close to one another and dissimilar topics should be far apart. The size

of each topic bubble is based on the frequency of that topic and its components in the

overall corpus.

The visualization on the right shows the top terms. When no topic it selected, it

shows the top 30 most salient terms in the corpus. A term’s saliency is defined as a

measure of how frequently the term appears in the corpus and its distinguishing factor

when used to distinguish between topics. When a topic is selected, the chart changes

to show something similar to Figure 9-19, which shows the top 30 most relevant terms

for that topic. The relevancy metric is controlled by λ, which can be changed based

on a slider on top of the bar chart (refer to the notebook to interact with this). Readers

interested in more mathematical theory behind these visualizations are encouraged to

check out https://cran.r-project.org/web/packages/LDAvis/vignettes/details.

pdf, which is a vignette for the R package LDAvis, which has been ported to Python as

pyLDAvis.

Let’s now extract topics and run this same analysis on our negative sentiment

reviews from the movie reviews dataset.

build topic model on negative sentiment review features

neg_nmf = NMF(n_components=total_topics, solver='cd', max_iter=500,

 random_state=42, alpha=.1, l1_ratio=.85)

neg_nmf.fit(ntvf_features)

extract features and component weights

neg_feature_names = ntvf.get_feature_names()

neg_weights = neg_nmf.components_

Chapter 9 Sentiment analySiS

https://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf
https://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf

627

extract and display topics and their components

neg_feature_names = np.array(ntvf.get_feature_names())

feature_idxs = np.argsort(-neg_weights)[:, :15]

topics = [neg_feature_names[idx] for idx in feature_idxs]

for idx, topic in enumerate(topics):

 print('Topic #'+str(idx+1)+':')

 print(', '.join(topic))

 print()

Topic #1:

but, one, character, get, go, like, no, scene, seem, take, show, much,

time, would, play

Topic #2:

movie, watch, good, bad, think, like, but, see, would, make, even, movie

not, could, really, watch movie

Topic #3:

film, film not, good, bad, make, bad film, acting, film but, but, actor,

watch film, see film, script, watch, see

Topic #4:

horror, budget, low, low budget, horror movie, horror film, gore, flick,

zombie, blood, scary, killer, monster, kill, genre

Topic #5:

effect, special, special effect, fi, sci, sci fi, acting, bad, look, look

like, cheesy, terrible, cheap, creature, space

Topic #6:

funny, comedy, joke, laugh, not funny, show, humor, stupid, try, hilarious,

but, fun, suppose, episode, moment

Topic #7:

ever, ever see, bad, bad movie, movie ever, see, one bad, ever make, one,

movie, film ever, bad film, make, horrible, movie bad

Chapter 9 Sentiment analySiS

628

Topic #8:

waste, waste time, time, not waste, money, complete, hour, spend, life,

talent, please, crap, total, plot, minute

Topic #9:

book, read, novel, story, version, base, character, change, write, love,

movie, comic, completely, miss, many

Topic #10:

year, old, year old, kid, child, year ago, ago, young, age, adult, boy,

girl, see, parent, school

While some of the topics might be very generic, just like we observed in the previous

code segment, we can see some of the topics clearly indicate the specific aspects from the

reviews which led to them having a negative sentiment. You can now leverage pyLDAvis to

visualize these topics in an interactive visualization, just like the previous plot.

In [16]: pyLDAvis.sklearn.prepare(neg_nmf, ntvf_features, ntvf, mds='mmds')

Figure 9-20. Visualizing topic models on positive sentiment movie reviews

Chapter 9 Sentiment analySiS

629

The visualization in Figure 9-20 shows us the 10 topics from negative movie reviews

and we can see the top relevant terms for Topic 4 highlighted in the output. From the

topics and the terms, we can see terms like low budget, horror movie, gore, blood, cheap,

scary, nudity, and so on have contributed to the negative sentiments. Of course, there are

good chances of overlap between topics from positive and negative sentiment reviews

but there will be distinguishable, distinct topics that further help us with interpretation

and causal analysis.

 Summary
This real-world case-study oriented chapter introduced the IMDB movie review

dataset with the objective of predicting the sentiment of the reviews based on the

textual content. We covered multiple aspects from NLP, including text preprocessing,

normalization, feature engineering, and text classification. Unsupervised learning

techniques using sentiment lexicons like TextBlob, Afinn, SentiWordNet, and Vader

were covered in extensive detail, to show how we can analyze sentiment in the absence

of labeled training data, which is a valid problem in today’s organizations. Detailed

workflow diagrams depicting text classification as a supervised machine learning

problem helped us relate NLP to machine learning so that we can use machine learning

techniques and methodologies to solve this problem of predicting sentiment when

labeled data is available.

The focus on supervised methods was two-fold. This included traditional machine

learning approaches and models like logistic regression and support vector machines

and newer deep learning models including deep neural networks, RNNs, and LSTMs.

Detailed concepts, workflows, hands-on examples, and comparative analyses with

multiple supervised models and different feature engineering techniques have been

covered for the purpose of predicting sentiment from movie reviews with maximum

model performance. The final section of this chapter covered a very important aspect of

machine learning, which is often neglected in our analyses. We looked at ways to analyze

and interpret the cause of the positive or negative sentiments. Analyzing and visualizing

model interpretations and topic models was covered with several examples, to give

you good insight into how you can reuse these frameworks on your own datasets. The

frameworks and methodologies used in this chapter should be useful for tackling similar

problems in your own text data.

Chapter 9 Sentiment analySiS

631
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1_10

CHAPTER 10

The Promise of Deep
Learning
The focus of this book has been primarily to get you up to speed on essential techniques

in natural language processing, so covering detailed applications leveraging deep

learning for NLP is out of the current scope. However, we have still tried to depict some

interesting applications of NLP throughout the book, including Chapter 4, where we

covered interesting methods around word embeddings using deep learning methods

like Word2Vec, GloVe, and FastText and Chapter 5, where we built text classification

models using deep learning. The intent of this chapter is to talk a fair bit about the recent

advancements made in the field of NLP with the help of deep learning and the promise

it holds toward building better models, solving more complex problems and helping us

build better and more intelligent systems.

There has been a lot of hype with deep learning and artificial intelligence (AI) in

general with skeptics portraying them as a failure and the media portraying a grim

future with the loss of jobs and the rise of the so-called killer robots. The intent of

this chapter is to cut through the hype and focus on the current reality of how these

methods help build better and more generic systems with less effort on aspects like

feature engineering and complex modeling. Deep learning has been delivering and

is continuing to deliver continual success in areas like machine translation, text

generation, text summarization, and speech recognition, which were all really tough

problems to solve. Besides just solving them, they have also enabled us to reach

human-level accuracy in the last couple of years!

Another interesting aspect is the scope of building universal models or

representations such that we can represent any corpus of text in a vector space with

minimal effort in feature engineering. The idea is to leverage some form of transfer

learning such that we can use a pretrained model (which has been trained on huge

632

corpora of rich textual data) to generalize representations on new text data, especially

in problems with a lack of data. The best part of computer vision is that we have huge

datasets like ImageNet with a suite of pretrained accurate models like VGG, Inception,

and ResNet, which can be used as feature extractors in new problems. But what about

NLP? Therein lies an inherent challenge considering that text data is so diverse, noisy,

and unstructured. We’ve had some recent successes with word embeddings, including

methods like Word2Vec, GloVe, and FastText, all of which are covered in Chapter 4. In

this chapter, we will be showcasing several state-of-the-art generic sentence-embedding

encoders, which tend to give surprisingly good performance especially on small

amounts of data for transfer learning tasks as compared to word-embedding models.

This will showcase the promise deep learning holds for NLP. We will be covering the

following models:

• Averaged sentence embeddings

• Doc2Vec

• Neural-net language models (hands-on demo!)

• Skip-thought vectors

• Quick-thought vectors

• InferSent

• Universal sentence encoders

We cover the essential concepts and showcase some hands-on examples leveraging

Python and TensorFlow in a text-classification problem focused on sentiment analysis

based on the dataset from the previous chapter. This chapter is based on my recent

thoughts, which I penned in a popular article that you can also access here if interested:

https://towardsdatascience.com/deep-transfer-learning-for-natural-language-

processing-text-classification-with-universal-1a2c69e5baa9. The intent of this

chapter is not just to talk about some generic content around deep learning for NLP, but

also to showcase cutting edge state-of-the-art deep transfer learning models for NLP

with real world hands-on examples. Let's get started! All the code examples showcased

in this chapter are available on the book's official GitHub repository, which you can

access here: https://github.com/dipanjanS/text-analytics-with-python/tree/

master/New-Second-Edition.

Chapter 10 the promise of Deep Learning

https://towardsdatascience.com/deep-transfer-learning-for-natural-language-processing-text-classification-with-universal-1a2c69e5baa9
https://towardsdatascience.com/deep-transfer-learning-for-natural-language-processing-text-classification-with-universal-1a2c69e5baa9
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition

633

 Why Are We Crazy for Embeddings?
What is this sudden craze behind embeddings? I’m sure many of you might be hearing it

everywhere. Let’s clear up the basics first and cut through the hype.

An embedding is a fixed-length vector typically used to encode and repre-
sent an entity (document, sentence, word, graph!).

I’ve talked about the need for embeddings in the context of text data and NLP

in Chapter 4 and in one of my articles at: https://towardsdatascience.com/

understanding- feature-engineering-part-4-deep-learning-methods-for-text-

data- 96c44370bbfa. But I will reiterate this briefly here for the sake of convenience.

With regard to speech or image recognition systems, we already get information in the

form of rich dense feature vectors embedded in high-dimensional datasets like audio

spectrograms and image pixel intensities. However, when it comes to raw text data,

especially count-based models like Bag of Words, we are dealing with individual words

that may have their own identifiers and do not capture the semantic relationship among

words. This leads to huge sparse word vectors for textual data and thus if we do not have

enough data, we may end up getting poor models or even overfitting the data due to the

curse of dimensionality. See Figure 10-1.

Figure 10-1. Comparing feature representations for audio, image, and text

Predictive methods like neural network based language models try to predict words

from neighboring words by looking at word sequences in the corpus. In the process, it

learns distributed representations, thus giving us dense word embeddings.

