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The power of text analytics and natural language processing is beginning to live up to its 

promise, thanks to contemporary developments in machine learning.

If you have read Dipanjan Sarkar’s Text Analytics with Python: A Practical Real-World 

Approach to Gaining Actionable Insights from your Data, then you probably already have 

some sense that this is true. Released in 2016, this book has quickly become a staple in the 

natural language processing community. Yet, in the world of technology, 2 years can seem 

like a lifetime, and so welcome to the updated second edition of Text Analytics with Python!

While the core of the first edition’s original material has been preserved, there 

are a number of updates and changes throughout. Of note, text classification and 

sentiment analysis have been expanded to include both traditional machine learning 

and deep learning models, important as neural networks become increasingly central in 

approaches to natural language processing. Additionally, topic modeling, a collection of 

techniques for abstract topic discovery, has been further developed to include a number 

of complementary methods, and to leverage additional Python libraries.

There is also an entire new chapter on feature engineering – which plays an 

especially central role in natural language processing and text data – where both 

traditional and neural network-based methods are covered. In addition, as much as 

deep learning is discussed in terms of natural language processing these days, there 

is a palpable sense that it is only the beginning; to that end, an entire new chapter is 

dedicated to the promise of deep learning for natural language processing.

Why Text Analytics with Python? Not only does this book cover the ideas and 

intuitions behind various cutting-edge text analytics and natural language processing 

tasks, it thoroughly presents practical approaches and Python code to cement these 

ideas, in order for the reader to put them to use for themselves. Since Sarkar has already 

proven the worth of his knowledge and instruction on text analytics, having a look at the 

second edition, expanded and updated throughout, can be classified as a great idea.

—Matthew Mayo

Editor, KDnuggets

@mattmayo13

Foreword



xxi

Acknowledgments

This book would have definitely not been a reality without the help and support from 

some excellent people and organizations that have helped us along this journey. First 

and foremost, a big thank you to all our readers for not only reading our books but also 

supporting us with valuable feedback and insights. Truly, I have learned a lot from all of 

you and still continue to do so. You have helped us make the new edition of this book a 

reality with your feedback! I would also like to acknowledge the entire team at Apress for 

working tirelessly behind the scenes to create and publish quality content for everyone.

A big shout-out goes to the entire Python developer community, especially to 

the developers of frameworks like NumPy, SciPy, Scikit-Learn, spaCy, NLTK, Pandas, 

Gensim, Keras, TextBlob, and TensorFlow. Kudos to organizations like Anaconda, for 

making the lives of data scientists easier and for fostering an amazing ecosystem around 

data science, artificial intelligence, and natural language processing that has been 

growing exponentially with time.

I also thank my friends, colleagues, teachers, managers, and well-wishers for 

supporting me with excellent challenges, strong motivation, and good thoughts.  

A lot of the content in this book wouldn’t have been possible without the help from 

several people and some excellent resources. We would like to thank Christopher 

Olah, for providing some excellent depictions and explanations for LSTM models 

(http://colah.github.io); Pramit Choudhary, for helping us cover a lot of ground 

in model interpretation with Skater; François Chollet, for creating Keras and writing 

an excellent book on deep learning; Raghav Bali, who has co-authored several books 

with me and helped me reframe a lot of the content from this book; Srdjan Santic, for 

being an excellent spokesman of this book and giving me a lot of valuable feedback; 

Matthew Mayo, for being so kind in gracing us with writing the foreword for this book 

and publishing amazing content on KDnuggets; and my entire team at Towards Data 

Science, Springboard, and Red Hat for helping me learn and grow every day. Also thanks 

to industry experts, including Kirk Borne, Tarry Singh, Favio Vazquez, Dat Tran, Matt 

Dancho, Kate Strachnyi, Kristen Kehrer, Kunal Jain, Sudalai Rajkumar, Beau Walker, 

David Langer, Andreas Kretz and many others for helping me learn more everyday and 

for keeping me motivated.

http://colah.github.io/


xxii

I would also like to acknowledge and express my gratitude to my parents, Digbijoy 

and Sampa, my partner Durba, my pets, family, and well-wishers for their constant love, 

support, and encouragement, which drives me to strive to achieve more. Finally, once 

again I would like to thank the entire team at Apress, especially Welmoed Spahr, Aditee 

Mirashi, Celestin John, our editors, and Santanu Pattanayak for being a part of this 

wonderful journey.

—Dipanjan Sarkar

aCknowledgmenTs



xxiii

Introduction

Data is the new oil and unstructured data—especially text, images, and videos—contains 

a wealth of information. However, due to the inherent complexity in processing and 

analyzing this data, people often refrain from spending extra time and effort venturing 

out from structured datasets to analyze these unstructured sources of data, which can 

be a potential gold mine. Natural language processing (NLP) is all about leveraging 

tools, techniques, and algorithms to process and understand natural language-based 

data, which is usually unstructured like text, speech, and so on. In this book, we will be 

looking at tried and tested strategies—techniques and workflows—that can be leveraged 

by practitioners and data scientists to extract useful insights from text data.

Being specialized in domains like computer vision and natural language processing 

is no longer a luxury but a necessity expected of any data scientist in today’s fast-paced 

world! Text Analytics with Python is a practitioner’s guide to learning and applying 

NLP techniques to extract actionable insights from noisy and unstructured text data. 

This book helps its readers understand essential concepts in NLP along with extensive 

case studies and hands-on examples to master state-of-the-art tools, techniques, and 

frameworks for actually applying NLP to solve real-world problems. We leverage Python 

3 and the latest and best state-of-the-art frameworks, including NLTK, Gensim, spaCy, 

Scikit-Learn, TextBlob, Keras, and TensorFlow, to showcase the examples in the book. 

You can find all the examples used in the book on GitHub at https://github.com/

dipanjanS/text-analytics-with-python.

In my journey in this field so far, I have struggled with various problems, faced 

many challenges, and learned various lessons over time. This book contains a major 

chunk of the knowledge I’ve gained in the world of text analytics and natural language 

processing, where building a fancy word cloud from a bunch of text documents is not 

enough anymore. Perhaps the biggest problem with regard to learning text analytics is 

not a lack of information but too much information, often called information overload. 

There are so many resources, documentation, papers, books, and journals containing 

so much content that they often overwhelm someone new to the field. You might have 

had questions like, “What is the right technique to solve a problem?,” “How does text 

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python
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summarization really work?,” and “Which frameworks are best for solving multi-class 

text categorization?,” among many others! By combining mathematical and theoretical 

concepts with practical implementations of real-world case studies using Python, this 

book tries to address this problem and help readers avoid the pressing issues I’ve faced 

in my journey so far.

This book follows a comprehensive and structured approach. First it tackles the 

basics of natural language understanding and Python for handling text data in the initial 

chapters. Once you’re familiar with the basics, we cover text processing, parsing, and 

understanding. Then, we address interesting problems in text analytics in each of the 

remaining chapters, including text classification, clustering and similarity analysis, text 

summarization and topic models, semantic analysis and named entity recognition, and 

sentiment analysis and model interpretation. The last chapter is an interesting chapter 

on the recent advancements made in NLP thanks to deep learning and transfer learning 

and we cover an example of text classification with universal sentence embeddings.

The idea of this book is to give you a flavor of the vast landscape of text analytics 

and NLP and to arm you with the necessary tools, techniques, and knowledge to tackle 

your own problems. I hope you find this book helpful and wish you the very best in your 

journey through the world of text analytics and NLP!

InTroduCTIon
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CHAPTER 1

Natural Language 
Processing Basics
We have ushered in the age of Big Data, where organizations and businesses are 

having difficulty managing all the data generated by various systems, processes, and 

transactions. However, the term Big Data is misused a lot due to the vague definition 

of the 3Vs of data—volume, variety, and velocity. It is sometimes difficult to quantify 

what data is “big”. Some might think a billion records in a database is “Big Data,” 

but that number seems small compared to the petabytes of data being generated by 

various sensors or by social media. One common characteristic is the large volume of 

unstructured textual data that’s present across all organizations, irrespective of their 

domain. As an example, we have vast amounts of data in the form of tweets, status 

messages, hash tags, articles, blogs, wikis, and much more on social media. Even retail 

and ecommerce stores generate a lot of textual data, from new product information and 

metadata to customer reviews and feedback.

The main challenges associated with textual data are two-fold. The first challenge 

deals with effective storage and management of this data. Textual data is usually 

unstructured and does not adhere to any specific predefined data model or schema 

followed by relational databases. However, based on the data semantics, you can  

store it in SQL-based database management systems like SQL Server and MySQL, in 

NoSQL- based systems like MongoDB and CouchDB, and more recently in information 

retrieval- based data stores like ElasticSearch and Solr.

Organizations with enormous amounts of textual datasets often resort to warehouses 

and file-based systems like Hadoop, where they dump all the data in the Hadoop 

Distributed File System (HDFS) and access it as needed. This is one of the main 

principles of a data lake.
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The second challenge is with regard to analyzing this data and trying to extract 

meaningful patterns and actionable insights from it. Even though we have a large 

number of machine learning and data analysis techniques at our disposal, the majority 

of them are tuned to work with numerical data. Hence, we have to resort to natural 

language processing and specialized techniques and transformations and models to 

analyze text data or more specifically natural language. This is quite different from 

structured data and normal programming languages, which are easily understood by 

machines. Remember that textual data is highly unstructured, so it does not adhere to 

structured or regular syntax and patterns. Hence, we cannot directly use statistical or 

machine learning models to analyze such data.

Unstructured data—especially text, images, and videos—contain a wealth of 

information. However, due to the inherent complexity in processing and analyzing this 

data, people often refrain from venturing out from structured datasets to analyze these 

unstructured sources of data, which can be a potential gold mine. Natural language 

processing (NLP) is all about leveraging tools, techniques, and algorithms to process 

and understand natural language-based data, which is usually unstructured (like 

text, speech, and so on). We cover essential concepts and techniques around NLP in 

this book. However, before we dive into specific techniques or algorithms to analyze 

textual data, we cover some of the core concepts and principles associated with natural 

language and unstructured text. The primary intent of this is to familiarize you with 

concepts and domains associated with natural language processing and text analytics.

We use the Python programming language in this book primarily for accessing and 

analyzing textual data. Being a revised edition, we focus on Python 3.x and the latest 

state-of-the-art open source frameworks for our analyses. The examples in this chapter 

will be pretty straightforward and fairly easy to follow. However, you can quickly skim 

over Chapter 2, “Python for Natural Language Processing” if you want to get a head start 

on Python, essential frameworks, and constructs before going through this chapter.

In this chapter, we cover concepts relevant to natural language, linguistics, text data 

formats, syntax, semantics, and grammar (all of which are major components of NLP 

itself) before moving on to more advanced topics like text corpora, natural language 

processing, deep learning, and text analytics. All the code examples showcased in this 

chapter are available on the book’s official GitHub repository, which you can access at 

 https://github.com/dipanjanS/text-analytics-with-python/tree/master/New- 

Second- Edition.

Chapter 1  Natural laNguage proCessiNg BasiCs
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 Natural Language
Textual data is unstructured data but it usually belongs to a specific language following 

specific syntax and semantics. All text data, such as a simple word, sentence, or a 

document, relates back to some natural language. In this section, we look at the 

definition of natural language, the philosophy of language, language acquisition, and the 

use of language.

 What Is Natural Language?
To understand text analytics and natural language processing, we need to understand 

what makes a language “natural”. In simple terms, a natural language is a language 

developed and evolved by humans through natural use and communication rather 

than constructing and creating the language artificially, like a computer programming 

language.

Various human languages, such as English, Japanese, or Sanskrit, can be called 

natural languages. Natural languages can be communicated in different ways, including 

speech, writing, or even using signs. There has been a lot of interest in trying to 

understand the origins, nature, and philosophy of language. We discuss this briefly in the 

following section.

 The Philosophy of Language
We now know what a natural language is. But think about the following questions. What 

are the origins of a language? What makes the English language “English”? How did the 

meaning of the word “fruit” come into existence? How do humans communicate using 

language? These are definitely some heavy philosophical questions.

We now look at the philosophy of language, which mainly deals with the following 

four problems.

• The nature of meaning in a language

• The use of language

• Language cognition

• The relationship between language and reality

Chapter 1  Natural laNguage proCessiNg BasiCs
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The nature of meaning in a language is concerned with the semantics of a language 

and the nature of meaning itself. Here, philosophers of language or linguistics try to 

find out what it means to actually “mean” anything, i.e., how the meaning of any word 

or sentence came into being and how different words in a language can be synonyms of 

each other and form relations. Another thing of importance here is how structure and 

syntax in the language paved the way for semantics or, to be more specific, how words 

that have their own meaning are structured together to form meaningful sentences. 

Linguistics is the scientific study of language, a special field that deals with some of these 

problems.

Syntax, semantics, grammar, and parse trees are some ways to solve these problems. 

The nature of meaning can be expressed in linguistics between two human beings, 

notably a sender and a receiver. From a non-linguistic standpoint, things like body 

language, prior experiences, and psychological effects are contributors to the meaning of 

language, where each human being perceives or infers meaning in their own way, taking 

into account some of these factors.

The use of language is more concerned with how language is used as an entity in 

various scenarios and communication between human beings. This includes analyzing 

speech and the usage of language when speaking, including the speaker’s intent, tone, 

content, and actions involved in expressing a message. This is often called a “speech 

act” in linguistics. More advanced concepts like language creation and human cognitive 

activities like language acquisition—which study the learning and usage of languages—

are also of prime interest.

Language cognition specifically focuses on how the cognitive functions of the human 

brain are responsible for understanding and interpreting language. Considering the 

example of a typical sender and receiver, there are many actions involved, from message 

communication to interpretation. Cognition tries to find out how the mind combines 

and relates specific words into sentences and then into a meaningful message and what 

is the relation of language is to the thought process of the sender and receiver when they 

use the language to communicate messages.

The relationship between language and reality explores the extent of truth of 

expressions originating from language. Language philosophers try to measure how 

factual these expressions are and how they relate to certain affairs in our world which are 

true. This relationship can be expressed in several ways and we explore some of them.

One of the most popular models is the “triangle of reference,” which is used to 

explain how words convey meaning and ideas in the minds of the receiver and how 
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that meaning relates back to a real-world entity or fact. The triangle of reference was 

proposed by Charles Ogden and Ivor Richards in their book, The Meaning of Meaning, 

and is denoted in Figure 1-1.