Chapter 10 the promise of Deep Learning

https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa

634

Now you might be thinking, big deal, we get a bunch of vectors from text. What

now? Well, if we have a good numeric representation of text data that captures even the

context and semantics, we can use this for a wide variety of downstream real-world tasks

like sentiment analysis, text classification, clustering, summarization, translation, and so

on. The fact of the matter is, machine learning or deep learning models run on numbers

and embeddings (see Figure 10-2) are they key to encoding text data to be used by these

models.

A big trend here has been finding so-called “universal embeddings,” which are

basically pretrained embeddings obtained from training deep learning models on a

huge corpus. This enables us to use these pretrained (generic) embeddings in a wide

variety of tasks, including scenarios with constraints like lack of adequate data. This is a

perfect example of transfer learning, in that it involves leveraging prior knowledge from

pretrained embeddings to solve a completely new task! The following figure showcases

some recent trends in universal word and sentence embeddings thanks to an amazing

article (https://medium.com/huggingface/universal-word-sentence-embeddings-

ce48ddc8fc3a) from the folks at HuggingFace (see Figure 10-3)!

Figure 10-2. Text embeddings

Chapter 10 the promise of Deep Learning

https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface

635

Figure 10-3 shows some interesting trends, including Google’s universal sentence

encoder, which we will be exploring in detail. Let’s take a brief look at trends and

developments in word- and sentence-embedding models before diving deeper into

universal sentence encoder.

 Trends in Word-Embedding Models
The word-embedding models are perhaps some of the older and more mature models

that have been developed starting with Word2Vec in 2013. The three most common

models leveraging deep learning (unsupervised approaches) based on embedding word

vectors in a continuous vector space based on semantic and contextual similarity are:

• Word2Vec

• GloVe

• FastText

Figure 10-3. Recent trends in universal word and sentence embeddings (Source:
https://medium.com/huggingface/universal-word-sentence-embeddings-
ce48ddc8fc3a)

Chapter 10 the promise of Deep Learning

https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a

636

These models are based on the principle of distributional hypothesis in the field of

distributional semantics, which tells us that words that occur and are used in the same

context are semantically similar to one another and have similar meanings (“a word is

characterized by the company it keeps”). Do refer to my article on word embeddings, as

it covers these three methods in detail, if you are interested in the gory details!

Another interesting model in this area that has been developed recently is ELMo

(https://allennlp.org/elmo). It was developed by the Allen Institute for Artificial

Intelligence. ELMo is a take on the famous Muppet character of the same name from

the show “Sesame Street,” but it’s also an acronym for “Embeddings from Language

Models”.

ELMo gives us word embeddings that are learned from a deep bidirectional language

model (biLM), which is typically pretrained on a large text corpus, enabling transfer

learning and for these embeddings to be used across different NLP tasks. Allen AI

tells us that ELMo representations are contextual, deep, and character-based. It uses

morphological clues to form representations even for OOV (out-of-vocabulary) tokens.

 Trends in Universal Sentence-Embedding Models
The concept of sentence embeddings is not new, because back when word embeddings

were built, one of the easiest ways to build a baseline sentence-embedding model was

with averaging.

A baseline sentence-embedding model can be built by averaging the individual word

embeddings for every sentence/document (kind of similar to Bag of Words, where we

lose that inherent context and sequence of words in the sentence). I do cover this in

detail in my article (https://towardsdatascience.com/understanding-feature-

engineering- part-4-deep-learning-methods-for-text-data-96c44370bbfa), as well

as in Chapter 5. Figure 10-4 shows a way of implementing this.

Chapter 10 the promise of Deep Learning

https://allennlp.org/elmo
https://allennlp.org/elmo
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa

637

Figure 10-4. Baseline sentence-embedding models

Chapter 10 the promise of Deep Learning

638

Of course, there are more sophisticated approaches like encoding sentences in a

linear weighted combination of their word embeddings and then remove some of the

common principal components. Check out, “A Simple but Tough-to-Beat Baseline for

Sentence Embeddings” at https://openreview.net/forum?id=SyK00v5xx.

Doc2Vec is also a very popular approach proposed by Mikolov et al. in their paper

entitled “Distributed Representations of Sentences and Documents”. Herein, they

propose the paragraph vector, which is an unsupervised algorithm that learns fixed-

length feature embeddings from variable-length pieces of text, such as sentences,

paragraphs, and documents (see Figure 10-5).

Based on this depiction, the model represents each document by a dense vector,

which is trained to predict words in the document. The only difference being the

paragraph or document ID used along with the regular word tokens to build out the

embeddings. Such a design, enables this model to overcome the weaknesses of bag-of-

words models.

Neural-Net Language Models (NNLM) is a very early idea based on a neural

probabilistic language model proposed by Bengio et al. in their 2013 paper,

“A Neural Probabilistic Language Model,” where they talk about learning a distributed

representation for words that allows each training sentence to inform the model

Figure 10-5. Word2Vec vs. Doc2Vec (source: https://arxiv.org/abs/1405.4053)

Chapter 10 the promise of Deep Learning

https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1405.4053

639

about an exponential number of semantically neighboring sentences. The model

learns simultaneously a distributed representation for each word along with the

probability function for word sequences, expressed in terms of these representations.

Generalization is obtained because a sequence of words that has never been seen before

gets high probability if it is made of words that are similar (in the sense of having a

nearby representation) to words forming an already seen sentence.

Google built a universal sentence-embedding model, nnlm-en-dim128 (https://

tfhub.dev/google/nnlm-en-dim128/1), which is a token-based text-embedding

model trained using a three hidden layer feed-forward neural-net language model

on the English Google News 200B corpus. This model maps any body of text into

128-dimensional embeddings. We will be using this in our hands-on demonstration

shortly!

Skip-thought vectors were also one of the first models in the domain of unsupervised

learning-based generic sentence encoders. In their proposed paper, “Skip-Thought

Vectors,” using the continuity of text from books, they trained an encoder-decoder

model that tries to reconstruct the surrounding sentences of an encoded passage.

Sentences that share semantic and syntactic properties are mapped to similar vector

representations. See Figure 10-6.

This is just like the Skip-gram model but for sentences, where we try to predict the

surrounding sentences of a given source sentence.

Quick-thought vectors is a more recent unsupervised approach toward learning

sentence embeddings (see Figure 10-7). Details are mentioned in the paper, “An efficient

framework for learning sentence representations”. Interestingly, they reformulate

Figure 10-6. Word2Vec vs. Doc2Vec (source: https://arxiv.org/abs/1405.4053)

Chapter 10 the promise of Deep Learning

https://tfhub.dev/google/nnlm-en-dim128/1
https://tfhub.dev/google/nnlm-en-dim128/1
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1405.4053

640

the problem of predicting the context in which a sentence appears as a classification

problem by replacing the decoder with a classifier in the regular encoder-decoder

 architecture.

Thus, given a sentence and the context in which it appears, a classifier distinguishes

context sentences from other contrastive sentences based on their embedding

representations. An input sentence is first encoded by using some function. But instead

of generating the target sentence, the model chooses the correct target sentence from a

set of candidate sentences. Viewing generation as choosing a sentence from all possible

sentences, this can be seen as a discriminative approximation to the generation problem.

InferSent is interestingly a supervised learning approach to learning universal

sentence embeddings using natural language inference data. This is hardcore supervised

transfer learning, where just like we get pretrained models trained on the ImageNet

dataset for computer vision, they have universal sentence representations trained using

supervised data from the Stanford natural language inference datasets. Details are

mentioned in their paper, “Supervised Learning of Universal Sentence Representations

from Natural Language Inference Data”. The dataset used by this model is the SNLI

dataset consists of 570,000 human-generated English sentence pairs, manually labeled

with one of three categories: entailment, contradiction, or neutral. It captures natural

language inference useful for understanding sentence semantics. See Figure 10-8.

Figure 10-7. Quick-thought vectors (source: https://openreview.net/forum?
id=rJvJXZb0W)

Chapter 10 the promise of Deep Learning

https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1705.02364
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W

641

Based on the architecture depicted in Figure 10-8, we can see that it uses a shared

sentence encoder that outputs a representation for the premise u and the hypothesis v.

Once the sentence vectors are generated, three matching methods are applied to extract

relations between u and v:

• Concatenation (u, v)

• Element-wise product u ∗ v

• Absolute element-wise difference |u − v|

The resulting vector is then fed into a three-class classifier consisting of multiple fully

connected layers culminating in a softmax layer.

Universal Sentence Encoder, from Google, is one of the latest and best universal

sentence- embedding models, and it was published in early 2018! The Universal

Sentence Encoder encodes any body of text into 512-dimensional embeddings that can

be used for a wide variety of NLP tasks, including text classification, semantic similarity,

and clustering. It is trained on a variety of data sources and a variety of tasks with the aim

of dynamically accommodating a wide variety of natural language understanding tasks

that require modeling the meaning of sequences of words rather than just individual

words.

Figure 10-8. InferSent training scheme (source: https://arxiv.org/abs/1705.02364)

Chapter 10 the promise of Deep Learning

https://arxiv.org/abs/1705.02364

642

Their key finding is that transfer learning using sentence embeddings tends to

outperform word embedding level transfer. Check out their paper, “Universal Sentence

Encoder” for further details. Essentially they have two versions of their model available

in TF-Hub as universal-sentence-encoder (https://tfhub.dev/google/universal-

sentence- encoder/2). Version 1 uses the transformer-network based sentence encoding

model and Version 2 uses a Deep Averaging Network (DAN), where input embeddings

for words and bi-grams are averaged together and then passed through a feed-forward

deep neural network (DNN) to produce sentence embeddings. We will be using Version

2 in our hands-on demonstration shortly.

 Understanding Our Text Classification Problem
It’s time to put some of these universal sentence encoders into action with a hands-on

demonstration! As the article mentions, the premise of our demonstration here is to

focus on a very popular NLP task, text classification , in the context of sentiment analysis.

We will be working with the benchmark IMDB Large Movie Review Dataset. Feel free

to download it at http://ai.stanford.edu/~amaas/data/sentiment/ or you can

even download it from my GitHub repository https://github.com/dipanjanS/data_

science_for_all/tree/master/tds_deep_transfer_learning_nlp_classification.

See Figure 10-9.

This dataset consists of a total of 50,000 movie reviews, where 25,000 have positive

sentiments and 25,000 have negative sentiments. We will be training our models on a

total of 30,000 reviews as our training dataset, validate on 5,000 reviews, and use 15,000

reviews as our test dataset. The main objective is to correctly predict the sentiment of

each review as positive or negative.

Figure 10-9. Sentiment analysis on movie reviews

Chapter 10 the promise of Deep Learning

https://tfhub.dev/
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/dipanjanS/data_science_for_all/tree/master/tds_deep_transfer_learning_nlp_classification
https://github.com/dipanjanS/data_science_for_all/tree/master/tds_deep_transfer_learning_nlp_classification

643

 Universal Sentence Embeddings in Action
Now that we have defined our main objective, let’s put universal sentence encoders

into action! The code is available in the GitHub repository for this book at https://

github.com/dipanjanS/text-analytics-with-python. Feel free to play around with it.

I recommend using a GPU-based instance. I love using Paperspace, where you can spin

up notebooks in the cloud without worrying about configuring instances manually.

My setup was an eight-CPU, 30GB, 250GB SSD and an NVIDIA Quadro P4000, which

is usually cheaper than most AWS GPU instances (I love AWS though!).

 Load Up Dependencies
We start by installing tensorflow-hub, which enables us to use these sentence encoders

easily.

!pip install tensorflow-hub

Collecting tensorflow-hub

 Downloading https://files.pythonhosted.org/packages/5f/22/64f246ef80e64b

1a13b2f463cefa44f397a51c49a303294f5f3d04ac39ac/tensorflow_hub-0.1.1-py2.

py3-none-any.whl (52kB)

 100% |################################| 61kB 8.5MB/s ta 0:00:011

Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (1.14.3)

Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (1.11.0)

Requirement already satisfied: protobuf>=3.4.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (3.5.2.post1)

Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-

packages (from protobuf>=3.4.0->tensorflow-hub) (39.1.0)

Installing collected packages: tensorflow-hub

Successfully installed tensorflow-hub-0.1.1

Let’s now load our essential dependencies for this tutorial!

import tensorflow as tf

import tensorflow_hub as hub

import numpy as np

import pandas as pd

Chapter 10 the promise of Deep Learning

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python
https://www.paperspace.com/
https://www.leadtek.com/eng/products/workstation_graphics(2)/NVIDIA_Quadro_P4000_(10775)/detail

644

The following commands help you check if tensorflow will be using a GPU (if you

have one set up already):

In [12]: tf.test.is_gpu_available()

Out[12]: True

In [13]: tf.test.gpu_device_name()

Out[13]: '/device:GPU:0'

 Load and View the Dataset
We can now load the dataset and view it using pandas. I provide a compressed version of

the dataset in my repository, which you can use as follows.

dataset = pd.read_csv('movie_reviews.csv.bz2', compression='bz2')

dataset.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50000 entries, 0 to 49999

Data columns (total 2 columns):

review 50000 non-null object

sentiment 50000 non-null object

dtypes: object(2)

memory usage: 781.3+ KB

We encode the sentiment column as 1s and 0s just to make things easier during

model development (label encoding). See Figure 10-10.

dataset['sentiment'] = [1 if sentiment == 'positive' else 0 for sentiment

in dataset['sentiment'].values]

dataset.head()

Chapter 10 the promise of Deep Learning

645

 Building Train, Validation, and Test Datasets
We will now create the train, validation, and test datasets before we start modeling. We

will use 30,000 reviews for the train dataset, 5,000 for the validation dataset, and 15,000

for the test dataset. You can use a train-test splitting function also, like train_test_

split() from scikit-learn.

reviews = dataset['review'].values

sentiments = dataset['sentiment'].values

train_reviews = reviews[:30000]

train_sentiments = sentiments[:30000]

val_reviews = reviews[30000:35000]

val_sentiments = sentiments[30000:35000]

test_reviews = reviews[35000:]

test_sentiments = sentiments[35000:]

train_reviews.shape, val_reviews.shape, test_reviews.shape

((30000,), (5000,), (15000,))

 Basic Text Wrangling
There is some basic text wrangling and preprocessing we need to do to remove some

noise from our text, like the contractions, unnecessary special characters, HTML tags,

and so on. The following code helps us build a simple, yet effective text-wrangling

system. Install the following libraries if you don’t have them. If you want you can also

reuse the text-wrangling module we built in Chapter 3.

Figure 10-10. Our movie review dataset

Chapter 10 the promise of Deep Learning

646

!pip install contractions

!pip install beautifulsoup4

The following functions help us build our text-wrangling system.

import contractions

from bs4 import BeautifulSoup

import unicodedata

import re

def strip_html_tags(text):

 soup = BeautifulSoup(text, "html.parser")

 [s.extract() for s in soup(['iframe', 'script'])]

 stripped_text = soup.get_text()

 stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text)

 return stripped_text

def remove_accented_chars(text):

 text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').

decode('utf-8', 'ignore')

 return text

def expand_contractions(text):

 return contractions.fix(text)

def remove_special_characters(text, remove_digits=False):

 pattern = r'[^a-zA-Z0-9\s]' if not remove_digits else r'[^a-zA-Z\s]'

 text = re.sub(pattern, ", text)

 return text

def pre_process_document(document):

 # strip HTML

 document = strip_html_tags(document)

 # lower case

 document = document.lower()

 # remove extra newlines (often might be present in really noisy text)

 document = document.translate(document.maketrans("\n\t\r", " "))

Chapter 10 the promise of Deep Learning

647

 # remove accented characters

 document = remove_accented_chars(document)

 # expand contractions

 document = expand_contractions(document)

 # remove special characters and\or digits

 # insert spaces between special characters to isolate them

 special_char_pattern = re.compile(r'([{.(-)!}])')

 document = special_char_pattern.sub(" \\1 ", document)

 document = remove_special_characters(document, remove_digits=True)

 # remove extra whitespace

 document = re.sub(' +', ' ', document)

 document = document.strip()

 return document

pre_process_corpus = np.vectorize(pre_process_document)

Let’s now preprocess our datasets using the function we implemented above.

train_reviews = pre_process_corpus(train_reviews)

val_reviews = pre_process_corpus(val_reviews)

test_reviews = pre_process_corpus(test_reviews)

 Build Data Ingestion Functions
Since we will be implementing our models in tensorflow using the tf.estimator API,

we need to define some functions to build data and feature engineering pipelines to

enable data flowing into our models during training. The following functions will help

us. We leverage the numpy_input_fn() function, which feeds a dictionary of numpy arrays

into the model.

Training input on the whole training set with no limit on training epochs.

train_input_fn = tf.estimator.inputs.numpy_input_fn(

 {'sentence': train_reviews}, train_sentiments,

 batch_size=256, num_epochs=None, shuffle=True)

Chapter 10 the promise of Deep Learning

648

Prediction on the whole training set.

predict_train_input_fn = tf.estimator.inputs.numpy_input_fn(

 {'sentence': train_reviews}, train_sentiments, shuffle=False)

Prediction on the whole validation set.

predict_val_input_fn = tf.estimator.inputs.numpy_input_fn(

 {'sentence': val_reviews}, val_sentiments, shuffle=False)

Prediction on the test set.

predict_test_input_fn = tf.estimator.inputs.numpy_input_fn(

 {'sentence': test_reviews}, test_sentiments, shuffle=False)

We are now ready to build our models!

 Build Deep Learning Model with Universal Sentence
Encoder
We need to first define the sentence-embedding feature that leverages the Universal

Sentence Encoder before building the model. We can do that using the following code.

embedding_feature = hub.text_embedding_column(

 key='sentence',

 module_spec="https://tfhub.dev/google/universal-sentence-encoder/2",

 trainable=False)

INFO:tensorflow:Using /tmp/tfhub_modules to cache modules.

Like we discussed, we use the Universal Sentence Encoder Version 2 and it works on

the sentence attribute in our input dictionary, which will be a numpy array of our reviews.

We will build a simple feed-forward DNN now with two hidden layers. Just a standard

model—nothing too sophisticated since we want to see how well these embeddings

perform even on a simple model. Here, we are leveraging transfer learning in the form of

pretrained embeddings. We are not fine-tuning by keeping the embedding weights fixed

by setting trainable=False.

dnn = tf.estimator.DNNClassifier(

 hidden_units=[512, 128],

 feature_columns=[embedding_feature],

 n_classes=2,

Chapter 10 the promise of Deep Learning

649

 activation_fn=tf.nn.relu,

 dropout=0.1,

 optimizer=tf.train.AdagradOptimizer(learning_rate=0.005))

train for approx 12 epochs

256*1500 / 30000 == 12.8

We had set our batch_size to 256 and we will be flowing in data in batches of 256

records for 1,500 steps. This translates to roughly 12–13 epochs.

 Model Training
Let’s now train our model on our training dataset and evaluate on the train and

validation datasets in steps of 100.

tf.logging.set_verbosity(tf.logging.ERROR)

import time

TOTAL_STEPS = 1500

STEP_SIZE = 100

for step in range(0, TOTAL_STEPS+1, STEP_SIZE):

 print()

 print('-'*100)

 print('Training for step =', step)

 start_time = time.time()

 dnn.train(input_fn=train_input_fn, steps=STEP_SIZE)

 elapsed_time = time.time() - start_time

 print('Train Time (s):', elapsed_time)

 print('Eval Metrics (Train):', dnn.evaluate(input_fn=predict_train_

input_fn))

 print('Eval Metrics (Validation):', dnn.evaluate(input_fn=predict_val_

input_fn))

--

Training for step = 0

Train Time (s): 78.62789511680603

Eval Metrics (Train): {'accuracy': 0.84863335, 'accuracy_baseline':

0.5005, 'auc': 0.9279859, 'auc_precision_recall': 0.92819566, 'average_

Chapter 10 the promise of Deep Learning

650

loss': 0.34581015, 'label/mean': 0.5005, 'loss': 44.145977, 'precision':

0.86890674, 'prediction/mean': 0.47957155, 'recall': 0.8215118, 'global_

step': 100}

Eval Metrics (Validation): {'accuracy': 0.8454, 'accuracy_baseline': 0.505,

'auc': 0.92413086, 'auc_precision_recall': 0.9200026, 'average_loss':

0.35258815, 'label/mean': 0.495, 'loss': 44.073517, 'precision': 0.8522351,

'prediction/mean': 0.48447067, 'recall': 0.8319192, 'global_step': 100}

--

Training for step = 100

Train Time (s): 76.1651611328125

Eval Metrics (Train): {'accuracy': 0.85436666, 'accuracy_baseline': 0.5005,

'auc': 0.9321357, 'auc_precision_recall': 0.93224275, 'average_loss':

0.3330773, 'label/mean': 0.5005, 'loss': 42.520508, 'precision': 0.8501513,

'prediction/mean': 0.5098621, 'recall': 0.86073923, 'global_step': 200}

Eval Metrics (Validation): {'accuracy': 0.8494, 'accuracy_baseline':

0.505, 'auc': 0.92772096, 'auc_precision_recall': 0.92323804, 'average_

loss': 0.34418356, 'label/mean': 0.495, 'loss': 43.022945, 'precision':

0.83501947, 'prediction/mean': 0.5149463, 'recall': 0.86707073, 'global_

step': 200}

--

...