Figure 1-1. The triangle of reference model

The triangle of reference model is also known as the meaning of meaning model. 

Figure 1-1 shows a real example of a couch being perceived by a person. A symbol is 

denoted as a linguistic symbol like a word or an object that evokes thought in a person’s 

mind. In this case, the symbol is the couch and this evokes thoughts like what is a couch, 

a piece of furniture that can be used for sitting on or lying down and relaxing, something 

that gives us comfort. These thoughts are known as a reference and through this 

reference, the person is able to relate it to something that exists in the real world, which 

is called a referent. In this case, the referent is the couch that the person perceives to be 

present in front of him.

The second way to determine relationships between language and reality is known 

as the “direction of fit” and we talk about two main directions here. The “word-to-world” 

direction of fit talks about instances, where the usage of language can reflect reality. This 
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indicates using words to match or relate to something that’s happening or has already 

happened in the real world. An example would be the sentence, “The Eiffel Tower is 

really big,” which accentuates a fact in reality. The other direction of fit is known as 

“world-to-word” and talks about instances where the usage of language can change 

reality. An example here would be the sentence, “I am going to take a swim,” where you 

are changing reality by taking a swim and are representing this fact in the sentence you 

are communicating. Figure 1-2 shows the relationship between both directions of fits.

Based on the referent that is perceived from the real world, a person can form a 

representation in the form of a symbol or word and consequently can communicate 

the same to another person. This forms a representation of the real world based on the 

received symbol, thus forming a cycle.

 Language Acquisition and Usage
By now, we have seen what natural languages mean and the concepts behind language, 

its nature, meaning. and use. In this section, we talk in further detail about how language 

is perceived, understood, and learned using cognitive abilities by humans. Finally, we 

end our discussion with the main forms of language usage that we discussed previously 

in brief, as speech acts. It is important to not only understand what natural language 

denotes but also how humans interpret, learn, and use language. This helps us emulate 

some of these concepts programmatically in our algorithms and techniques when we try 

Intended

World-to-Word direction of fit

World-to-Word direction of fit

encoded
decoded

Human
thought

Human
thought

WORLD
(Referent)

WORD
(Symbol)

extended

Figure 1-2. The direction of fit representation
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to extract insights from textual data. A lot of you might have seen recent advancements 

based on these principles, including deep learning, sequence modeling, generative 

models, and cognitive computing.

 Language Acquisition and Cognitive Learning

Language acquisition is defined as the process by which human beings utilize their 

cognitive abilities, knowledge, and experience to understand language based on hearing 

and perception. This enables them to start using it in terms of words, phrases, and 

sentences to communicate with other human beings. In simple terms, the ability of 

acquiring and producing languages is termed language acquisition.

The history of language acquisition dates back centuries, when philosophers and 

scholars tried to reason and understand the origins of language acquisition and came 

up with several theories, like it being a god-gifted ability being passed down from 

generation to generation. There were also scholars like Plato who indicated that a form 

of word-meaning mapping would have been responsible for language acquisition. 

Modern theories were proposed by various scholars and philosophers and some of the 

popular ones, most notably Burrhus Skinner, indicated that knowledge, learning, and 

use of language were more behavioral in nature

Symbols in any language are based on certain stimuli and are reinforced in young 

children’s memories, based on repeated reactions to their usage. This theory is based on 

operant or instrumentation conditioning, which is a type of conditional learning where 

the strength of a particular behavior or action is modified based on its consequences like 

reward or punishment and these consequent stimuli help reinforce or control behavior 

and learning.

An example would be that a child would learn that a specific combination of sounds 

made up a word from repeated usage of it by his/her parents or being rewarded by 

appreciation when he/she speaks it correctly or being corrected when he/she makes a 

mistake when speaking the same. This repeated conditioning ends up reinforcing the 

actual meaning and understanding of the word in the child’s memory. To sum it up, 

children try to learn and use language mostly behaviorally, by hearing and imitating adults.

However, this behavioral theory was challenged by renowned linguist Noam 

Chomsky, who proclaimed that it would be impossible for children to learn language just 

by imitating everything from adults. This hypothesis is valid in the following examples. 

While words like “go” and “give” are valid, children often end up using an invalid form of 

the word like “goed” or “gived” instead of “went” or “gave” in the past tense.  
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We know that their parents didn’t utter these words in front of them, so it would be 

impossible to pick these up based on the previous theory of Skinner. Consequently, 

Chomsky proposed that children must not only be imitating words they hear, but also 

are extracting patterns, syntax, and rules from the same language constructs, and this 

process is separate from just utilizing generic cognitive abilities based on behavior.

Considering Chomsky’s view, cognitive abilities along with language specific knowledge 

and abilities like syntax, semantics, parts of speech, and grammar form what he termed 

a “language acquisition device”. This enabled humans to have the ability of “language 

acquisition”. Besides cognitive abilities, what is unique and important in language learning 

is the syntax of the language itself, which can be emphasized in his famous sentence, 

“Colorless green ideas sleep furiously”. The sentence does not make sense because colorless 

cannot be associated with green and neither can ideas be associated with green nor can 

they sleep furiously. However, the sentence is grammatically correct.

This is precisely what Chomsky tried to explain, that syntax and grammar depicts 

information that is independent from the meaning and semantics of words. Hence, he 

proposed that learning and identifying language syntax is a separate human capability 

compared to other cognitive abilities. This proposed hypothesis is also known as the 

“autonomy of syntax”. Of course, these theories are still widely debated among scholars 

and linguists, but it is useful to consider how the human mind tends to acquire and learn 

language. We now look at the typical patterns in which language is generally used.

 Language Usage

In the previous section, we discussed speech acts and how the direction-of-fit model 

is used for relating words and symbols to reality. In this section, we cover some 

concepts related to speech acts that highlight different ways in which language is used 

in communication. There are mainly three categories of speech acts. These include 

locutionary, illocutionary, and perlocutionary acts.

• Locutionary acts are mainly concerned with the actual delivery of the 

sentence when communicated from one human being to another by 

speaking it.

• Illocutionary acts focus on the actual semantics and significance of 

the sentence that was communicated.

• Perlocutionary acts refer to the effect the communication had on its 

receiver, which is more psychological or behavioral.
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A simple example would be the phrase, “Get me the book from the table” spoken by 

a father to his child. The phrase when spoken by the father forms the locutionary act. 

This significance of this sentence is a directive that tells the child to get the book from the 

table and forms an illocutionary act. The action the child takes after hearing this, i.e. if 

he brings the book from the table to his father, forms the perlocutionary act. We did talk 

about the illocutionary act being a directive in this case. According to the philosopher 

John Searle, there are a total of five classes of illocutionary speech acts:

• Assertives

• Directives

• Commissives

• Expressives

• Declarations

Assertives are speech acts that communicate how things are already existent in the 

world. They are spoken by the sender when he tried to assert a proposition that can be 

true or false in the real world. These assertions could be statements or declarations. A 

simple example would be “The Earth revolves round the Sun”. These messages represent 

the word-to-world direction of fit, which we discussed earlier.

Directives are speech acts that the sender communicates to the receiver, asking or 

directing him/her to do something. This represents a voluntary act that the receiver 

might do in the future after receiving a directive from the sender. Directives can either be 

complied with or not complied with. These directives could be simple requests or even 

orders or commands. An example directive would be, “Get me the book from the table,” 

which we discussed in detail when we talked about types of speech acts.

Commissives are speech acts that commit the sender or speaker who utters the 

sentence to some future voluntary act or action. Acts like promises, oaths, pledges, and 

vows represent commissives and the direction of fit could be either way. An example 

commissive would be, “I promise to be there tomorrow for the ceremony”.

Expressives reveal the speaker or sender’s disposition and outlook toward a 

particular proposition, which he/she communicates through the message. These could 

be various forms of expression or emotion like congratulatory, sarcastic, and so on. An 

example expressive would be, “Congratulations on graduating top of the class!”.
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Declarations are powerful speech acts since they have the capability to change  

the reality based on the declared proposition of the message communicated by the 

speaker/sender. The usual direction of fit is world-to-word, but it can go the other way 

also. An example declaration would be, “I hereby declare him to be guilty of all charges”.

These speech acts are the primary ways in which language is used and 

communicated among human beings. Without even realizing it, you end up using 

hundreds of these on any given day. We now look at linguistics and some of the main 

areas of research associated with it.

 Linguistics
We have seen what natural language means, how language is learned and used, and 

the origins of language acquisition. In fact, a lot of these things are actually formally 

researched and studied in linguistics by researchers and scholars called linguists. 

Formally, linguistics is defined as the scientific study of language, including the form and 

syntax of language, the meaning and semantics depicted by the usage of language, and 

the context of use. The origins of linguistics can be dated back to the 4th century BCE, 

when Indian scholar and linguist Panini formalized the Sanskrit language description. 

The term linguistics was first defined to indicate the scientific study of languages in 1847 

approximately before which the term philology was used to indicate the same. While 

a detailed exploration of linguistics is not needed for text analytics, it is useful to know 

the different areas of linguistics because some of them are used extensively in natural 

language processing and text analytics algorithms. The main distinctive areas of study 

under linguistics are mentioned next.

• Phonetics: This is the study of the acoustic properties of sounds 

produced by the human vocal tract during a speech. This includes 

studying the sound properties of how they are created as well as 

perceived by human beings. The smallest individual unit of human 

speech is termed a phoneme, which is usually distinctive to a specific 

language as opposed to a more generic term, called a phone.
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• Phonology: This is the study of sound patterns as interpreted in 

the human mind and used for distinguishing between different 

phonemes. The structure, combination, and interpretations of 

phonemes are studied in detail, usually by taking into account a 

specific language at a time. The English language consists of around 

45 phonemes. Phonology usually extends beyond just studying 

phonemes and includes things like accents, tone, and syllable 

structures.

• Syntax: This is usually the study of sentences, phrases, words, and 

their structures. This includes researching how words are combined 

grammatically to form phrases and sentences. Syntactic order of 

words used in a phrase or a sentence matter since the order can 

change the meaning entirely.

• Semantics: This involves the study of meaning in language and can 

be further subdivided into lexical and compositional semantics.

• Lexical semantics: This involves the study of the meanings of 

words and symbols using morphology and syntax.

• Compositional semantics: This involves studying relationships 

among words and combination of words and understanding the 

meaning of phrases and sentences and how they are related.

• Morphology: By definition, a morpheme is the smallest unit of 

language that has distinctive meaning. This includes things like 

words, prefixes, suffixes, and so on, which have their own distinct 

meaning. Morphology is the study of the structure and meaning of 

these distinctive units or morphemes in a language. There are specific 

rules and syntaxes that govern the way morphemes can combine.

• Lexicon: This is the study of properties of words and phrases used 

in a language and how they build the vocabulary of the language. 

These include what kinds of sounds are associated with meanings for 

words, as well as the parts of speech that words belong to and their 

morphological forms.
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• Pragmatics: This is the study of how linguistic and non-linguistic 

factors like context and scenario might affect the meaning of an 

expression of a message or an utterance. This includes trying to infer 

if there are any hidden or indirect meanings in communication.

• Discourse analysis: This analyzes language and exchange of 

information in the form of sentences across conversations among 

human beings. These conversations could be spoken, written, or even 

signed.

• Stylistics: This is the study of language with a focus on the style of 

writing including the tone, accent, dialogue, grammar, and type of 

voice.

• Semiotics: This is the study of signs, symbols, and sign processes and 

how they communicate meaning. Things like analogies, metaphors, 

and symbolism are covered in this area.

While these are the main areas of study and research, linguistics is an enormous 

field and has a much bigger scope than what is mentioned here. However, things like 

language syntax and semantics are some of the most important concepts and often 

form the foundations of natural language processing (NLP). Hence, we look at them in 

more detail in the following section. We showcase some of the concepts with hands- 

on examples for better understanding. You can also check out the Jupyter notebook 

for Chapter 1 in my GitHub repository at https://github.com/dipanjanS/text- 

analytics- with-python/tree/master/New-Second-Edition if you want to follow along 

and run the examples yourself. Load the following dependencies in your own Python 

environment to get started. Detailed instructions to install and set up Python and 

specific frameworks are covered in Chapter 2.

import nltk

import spacy

import numpy as np

import pandas as pd

# following line is optional for custom vocabulary installation

# you can use nlp = spacy.load('en')

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

Chapter 1  Natural laNguage proCessiNg BasiCs

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition


13

 Language Syntax and Structure
We already know what language syntax and structure indicate. Syntax and structure 

usually go hand in hand where a set of specific rules, conventions, and principles govern 

the way words are combined into phrases. Phrases are combined into clauses and 

clauses are combined into sentences. We talk specifically about the English language 

syntax and structure in this section, since in this book we deal with textual data that 

belongs to the English language. However, a lot of these concepts can be extended to 

other languages too. Knowledge about the structure and syntax of language is helpful in 

many areas, like text processing, annotation, and parsing for further operations like text 

classification or summarization.

In English, words combine to form other constituent units. These constituents 

include words, phrases, clauses, and sentences. All these constituents exist together 

in any message and are related to each other in a hierarchical structure. Moreover, a 

sentence is a structured format representing a collection of words provided they follow 

certain syntactic rules like grammar. Let’s take a sample sentence, “The brown fox is 

quick and he is jumping over the lazy dog”. The following snippet shows us how the 

sentence looks in Python.

sentence = "The brown fox is quick and he is jumping over the lazy dog"

sentence

'The brown fox is quick and he is jumping over the lazy dog'

The grammar and ordering of words definitely gives meaning to a sentence. What if 

we jumbled up the words? Would the sentence still make sense?

words = sentence.split()

np.random.shuffle(words)

print(words)

['quick', 'is', 'fox', 'brown', 'The', 'and', 'the', 'is', 'he', 'dog', 

'lazy', 'jumping', 'over']

This unordered bunch of words, as represented in Figure 1-3, is definitely hard to 

make sense of, isn’t it?
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From the collection of words in Figure 1-3, it is very difficult to ascertain what it 

might be trying to convey. Indeed, languages are not just comprised of a bag or bunch of 

unstructured words. Sentences with proper syntax not only help us give proper structure 

and relate words, but also help the words convey meaning based on order or position. 

Considering our previous hierarchy of sentence → clause → phrase → word, we can 

construct the hierarchical sentence tree shown in Figure 1-4 using shallow parsing, a 

technique often used for determining the constituents in a sentence.

From the hierarchical tree in Figure 1-4, we get the following sentence, “The brown 

fox is quick and he is jumping over the lazy dog” with a sentence of structure and 

meaning. We can see that the leaf nodes of the tree consist of words, which are the 

smallest unit here, and combinations of words form phrases, which in turn form clauses. 

Clauses are connected through various filler terms or words like conjunctions and they 

form the final sentence. In the following section, we look at each of these constituents 

in further detail and learn how to analyze them and determine the major syntactic 

categories.

dog   the   over   he

lazy   jumping   is   the   fox

and   is   quick   brown

Figure 1-3. A collection of words without any relation or structure

Sentence

Clause

Phrase Phrase Phrase Conjunction Phrase Phrase Phrase Phrase

Clause

Word Word Word Word Word Word Word Word Word Word Word WordWord

The brown fox is quick and he is jumping over the lazy dog

Figure 1-4. Structured sentence following the hierarchical syntax
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 Words
Words are the smallest unit in a language; they are independent and have a meaning 

of their own. Although morphemes are the smallest distinctive units, they are not 

independent like words. A word can be comprised of several morphemes. It is useful to 

annotate and tag words and then analyze them into their parts of speech (POS) to see 

the major syntactic categories. Here, we cover the main categories and significance of 

the various POS tags; however, we examine them in further detail and look at methods 

to generate POS tags programmatically in Chapter 3. Words typically fall into one of the 

following major categories:

• N(oun): This usually denotes words that depict some object or entity 

that could be living or non-living. Some examples are fox, dog, book, 

and so on. The POS tag symbol for nouns is N.

• V(erb): Verbs are words that are used to describe certain actions, 

states, or occurrences. There are a wide variety of further sub- 

categories like auxiliary, reflexive, transitive, and many more. Some 

typical examples of verbs are running, jumping, read, and write. The 

POS tag symbol for verbs is V.

• Adj(ective): Adjectives are words that describe or qualify other 

words, typically nouns and noun phrases. The phrase “beautiful 

flower” has the noun (N) “flower,” which is described or qualified 

using the adjective (ADJ) “beautiful”. The POS tag symbol for 

adjectives is ADJ.

• Adv(erb): Adverbs usually act as modifiers for other words including 

nouns, adjectives, verbs, or other adverbs. The phrase “very beautiful 

flower” has the adverb (ADV) “very,” which modifies the adjective 

(ADJ) “beautiful” indicating the degree of how beautiful the flower is. 

The POS tag symbol for adverbs is ADV.

Besides these four major categories of parts of speech, there are other categories 

that occur frequently in the English language. These include pronouns, prepositions, 

interjections, conjunctions, determiners, and many others. Each POS tag, like nouns 

(N) can be further sub-divided into various categories, like singular nouns (NN), singular 

proper nouns (NNP), and plural nouns (NNS). We look at POS tags in further detail in 

Chapter 3 when we process and parse textual data and implement POS taggers to 
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annotate text. Considering our previous example sentence, “The brown fox is quick and 

he is jumping over the lazy dog,” we can leverage NLTK or spaCy in Python to annotate it 

with POS tags. See Figure 1-5.

pos_tags = nltk.pos_tag(sentence.split())

pd.DataFrame(pos_tags).T

We talk about the meaning of each POS tag in detail in Chapter 3. But you can still 

leverage spaCy to understand the high-level semantics of each tag annotation. See 

Figure 1-6.

spacy_pos_tagged = [(word, word.tag_, word.pos_) for word in nlp(sentence)]

pd.DataFrame(spacy_pos_tagged).T

Figure 1-5. Annotated words with their parts of speech tags using NLTK

Figure 1-6. Annotated words with their parts of speech tags using spaCy

It is interesting to see that, based on the output depicted in Figure 1-6, the tag 

annotations match in both frameworks. Internally, they use the Penn Treebank notation 

for POS tag annotation. Tying this back to our discussion, a simple annotation of our 

sentence using basic POS tags would look as depicted in Figure 1-7.

DET DETADJ ADJADJ ADVCONJ PRONN NV V V

The brown fox is quick and he is jumping over the lazy dog

Figure 1-7. Annotated words with their parts of speech tags

Chapter 1  Natural laNguage proCessiNg BasiCs



17

From this example, you might see a few unknown tags. The tag DET stands for 

determiner, which is used to depict articles like a, an, the, etc. The tag CONJ indicates a 

conjunction, which usually bind together clauses to form sentences, and the PRON tag 

stands for pronoun, which are words that represent or take the place of a noun. The N, 

V, ADJ, and ADV tags are typical open classes and represent words belonging to an open 

vocabulary. Open classes are word classes that consist of an infinite set of words and 

commonly accept the addition of new words to the vocabulary. Words are usually added 

to open classes through processes like morphological derivation, invention based on 

usage, and creating compound lexemes. Some popular nouns that have been added 

include “internet” and “multimedia”. Closed classes consist of a closed and finite set 

of words and they do not accept new additions. Pronouns are a closed class. In the 

following section, we look at the next level of the hierarchy, phrases.

 Phrases
Words have their own lexical properties like parts of speech, which we saw earlier. Using 

these words, we can order them in ways that give meaning to the words such that each 

word belongs to a corresponding phrasal category and one of the words is the main 

or head word. In the hierarchy tree, groups of words make up phrases, which form the 

third level in the syntax tree. By principle, phrases are assumed to have at least two or 

more words considering the pecking order of words ⟵ phrases ⟵ clauses ⟵ symbols. 

However, a phrase can be a single word or a combination of words based on the syntax 

and position of the phrase in a clause or sentence. For example, the sentence, “Dessert 

was good” has only three words and each of them roll up to three phrases. The word 

“dessert” is a noun as well as a noun phrase, “is” depicts a verb as well as a verb phrase, 

and “good” represents an adjective as well as an adjective phrase describing the 

aforementioned dessert. There are five major categories of phrases, described next:

• Noun phrase (NP): These are phrases where a noun acts as the head 

word. Noun phrases act as a subject or object to a verb. Noun phrases 

can be a set of words that can be replaced by a pronoun without 

rendering the sentence or clause syntactically incorrect. Some 

examples are “dessert”, “the lazy dog”, and “the brown fox”.
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• Verb phrase (VP): These phrases are lexical units that have a verb 

acting as the head word. Usually there are two forms of verb phrases, 

one form has the verb components as well as other entities like 

nouns adjectives or adverbs that are a part of the object. The verb 

here is known as a finite verb. It acts as a single unit in the hierarchy 

tree and can function as the root in a clause. This form is prominent 

in constituency grammars. The other form is where the finite verb 

acts as the root of the entire clause and is prominent in dependency 

grammars. Another derivation of this includes verb phrases strictly 

consisting of verb components, including main, auxiliary, infinitive, 

and participles. The following sentence, “He has started the engine” 

can be used to illustrate the two types of verb phrases. They would 

be ”has started the engine” and “has started” based on the two forms 

discussed.

• Adjective phrase (ADJP): These are phrases whose head word is 

an adjective. Their main role is to describe or qualify nouns and 

pronouns in a sentence and they will be placed before or after 

the noun or pronoun. The sentence, “The cat is too quick” has an 

adjective phrase, “too quick” qualifying the cat, which is a noun 

phrase.

• Adverb phrase (ADVP): These phrases act like an adverb since the 

adverb acts as the head word in the phrase. Adverb phrases are used 

as modifiers for nouns, verbs, or adverbs by providing further details 

to describe or qualify them. Considering the sentence, “The train 

should be at the station pretty soon”, the adjective phrase is “pretty 

soon” since it describes when the train will be arriving.

• Prepositional phrase (PP): These phrases usually contain a 

preposition as the head word and other lexical components like 

nouns, pronouns, etc. They act like an adjective or adverb describing 

other words or phrases. The sentence “Going up the stairs” has a 

prepositional phrase, “up” describing the direction of the stairs.

These five major syntactic categories of phrases can be generated from words using 

several rules, some of which we discussed, like utilizing syntax and grammar of different 

types. We explore some of the popular grammars in a later section. Shallow parsing is 
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a popular natural language processing technique used to extract these constituents, 

including POS tags as well as phrases from a sentence. For our sentence, “The brown fox 

is quick and he is jumping over the lazy dog,” one way of representing it using shallow 

parsing is to have seven phrases, as depicted in Figure 1-8.

The phrase tags fall into the categories we discussed earlier; however the word 

“and” is a conjunction and is used to combine clauses. Is there a better way to do this? 

Probably! You can define your own rules for phrases and then enable shallow parsing or 

chunking using a lookup based parser similar to NLTK’s RegexpParser. It’s a grammar 

based chunk parser and uses a set of regular expression patterns (defined grammar 

rules) to specify the behavior of the parser. The following code shows it in action for our 

sentence! See Figure 1-9 too.

grammar = '''

            NP: {<DT>?<JJ>?<NN.*>}

            ADJP: {<JJ>}

            ADVP: {<RB.*>}

            PP: {<IN>}

            VP: {<MD>?<VB.*>+}

          '''

pos_tagged_sent = nltk.pos_tag(sentence.split())

rp = nltk.RegexpParser(grammar)

shallow_parsed_sent = rp.parse(pos_tagged_sent)

print(shallow_parsed_sent)

(S

  (NP The/DT brown/JJ fox/NN)

  (VP is/VBZ)

  (ADJP quick/JJ)

  and/CC

NP VP ADJP - NP VP PP NP

The brown fox is quick and he is jumping over the lazy dog

Figure 1-8. Annotated phrases with their tags in shallow parsing
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  he/PRP

  (VP is/VBZ jumping/VBG)

  (PP over/IN)

  (NP the/DT lazy/JJ dog/NN))

# visualize shallow parse tree

shallow_parsed_sent

Based on the output in Figure 1-9, we can see the power of a simple rule-based 

chunker in identifying major phrases and sentence structure. In the following section, 

we look at clauses, their main categories, and some conventions and syntactic rules for 

extracting clauses from sentences.

 Clauses
By nature, clauses can act as independent sentences or several clauses can be combined 

together to form a sentence. Clauses are groups of words with some relation between 

them and they usually contain a subject and a predicate. Sometimes the subject may not 

be present and the predicate has a verb phrase or a verb with an object. By default you 

can classify clauses into two distinct categories, the main clause and the subordinate 

clause. The main clause is also known as an independent clause because it can form a 

sentence by itself and act as both a sentence and a clause. The subordinate or dependent 

clause cannot exist by itself; it depends on the main clause for its meaning. They are 

usually with other clauses using dependent words like subordinating conjunctions.

Since we are talking a lot about syntactic properties of language, clauses can be 

subdivided into several categories based on syntax. They are explained in detail as follows.

• Declarative: These clauses occur quite frequently and denote 

statements that do not have a specific tone associated with them. 

These are just standard statements that are declared with a neutral 

tone and could be factual or non-factual. An example would be, 

“Grass is green”.

NP

brown JJ fox NN is VBZ is VBZ jumping VBG

VP PP NP

over IN the DT lazy JJ dog NNquick JJ

VP ADJP and CC he PRP

S

The DT

Figure 1-9. Annotated phrases with their tags in shallow parsing using NLTK
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• Imperative: These clauses are usually in the form of a request, 

command, rule, or advice. The tone in this case is a person issuing an 

order to one or more people to carry out an order, request, or even an 

instruction. An example would be, “Please do not talk in class”.

• Relative: The simplest interpretation of relative clauses is that they 

are subordinate clauses and hence dependent on another part of the 

sentence, which usually contains a word, phrase, or even a clause. 

This element usually acts as the antecedent to one of the words from 

the relative clause and relates to it. A simple example would be the 

following sentence, “John just mentioned that he wanted a soda”. The 

antecedent is the proper noun, “John” which was referred to in the 

relative clause, “he wanted a soda”.

• Interrogative: These clauses are typically in the form of questions. 

The type of these questions can be either affirmative or negative. 

Some example would be, “Did you get my mail?” and “Didn’t you go 

to school?”

• Exclamative: These clauses are used to express shock, surprise, or 

even compliments. All these expressions fall under exclamations and 

these clauses often end with an exclamation mark. An example is 

“What an amazing race!”

Most clauses are expressed in one of these syntactic forms; however, this list of 

clause categories is not exhaustive and can be further categorized into several other 

forms. Considering our example sentence, “The brown fox is quick and he is jumping 

over the lazy dog,” if you remember the syntax tree, the coordinating conjunction (and) 

divides the sentence into two clauses. They are “The brown fox is quick” and “he is 

jumping over the lazy dog”. Can you guess what categories they might fall into? (Hint: 

Look back at the definitions of declarative and relative clauses.)

 Grammar
Grammar helps enable syntax and structure in language. It primarily consists of a set 

of rules that are used to determine how to position words, phrases, and clauses when 

constructing sentences in a natural language. Grammar is not restricted to the written 

word but is also used verbally. These rules can be specific to a region, language, or 
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dialect, or be somewhat universal like the Subject-Verb-Object (SVO) model. Origins 

of grammar have a rich history, starting with Sanskrit in India. In the West, the study 

of grammar originated with the Greeks and the earliest work was the Art of Grammar, 

written by Dionysius Thrax. Latin grammar models were developed from the Greek 

models and gradually across several ages, grammar models for various languages started 

being created. It was only in the 18th Century that grammar was considered a serious 

candidate for being a field under linguistics.

Grammar was developed over the course of time and has kept evolving leading to the 

birth of newer types of grammar. Hence, grammar is not a fixed set of rules but evolves 

based on language use over the course of time. Considering the English language as 

before, there are several ways that grammar can be classified. We first talk about two 

broad classes into which most of the popular grammatical frameworks can be grouped 

and then we further explore how these grammar frameworks represent language. 