...

...

--

Training for step = 1400

Train Time (s): 85.99037742614746

Eval Metrics (Train): {'accuracy': 0.8783, 'accuracy_baseline': 0.5005,

'auc': 0.9500882, 'auc_precision_recall': 0.94986326, 'average_loss':

0.28882334, 'label/mean': 0.5005, 'loss': 36.871063, 'precision': 0.865308,

'prediction/mean': 0.5196238, 'recall': 0.8963703, 'global_step': 1500}

Eval Metrics (Validation): {'accuracy': 0.8626, 'accuracy_baseline':

0.505, 'auc': 0.93708724, 'auc_precision_recall': 0.9336051, 'average_

loss': 0.32389137, 'label/mean': 0.495, 'loss': 40.486423, 'precision':

0.84044176, 'prediction/mean': 0.5226699, 'recall': 0.8917172, 'global_

step': 1500}

Chapter 10 the promise of Deep Learning

651

--

Training for step = 1500

Train Time (s): 86.91469407081604

Eval Metrics (Train): {'accuracy': 0.8802, 'accuracy_baseline': 0.5005,

'auc': 0.95115364, 'auc_precision_recall': 0.950775, 'average_loss':

0.2844779, 'label/mean': 0.5005, 'loss': 36.316326, 'precision': 0.8735527,

'prediction/mean': 0.51057553, 'recall': 0.8893773, 'global_step': 1600}

Eval Metrics (Validation): {'accuracy': 0.8626, 'accuracy_baseline': 0.505,

'auc': 0.9373224, 'auc_precision_recall': 0.9336302, 'average_loss':

0.32108024, 'label/mean': 0.495, 'loss': 40.135033, 'precision': 0.8478599,

'prediction/mean': 0.5134171, 'recall': 0.88040406, 'global_step': 1600}

Based on the output logs, you can see that we get an overall accuracy of close to

87% on our validation dataset and an AUC of 94%, which is quite good on such a simple

model!

 Model Evaluation
Let’s now evaluate our model and check the overall performance on the train and test

datasets.

dnn.evaluate(input_fn=predict_train_input_fn)

{'accuracy': 0.8802, 'accuracy_baseline': 0.5005, 'auc': 0.95115364,

 'auc_precision_recall': 0.950775, 'average_loss': 0.2844779,

 'label/mean': 0.5005, 'loss': 36.316326, 'precision': 0.8735527,

 'prediction/mean': 0.51057553, 'recall': 0.8893773, 'global_step': 1600}

dnn.evaluate(input_fn=predict_test_input_fn)

{'accuracy': 0.8663333, 'accuracy_baseline': 0.5006667, 'auc': 0.9406502,

 'auc_precision_recall': 0.93988097, 'average_loss': 0.31214723, 'label/

mean': 0.5006667,

 'loss': 39.679733, 'precision': 0.8597569, 'prediction/mean': 0.5120608,

 'recall': 0.8758988, 'global_step': 1600}

Chapter 10 the promise of Deep Learning

652

We get an overall accuracy of close to 87% on the test data, giving us consistent

results based on what we observed on our validation dataset earlier. Thus, this should

give you an idea of how easy it is to leverage pretrained universal sentence embeddings

and not worry about the hassle of feature engineering or complex modeling.

 Bonus: Transfer Learning with Different Universal
Sentence Embeddings
Let’s now try building different deep learning classifiers based on different sentence

embeddings. We will try the following:

• NNLM-128

• USE-512

We will also cover the two most prominent methodologies for transfer learning here.

• Build a model using frozen pretrained sentence embeddings

• Build a model where we fine-tune and update the pretrained

sentence embeddings during training

The following generic function can plug and play different universal sentence

encoders from tensorflow-hub.

import time

TOTAL_STEPS = 1500

STEP_SIZE = 500

my_checkpointing_config = tf.estimator.RunConfig(

 keep_checkpoint_max = 2, # Retain the 2 most recent checkpoints.

)

def train_and_evaluate_with_sentence_encoder(hub_module, train_

module=False, path="):

 embedding_feature = hub.text_embedding_column(

 key='sentence', module_spec=hub_module, trainable=train_module)

 print()

 print('='*100)

Chapter 10 the promise of Deep Learning

653

 print('Training with', hub_module)

 print('Trainable is:', train_module)

 print('='*100)

 dnn = tf.estimator.DNNClassifier(

 hidden_units=[512, 128],

 feature_columns=[embedding_feature],

 n_classes=2,

 activation_fn=tf.nn.relu,

 dropout=0.1,

 optimizer=tf.train.AdagradOptimizer(learning_rate=0.005),

 model_dir=path,

 config=my_checkpointing_config)

 for step in range(0, TOTAL_STEPS+1, STEP_SIZE):

 print('-'*100)

 print('Training for step =', step)

 start_time = time.time()

 dnn.train(input_fn=train_input_fn, steps=STEP_SIZE)

 elapsed_time = time.time() - start_time

 print('Train Time (s):', elapsed_time)

 print('Eval Metrics (Train):', dnn.evaluate(input_fn=predict_train_

input_fn))

 print('Eval Metrics (Validation):', dnn.evaluate(input_fn=predict_

val_input_fn))

 train_eval_result = dnn.evaluate(input_fn=predict_train_input_fn)

 test_eval_result = dnn.evaluate(input_fn=predict_test_input_fn)

 return {

 "Model Dir": dnn.model_dir,

 "Training Accuracy": train_eval_result["accuracy"],

 "Test Accuracy": test_eval_result["accuracy"],

 "Training AUC": train_eval_result["auc"],

 "Test AUC": test_eval_result["auc"],

 "Training Precision": train_eval_result["precision"],

 "Test Precision": test_eval_result["precision"],

Chapter 10 the promise of Deep Learning

654

 "Training Recall": train_eval_result["recall"],

 "Test Recall": test_eval_result["recall"]

 }

We can now train our models using these defined approaches.

tf.logging.set_verbosity(tf.logging.ERROR)

results = {}

results["nnlm-en-dim128"] = train_and_evaluate_with_sentence_encoder(

 "https://tfhub.dev/google/nnlm-en-dim128/1", path='/storage/models/

nnlm-en-dim128_f/')

results["nnlm-en-dim128-with-training"] = train_and_evaluate_with_sentence_

encoder(

 "https://tfhub.dev/google/nnlm-en-dim128/1", train_module=True, path='/

storage/models/nnlm-en-dim128_t/')

results["use-512"] = train_and_evaluate_with_sentence_encoder(

 "https://tfhub.dev/google/universal-sentence-encoder/2", path='/

storage/models/use-512_f/')

results["use-512-with-training"] = train_and_evaluate_with_sentence_encoder(

 "https://tfhub.dev/google/universal-sentence-encoder/2", train_

module=True, path='/storage/models/use-512_t/')

==

Training with https://tfhub.dev/google/nnlm-en-dim128/1

Trainable is: False

==

--

Training for step = 0

Train Time (s): 30.525171756744385

Eval Metrics (Train): {'accuracy': 0.8480667, 'auc': 0.9287864,

'precision': 0.8288572, 'recall': 0.8776557}

Eval Metrics (Validation): {'accuracy': 0.8288, 'auc': 0.91452694,

'precision': 0.7999259, 'recall': 0.8723232}

--

Chapter 10 the promise of Deep Learning

655

...

...

--

Training for step = 1500

Train Time (s): 28.242169618606567

Eval Metrics (Train): {'accuracy': 0.8616, 'auc': 0.9385461, 'precision':

0.8443543, 'recall': 0.8869797}

Eval Metrics (Validation): {'accuracy': 0.828, 'auc': 0.91572505,

'precision': 0.80322945, 'recall': 0.86424243}

==

Training with https://tfhub.dev/google/nnlm-en-dim128/1

Trainable is: True

==

--

Training for step = 0

Train Time (s): 45.97756814956665

Eval Metrics (Train): {'accuracy': 0.9997, 'auc': 0.9998141, 'precision':

0.99980015, 'recall': 0.9996004}

Eval Metrics (Validation): {'accuracy': 0.877, 'auc': 0.9225529,

'precision': 0.86671925, 'recall': 0.88808084}

--

...

...

--

Training for step = 1500

Train Time (s): 44.654765605926514

Eval Metrics (Train): {'accuracy': 1.0, 'auc': 1.0, 'precision': 1.0,

'recall': 1.0}

Eval Metrics (Validation): {'accuracy': 0.875, 'auc': 0.91479605,

'precision': 0.8661916, 'recall': 0.8840404}

==

Training with https://tfhub.dev/google/universal-sentence-encoder/2

Trainable is: False

==

--

Chapter 10 the promise of Deep Learning

656

Training for step = 0

Train Time (s): 261.7671597003937

Eval Metrics (Train): {'accuracy': 0.8591, 'auc': 0.9373971, 'precision':

0.8820655, 'recall': 0.8293706}

Eval Metrics (Validation): {'accuracy': 0.8522, 'auc': 0.93081224,

'precision': 0.8631799, 'recall': 0.8335354}

--

...

...

--

Training for step = 1500

Train Time (s): 258.4421606063843

Eval Metrics (Train): {'accuracy': 0.88733333, 'auc': 0.9558296,

'precision': 0.8979955, 'recall': 0.8741925}

Eval Metrics (Validation): {'accuracy': 0.864, 'auc': 0.938815,

'precision': 0.864393, 'recall': 0.860202}

==

Training with https://tfhub.dev/google/universal-sentence-encoder/2

Trainable is: True

==

--

Training for step = 0

Train Time (s): 313.1993100643158

Eval Metrics (Train): {'accuracy': 0.99916667, 'auc': 0.9996535,

'precision': 0.9989349, 'recall': 0.9994006}

Eval Metrics (Validation): {'accuracy': 0.9056, 'auc': 0.95068294,

'precision': 0.9020474, 'recall': 0.9078788}

--

...