Grammar can be subdivided into two main classes based on its representations for 

linguistic syntax and structure. They are as follows:

• Dependency grammar

• Constituency grammar

 Dependency Grammar

This is a class of grammar that specifically does not focus on constituents (unlike 

constituency grammars) like words, phrases, and clauses, but gives more emphasis 

on words. Hence these grammar types are also known as word-based grammars. To 

understand dependency grammar, we should first know what dependency means in this 

context. Dependencies in this context are labeled word-word relations or links that are 

usually asymmetrical. A word has a relation or depends on another word based on the 

positioning of the words in the sentence. Consequently, dependency grammars assume 

that further constituents of phrases and clauses are derived from this dependency 

structure between words. The basic principle behind dependency grammar is that in any 

sentence in the language, all the words except one has some relationship or dependency 

on other words in the sentence. The word that has no dependency is termed the root 

of the sentence. The verb is taken as the root of the sentence in most cases. All the 

other words are directly or indirectly linked to the root verb using links, which are the 

dependencies. While there are no concepts of phrases or clauses, looking at the syntax 
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and relations between words and their dependents, one can determine the necessary 

constituents in the sentence.

Dependency grammars always have a one-to-one relationship to each word 

in the sentence. There are two aspects to this grammar representation. One is the 

syntax or structure of the sentence and the other is the semantics obtained from the 

relationships denoted between the words. The syntax or structure of the words and their 

interconnections can be shown using a sentence syntax or parse tree, similar to what we 

depicted in an earlier section. Considering our sentence, “The brown fox is quick and he 

is jumping over the lazy dog,” if we would want to draw the dependency syntax tree for 

this, we would have the structure shown in Figure 1-10.

Figure 1-10 shows us that the dependencies form a tree or, to be more accurate, a 

graph over all the words in the sentence. The graph is connected where each word has at 

least one directed edge going out or coming into it. The graph is also directed since each 

edge between two words points in one specific direction. Hence, the dependency tree 

is a directed acyclic graph (DAG). Every node in the tree has at most one incoming edge 

except the root node. Since this is a directed graph, by nature, dependency trees do not 

fox (N)

dog (N)

the (DET) lazy (ADJ)

The (DET)  brown (ADJ) he (PRON) over (ADV)

quick (ADJ) and (CONJ) jumping (V)

is (V)

is (V)

Figure 1-10. Dependency grammar based syntax tree with POS tags
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depict the order of the words in the sentence. The emphasis is more on the relationship 

between the words in the sentence. Our sentence is annotated in Figure 1-10 with the 

relevant POS tags, which we discussed earlier, and the directed edges showing the 

dependency.

Now, if you remember, we discussed earlier that there were two aspects to the 

representation of sentences using dependency grammar. Each directed edge represents 

a specific type of meaningful relationship (also known as a syntactic function) and we 

can annotate our sentence, further showing the specific dependency relationship types 

between the words. This is depicted in Figure 1-11.

These dependency relationships each have their own meaning and are a part of 

a list of universal dependency types. This is a part of the original paper, “Universal 

Stanford Dependencies: A Cross-Linguistic Typology” (de Marneffe et al., 2014). 

You can check out the exhaustive list of dependency types and their meanings at 

fox (N)

The (DET) brown (ADJ) he (PRON) over (ADV)

quick (ADJ) and (CONJ) jumping (V)

is (V)

is (V)

nsubj acomp cc conj

det amod nsubj prepaux

pobj

dog (N)

the (DET) lazy (ADJ)

det
amod

Figure 1-11. Dependency grammar based syntax tree annotated with dependency 
relationship types
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http://universaldependencies.org/u/dep/index.html. The spaCy framework 

leverages this universal dependency scheme and an alternate scheme called the 

CLEAR dependency scheme. Details on possible dependencies are available at 

https://emorynlp.github.io/nlp4j/components/dependency-parsing.html in 

case you are interested in understanding the significance of all these dependencies. 

If we observe some of these dependencies, it is not too hard to understand them. 

We look in detail some of the tags used in the dependencies for the sentence in 

Figure 1-11.

• The dependency tag det denotes the determiner relationship 

between a nominal head and the determiner. Usually the word with 

POS tag DET will also have the det relation. Examples include (fox -> 

the) and (dog -> the).

• The dependency tag amod stands for adjectival modifier and stands 

for any adjective that modifies the meaning of a noun. Examples 

include (fox -> brown) and (dog -> lazy).

• The dependency tag nsubj stands for an entity that acts as a subject or 

agent in a clause. Examples include (is -> fox) and (jumping -> he).

• The dependencies cc and conj are linkages related to words 

connected by coordinating conjunctions. Examples include (is -> 

and) and (is -> jumping).

• The dependency tag aux indicates the auxiliary or secondary verb in 

the clause. Examples include (jumping -> is).

• The dependency tag acomp stands for adjective complement and acts 

as the complement or object to a verb in the sentence. Examples 

include (is -> quick).

• The dependency tag prep denotes a prepositional modifier that usually 

modifies the meaning of a noun, verb, adjective, or even a preposition. 

This representation is used for prepositions having a noun or noun 

phrase complement. Examples include (jumping -> over).

• The dependency tag pobj is used to denote the object of a 

preposition. This is usually the head of a noun phrase following a 

preposition in the sentence. Examples include (over -> dog).
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These tags have been extensively used in our sample sentence for annotating 

the various dependency relationships among the words. Now that you understand 

dependency relationships better, it would be good to remember that often when 

representing a dependency grammar for sentences, instead of creating a tree with linear 

orders, you can also represent it with a normal graph since there is no concept of order 

of words in dependency grammar. We can leverage spaCy to build this dependency tree/

graph for our sample sentence (see Figure 1-12).

from spacy import displacy

displacy.render(nlp(sentence), jupyter=True,

                options={'distance': 100,

                         'arrow_stroke': 1.5,

                         'arrow_width': 8})

Figure 1-12 depicts our sentence annotated with dependency tags, which should 

be clear to you based on our earlier discussion. When we cover constituency based 

grammar next, you will observe that the number of nodes in dependency grammars 

will be a lot fewer corresponding to their constituency counterparts. Currently there 

are various grammatical frameworks based on dependency grammar. Some popular 

ones are algebraic syntax and operator grammar. Next, we look at the concepts behind 

constituency grammars and their representations.

 Constituency Grammar

These grammar types are built on the principle that a sentence can be represented 

by several constituents derived from it. These grammar types can be used to model 

or represent the internal structure of sentences in terms of a hierarchically ordered 

amod

det

nsubj acomp

cc

conj

nsubj

aux prep

pobj

det

amod

The

DET

brown

ADJ

fox is

NOUN VERB

is jumping

VERB VERB

over

ADP

the

DET

lazy

ADJ

dog

NOUN

quick

ADJ

and

CCONJ

he

PRON

Figure 1-12. Dependency grammar annotated graph for our sample sentence 
with spaCy
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structure of its constituents. Each word belongs to a specific lexical category and forms 

the head words of different phrases. These phrases are formed based on rules called 

phrase structure rules. Hence constituency grammars are also called phrase structure 

grammars. Phrase structure grammars were introduced by Noam Chomsky in the 

1950s. To understand constituency grammars, we must know clearly what we mean by 

constituents. We covered this several times earlier in this chapter, but just to refresh your 

memory, constituents are words or group of words that have specific meaning and can 

act together as a dependent or independent unit. They also can be combined to form 

higher order structures in a sentence. These include phrases and clauses.

Phrase structure rules form the core of constituency grammars since they talk about 

syntax and rules, which govern the hierarchy and ordering of the various constituents in 

the sentences. These rules cater to two things primarily. First and foremost, these rules 

determine what words are used to construct the phrases or constituents and secondly, 

these rules determine how we need to order these constituents. If we want to analyze 

phrase structure, we should be aware of typical schema patterns of the phrase structure 

rules. The generic representation of a phrase structure rule is S → A B, which depicts that 

the structure S consists of constituents A and B and the ordering is A followed by B.

There are several phrase structure rules and we explore them one by one to 

understand how exactly we extract and order constituents in a sentence. The most 

important rule describes how to divide a sentence or a clause. The phrase structure 

rule denotes a binary division for a sentence or a clause as S → NP VP, where S is 

the sentence or clause and it is divided into the subject, denoted by the noun phrase 

(NP) and the predicate, denoted by the verb phrase (VP). Of course, we can apply 

additional rules to break down each of the constituents further, but the top level of the 

hierarchy starts with a NP and VP. The rule for representing a noun phrase is of the form 

NP → [DET][ADJ]N [PP], where the square brackets […] denote that it is optional. A noun 

phrase usually consists of a (N)oun as the head word and may optionally contain (DET)

erminants and (ADJ)ectives describing the noun and a prepositional phrase (PP) at the 

right side in the syntax tree. Consequently, a noun phrase may contain another noun 

phrase as a constituent of it. Figure 1-13 shows a few examples that are governed by the 

aforementioned rules for noun phrases.
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These syntax trees shows us the various constituents that a noun phrase typically 

contains. As mentioned, a noun phrase denoted by NP on the left side of the production 

rule may also appear on the right side of the production rule, as depicted in the last 

example. This is a property called recursion and we talk about it toward the end of this 

section. We now look at rules for representing verb phrases. The rule is of the form 

VP → V ∣ MD [VP][NP][PP][ADJP][ADVP], where the head word is usually a (V)erb or a 

modal (MD). A modal is itself an auxiliary verb, but we give it a different representation 

just to distinguish it from the normal verb. This is optionally followed by another verb 

phrase (VP) or noun phrase (NP), prepositional phrase (PP), adjective phrase (ADJP), or 

adverbial phrase (ADVP). The verb phrase is always the second component when we split 

a sentence using the binary division rule, making the noun phrase the first component. 

Figure 1-14 depicts a few examples for the different types of verb phrases that can be 

typically constructed and their representations as syntax trees.

NP N NP DET N DET ADJ NNP NP NP PP

NP NP NP

N

Fox

NDET

FoxThe

NDET ADJ

Fox

Fox in

The brown

NP

NP

PP

PREP

NP

N

N

DET ADJ

a box

The brown DET

Figure 1-13. Constituency syntax trees depicting structuring rules for noun 
phrases

VP V VP VP NP PP AVDPMD VP V VP V

VP

V

jumping fixing

the roof

VPMD

VP VP VP

PP ADVP

V

V VNP

DET N

jump

jumpedwill

the

above

dog

swiftly

NP ADVPREP

DET N

Figure 1-14. Constituency syntax trees depicting structuring rules for verb phrases
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Like we depicted earlier, these syntax trees show us the representations of the 

various constituents in verb phrases and, using the property of recursion, a verb phrase 

may also contain another verb phrase inside it, as we see in the second syntax tree. We 

also see the hierarchy being maintained specially in the third and fourth syntax trees, 

where the NP and PP by itself are further constituents under the VP and they can be 

further broken down into smaller constituents. Since we have seen a lot of prepositional 

phrases being used in the previous examples, let’s look at the production rules for 

representing prepositional phrases. The basic rule has the form PP → PREP [NP], where 

PREP denotes a preposition that acts as the head word and it is optionally followed by a 

noun phrase (NP). Figure 1-15 depicts some representations of prepositional phrases and 

their corresponding syntax trees.

PP PPPREP PREP NP

PP PP

PREP

DET ADJ Nover

the lazy dog

NPPREP

in

Figure 1-15. Constituency syntax trees depicting structuring rules for 
prepositional phrases

These syntax trees show us some different representations for prepositional phrases. 

We now discuss the concept of recursion. Recursion is an inherent property of the 

language that allows constituents to be embedded in other constituents, which are 

depicted by different phrasal categories that appear on both sides of the production 

rules. This enables us to create long constituency-based syntax trees from sentences. A 

simple example is the representation of the sentence, “The flying monkey in the circus 

on the trapeze by the river” depicted by the constituency parse tree in Figure 1-16.
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If you closely observe the syntax tree in Figure 1-16, you will notice that it is made up 

of only noun phrases and prepositional phrases. However, due to the inherent recursive 

property that a prepositional phrase itself can consist of a noun phrase and the noun 

phrase can consist of a noun phrase as well as a prepositional phrase, the hierarchical 

structure has multiple NPs and PPs. If you go over the production rules for noun phrases 

and prepositional phrases, you will find the constituents in the tree in Figure 1-16 adhere 

to the rules.

We now talk a bit about conjunctions, since they are used to join clauses and 

phrases and form an important part of language syntax. Usually words, phrases and 

even clauses can be combined using conjunctions. The production rule can be denoted 

as S → S conj S ∀ S ∈ {S, NP, VP}, where two constituents can be joined by a conjunction 

denoted by conj in the rule. A simple example for a sentence consisting of a noun phrase 

which by itself is constructed out of two noun phrases and a conjunction would be, “The 

brown fox and the lazy dog”. This is depicted by the constituency syntax tree showing the 

adherence to the production rule in Figure 1-17.

S

NP

NP

NP

NP

NP

NPN

N

NP

DET N

PP

PP

PREP

PREP

DET

DET

PREP

DET V N

PP

The flying monkey in

the circus on

the trapeze by

the river

Figure 1-16. Constituency syntax tree depicting recursive properties among 
constituents
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Figure 1-17 shows us that the top-level noun phrase is the sentence by itself and 

it has two noun phrases as its constituents. They are joined by a conjunction, thus 

satisfying our aforementioned production rule. What if we wanted to join two sentences 

or clauses together with a conjunction? We can do that by putting all of these rules and 

conventions together and generating the constituency based syntax tree for our sample 

sentence, “The brown fox is quick and he is jumping over the lazy dog”. This would give 

us the syntactic representation of our sentence as depicted in Figure 1-18.

S

NP

NP

DET ADJ N

CONJ NP

DET ADJ Nand

The the lazy dogbrown fox

Figure 1-17. Constituency syntax tree depicting noun phrases joined by a conjunction

S

SS

NP

DET ADJ

ADJ

ADJPN

DET ADJ N

V

VP NP

NP

PRON V

V

VP

VP

PP

PREP

CONJ

and

he

jumping

is

the lazy

over

dog

The brown fox is

quick

Figure 1-18. Constituency syntax tree for our sample sentence
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From Figure 1-18, you can conclude that our sentence has two main clauses or 

constituents, which we had talked about earlier, and they are joined by a coordinating 

conjunction (and). Moreover, the constituency grammar-based production rules break 

down the top-level constituents into further constituents consisting of phrases and their 

words. Looking at this syntax tree, you can see that it does show the order of the words 

in the sentence and it more of a hierarchical tree-based structure with undirected edges. 