...

--

Training for step = 1500

Train Time (s): 305.9913341999054

Eval Metrics (Train): {'accuracy': 1.0, 'auc': 1.0, 'precision': 1.0,

'recall': 1.0}

Chapter 10 the promise of Deep Learning

657

Eval Metrics (Validation): {'accuracy': 0.9032, 'auc': 0.929281,

'precision': 0.8986784, 'recall': 0.9066667}

I’ve depicted the evaluation metrics of importance in the output, and you can see we

definitely get some good results with our models. The table in Figure 10-11 summarizes

these comparative results in a nice way.

results_df = pd.DataFrame.from_dict(results, orient="index")

results_df

Figure 10-11. Comparing results from different universal sentence encoders

Looks like Google’s Universal Sentence Encoder with fine-tuning gave us the best

results on the test data. Let’s load this saved model and run an evaluation on the test

data.

get location of saved best model

best_model_dir = results_df[results_df['Test Accuracy'] == results_df['Test

Accuracy'].max()]['Model Dir'].values[0]

load up model

embedding_feature = hub.text_embedding_column(

 key='sentence', module_spec="https://tfhub.dev/google/universal-

sentence- encoder/2", trainable=True)

dnn = tf.estimator.DNNClassifier(

 hidden_units=[512, 128],

 feature_columns=[embedding_feature],

 n_classes=2,

 activation_fn=tf.nn.relu,

 dropout=0.1,

 optimizer=tf.train.AdagradOptimizer(learning_rate=0.005),

 model_dir=best_model_dir)

Chapter 10 the promise of Deep Learning

658

define function to get model predictions

def get_predictions(estimator, input_fn):

 return [x["class_ids"][0] for x in estimator.predict(input_fn=input_fn)]

get model predictions on test data

predictions = get_predictions(estimator=dnn, input_fn=predict_test_input_fn)

predictions[:10]

[0, 1, 0, 1, 1, 0, 1, 1, 1, 1]

One of the best ways to evaluate our model performance is to visualize the model

predictions in the form of a confusion matrix (see Figure 10-12).

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

with tf.Session() as session:

 cm = tf.confusion_matrix(test_sentiments, predictions).eval()

LABELS = ['negative', 'positive']

sns.heatmap(cm, annot=True, xticklabels=LABELS, yticklabels=LABELS,

fmt='g')

xl = plt.xlabel("Predicted")

yl = plt.ylabel("Actuals")

Figure 10-12. Confusion matrix from our best model predictions

Chapter 10 the promise of Deep Learning

659

We can also print out the model’s classification report using Scikit-Learn to depict

the other important metrics that can be derived from the confusion matrix, including

precision, recall, and f1-score.

from sklearn.metrics import classification_report

print(classification_report(y_true=test_sentiments,

 y_pred=predictions, target_names=LABELS))

 precision recall f1-score support

 negative 0.90 0.90 0.90 7490

 positive 0.90 0.90 0.90 7510

avg / total 0.90 0.90 0.90 15000

We obtain an overall model accuracy and f1-score of 90% on the test data, which is

really good. Go ahead and try this out. You might get an even better score; if so, let me

know about it!

 Summary and Future Scope
Universal sentence embeddings are definitely a huge step forward in enabling transfer

learning for diverse NLP tasks. In fact, we have seen that models like ELMo, Universal

Sentence Encoder, and ULMFiT have indeed made headlines by showcasing that

pretrained models can be used to achieve state-of-the-art results on NLP tasks. I’m

definitely excited about what the future holds for generalizing NLP even further and

enabling us to solve complex tasks with ease!

This concludes the end of the last chapter in the book. I hope this enables you to go

out there in the real world and apply some of the things you learned here to solve your

own real-world problems in NLP. Always remember Occam's Razor, which states that the

simplest solution is usually the best solution. While deep learning methods might be the

cool thing right now, they are not the silver bullet for every solution. You should leverage

them if and only if it makes perfect sense to do so, which you will better understand with

intuition, experimentation, practicing, and reading over time. Now go out there and

solve some interesting NLP problems and tell me about them!

Chapter 10 the promise of Deep Learning

661
© Dipanjan Sarkar 2019
D. Sarkar, Text Analytics with Python, https://doi.org/10.1007/978-1-4842-4354-1

Index

A
Adjective phrase (ADJP), 17, 18, 28, 165, 172
Advanced feature engineering models

Bible corpus, load, 233
FastText model, 269–272
GloVe model, 263, 265, 267–269
Word2Vec (see Word2Vec model)

Adverb phrase (ADVP), 18, 28, 165, 173, 358
Affinity propagation (AP) algorithm, 261,

499, 508–512
AFINN lexicon, 572, 578–580
American National Corpus (ANC), 54
Anaconda Python distribution, 55, 80–82
Application programming interfaces

(APIs), 71, 73, 74, 285, 372, 521, 542
Artificial intelligence (AI), 62, 63, 67, 75,

112, 519, 521, 631
Artificial neural networks (ANNs), 68, 597
Association for Computational Linguistics

(ACL), 569
Atomic units, 42
Automated document summarization,

346–347, 435
abstraction-based techniques, 436
extraction-based techniques, 436
Gensim’s summarization module, 438
LSA

low-rank SVD, 443
salience score, 443–445
SVD, 442

Skyrim, 436, 437
TextRank, 445–448, 450
text wrangling, 439, 440
TF-IDF feature engineering, 440, 441
word count, 438

B
Backus-Naur Form (BNF), 89
Bagging, 306
Bag of N-Grams model, 210, 211, 295
Bag of Words model, 208–210, 220, 231,

234, 294, 315, 371, 419, 633
Baseline sentence-embedding

model, 636–637
Batch normalization, 598
Beginning of sentence (BOS), 548
Behavioral theory, 7
Bing Liu’s lexicon, 572, 574
Boosting, 307, 308
British National Corpus (BNC), 54, 142
Brown corpus, 53, 56
Bytes strings, 90

C
Canonical form, 36
Centroid-based clustering

models, 499, 501
Centrum Wiskunde and Informatica

(CWI), 70

https://doi.org/10.1007/978-1-4842-4354-1

662

Character vectorization, 459
Chart parsing, 192
Child language data exchange system

(CHILDES), 53
Citation form, 36
Classification model

bag of words, 315–319
comparative model

performance, 322, 323
confusion matrix

accuracy, 313
logistic regression model, 310
performance metrics, 312–315
precision, 313
recall, 314
structure, 311, 312

ensemble, 306, 307
evaluation, 297
FastText embeddings, 327, 328
GBMs, 308, 309
GloVe embeddings, 326
logistic regression, 301–303
metrics, 309
model performance

articles, 339, 340
confusion matrix, 335–337
consistency, 334, 335
misclassified newsgroups, 337, 338
prediction, 338, 339
supervised learning

algorithms, 340
SVMs, 334

model tuning, 329
five-fold cross validation

scheme, 329, 331, 332
logistic regression, 332–334
Naïve Bayes model, 329–331
Scikit-Learn Pipeline object, 329

multinomial Naïve Bayes, 298–301
random forest, 307, 308
SVMs, 303–306
TF-IDF, 319–322
training, 297
tuning, 297
Word2Vec, 323–325

Cleaning text, 288, 570
Cluster analysis, 497–500
Clustering algorithms, 457
Clustering movies

AP algorithm, 508, 510–512
feature engineering, 500, 501
k-means clustering (see K-means

clustering algorithm)
Ward’s agglomerative hierarchical

clustering (see Ward’s
Agglomerative hierarchical
clustering)

Collapsed Gibbs sampling, 391
Collins Birmingham University

International Language Database
(COBUILD), 53

Collins corpus, 53
Common language runtime (CLR), 77
Compositional semantics, 11
Computational Linguistics and

Psycholinguistics (CLiPS), 575
Conditional random fields (CRF), 540,

547–550
Constant symbols, 47
Constituency grammar, 26, 52

phrase structure rules, 27
syntax trees

NLTK and Stanford Core NLP, 32, 33
noun phrases, 27, 28, 30, 31
prepositional phrases, 29
recursive properties, 29, 30

INDEX

663

syntactic representation, 31
verb phrases, 28

Constructive dilemma, 45
Content-based classification, 278–279
Context free grammar (CFG), 32, 191, 195
Continuous Bag of Words (CBOW)

model, 296
architecture, 234, 235
context word, 235, 237, 238
corpus vocabulary, build, 236, 237
deep learning architecture, 238–241
run, model, 241, 242
target word, 237–238
word embeddings, 242–244

Corpus of Contemporary American
English (COCA), 54

Correcting spellings
case_of() function, 146, 147
known() function, 143–145
TextBlob library, 148

Cosine similarity, 487
bag of characters vectorization, 472
implementation, 474
term vectors, 471, 472
vector representations, 475

cossim() function, 487
CPython, 77

D
Database programming, 74
Data preparation, 162
Data preprocessing and normalization

normalize_corpus(...) function, 290, 291
simple pandas filter operation, 287
wrangling stage, 288, 289

Data retrieval, 285–287
Declarative clause, 20

Deep learning (DL), 68, 74, 631
classifiers

confusion matrix, 658
models training, 654–656
NNLM-128, 652
Scikit-Learn, 659
tensorflow-hub, 652–654
universal sentence

encoders, 657, 658
USE-512, 652

Deep neural network (DNN), 68, 593, 597,
602, 642

Dendrogram, 224, 225, 498, 513–517
Density-based clustering

models, 499
Dependency grammar, 22, 52

DAG, 23
syntactic function, 24
syntax tree, 23
tags, 25, 26

Directed acyclic graph (DAG), 23
Discourse analysis, 12
Disjunctive syllogism, 45
Distribution-based clustering

models, 499
Doc2Vec

vs. Word2Vec model, 638, 639
Document, 347
Document clustering, 220, 222–226, 265,

280, 453–456, 497–500
Document frequencies (DF), 216, 217,

370, 395, 419, 440
Document similarity, 475

clustering
agglomerative hierarchical, 222, 223
cluster labels, 225, 226
dendrogram, 224, 225
linkage matrix, 223, 224