Hence, this is a lot different compared to the dependency grammar based syntax tree/

graph with unordered words and directed edges. There are several popular grammar 

frameworks based on concepts derived from constituency grammar. These include 

Phrase Structure Grammar, Arc Pair Grammar, Lexical Functional Grammar, and even 

the famous Context-Free Grammar, which is used extensively in describing formal 

language. We can leverage Stanford’s Core NLP-based parsers in NLTK to perform 

constituency parsing on our sample sentence.

from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser- 

full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/

stanford-parser- full-2015-04-20/stanford-parser-3.5.2-models.jar')

result = list(scp.raw_parse(sentence))

print(result[0])

(ROOT

  (NP

    (S

      (S

        (NP (DT The) (JJ brown) (NN fox))

        (VP (VBZ is) (ADJP (JJ quick))))

      (CC and)

      (S

        (NP (PRP he))

        (VP

          (VBZ is)
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          (VP

            (VBG jumping)

            (PP (IN over) (NP (DT the) (JJ lazy) (NN dog)))))))))

# visualize constituency tree

result[0]

We can see that the constituency tree depicted in Figure 1-19 has the same 

hierarchical structure as the tree in Figure 1-18.

 Word-Order Typology
Typology in linguistics is a field that specifically deals with trying to classify languages 

based on their syntax, structure, and functionality. They can be classified in several ways 

and one of the most common models is to classify them according to their dominant 

word orders, also known as word-order typology. The primary word orders of interest 

occur in clauses, consisting of a subject, verb, and an object. Of course, not all clauses 

ROOT

NP

S

S

NP

DT JJ NN VBZ ADJP

NP

PRP

he is

VBZ

VBG PP

VP VP

VP

and

CC S

The brown fox is JJ

quick jumping

over DT JJ NN

IN NP

the lazy dog

Figure 1-19. Constituency syntax tree for our sample sentence with NLTK and 
Stanford Core NLP
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will use the subject, verb, and object format and the subject and object are not used in 

certain languages. However, there exist several different classes of word orders that can 

be used to classify a wide variety of languages. A survey was done by Russell Tomlin in 

1986 and Table 1-1 shows some insights derived from his analysis.

Table 1-1. Word Order Based Language Classification Surveyed by Russell 

Tomlin, 1986

Sl No. Word Order Language Frequency Example Languages

1 subject-object-Verb 180 (45%) sanskrit, Bengali, gothic, hindi, latin

2 subject-Verb-object 168 (42%) english, French, Mandarin, spanish

3 Verb-subject-object 37 (9%) hebrew, irish, Filipino, aramaic

4 Verb-object-subject 12 (3%) Baure, Malagasy, aneityan

5 object-Verb-subject 5 (1%) apalai, hixkaryana, arecua

6 object-subject-Verb 1 (0%) Warao

Figure 1-20. English to Hindi translation changes the word order class for the 
sentence

From this table, we can observe that there are six major classes of word orders 

and languages like English follow the Subject-Verb-Object word order class. A simple 

example would be the sentence, “He ate cake” where “He” is the subject, “ate” is the 

verb, and “cake” is the object. The majority of languages from Table 1-1 follow the 

Subject- Object- Verb word order. In that case, the sentence, “He cake ate” would be 

correct if it was translated to those languages. This is illustrated by the English to Hindi 

translation of the same sentence in Figure 1-20, courtesy of Google Translate.
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Even if you do not understand Hindi, you can understand by the English annotation 

provided by Google that the word “cake” denoted by “kek” in the text under the Hindi 

translation has moved to the middle of the sentence and the verb “ate” denoted by 

“khaaya” has moved to the end of the sentence, thus making the word order class 

Subject-Object-Verb, which is the correct form for the Hindi language. This gives us an 

indication of the importance of word order and how representation of messages can be 

grammatically different in various languages. This brings us to the end of our discussion 

regarding the syntax and structure of languages. Next, we look at some of the concepts 

around language semantics.

 Language Semantics
The definition of semantics is the study of meaning. Linguistics has its own sub-field 

of linguistic semantics that deals with the study of meaning in language, including the 

relationship between words, phrases, and symbols. It studies their indication, meaning, 

and representation of the knowledge they signify. In simple words, semantics is more 

concerned with facial expressions, signs, symbols, body language, and knowledge that’s 

transferred when passing messages from one entity to another. Representing semantics 

using formal rules or conventions has always been a challenge in linguistics. However, 

there are different ways to represent meaning and knowledge obtained from language. 

In the following section, we look at relationships between the lexical units of a language, 

which are predominantly words and phrases, and explore several concepts around 

formalizing the representation of knowledge and meaning.

 Lexical Semantic Relations
Lexical semantics is concerned with identifying semantic relations between lexical 

units in a language and how they are correlated to the syntax and structure of the 

language. Lexical units are usually represented by morphemes, the smallest meaningful 

and syntactically correct unit of a language. Words are inherently a subset of these 

morphemes. Each lexical unit has its own syntax, form, and meaning. They also derive 

meaning from their surrounding lexical units in phrases, clauses, and sentences. A 

lexicon is a complete vocabulary of these lexical units. We explore some concepts 

revolving around lexical semantics in this section.
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 Lemmas and Wordforms

A lemma is also known as the canonical or citation form for a set of words. The lemma 

is usually the base form of a set of words, known as a lexeme. Lemma is the specific 

base form or head word that represents the lexeme. Word forms are inflected forms of 

the lemma, which are part of the lexeme and can appear as one of the words from the 

lexeme in text. A simple example is the lexeme {eating, ate, eats}, which are the word 

forms and their lemma is the word “eat”.

These words have specific meanings based on their position among other words in a 

sentence. This is also known as “sense” of the word or wordsense. Wordsense gives us a 

concrete representation of the different aspects of a word’s meaning. Consider the word 

“fair” in the following sentences: “They are going to the annual fair” and “I hope the 

judgment is fair to all”. Even though the word “fair” is the same in both the sentences, the 

meaning changes based on the surrounding words and context.

 Homonyms, Homographs, and Homophones

Homonyms are defined as words that share the same spelling or pronunciation but have 

different meanings. An alternative definition restricts the constraint to the same spelling. 

The relationship between these words is termed homonymy. Homonyms are often said 

to be a superset of homographs and homophones. An example of homonyms can be 

demonstrated in the following sentences, “The bat hangs upside down from the tree” 

and “That baseball bat is really sturdy” for the word “bat”.

Homographs are defined as words that have the same written form or spelling but 

have different meanings. Several alternate definitions say that the pronunciation can also 

be different. Some examples of homographs include, the word “lead” as in “I am using a 

lead pencil” and “Please lead the soldiers to the camp” and the word “bass” as in “Turn 

up the bass for the song” and “I just caught a bass today while I was out fishing”. Note 

that with the case of the word “lead,” the spelling stays the same but the pronunciation 

changes based on the context in the sentences.

Homophones are defined as words that have the same pronunciation but have 

different meanings and can have the same or different spellings. Examples are the words 

“pair” (which means couple) and “pear” (which means the fruit), which sound the 

same but have different meanings and written forms. These words cause problems in 

natural language processing, since it is very difficult to determine the actual context and 

meaning using machine intelligence.
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 Heteronyms and Heterographs

Heteronyms are defined as words that have the same written form or spelling but have 

different pronunciation and meaning. By nature, they are a subset of homographs. 

They are also often called heterophones, which means, “different sound”. Examples 

of heteronyms are the words “lead” (metal, command) and “tear” (rip off something, 

moisture from eyes).

Heterographs are defined as words that have the same pronunciation but different 

meanings as well as spellings. By nature they are a subset of homonyms. Their written 

representation might be different but they sound very similar or often exactly the same 

when spoken. Some examples include the words “to,” “too,” and “two,” which sound 

similar but have different spellings and meanings.

 Polysemes

Polysemes are defined as words that have the same written form or spelling and different 

but related meanings. While this is very similar to homonymy, the difference is very 

subjective and depends on the context since these words are related to each other. A 

very good example is the word “bank,” which can mean (1) a financial institution, (2) the 

bank of the river, (3) the building that belongs to the financial institution, or (4) even as a 

verb which means to rely upon. Now all these examples use the same word, “bank” and 

are homonyms. But only (1), (3), and even (4), which stand for trust and security (which 

a financial organization represents) are polysemes and represent a common theme.

 Capitonyms

Capitonyms are defined as words that have the same written form or spelling but have 

different meanings when they are capitalized. The words may or may not have different 

pronunciations. Some examples include the words “march” (“March” indicates the 

month and “march” depicts the action of walking) and “may” (“May” indicates the 

month and “may” depicts a modal verb).

 Synonyms and Antonyms

Synonyms are defined as words that have different pronunciations and spellings but 

have the same meanings in some or all contexts. If two words or lexemes are synonyms, 

they can be substituted for each other in various contexts and it signifies them having 
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the same propositional meaning. Words that are synonyms are said to be synonymous 

with each other and the state of being a synonym is called synonymy. Perfect synonymy 

is almost non-existent. The reason is because synonymy is more of a relation between 

senses and has contextual meaning rather than just words. Consider the words “big,” 

“huge,” and “large,” which are synonyms of each other. They are related and make 

perfect sense in sentences like, “That milkshake is really (big\large\huge)”. However, 

if we consider the sentence, “Bruce is my big brother,” it does not make sense if we 

substitute the word big with either huge or large. The reason is because the word big 

here has a context or sense depicting being older and the other two synonyms lack this 

sense. Synonyms can exist for all parts of speech, including nouns, adjectives, verbs, 

adverbs, and prepositions.

Antonyms are defined as pairs of words that define a binary opposite relationship. 

These words indicate specific sense and meaning that are completely opposite of each 

other. The state of being an antonym is termed antonymy. There are three types of 

antonyms—graded antonyms, complementary antonyms, and relational antonyms. 

Graded antonyms are antonyms with a certain grade or level when measured on a 

continuous scale, like the pair (fat, skinny). Complementary antonyms are word pairs 

that are opposite in their meaning but they cannot be measured on any grade or scale. 

An example of a complementary antonym pair is (divide, unite). Relational antonyms 

are word pairs that have some relationship between them and the contextual antonymy 

is signified by this very relationship. An example of a relational antonym pair is (doctor, 

patient).

 Hyponyms and Hypernyms

Hyponyms are words that are subclasses of other words. In this case the hyponyms are 

generally words with a very specific sense and context as compared to the word that is 

their superclass. Hypernyms are the words that act as the superclass to the hyponyms 

and have a more generic sense compared to the hyponyms. An example is the word 

“fruit,” which is the hypernym and the words “mango,” “orange,” and “pear” are possible 

hyponyms. The relationship depicted between these words is often called hyponymy or 

hypernymy.
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 Semantic Networks and Models
We have seen several ways to formalize relations between words and their sense or 

meaning. Considering lexical semantics, there are approaches to determine the sense 

and meaning of each lexical unit, but what if we wanted to consider representing the 

meaning of some concept or theory that involves relating these lexical units together and 

forming connections between them based on their meaning? Semantic networks aim to 

tackle this problem of representation of knowledge and concepts by using a network or 

a graph. The basic unit of semantic network is an entity or a concept. A concept could be 

a tangible or an abstract item like an idea. Sets of concepts have some relation to each 

other and can be represented with directed or undirected edges. Each edge denoted a 

specific type of relationship between two concepts.

Let’s assume we are talking about the concept of fish. We can have different concepts 

around fish based on their relationship to it. For instance, fish “is-a” animal and fish 

“is-a” part of marine life. These relationships are depicted as “is-a” relationships. There 

can be various other relationships like “has-a,” “part-of,” “related-to,” and many more 

depending on the context and semantics. These concepts and relationships form a 

semantic network and you can even browse several of these semantic models online, 

where you’ll find vast knowledgebases spanning different concepts. Figure 1-21 shows 

a possible representation for concepts related to fish. This model is provided courtesy 

of Nodebox at https://www.nodebox.net/perception/. You can search for various 

concepts and see associated concepts at this site.
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From the network shown in Figure 1-21, we can see some of the concepts we 

discussed earlier around fish, as well as specific types of fish, like eel, salmon, shark, 

etc. These can be hyponyms to the concept “fish”. These semantic networks are formally 

denoted and represented by semantic data models using graph structures, where 

concepts or entities are the nodes and the edges denote the relationships. The semantic 

web is the extension of the world wide web using semantic metadata annotations and 

embeddings and data modeling techniques like Resource Description Framework 

(RDF) and Web Ontology Language (OWL). In linguistics, we have a rich lexical corpus 

and database called WordNet, which has an exhaustive list of different lexical entities 

that are grouped into synsets based on semantic similarity (e.g., synonyms). Semantic 

relationships between these synsets and consequently various words can be explored 

in WordNet, making it in essence a type of semantic network. We talk about WordNet in 

more detail in a later section when we cover text corpora.

Figure 1-21. Semantic network around the concept of fish
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 Representation of Semantics
So far we have seen how to represent semantics based on lexical units and how they 

can be interconnected by leveraging semantic networks. If we consider the normal 

form of communication via messages, whether it is written or spoken, if an entity sends 

a message to another entity and that entity takes some specific actions based on the 

message, then he/she is said to have understood the meaning conveyed by that message.

A question that might come to mind is how we formally represent the meaning or 

semantics conveyed by a simple sentence. While it might be extremely easy for us to 

understand the meaning conveyed, representing semantics formally is not as easy as it 

seems. Consider the following example, “Get me the book from the table”. This sentence 

by nature is a directive and it directs the listener to do something. Understanding the 

meaning conveyed by this sentence may involve pragmatics like “which specific book?” 

and “which specific table?” besides the actual deed of getting the book from the table. 

While the human mind is intuitive, representing the meaning and relationship between 

the various constituents formally is a challenge. However, we can do it using several 

techniques, like propositional logic and first order logic. Using these representations, 

we can represent the meaning indicated by different sentences and draw inference 

from them. We can even discover if one sentence entails another one based on their 

semantics. Representation of semantics is useful especially for carrying out various 

natural language processing operations in order to make machines understand the 

semantics behind messages using proper representations, since they lack the cognitive 

power of humans.

 Propositional Logic

Propositional logic, also known as sentential logic or statement logic, is defined as 

the discipline of logic that’s concerned with the study of propositions, statements, 

and sentences. This includes studying logical relationships and properties between 

propositions and statements, combining multiple propositions to form more complex 

propositions, and observing how the value of propositions change based on the 

components and logical operators. A proposition or statement is usually declarative 

and is capable of having a binary truth value (true or false). Usually statement is more 

language specific and concrete and a proposition is more inclined toward the idea or the 

concepts conveyed by the statement. A simple example is these two statements—“The 

rocket was faster than the airship” and “The airship was slower than the rocket”—which 
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are distinct but convey the same meaning or proposition. However, the terms statement 

and proposition are often used interchangeably in propositional logic.

The main focus in propositional logic is to study different propositions and see how 

combining various propositions with logical operators changes the semantics of the 

overall proposition. These logic operators are used more like connectors or coordinating 

conjunctions. Operators include terms like “and,” “or,” and “not,” which can change the 

meaning of a proposition by itself or when combined with several propositions. A simple 

example is two propositions—“The Earth is round” and “The Earth revolves around the 

Sun”. These can be combined with the logical operator “and” to give us the proposition, 

“The Earth is round and it revolves around the Sun,” which gives us the indication that 

the two propositions on either side of the “and” operator must be true for the combined 

proposition to be true.

The good thing about propositional logic is that each proposition has its own truth 

value and it is not concerned with further subdividing a proposition into smaller chunks 

and verifying the logical characteristics. Each proposition is considered an indivisible 

whole unit with its own truth value. Logical operators may be applied to it and several 

other propositions. Subdividing parts of propositions like clauses or phrases are not 

considered here. To represent the various building blocks of propositional logic, 

we use several conventions and symbols. Uppercase letters like P and Q are used to 

denote individual statements or propositions. The different operators used and their 

corresponding symbols are depicted in Table 1-2, based on their order of precedence.

Table 1-2. Logical Operators with Their Symbols and Precedence

Sl No. Operator Symbol Operator Meaning Precedence

1 ¬ not highest

2 ∧ and

3 ∨ or

4 → if-then

5 ↔ iff (if and only if) lowest

From Table 1-2, we can see that there are a total of five operators with the not 

operator having the highest precedence and the iff operator having the lowest. Logical 

constants are denoted as being true or false. Constants and symbols are known as 

atomic units and all other units, more specifically the sentences and statements, are 
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complex units. A literal is usually an atomic statement or its negation on applying the 

not operator. We depict a simple example of two sentences, P and Q, and applying the 

various operators to them. Let’s consider the following representations:

P: He is hungry

Q: He will eat a sandwich

The expression P ∧ Q translates to “he is hungry and he will eat a sandwich”. This 

expresses that the outcome of this operation itself is also a sentence or proposition. 

This is the conjunction operation where P and Q are the conjuncts. The outcome of this 

sentence is true only if both P and Q are true.

The expression P ∨ Q translates to “he is hungry or he will eat a sandwich”. This 

expresses that the outcome of this operation is also another proposition formed from the 

disjunction operation where P and Q are the disjuncts. The outcome of this sentence is 

true if either P or Q is true or both of them are true.

The expression P → Q translates to “if he is hungry, then he will eat a sandwich”. This 

is the implication operation that determines P is the premise or the antecedent and Q 

is the consequent. It is just like a rule that states that Q will occur only if P has already 

occurred or is true.

The expression P ↔ Q translates to “he will eat a sandwich if and only if he is 

hungry,” which is basically a combination of the expressions “If he is hungry then he will 

eat a sandwich” (P → Q) and “If he will eat a sandwich, he is hungry” (Q → P). This is 

the biconditional or equivalence operation that will evaluate to true if and only if the two 

implication operations we described evaluate to true.

The expression ¬P translates to “he is not hungry,” which depicts the negation 

operation and will evaluate to true if and only if P evaluates to false.

This gives us an idea of the basic operations between propositions and more 

complex operations, which can be carried out with multiple logical connectives and by 

adding more propositions. A simple example are these statements:

P: We will play football

Q: The stadium is open

R: It will rain today

They can be combined and represented as Q ∧ ¬R → P to depict the complex 

proposition, “If the stadium is open and it does not rain today, then we will play football”. 

The semantics of the truth value or outcome of the final proposition can be evaluated 

based on the truth value of the individual propositions and the operators. The various 

outcomes of the truth values for the different operators are depicted in Figure 1- 22.
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Thus, using the table in Figure 1-22, we can evaluate even more complex 

propositions by breaking them down into simpler binary operations, evaluating the 

truth value for them, and combining them step by step. Besides these outcomes, there 

are other properties like associativity, commutativity, and distributivity, which aid in 

evaluating complex proposition outcomes. The act of checking the validity of each 

operation and proposition and finally evaluating the outcome is also known as inference.

However, besides evaluating extensive truth tables all the time, we can also use 

several inference rules to arrive at the final outcome or conclusion. The main reason for 

doing so would be that the size of these truth tables with the various operations starts 

increasing exponentially as the number of propositions increases. Moreover, rules of 

inference are easier to understand and well tested and at the heart of them, the same 

truth value tables are actually applied but we do not have to bother ourselves with the 

internals. A sequence of inference rules, when applied, usually leads to a conclusion, 

which is often called a logical proof. The usual form of an inference rule is P ⊢ Q, which 

indicates that Q can be derived by some inference operations from the set of statements 

represented by P. The turnstile symbol (⊢) indicates that Q is some logical consequence 

of P. The most popular inference rules are as follows:

• Modus ponens: This is perhaps the most popular inference rule, also 

known as the implication elimination rule. It can be represented as 

{P → Q, P} ⊢ Q, which indicates that if P implies Q and P is asserted 

to be true, then it is inferred that Q is also true. You can also represent 

this using the following representation ((P → Q) ∧ P) → Q,  

which can be evaluated easily using truth tables. A simple example 

is the statement, “If it is sunny, we will play football” represented by 

P → Q. Now if we say that “it is sunny,” this indicates that P is true, 

hence Q automatically is inferred as true as well, indicating, “we will 

play football”.

Figure 1-22. Truth values for various logical connectors
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• Modus tollens: This is quite similar to the previous rule and is 

represented formally as {P → Q, ¬Q} ⊢ ¬P. This indicates that if P 

implies Q and Q is actually asserted to be false, then it is inferred 

that P is false as well. You can also represent this using the following 

representation ((P → Q) ∧ ¬Q) → ¬P, which can be evaluated easily 

using truth tables. An example proposition is, “If he is a bachelor, he 

is not married” indicated by P → Q. Now if we propose that “he is 

married,” represented by ¬Q, then we can infer ¬P, which translates 

to “he is not a bachelor”.

• Disjunctive syllogism: This is also known as disjunction elimination 

and is formally represented as {P ∨ Q, ¬P} ⊢ Q. This indicates that if 

either P or Q is true and P is false then Q is true. A simple example is 

the statement, “He is a miracle worker or a fraud” represented by P ∨ Q.  

The statement “he is not a miracle worker” is represented by ¬P, so 

we can then infer “he is a fraud,” depicted by Q.

• Hypothetical syllogism: This is often known as the chain rule of 

deduction and is formally represented as {P → Q, Q → R} ⊢ P → R. 

This tells us that if P implies Q and Q implies R, we can infer that 

P implies R. A really interesting example to understand this is the 

statement “If I am sick, I can’t go to work” represented by P → Q and 

“If I can’t go to work, the building construction will not be complete” 

represented by Q → R. We can then infer “If I am sick, the building 

construction will not be complete,” which is represented by P → R.

• Constructive dilemma: This inference rule is the disjunctive version 

of modus ponens and can be formally represented as {(P → Q) ∧ (R 
→ S), P ∨ R} ⊢ Q ∨ S. This indicates that if P implies Q and R implies 

S, and either P or R are true, then it can be inferred that either Q or S 

is true. Consider the following propositions, “If I work hard, I will be 

successful” represented by P → Q, and “If I win the lottery, I will be 

rich” represented by R → S. Now we can propose that, “I work hard or 

I win the lottery” is true, which is represented by P ∨ R. We can then 

infer that “I will be successful or I will be rich” represented by  

Q ∨ S. The complement of this rule is destructive dilemma, which is 

the disjunctive version of modus tollens.
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This should give you a clear idea of how intuitive inference rules can be and using 

them is much easier than going over multiple truth tables trying to determine the 

outcome of complex propositions. The interpretation we derive from inference gives 

us the semantics of the statement or proposition. A valid statement is one that would 

be true under all interpretations, irrespective of the logical operations or various 

statements inside it. This is often called a tautology. The complement of a tautology is a 

contradiction or an inconsistent statement, which is false under all interpretations. Note 

that the previous list is just an indicative list of the most popular inference rules and it is 

by no way exhaustive. Interested readers can read more on inference and propositional 

calculus to get an idea of several other rules and axioms, which are used besides the 

ones covered here to gain more depth into the subject. Next we look at first order logic, 

which tries to solve some of the shortcomings existing in propositional logic.

 First Order Logic

First order logic (FOL), also known popularly as predicate logic and first order predicate 

calculus, is defined as a collection of well-defined formal systems used extensively in 

deduction, inference, and representation of knowledge. FOL allows us to use quantifiers 

and variables in sentences, which enable us to overcome some of the limitations of 

propositional logic. If we are to consider the pros and cons of propositional logic (PL), 

considering the points in its favor, PL is declarative and allows us to easily represent facts 

using a well-formed syntax. PL also allows complex representations like conjunctive, 

disjunctive, and negated knowledge representations. This by nature makes PL 

compositional, wherein a composite or complex proposition is built from the simple 

propositions that are its components along with logical connectives. However, there are 

several areas where PL is lacking. It is definitely not easy to represent facts in PL because 

for each possible atomic fact, we need a unique symbolic representation. Hence, due to 

this limitation, PL has very limited expressive power. Hence the basic idea behind FOL is 

to not treat propositions as atomic entities.
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FOL has a much richer syntax and necessary components for the same compared to 

PL. The basic components in FOL are as follows:

• Objects: These are specific entities or terms with individual unique 

identities like people, animals, etc.

• Relations: These are also known as predicates and usually 

hold among objects or sets of objects and express some form of 

relationship or connection like is_man, is_brother, and is_mortal. 

Relations typically correspond to verbs.

• Functions: These are a subset of relations where there is always only 

one output value or object for some given input. Examples include 

height, weight, and age_of.

• Properties: These are specific attributes of objects that help 

distinguish them from other objects like round, huge, etc.

• Connectives: These are the logical connectives, which are similar to 

the ones in PL, which include not (¬), and (∧), or (∨), implies (→), 

and iff (if and only if ↔).

• Quantifiers: These include two types of quantifiers—universal (∀) 

which stands for “for all” or “all” and existential (∃), which stands for 

“there exists” or “exists”. They are used for quantifying entities in a 

logical or mathematical expression.

• Constant symbols: These are used to represent concrete entities or 

objects in the world. Examples include John, King, Red, and 7.

• Variable symbols: These are used to represent variables like x, y,  

and z.

• Function symbols: These are used to map functions to outcomes, 

Examples include age_of(John) = 25 or color_of(Tree) = Green.

• Predicate symbols: These map specific entities and a relation or 

function between them to a truth value based on the outcome. 

Examples include color(sky, blue) = True.
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These are the main components that go into logical representations and syntax 

for FOL. Usually, objects are represented by various terms, which could be a function, 

variable, or a constant based on the different components. These terms do not need 

to be defined and do not return values. Various propositions are usually constructed 

using predicates and terms with the help of predicate symbols. An n-ary predicate is 

constructed from a function over n-terms, which have either a true or false outcome. 

An atomic sentence can be represented by an n-ary predicate and the outcome is true 

or false depending on the semantics of the sentence, i.e., if the objects represented by 

the terms have the correct relation as specified by the predicate. A complex sentence or 

statement is formed using several atomic sentences and logical connectives. A quantified 

sentence adds the quantifiers mentioned earlier to sentences.

Quantifiers are one of the advantages FOL has over PL, since they enable us to 

represent statements about entire sets of objects without needing to represent and 

enumerate each object by a different name. The universal quantifier (∀) asserts that a 

specific relation or predicate is true for all values associated with a specific variable. 

The representation ∀x F(x) indicates that F holds for all values of x in the domain 

associated with x. An example is ∀x cat(x) → animal(x), which indicates that all cats are 

animals. Universal quantifiers are used with the implies (→) connective to form rules 

and statements. An important point to remember is that universal quantifiers are almost 

never used in statements to indicate some relation for every entity in the world using 

the conjunction (∧) connective. An example would be the representation, ∀x dog(x) ∧ 

eats_meat(x), which actually means that every entity in the world is a dog and they eat 

meat. This obviously sounds absurd! The existential quantifier (∃) asserts that a specific 

relation or predicate holds true for at least some value associated with a specific variable. 

The representation, ∃x F(x) indicates that F holds for some value of x in the domain 

associated with x. An example is ∃x student(x) ∧ pass_exam(x), which indicates that 

there is at least one student who has passed the exam. This quantifier gives FOL a lot 

of power since we can make statements about objects or entities without specifically 

naming them.

Existential quantifiers are usually used with the conjunction (∧) connective to form 

rules and statements. You should remember that existential quantifiers are almost never 

used with the implies (→) connective in statements because the semantics indicated 

by it are usually wrong. An example is ∃x student(x) → knowledgeable(x) which tells us 

if you are a student you are knowledgeable. The real problem happens if you ask, what 

about those who are not students, are they not knowledgeable?
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Considering the scope for nesting of quantifiers, ordering of multiple quantifiers 

may or may not matter depending on the type of quantifiers used. For multiple universal 

quantifiers, switching the order does not change the meaning of the statement. This can 

be depicted by (∀x)(∀y) brother(x,y) ↔ (∀y)( ∀x) brother(x,y) which indicates two people 

are brothers, irrespective of the order. Similarly, you can also switch the order of existential 

quantifiers like (∃x)( ∃y) F(x,y) ↔ (∃y)( ∃x) F(x,y), Switching the order of mixed quantifiers 

in a sentence does matter and changes the interpretation of that sentence. This can be 

explained more clearly in the following examples, which are very popular in FOL.

• (∀x)(∃y) loves(x, y) means that everyone in the world loves at least 

someone.

• (∃y)(∀x) loves(x, y) means that someone is the world is loved by everyone.

• (∀y)(∃x) loves(x, y) means that everyone in the world has at least 

someone who loves them.

• (∃x)(∀y) loves(x, y) means that there is at least someone in the world 

who loves everyone.