INDEX

664

cosine similarity, 221, 222
pairwise, 221

Document summarization, 280, 344,
346–347, 349, 362, 389,
447, 453

E
ElasticSearch, 497
Embedding, 231

defined, 633
predictive methods, 633
text, 634
universal sentence encoder, 635

Embeddings from language
models (ELMo), 636

End of sentence (EOS), 548
Ensemble models, 306, 307, 309, 319,

322, 323
Escape sequences in strings, 90
Euclidean distance, 253, 462, 464, 465
Exclamative clause, 21
Execution speed performance, 75
Expanding contractions, 136–137,

206, 288, 570

F
Factual documents, 567
False negative (FN), 312
False positive (FP), 312, 314
FastText model, 296, 635

Facebook, 269
gensim.models.fasttext

module, 270, 272
subword model, 270
vector representation, 270

Feature engineering, 293, 347, 455
bag of N-grams model, 295
bag of words model, 294
embeddings, 295, 296
label-encoding, 294
one-hot encoding, 294
TF-IDF model, 295

Feature extraction, 162
Feature matrix, 209, 210, 218, 220, 230, 348
First order logic (FOL), 560–562

components, 47, 48
definition, 46
generalization, 50
HOL, 51
instantiation, 49, 50
natural language statements,

representation, 50, 51
PL, 46, 48
quantifier, 48–49

fit_transform(…) function, 220
Function symbols, 47

G
Gensim library, 113
Gensim framework, topic model

feature engineering
Bag of words model, 371
document frequency, 370
gensim.models.Phrases class, 369
phrase generation model, 369

LDA (see Latent Dirichlet allocation
(LDA))

LSI (see Latent semantic indexing
(LSI))

results
distribution of dominant

topics, 410, 411

Document similarity (cont.)

INDEX

665

dominant topics, research
paper, 412

master dataframe, 410
predict topics, 415–418
relevant research paper, 413, 414

Global interpreter lock (GIL), 76
Global vectors (GloVe) model, 296, 635

matrix factorization, 264
SGD, 264
spaCy framework

en_vectors_web_lg model, 265
k-means clustering, 267, 268

vs. Word2Vec model, 268, 269
Google N-gram corpus, 54
Gradient boosting machines

(GBMs), 308, 309
Graphical user interfaces (GUIs), 73
Groningen meaning bank (GMB), 545

H
Hadoop distributed file system (HDFS), 1
Hamming distance, 461, 462
Heterographs, 37
Heteronyms, 37
Hierarchical clustering

models, 498, 512, 513
agglomerative, 513
dendrogram, 513–517
distance metric, 514
divisive, 513
linkage criterion, 514

Higher order logic (HOL), 51
Homophones, 36
Homonyms, 36, 524–525
Homographs, 36, 524–525
Human-computer interaction (HCI), 62
Hyperparameter, 284, 297

Hyponyms, 38, 527–528
Hypothetical syllogism, 45

I
Illocutionary acts, 8
ImageNet, 632
Imperative clause, 21
Indexing and slicing, 95–97
InferSent, 640, 641
Information overload, 344, 345
Information retrieval (IR), 64, 455
Inside, outside beginning (IOB)

tagging, 547
Integrated development environments

(IDEs), 79, 80
Internet movie database (IMDB), 568
Interrogative clause, 21
Inverse document frequency

(IDF), 212, 217, 295
IronPython, 77

J
Java virtual machine (JVM), 77
Just in Time (JIT), 75, 77
Jython, 77

K
Keras, 238, 247
Kernel trick, 305
Keyphrase extraction, 344, 346

collocation
computation, 355–357
defined, 351
FreqDist class, 353
n-grams, 352, 353

INDEX

666

pointwise mutual information, 354
text_normalizer module, 351

terminology extraction, 350
uses, 350
weighted tag-based phrase extraction

chunker, 359
get_chunks() function, 360
POS tags, 357
text_normalizer module, 358
TextRank algorithm, 362
TF-IDF weights, 360

Keyword in context (KWIC), 53
K-means clustering algorithm

cluster movie data, 502–505
defined, 501
kmeans++ scheme, 502
NP hard problem, 501
pairwise document similarity, 506, 508

Kullback-Leibler (KL) divergence, 457

L
Label-encoding, 294
Lancaster-Oslo-Bergen (LOB) corpus, 53
Latent Dirichlet allocation

(LDA), 227–229, 346, 363, 622
collapsed Gibbs sampling

method, 391
core algorithm, 390
Gensim, 391
MALLET, 400–402
topic coherence, 393

aggregation, 396
confirmation measure, 395
four-stage pipeline, 394
probability calculation, 394
segmentation, 394

topic model, 391–393
coherence scores, 398, 399
output, 396, 397

tuning
best model, 405–407
coherence score, 403–405
optimal number of topics, 402, 403
term-topic dataframe, 407
topic-term dataframe, 408, 409

Latent semantic analysis
(LSA), 232, 442–445

Latent semantic indexing
(LSI), 227, 363

dense matrix, 382
document-topic matrix, 379
influential topics, sample

papers, 387, 388
low-rank SVD, 382
model, 372–374
modelling themes, 375, 376, 378, 379
NIPS research papers, 372
SVD technique, 372
topics, sample papers, 380, 381
top influential terms, 383–387

Lemmatization, 152–154
Levenshtein edit distance

boundary conditions, 466
defined, 465
edit distance matrices, 471
implementation, 467–469
O(mn) space, 468
Python, 468

Lexical semantics, 11
Lexical similarity, 458
Lexicon, 11
Linguists, 10, 12
Lloyd’s algorithm, 501
Locutionary acts, 8

Keyphrase extraction (cont.)

INDEX

667

Logistic regression model, 301–303
Long short-term memory networks

(LSTMs), 602, 603
Long strings, 90

M
Machine learning (ML), 67, 74
Machine learning for language toolkit

(MALLET) framework, 399
Manhattan distance, 462–464
Maximum entropy (MaxEnt)

classifier, 592
Maximum-likelihood estimation

(MLE), 301
min_count parameter, 370
Model tuning, 298
Modus ponens, 44
Modus tollens, 45
Morphology, 11
Movie recommender

components, 480
cosine similarity, 482, 483
matrix dataframe, input, 484
Okapi BM25 (see Okapi BM25

ranking)
popular movies, 485–487
similar movies, 483, 484
text preprocessing, 480, 481
TF-IDF, 481, 482
TMDB movies dataset, 477, 479, 480

Multi-class classification, 282
Multi-label classification, 282
Multi-layer perceptrons (MLPs), 597
Multinomial Naïve Bayes, 298–301
Multi-Perspective Question Answering

(MPQA) subjectivity lexicon,
574, 575

N
Named entity recognition (NER)

CRF sequence models, 540–542,
547–550

end-to-end workflow, 554–557
GMB, 545
IOB tagging, 547
JAR files, 540
noun phrases, 536
sklearn-crfsuite

framework, 544, 551–554
spaCy, 536, 537, 539
Stanford’s Core NLP, 542–544

Natural language
cognition, 4
cognitive learning, 7, 8
definition, 3
direction of fit, 5, 6
language acquisition, 7, 8
meaning of meaning model, 5
relationship between language

and reality, 4
triangle of reference model, 4, 5
usage, 4, 8–10

Natural language generation
(NLG), 436

Natural language processing
(NLP), 2, 12, 69, 75, 205, 567

co-reference resolution, 64
frameworks, 111–113
HCI, 62
machine translation, 62, 63
QAS, 64
speech recognition systems, 63
text categorization, 65
text summarization, 65
word sense disambiguation, 64

INDEX

668

Natural language toolkit (NLTK), 55, 56, 112
Negative polarity, 579
Negative sentiments, 568
Neural-Net language models (NNLM), 638
Neutral sentiments, 568
N-gram, 210
nltk library, 112
nltk.download() command, 56
nnlm-en-dim128, 639
Non-Negative matrix factorization

(NNMF), 363, 428, 622–625
normalize_corpus(...) function, 572
Noun phrase (NP), 172
numpy_input_fn() function, 647

O
Object oriented principles (OOP), 70
Okapi BM25 ranking

defined, 488
Gensim framework, 489
implementation, 489, 491–493
mathematical definition, 488
pairwise document, 493–495
probabilistic relevancy, 488
search engine, 497
top five movie, 495–497

One-hot encoding, 294
One-vs-rest (OvR) scheme, 303
Operating systems (OSes), 79
Optical character recognition (OCR), 364
Out of vocabulary (OOV), 603

P
Package management, 84, 85
Padding (PAD) term, 237, 242
PageRank algorithm, 445

Partition-based or centroid-based
clustering models, 499

Parts of speech (POS), 15, 52, 357, 572, 576
ClassifierBasedPOSTagger

class, 171, 172
evaluate() function, 167
feature_detector() function, 171
NLTK, 166
None tag, 170
Penn treebank tags, 164, 165
RegexpTagger, 168, 169
sentence, 163
SequentialBackoffTagger class, 169, 170
spaCy, 166
tag() function, 167

Pattern library, 112
Pattern lexicon, 575
Penn treebank, 54, 576
Perlocutionary acts, 8
Phonetics, 10
Phonology, 11
Positive sentiments, 568
Pragmatics, 12
Predicate symbols, 47
Predictive methods, 633
Prepositional phrase (PP), 173
Principal component analysis (PCA), 262
Probabilistic context-free grammar

(PCFG), 193, 195, 199
Probabilistic statistical models, 346
Propositional logic (PL), 41, 46, 48,

558–560
contradiction, 46
inference, 44
logical operators, 42
logical proof, 44
tautology, 46
truth values, 43, 44

INDEX

669

pyLDAvis framework, 434
PyPy, 77
Python, 2

Anaconda Python distribution, 80–82
applications, 73–75
drawbacks, 75, 76
IDEs, 79, 80
implementations, 76–78
Jupyter notebooks, 82, 83
OSes, 79
package management, 84, 85
strings (see Text data)
syntax and structure, 88, 89
text data (see Text data)
versions, 77–79
virtual environment, 85–88

Python enhancement proposals (PEP)
number 20 (PEP 20), 71

Python Package Index (PyPI), 73
Python standard library (PSL), 74

Q
Quantifiers, 47
Question answering systems (QAS), 64
Quick-thought vectors, 639, 640

R
Random forest, 307
Raw strings, 90
Recommender systems, 476, 477
re.compile() method, 103
Recurrent neural networks (RNNs), 602
Recursive descent parsing, 192
re.findall() method, 103
re.finditer() method, 103
Regular expressions (regexes), 102–106, 138

Regularization, 599
Reinforcement learning, 279
Relative clause, 21
re.match() method, 103
Removing accented characters, 288, 570
Removing special characters, 289, 571
Removing stopwords, 289, 571
replace() function, 142
Request-based classification, 278
re.search() method, 103
Resource description framework (RDF), 40
re.sub() method, 103
Reuters corpus, 54

S
Scientific computing, 74
Scikit-Learn framework, topic model

Bag of Words model, 419
LDA model

maximum contribution, research
papers, 426–428

topic-term matrix, 426
LSI model

key topics, 424, 425
SVD, 419
topics generation, 420–423

NMF model
document-topic matrix, 430
generated topics, 429
LDA model, 431
predict topics, 432–434

pyLDAvis framework, 434
visualizing, 434, 435

Scripting language, 73
Semantic analysis

entailments, 524
evaluate() function, 560

INDEX

670

FOL, 560
evaluation of expressions, 563–565
provers, 561
rule expression, 561–563
satisfiers() function, 565, 566

hypernym matrix, 531, 532
hyponyms and hypernyms,

526, 528, 529
NER (see Named entity recognition

(NER))
PL, 558–560
relationships and similarity, 530–533
similarity matrix, 533
synonyms and antonyms, 525, 526
synsets, 522, 523
WordNet, 521
word sense disambiguation, 533–535

Semantics, 11
antonyms, 38
capitonyms, 37
definition, 35
FOL (see First order logic (FOL))
networks and models, 39, 40
OWL, 40
PL (see Propositional logic (PL))
polysemes, 37
RDF, 40
similarity, 458
synonyms, 37, 38
types and roles, 52
word forms, 36

Semiotics, 12
Semi-supervised learning, 279
Sentence tokenization

NLTK framework, 120
nltk.sent_tokenize(...) function, 121–123
pretrained tokenization model, 123–125

PunktSentenceTokenizer class, 125
RegexpTokenizer class, 125, 126

Sentiment analysis
IMDB, 568, 569
raw labeled movie reviews, 568, 569
text analytics, 569

Sentiment causation
model interpretation

classification model, 620–622
code, 616
negative review, 618
NNMF, 623–625
normalized text reviews, 616
normalized training reviews, 615, 616
positive review, 619, 620
root cause, 614
Scikit-Learn, 615
skater framework, 616, 617
TF-IDF, 622, 623
topic modeling, 622
visualization, 625–629

SentiWordNet lexicon, 580–583
Shift reduce parsing, 192
Short strings, 90
Sigmoid function, 591, 598
Similarity measures

distance metric of similarity, 456
KL-divergence, 457

Singular value decomposition
(SVD), 346, 348–350

Skip-Gram model
architecture, 244, 245
context words, 245
implementation

corpus vocabulary, 246, 247
deep learning architecture, 248–251
generator, build, 247, 248
run, 251, 252

Semantic analysis (cont.)

INDEX

671

word embeddings
Euclidean distance metric, 253
t-SNE, 253, 254
word_model embedding layer, 252

Skip-thought vectors, 639
Skolemization, 50
Skyrim, 436
Slicing, 95–97
Social media, 343
Solr, 497
spacy library, 112
Stemming and lemmatization, 289, 571
Stochastic gradient descent (SGD), 264
Stopwords, 110, 111
String literals, 89–91
Stylistics, 12
Subjective documents, 567
Subject-verb-object (SVO) model, 22
Supervised deep learning models

batch normalization, 598
binary logistic regression function, 599
compile(...) method, 599
DNN, 597
document word vector averaging

scheme, 595, 596
embedding layer, 606, 607
fit(...) function, 600
GloVe embeddings, 596
Keras, 600, 603
LSTMs, 602, 606, 608, 610–612
most_common(count)

function, 604, 605
neural networks, 593
numeric representations, 594
one-hot encoded vectors, 593, 594
OOV, 603
regularization, 599
RNN, 602, 608, 609, 613

sequential model, 598
sigmoid function, 598
text classification system

blueprint, 601, 602
validation dataset, 600, 601
word embeddings, 614
Word2Vec, 599, 601

Supervised learning, 171, 280, 281,
296–298, 303, 340, 453

Support vector machines (SVMs), 303–306
Syntax and structure

clauses, 20, 21
phrases, 17, 18, 20
POS, 15
SVO model, 22, 34, 35
word-order typology, 33–35
words, 15–17

Systems programming, 74

T
t-distributed stochastic neighbor

embedding (t-SNE), 253, 254
tensorflow-hub, 643
Term frequencies (TF), 215, 295
Term frequency-inverse document

frequency (TF-IDF) model, 295
DF, 216
IDF, 217
idf matrix, 218
mathematical representations, 212
TF, 215
tfidf matrix, 213, 219, 220
TfidfTransformer, 213, 214
TfidfVectorizer, 214, 215

Text analytics, 66, 67, 75
TextBlob lexicon, 575–577
Textblob library, 113, 148

INDEX

672

Text classification, 642
application, 341
binary classification, 282
blueprint, 282–285
data retrieval, 285–287
definition, 277, 278
inherent properties, 275
machine learning techniques, 279, 280
prediction data, 282
supervised machine learning

algorithm, 276, 280
task variants, 282
textual data, 277
train and test datasets, 292, 293
training data, 281
types, 278, 279
unsupervised learning, 279

Text classifier
classification model (see Classification

model)
Text corpora

brown corpus, 56–59
monolingual corpora, 51
NLTK, 55, 56
nltk.download() command, 56
popular resources, 53–55
Reuters corpus, 59, 60
treebanks, 52
WordNet corpus, 60–62

Text corpus, 203–205
accented characters/letters, 205
contractions, 206
lemmatization, 206
special characters, 206
stemming, 206
stopwords, 206
tags removal, 205
text preprocessor, 207

Text correction
repeating characters, 139–142
wrong spellings (see Correcting

spellings)
Text data, 89, 201–203

string
basic operations, 94, 95
formatting, 100, 101
indexing and slicing, 95–97
literals, 89–91
methods, 98–100
regular expressions, 102–106
representation, 91–93

Text preprocessing and
normalization, 570–572

case conversions, 138, 139
expanding contractions, 136, 137
HTML tags, 117–119
lemmatization, 152–154
removing accented characters, 135
sentence tokenization (see Sentence

tokenization)
special characters, 138
stemming, 148–152
stopwords, 154, 155
text correction (see Text correction)
text normalizer, 155–157
word tokenization (see Word

tokenization)
Text processing and analysis, 106–111
TextRank summarization algorithm, 439

document similarity matrix, 447
networkx library, 447, 448
PageRank, 445, 446, 448, 449
steps, 446

Text similarity, 454, 457, 458
Cosine distance (see Cosine similarity)
distance metrics, 460

INDEX

673

Euclidean distance, 464, 465
Hamming distance, 461, 462
Levenshtein Edit distance (see

Levenshtein Edit distance)
Manhattan distance, 462–464
NumPy arrays, 460
word representations, 458

Text syntax and structure
analytics and machine learning, 162
constituency parsing

algorithms, 191, 192
CFG, 191
NLTK and standord parser, 192, 193
nltk.CFG.fromstring()

function, 194
PCFG, 193, 195, 199
phrase structure rules, 190, 191
treebank-based grammar, 196–198

dependency parsing
CLEAR dependency

scheme, 186, 187
Graphviz, 187
NLP4J, 186
NLTK and the Stanford

Dependency Parser, 187–190
root of sentence, 184
spaCy, 187
universal dependency, 184, 185

libraries and dependencies, 159–161
POS tagging (see Parts of speech (POS))
shallow parsing

chunking and chinking, 173–176
combined_taggers() function, 179
conll2000 data, 183
conll_tag_chunks()

function, 179, 180
conlltags2tree()function, 178, 181
NGramTagChunker class, 180

parse() function, 180
phrases, 172, 173
treebank data, 181–182
tree2conlltags function, 178

techniques, 158
Text wrangling, 347
TF-IDF scheme, 475
Topic modeling, 344

Gensim (see Gensim framework, topic
model)

matrix factorization, 363
research papers

data retrieval, 365
load and view dataset, 366, 367
NIPS conference, 364
objective, 364
text wrangling, 367, 368

Scikit-Learn framework (see Scikit-
Learn framework, topic model)

SVD, 363
Traditional feature engineering models

Bag of N-Grams model, 210, 211
Bag of Words model, 208–210
document similarity (see Document

similarity)
TF-IDF model (see Term frequency-

inverse document frequency
(TF-IDF) model)

topic modeling, 226
LDA, 227–231
LSI, 227

Traditional supervised machine learning
models, 590–593

train-test splitting function, 645
transform(…) function, 220
treebanks, 52
True negative (TN), 312
True positive (TP), 312

INDEX

674

U
Unicode, 89, 91
Universal embeddings, 634
Universal sentence encoders

data ingestion, 647
deep learning model, 648
GitHub repository, 643
Google, 641
load and view data set, pandas, 644, 645
load dependencies, 643, 644
model evaluation, 651, 652
model training, 649–651
text wrangling, 645, 647
TF-Hub, 642

Unsupervised learning algorithms, 457
Unsupervised lexicon-based models

AFINN, 578–580
Bing Liu’s, 574
MPQA subjectivity, 574, 575
pattern, 575
POS, 572
SentiWordNet, 580–583
TextBlob, 575–577
VADER, 584–587

V
VADER lexicon, 584–587
Variable symbols, 47
Vector space models (VSMs), 203, 232
Verb phrase (VP), 172
Version incompatibility, 76
Virtual environment, 85–88

W, X, Y
Ward’s agglomerative hierarchical

clustering

dendrogram, 514–516
distance metric, 514
linkage criterion, 514

Ward’s minimum variance
method, 223, 514

Web, chat, email, tweets, 55
Web development, 73
Web ontology language (OWL), 40
Web scraping, 118
Word-embedding models, 635, 636
Word lemmas, 52
WordNet, 54, 475
Word stems, 52
Word tokenization

nltk.word_tokenize(...) function, 127
RegexpTokenizer class, 129–132
robust tokenizers, 132–135
TokTokTokenizer, 128
TreebankWordTokenizer, 127, 128