From these examples, you can see how the statements look almost the same but the 

ordering of quantifiers changes the meanings significantly. There are also several other 

properties showing the relationship between the quantifiers. We list some of the popular 

quantifier identities and properties as follows.

• (∀x) ¬F(x) ↔ ¬(∃x) F(x)

• ¬(∀x) F(x) ↔ (∃x) ¬F(x)

• (∀x) F(x) ↔ ¬ (∃x) ¬F(x)

• (∃x) F(x) ↔ ¬(∀x) ¬F(x)

• (∀x) (P(x) ∧ Q(x)) ↔ ∀x P(x) ∧ ∀x Q(x)

• (∃x) (P(x) ∨ Q(x)) ↔ ∃x P(x) ∨ ∃x Q(x)

There are a couple of other important concepts for transformation rules in predicate 

logic. These include instantiation and generalization. Universal instantiation, also known 

as universal elimination, is a rule of inference involving the universal quantifier. It tells 

us that if (∀x) F(x) is true, then F(C) is true where C is any constant term that is present 

in the domain of x. The variable symbol here can be replaced by any ground term. An 

example depicting this would be (∀x) drinks(John, x) → drinks(John, Water).
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Universal generalization, also known as universal introduction, is the inference rule 

that tells us that if F(A) ∧ F(B) ∧ F(C) ∧ … so on hold true, then we can infer that (∀x) F(x) 

holds true.

Existential instantiation, also known as existential elimination, is an inference rule 

involving the existential quantifier. It tells us that if the given representation (∃x) F(x) 

exists, we can infer F(C) for a new constant or variable symbol C. This is assuming that 

the constant or variable term C introduced in this rule is a new constant that has not 

occurred previously in this proof or in our existing knowledge base. This process is also 

known as skolemization and the constant C is known as the skolem constant.

Existential generalization, also known as existential introduction, is the inference 

rule that tells us that assuming F(C) to be true where C is a constant term, we can then 

infer (∃x) F(x) from it. This can be depicted by the representation, eats_fish(Cat) → 

(∃x) eats_fish(x), which can be translated as “Cats eat fish, and therefore there exists 

something or someone at least who eats fish”.

We now look at some examples of how FOL is used to represent natural language 

statements and vice versa. The examples in Table 1-3 depict the typical usage of FOL to 

represent natural language statements.

Table 1-3. Representation of Natural Language Statements Using First Order Logic

Sl No. FOL Representation Natural Language Statement

1 ¬ eats(John, fish) John does not eat fish.

2 is_hot(pie) ∧ is_delicious(pie) the pie is hot and delicious.

3 is_hot(pie) ∨ is_delicious(pie) the pie is either hot or delicious.

4 study(John, exam) → pass(John, exam) if John studies for the exam, he will pass 

the exam.

5 ∀x student(x) → pass(x, exam) all students passed the exam.

6 ∃x student(x) ∧ fail(x, exam) there is at least one student who failed 

the exam.

7 (∃x student(x) ∧ fail(x, exam) ∧ (∀y 
fail(y, exam) →  x=y))

there was exactly one student who failed 

the exam.

8 ∀x (spider(x) ∧ black_widow(x)) → 

poisonous(x)

all black widow spiders are poisonous.
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This gives us a good idea about the various components of FOL and the utility and 

advantages it gives us over propositional logic. However, FOL has its own limitations. 

By nature, it allows us to quantify over variables and objects, but not properties or 

relations. Higher order logic (HOL) allows us to quantify over relations, predicates, and 

functions. More specifically, second order logic enables us to quantify over predicates 

and functions and third order logic enables us to quantify over predicates of predicates. 

While they are more expressive, it is extremely difficult to determine the validity of all 

sentences in HOL. This brings us to an end of our discussion on representing semantics. 

We talk about text corpora in the following section.

 Text Corpora
Text corpora is the plural form of “text corpus” and can be defined as large and 

structured collections of texts or textual data. They usually consist of a body of written 

or spoken text, often stored in electronic form. This includes converting old historic text 

corpora from physical to electronic form so that they can be analyzed and processed 

with ease. The primary purpose of text corpora is to leverage them for linguistic as well 

as statistical analysis and to use them as data for building natural language processing 

tools.

Monolingual corpora consist of textual data in only one language and multilingual 

corpora consist of textual data in multiple languages. To understand the significance 

of text corpora, we must understand the origins of corpora and the reason behind 

them. It all started with the emergence of linguistics and people collecting data related 

to language to study its properties and structure. During the 1950s, statistical and 

quantitative methods were used to analyze collected data. However, this soon reached a 

dead end due to the lack of large amounts of textual data over which statistical methods 

could be effectively applied. Besides this, cognitive learning and behavioral sciences 

gained a lot of focus. This empowered eminent linguist Noam Chomsky to build and 

formulate a sophisticated rule-based language model that formed the basis for building, 

annotating, and analyzing large-scale text corpora.
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 Corpora Annotation and Utilities
Text corpora are annotated with rich metadata that is extremely useful for getting 

valuable insights when utilizing the corpora for natural language processing and text 

analytics. Popular annotations for text corpora include tagging parts of speech or POS 

tags, word stems, lemmas, and many more. We look at some of the most commonly used 

methods and techniques for annotating text corpora.

• POS tagging: This is mainly used to annotate each word with a POS 

tag indicating the part of speech associated with it.

• Word stems: A stem for a word is a part of the word to which various 

affixes can be attached.

• Word lemmas: A lemma is the canonical or base form for a set of 

words and is also known as the head word.

• Dependency grammar: These include finding out the various 

relationships among the components in sentences and annotating 

the dependencies.

• Constituency grammar: These are used to add syntactic annotation to 

sentences based on their constituents, including phrases and clauses.

• Semantic types and roles: The various constituents of sentences, 

including words and phrases, are annotated with specific semantic 

types and roles often obtained from an ontology that indicates what 

they do. These include things like place, person, time, organization, 

agent, recipient, theme, etc.

Advanced forms of annotations include adding syntactic and semantic structure 

for text. These are dependency and constituency grammar-based parse trees. These 

specialized corpora are also known as treebanks, which are extensively used in building 

POS taggers, syntax, and semantic parsers. Corpora are also used extensively by linguists 

to create new dictionaries and grammar rules. Properties like concordance, collocations, 

and frequency counts enable them to find lexical information, patterns, morphosyntactic 

information, and language learning. Besides linguistics, corpora are widely used in 

developing natural language processing tools like text taggers, speech recognition, 

machine translation, spelling and grammar checkers, text-to-speech and speech-to-text 

synthesizers, information retrieval, entity recognition, and knowledge extraction.
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 Popular Corpora
There are several popular resources for text corpora that have been built and have evolved 

over time. We list some of the most popular corpora in this section to whet your appetite 

and you can further go ahead and find out more details about the text corpora that catch 

your eye. The following list describes some popular text corpora built over time.

• Keyword in context: KWIC was a methodology invented in the 

1860s but used extensively around the 1950s by linguists to index 

documents and create corpora of concordances.

• Brown corpus: This was the first million-word corpus for the English 

language, published by Kucera and Francis in 1961; it’s also known 

as “A Standard Corpus of Present-Day American English”. This corpus 

consists of text from a wide variety of sources and categories.

• LOB corpus: The Lancaster-Oslo-Bergen (LOB) corpus was compiled 

in the 1970s as a result of collaboration between the University of 

Lancaster, the University of Oslo, and the Norwegian Computing 

Centre for the Humanities, Bergen. The main motivation of this 

project was to provide a British counterpart to the Brown corpus. This 

corpus is also a million-word corpus consisting of text from a wide 

variety of sources and categories.

• Collins corpus: The Collins Birmingham University International 

Language Database (COBUILD) set up in 1980 in the University 

of Birmingham and funded by the Collins publishers built a large 

electronic corpus of contemporary text in the English language and 

paved the way for future corpora like the “Bank of English” and the 

“Collins COBUILD English Language Dictionary”.

• CHILDES: The Child Language Data Exchange System (CHILDES) is 

a corpus that was created by Brian and Catherine in 1984 and serves 

as a repository for language acquisition data including transcripts, 

audio, and video in 26 languages from over 130 different corpora. This 

was recently merged with a larger corpus called Talkbank. It is used 

extensively for analyzing the language and speech of young children.
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• WordNet: This corpus is a semantic oriented lexical database for 

the English language. It was created at Princeton University in 1985 

under the supervision of George Armitage. The corpus consists 

of words and synonym sets often termed synsets. Besides these, it 

consists of word definitions, relationships, and examples of using 

words and synsets. Overall, it is a combination of a dictionary as well 

as a thesaurus.

• Penn treebank: This corpus consists of tagged and parsed English 

sentences including annotations like POS tags and grammar-based 

parse trees typically found in treebanks. It can be also defined 

as a bank of linguistic trees and was created at the University of 

Pennsylvania.

• BNC corpus: The British National Corpus (BNC) is one of the 

largest English corpora, consisting of over 100 million written and 

spoken text samples from a wide variety of sources. This corpus is a 

representative sample of written and spoken British English of the 

late 20th Century.

• ANC corpus: The American National Corpus (ANC) is a large text 

corpus in American English. It consists of over 22 million spoken 

and written text samples since the 1990s. It includes data from a 

wide variety of sources, including some emerging sources like email, 

tweets, and websites, which are not present in the BNC.

• COCA corpus: The Corpus of Contemporary American English 

(COCA) is the largest text corpus in American English and consists of 

over 450 million words, including spoken transcripts and written text 

from various categories and sources.

• Google N-gram corpus: The Google N-gram corpus consists of over 

a trillion words from various sources, including books, web pages, 

and so on. The corpora consists of n-gram files up to 5-grams for each 

language.

• Reuters corpus: This corpus is a collection of Reuters news articles 

and stories released in 2000 specifically for carrying out research in 

natural language processing and machine learning.
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• Web, chat, email, tweets: These are entirely new forms of text 

corpora that have come into prominence since the rise of social 

media. We can get them on the web from various sources, including 

Twitter, Facebook, chat rooms, and so on.

This gives us an idea of some of the most popular text corpora and how they have 

evolved over time. In the next section, we talk about how we can access some of these 

text corpora with the help of Python and the Natural Language Toolkit (NLTK) platform.

 Accessing Text Corpora
We already have an idea about what constitutes a text corpus and looked at a list of 

several popular text corpora that exist today. In this section, we leverage NLTK to 

interface and access some of these text corpora. We cover NLTK and Python more 

in the next chapter, so do not worry if some of the syntax or code seems to be a bit 

overwhelming. The main intent of this section is to give you an idea of how you can 

access and utilize text corpora easily for your natural language processing and analytics 

needs. We also use the Natural Language Toolkit (nltk) library and you can find out 

more details about this project at http://www.nltk.org/, which tells us more about 

NLTK being a complete platform and framework for accessing text resources, including 

corpora and libraries for various natural language processing and machine learning 

capabilities.

To start, make sure you have Python installed. You can install Python separately or 

download the popular Anaconda Python distribution from Anaconda at https://www.

anaconda.com/download, which comes with a complete suite of analytics packages, 

including NLTK. If you want more details about Python and want to determine which 

distribution would be best suited for you, you can go to Chapter 2 and take a quick 

glance where we cover these topics in further detail.

Assuming you have Python installed now, if you installed the Anaconda distribution, 

you will already have NLTK installed. Note that we use Python 3 for the entire course 

of this book and we recommend everyone use the latest version of Python, preferably 

at least Python 3.5+. In case you did not install the Anaconda distribution but have 

Python installed, you can open your terminal or command prompt and run the following 

command to install NLTK.

$ pip install nltk
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This will install the nltk library and you will be ready to use it. However, the default 

installation of NLTK does not include all the components required in this book. To 

install all the components and resources of NLTK, you can start your Python shell and 

type the following commands. You will see the various dependencies for NLTK being 

downloaded; a part of the output is shown in the following code snippet.

In [1]: import nltk

In [2]: nltk.download('all', halt_on_error=False)

[nltk_data] Downloading collection u'all'

[nltk_data]    |

[nltk_data]    | Downloading package abc to

[nltk_data]    |     C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data

[nltk_data]    |     ...

[nltk_data]    |   Package abc is already up-to-date!

[nltk_data]    | Downloading package alpino to

[nltk_data]    |     C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data

[nltk_data]    |     ...

This command will download all the resources required by NLTK. In case you do 

not want to download everything, you can also select the necessary components from a 

graphical user interface (GUI) using the nltk.download() command. Once the necessary 

dependencies are downloaded, you are now ready to start accessing the text corpora!

 Accessing the Brown Corpus

We have already talked a bit about the Brown corpus, which was developed in 1961 at 

Brown University. This corpus consists of texts from 500 sources and has been grouped 

into various categories. The following code snippet loads the Brown corpus into the 

system memory and shows the various categories.

# load the Brown Corpus

from nltk.corpus import brown

# total categories

print('Total Categories:', len(brown.categories()))

Total Categories: 15
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# print the categories

print(brown.categories())

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 

'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 

'reviews', 'romance', 'science_fiction']

The preceding output tells us that there are a total of 15 categories in the corpus, 

including news, mystery, lore, and so on. The following code snippet digs a little deeper 

into the mystery category of the Brown corpus.

# tokenized sentences

brown.sents(categories='mystery')

[['There', 'were', 'thirty-eight', 'patients', 'on', 'the', 'bus', 'the', 

'morning', 'I', 'left', 'for', 'Hanover', ',', 'most', 'of', 'them', 

'disturbed', 'and', 'hallucinating', '.'], ['An', 'interne', ',', 'a', 

'nurse', 'and', 'two', 'attendants', 'were', 'in', 'charge', 'of', 'us', 

'.'], ...]

# POS tagged sentences

brown.tagged_sents(categories='mystery')

[[('There', 'EX'), ('were', 'BED'), ('thirty-eight', 'CD'), ('patients', 

'NNS'), ('on', 'IN'), ('the', 'AT'), ('bus', 'NN'), ('the', 'AT'), 

('morning', 'NN'), ('I', 'PPSS'), ('left', 'VBD'), ('for', 'IN'), 

('Hanover', 'NP'), (',', ','), ('most', 'AP'), ('of', 'IN'), ('them', 

'PPO'), ('disturbed', 'VBN'), ('and', 'CC'), ('hallucinating', 'VBG'), 

('.', '.')], [('An', 'AT'), ('interne', 'NN'), (',', ','), ('a', 'AT'), 

('nurse', 'NN'), ('and', 'CC'), ('two', 'CD'), ('attendants', 'NNS'), 

('were', 'BED'), ('in', 'IN'), ('charge', 'NN'), ('of', 'IN'), ('us', 

'PPO'), ('.', '.')], ...]