Word2Vec model, 295, 635
CBOW model (see Continuous Bag of

Words (CBOW) model)
Gensim framework, 255

implementation, 255
model, 256, 257
parameters, 255
t-SNE, visualize, 257, 258

machine learning tasks
document-level embeddings,

260–263
sample corpus,

visualize, 258, 259
Skip-Gram model (see Skip-Gram

model)

Z
Zen of Python, 71, 72

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: Natural Language Processing Basics
	Natural Language
	What Is Natural Language?
	The Philosophy of Language
	Language Acquisition and Usage
	Language Acquisition and Cognitive Learning
	Language Usage

	Linguistics
	Language Syntax and Structure
	Words
	Phrases
	Clauses
	Grammar
	Dependency Grammar
	Constituency Grammar

	Word-Order Typology

	Language Semantics
	Lexical Semantic Relations
	Lemmas and Wordforms
	Homonyms, Homographs, and Homophones
	Heteronyms and Heterographs
	Polysemes
	Capitonyms
	Synonyms and Antonyms
	Hyponyms and Hypernyms

	Semantic Networks and Models
	Representation of Semantics
	Propositional Logic
	First Order Logic

	Text Corpora
	Corpora Annotation and Utilities
	Popular Corpora
	Accessing Text Corpora
	Accessing the Brown Corpus
	Accessing the Reuters Corpus
	Accessing the WordNet Corpus

	Natural Language Processing
	Machine Translation
	Speech Recognition Systems
	Question Answering Systems
	Contextual Recognition and Resolution
	Text Summarization
	Text Categorization

	Text Analytics
	Machine Learning
	Deep Learning
	Summary

	Chapter 2: Python for Natural Language Processing
	Getting to Know Python
	The Zen of Python
	Applications: When Should You Use Python?
	Drawbacks: When Should You Not Use Python?
	Python Implementations and Versions
	Setting Up a Robust Python Environment
	Which Python Version?
	Which Operating System?
	Integrated Development Environments
	Environment Setup
	Package Management
	Virtual Environments

	Python Syntax and Structure
	Working with Text Data
	String Literals
	Representing Strings
	String Operations and Methods
	Basic Operations
	Indexing and Slicing
	Methods
	Formatting
	Regular Expressions

	Basic Text Processing and Analysis: Putting It All Together
	Natural Language Processing Frameworks
	Summary

	Chapter 3: Processing and Understanding Text
	Text Preprocessing and Wrangling
	Removing HTML Tags
	Text Tokenization
	Sentence Tokenization
	Default Sentence Tokenizer
	Pretrained Sentence Tokenizer Models
	PunktSentenceTokenizer
	RegexpTokenizer

	Word Tokenization
	Default Word Tokenizer
	TreebankWordTokenizer
	TokTokTokenizer
	RegexpTokenizer
	Inherited Tokenizers from RegexpTokenizer

	Building Robust Tokenizers with NLTK and spaCy

	Removing Accented Characters
	Expanding Contractions
	Removing Special Characters
	Case Conversions
	Text Correction
	Correcting Repeating Characters
	Correcting Spellings

	Stemming
	Lemmatization
	Removing Stopwords
	Bringing It All Together — Building a Text Normalizer

	Understanding Text Syntax and Structure
	Installing Necessary Dependencies
	Important Machine Learning Concepts
	Parts of Speech Tagging
	Building POS Taggers

	Shallow Parsing or Chunking
	Building Shallow Parsers

	Dependency Parsing
	Building Dependency Parsers

	Constituency Parsing
	Building Constituency Parsers

	Summary

	Chapter 4: Feature Engineering for Text Representation
	Understanding Text Data
	Building a Text Corpus
	Preprocessing Our Text Corpus
	Traditional Feature Engineering Models
	Bag of Words Model
	Bag of N-Grams Model
	TF-IDF Model
	Using TfidfTransformer
	Using TfidfVectorizer
	Understanding the TF-IDF Model

	Extracting Features for New Documents
	Document Similarity
	Document Clustering with Similarity Features

	Topic Models

	Advanced Feature Engineering Models
	Loading the Bible Corpus
	Word2Vec Model
	The Continuous Bag of Words (CBOW) Model
	Implementing the Continuous Bag of Words (CBOW) Model
	Build the Corpus Vocabulary
	Build a CBOW (Context, Target) Generator
	Build the CBOW Model Architecture
	Train the Model
	Get Word Embeddings

	The Skip-Gram Model
	Implementing the Skip-Gram Model
	Build the Corpus Vocabulary
	Build a Skip-Gram [(target, context), relevancy] Generator
	Build the Skip-Gram Model Architecture
	Train the Model
	Get Word Embeddings

	Robust Word2Vec Models with Gensim
	Applying Word2Vec Features for Machine Learning Tasks
	Strategy for Getting Document Embeddings

	The GloVe Model
	Applying GloVe Features for Machine Learning Tasks
	The FastText Model
	Applying FastText Features to Machine Learning Tasks

	Summary

	Chapter 5: Text Classification
	What Is Text Classification?
	Formal Definition
	Major Text Classification Variants

	Automated Text Classification
	Formal Definition
	Text Classification Task Variants

	Text Classification Blueprint
	Data Retrieval
	Data Preprocessing and Normalization
	Building Train and Test Datasets
	Feature Engineering Techniques
	Traditional Feature Engineering Models
	Advanced Feature Engineering Models

	Classification Models
	Multinomial Naïve Bayes
	Logistic Regression
	Support Vector Machines
	Ensemble Models
	Random Forest
	Gradient Boosting Machines

	Evaluating Classification Models
	Confusion Matrix
	Understanding the Confusion Matrix
	Performance Metrics

	Building and Evaluating Our Text Classifier
	Bag of Words Features with Classification Models
	TF-IDF Features with Classification Models
	Comparative Model Performance Evaluation
	Word2Vec Embeddings with Classification Models
	GloVe Embeddings with Classification Models
	FastText Embeddings with Classification Models
	Model Tuning
	Model Performance Evaluation

	Applications
	Summary

	Chapter 6: Text Summarization and Topic Models
	Text Summarization and Information Extraction
	Keyphrase Extraction
	Topic Modeling
	Automated Document Summarization

	Important Concepts
	Keyphrase Extraction
	Collocations
	Weighted Tag-Based Phrase Extraction

	Topic Modeling
	Topic Modeling on Research Papers
	The Main Objective
	Data Retrieval
	Load and View Dataset
	Basic Text Wrangling

	Topic Models with Gensim
	Text Representation with Feature Engineering
	Latent Semantic Indexing
	Implementing LSI Topic Models from Scratch
	Latent Dirichlet Allocation
	LDA Models with MALLET
	LDA Tuning: Finding the Optimal Number of Topics
	Interpreting Topic Model Results
	Dominant Topics Distribution Across Corpus
	Dominant Topics in Specific Research Papers
	Relevant Research Papers per Topic Based on Dominance

	Predicting Topics for New Research Papers

	Topic Models with Scikit-Learn
	Text Representation with Feature Engineering
	Latent Semantic Indexing
	Latent Dirichlet Allocation
	Non-Negative Matrix Factorization
	Predicting Topics for New Research Papers
	Visualizing Topic Models

	Automated Document Summarization
	Text Wrangling
	Text Representation with Feature Engineering
	Latent Semantic Analysis
	TextRank

	Summary

	Chapter 7: Text Similarity and Clustering
	Essential Concepts
	Information Retrieval (IR)
	Feature Engineering
	Similarity Measures
	Unsupervised Machine Learning Algorithms

	Text Similarity
	Analyzing Term Similarity
	Hamming Distance
	Manhattan Distance
	Euclidean Distance
	Levenshtein Edit Distance
	Cosine Distance and Similarity

	Analyzing Document Similarity
	Building a Movie Recommender
	Load and View Dataset
	Text Preprocessing
	Extract TF-IDF Features
	Cosine Similarity for Pairwise Document Similarity
	Find Top Similar Movies for a Sample Movie
	Find Movie ID
	Get Movie Similarities
	Get Top Five Similar Movie IDs
	Get Top Five Similar Movies

	Build a Movie Recommender
	Get a List of Popular Movies
	Okapi BM25 Ranking for Pairwise Document Similarity

	Document Clustering
	Clustering Movies
	Feature Engineering
	K-Means Clustering
	Affinity Propagation
	Ward's Agglomerative Hierarchical Clustering

	Summary

	Chapter 8: Semantic Analysis
	Semantic Analysis
	Exploring WordNet
	Understanding Synsets
	Analyzing Lexical Semantic Relationships
	Entailments
	Homonyms and Homographs
	Synonyms and Antonyms
	Hyponyms and Hypernyms
	Holonyms and Meronyms
	Semantic Relationships and Similarity

	Word Sense Disambiguation
	Named Entity Recognition
	Building an NER Tagger from Scratch
	Building an End-to-End NER Tagger with Our Trained NER Model
	Analyzing Semantic Representations
	Propositional Logic
	First Order Logic

	Summary

	Chapter 9: Sentiment Analysis
	Problem Statement
	Setting Up Dependencies
	Getting the Data
	Text Preprocessing and Normalization
	Unsupervised Lexicon-Based Models
	Bing Liu's Lexicon
	MPQA Subjectivity Lexicon
	Pattern Lexicon
	TextBlob Lexicon
	AFINN Lexicon
	SentiWordNet Lexicon
	VADER Lexicon

	Classifying Sentiment with Supervised Learning
	Traditional Supervised Machine Learning Models
	Newer Supervised Deep Learning Models
	Advanced Supervised Deep Learning Models
	Analyzing Sentiment Causation
	Interpreting Predictive Models
	Analyzing Topic Models

	Summary

	Chapter 10: The Promise of Deep Learning
	Why Are We Crazy for Embeddings?
	Trends in Word-Embedding Models
	Trends in Universal Sentence-Embedding Models
	Understanding Our Text Classification Problem
	Universal Sentence Embeddings in Action
	Load Up Dependencies
	Load and View the Dataset
	Building Train, Validation, and Test Datasets
	Basic Text Wrangling
	Build Data Ingestion Functions
	Build Deep Learning Model with Universal Sentence Encoder
	Model Training
	Model Evaluation

	Bonus: Transfer Learning with Different Universal Sentence Embeddings
	Summary and Future Scope

	Index