# get sentences in natural form

sentences = brown.sents(categories='mystery')

sentences = [' '.join(sentence_token) for sentence_token in sentences]

sentences[0:5] # viewing the first 5 sentences

['There were thirty-eight patients on the bus the morning I left for 

Hanover , most of them disturbed and hallucinating .',

 'An interne , a nurse and two attendants were in charge of us .',
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 "I felt lonely and depressed as I stared out the bus window at Chicago's 

grim, dirty West Side.",

 'It seemed incredible , as I listened to the monotonous drone of voices 

and smelled the fetid odors coming from the patients , that technically I 

was a ward of the state of Illinois , going to a hospital for the mentally 

ill .',

 'I suddenly thought of Mary Jane Brennan , the way her pretty eyes could 

flash with anger , her quiet competence , the gentleness and sweetness that 

lay just beneath the surface of her defenses .']

From the preceding snippet and output, we can see the written contents of the 

mystery genre and see how the sentences are available in tokenized as well as annotated 

formats. Suppose we want to see the top nouns in the mystery genre? We can use the 

following code snippet to obtain them. Remember that nouns have either an NN or NP 

in their POS tag to indicate various forms of nouns. We cover POS tags in further detail in 

Chapter 3.

# get tagged words

tagged_words = brown.tagged_words(categories='mystery')

# get nouns from tagged words

nouns = [(word, tag) for word, tag in tagged_words if any(noun_tag in tag

                                                         for noun_tag in 

['NP', 'NN'])]

nouns[0:10] # view the first 10 nouns

[('patients', 'NNS'), ('bus', 'NN'), ('morning', 'NN'), ('Hanover', 'NP'), 

('interne', 'NN'),

 ('nurse', 'NN'), ('attendants', 'NNS'), ('charge', 'NN'), ('bus', 'NN'), 

('window', 'NN')]

# build frequency distribution for nouns

nouns_freq = nltk.FreqDist([word for word, tag in nouns])

# view top 10 occurring nouns

nouns_freq.most_common(10)

[('man', 106), ('time', 82), ('door', 80), ('car', 69), ('room', 65),

 ('Mr.', 63), ('way', 61), ('office', 50), ('eyes', 48), ('Mrs.', 46)]
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The preceding snippet and outputs depict the top ten nouns that occur most 

frequently. It includes terms like man, time, room, and so on. We have used some 

advanced constructs and techniques like list comprehensions, iterables, and tuples. We 

cover core concepts of text processing using Python constructs in the next chapter. For 

now, all you need to know is that we filter out the nouns from all other words based on 

their POS tags and then compute their frequency to get the top occurring nouns in the 

corpus.

 Accessing the Reuters Corpus

The Reuters corpus consists of 10,788 Reuters news documents from around 90 

different categories and has been grouped into train and test sets. In machine learning 

terminology, train sets are used to train a model and test sets are used to test the 

performance of that model. The following code snippet shows us how to access the data 

for the Reuters corpus.

# load the Reuters Corpus

from nltk.corpus import reuters

# total categories

print('Total Categories:', len(reuters.categories()))

Total Categories: 90

# print the categories

print(reuters.categories())

['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', ..., 

'yen', 'zinc']

# get sentences in housing and income categories

sentences = reuters.sents(categories=['housing', 'income'])

sentences = [' '.join(sentence_tokens) for sentence_tokens in sentences]

sentences[0:5]  # view the first 5 sentences

["YUGOSLAV ECONOMY WORSENED IN 1986 , BANK DATA SHOWS National Bank 

economic data for 1986 shows that Yugoslavia ' s trade deficit grew , the 

inflation rate rose , wages were sharply higher , the money supply expanded 

and the value of the dinar fell .",

 'The trade deficit for 1986 was 2 . 012 billion dlrs , 25 . 7 pct higher 

than in 1985 .',
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 'The trend continued in the first three months of this year as exports 

dropped by 17 . 8 pct , in hard currency terms , to 2 . 124 billion dlrs .',

 'Yugoslavia this year started quoting trade figures in dinars based on 

current exchange rates , instead of dollars based on a fixed exchange rate 

of 264 . 53 dinars per dollar .',

 "Yugoslavia ' s balance of payments surplus with the convertible currency 

area fell to 245 mln dlrs in 1986 from 344 mln in 1985 ."]

# fileid based access

print(reuters.fileids(categories=['housing', 'income']))

['test/16118', 'test/18534', 'test/18540', ..., 'training/7006', 

'training/7015', 'training/7036', 'training/7098', 'training/7099', 

'training/9615']

print(reuters.sents(fileids=[u'test/16118', u'test/18534']))

[['YUGOSLAV', 'ECONOMY', 'WORSENED', 'IN', '1986', ',', 'BANK', 'DATA', 

'SHOWS', 'National', 'Bank', 'economic', 'data', 'for', '1986', 'shows', 

'that', 'Yugoslavia', "'", 's', 'trade', 'deficit', 'grew', ',', 'the', 

'inflation', 'rate', 'rose', ',', 'wages', 'were', 'sharply', 'higher', 

',', 'the', 'money', 'supply', 'expanded', 'and', 'the', 'value', 'of', 

'the', 'dinar', 'fell', '.'], ['The', 'trade', 'deficit', 'for', '1986', 

'was', '2', '.', '012', 'billion', 'dlrs', ',', '25', '.', '7', 'pct', 

'higher', 'than', 'in', '1985', '.'], ...]

This gives us an idea of how to access corpora data using both categories as well as 

file identifiers. Next, we look at how to access the WordNet corpus.

 Accessing the WordNet Corpus

The WordNet corpus is perhaps one of the most used corpora out there since it consists 

of a vast corpus of words and semantically linked synsets for each word. We explore 

some of the basic features of the WordNet corpus here, including synsets and methods 

for accessing the corpus data. For more advanced analysis and coverage of WordNet 

capabilities, you can look at Chapter 3, where we cover synsets, lemmas, hyponyms, 

hypernyms, and several other concepts that we covered in our semantics section earlier. 

The following code snippet gives us an idea about how to access the WordNet corpus 

data and synsets.
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# load the Wordnet Corpus

from nltk.corpus import wordnet as wn

word = 'hike' # taking hike as our word of interest

# get word synsets

word_synsets = wn.synsets(word)

word_synsets

# get details for each synonym in synset

for synset in word_synsets:

    print(('Synset Name: {name}\n'

           'POS Tag: {tag}\n'

           'Definition: {defn}\n'

           'Examples: {ex}\n').format(name=synset.name(),

                                      tag=synset.pos(),

                                      defn=synset.definition(),

                                      ex=synset.examples()))

Synset Name: hike.n.01

POS Tag: n

Definition: a long walk usually for exercise or pleasure

Examples: ['she enjoys a hike in her spare time']

Synset Name: rise.n.09

POS Tag: n

Definition: an increase in cost

Examples: ['they asked for a 10% rise in rates']

Synset Name: raise.n.01

POS Tag: n

Definition: the amount a salary is increased

Examples: ['he got a 3% raise', 'he got a wage hike']

Synset Name: hike.v.01

POS Tag: v

Definition: increase

Examples: ['The landlord hiked up the rents']
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Synset Name: hike.v.02

POS Tag: v

Definition: walk a long way, as for pleasure or physical exercise

Examples: ['We were hiking in Colorado', 'hike the Rockies']

This code snippet depicts an interesting example with the word hike and its synsets, 

which include synonyms that are nouns as well as verbs having distinct meanings. 

WordNet makes it easier to semantically link words with synonyms and easily retrieve 

meanings and examples for various words. This example tells us that “hike” can mean 

a long walk as well as an increase in prices for salary/rent. Feel free to experiment with 

different words and determine their synsets, definitions, examples, and relationships.

Besides these popular corpora, there are a vast number of text corpora available, 

which you can check just by looking into the nltk.corpus module, which can be used 

to access any of these corpora. Thus, you can see how easy it is to access and use data 

from any text corpus with the help of Python and NLTK. This brings us to the end of our 

discussion about text corpora. In the following section, we cover some ground regarding 

basic concepts around natural language processing and text analytics.

 Natural Language Processing
We mention the term natural language processing (NLP) several times in this chapter. 

By now, you might have formed some idea about what NLP means. NLP is defined 

as a specialized field of computer science and engineering and artificial intelligence 

with roots in computational linguistics. It is primarily concerned with designing and 

building applications and systems that enable interaction between machines and 

natural languages created by humans. This also makes NLP related to the area of 

human-computer interaction (HCI). NLP techniques enable computers to process and 

understand human natural language and utilize it further to provide useful output. Next, 

we talk about some of the main applications of NLP.

 Machine Translation
Machine translation is perhaps one of the most coveted and sought after applications 

of NLP. It is defined as the technique that helps provide syntactic, grammatical, and 

semantically correct translations between any two pair of languages. This was perhaps 

the first major area of research and development in NLP. On a simple level, machine 
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translation is the translation of natural language carried out by a machine. By default, 

the basic building blocks for the machine translation process involve simple substitution 

of words from one language to another, but in that case we ignore things like grammar 

and phrasal structure consistency. Hence, more sophisticated techniques have evolved 

over time, including combining large resources of text corpora along with statistical and 

linguistic techniques. One of the most popular machine translation systems is Google 

Translate. Figure 1-23 shows a successful machine translation operation executed by 

Google Translate for the sentence, “What is the fare to the airport?” from English to Italian.

Over time, machine translation systems are getting better at providing translations in 

real time as you speak or write into the application.

 Speech Recognition Systems
This is perhaps the most difficult application for NLP. One of the main and perhaps the 

most difficult tests of true intelligence in artificial intelligence systems is the Turing test. 

This test states that if a question is given by the user to the computer and to a human, 

it would be unable to distinguish the responses obtained. Over a period of time, a 

lot of progress has been made in this area by using techniques like speech synthesis, 

analysis, syntactic parsing, and contextual reasoning. However, one chief limitation for 

speech recognition systems still remains that they are very domain-specific and will not 

work if the user strays even a little bit from the expected scripted inputs needed by the 

system. Speech recognition systems are now found in a large variety of places from your 

computers, to mobile phones, to virtual assistance systems.

Figure 1-23. Machine translation performed by Google Translate
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 Question Answering Systems
Question Answering Systems (QAS) are built on the principle of question answering 

based on using techniques from NLP and information retrieval (IR). QAS is primarily 

concerned with building robust and scalable systems that provide answers to questions 

given by users in natural language form. Imagine being in a completely different country, 

asking a question to your personalized assistant in your phone in pure natural language, 

and getting a similar response from it. This is the ideal state toward which researchers 

and technologists are working day in and day out. We have achieved some success in 

this field with personalized assistants like Siri and Cortana, but their scope is still limited 

since they understand only a subset of key clauses and phrases in the entire human 

natural language.

To build a successful QAS, you need a huge knowledgebase consisting of data about 

various domains. Efficient querying systems into this knowledgebase would be leveraged 

by the QAS to provide answers to questions in natural language form. Creating and 

maintaining a queryable vast knowledgebase is extremely difficult, hence you will find 

the rise of QAS in niche domains like food, healthcare, ecommerce, and so on. Chatbots 

are one of the emerging trends that extensively use QAS.

 Contextual Recognition and Resolution
This covers a wide area in understanding natural language, which includes syntactic 

and semantic based reasoning. Word sense disambiguation is a popular application 

where we want to find the contextual sense of a word in a given sentence. Consider the 

word “book”. It can mean an object containing knowledge and information when used 

as a noun and it can also mean to reserve something like a seat or a table when used as 

a verb. Detecting these differences in sentences based on context is the main premise of 

word-sense disambiguation and it is a daunting task.

Co-reference resolution is another problem in linguistics that NLP is trying to 

address. By definition, co-reference is said to occur when two or more terms/expressions 

in a body of text refer to the same entity. Then they are said to have the same referent. 

Consider the example sentence, “John just told me that he is going to the exam hall”. In 

this sentence, the pronoun “he” has the referent “John”. Resolving these pronouns is part 

of co-reference resolution and it becomes challenging once we have multiple referents in 

a body of text. An example body of text would be, “John just talked with Jim. He told me 
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we have a surprise test tomorrow”. In this body of text, the pronoun “he” could refer to 

either “John” or “Jim”, thus making it difficult to pinpoint to the exact referent.

 Text Summarization
The main aim of text summarization is to take a corpus of text documents, which could 

be a collection of texts, paragraphs, or sentences, and reduce the content appropriately 

to create a summary that retains the key points of the collection of documents. 

Summarization can be carried out by looking at the various documents and trying to find 

the keywords, phrases, and sentences that have prominence in the collection. Two main 

types of techniques for text summarization include extraction-based summarization 

and abstraction-based summarization. With the advent of huge amounts of text and 

unstructured data, the need for text summarization for getting to valuable insights 

quickly is in great demand.

Text summarization systems usually perform two main types of operations. The 

first one is generic summarization, which tries to provide a generic summary of the 

collection of documents under analysis. The second type of operation is query-based 

summarization, which provides query-relevant text summaries where the corpus 

is filtered further based on specific queries and relevant keywords and phrases are 

extracted relevant to the query and the summary is constructed.

 Text Categorization
The main aim of text categorization is to identify to which category or class a specific 

document should be placed based on the contents of the document. This is one of the 

most popular applications of NLP and machine learning because with the right data, it 

is extremely simple to understand the principles behind its internals and implement a 

working text categorization system. Both supervised and unsupervised machine learning 

techniques can be used to solve this problem and sometimes a combination of both are 

used. This has helped build many successful and practical applications, including spam 

filters and news article categorizations.
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 Text Analytics
Like we mentioned before, with the advent of huge amounts of computing power, 

unstructured data, and success with machine learning and statistical analysis 

techniques, it wasn’t long before text analytics started garnering a lot of attention. 

However, you need to understand some of the challenges that text analytics poses 

compared to regular analytical methods. Free-flowing text is highly unstructured and 

rarely follows a specific pattern, like weather data or structured attributes in relational 

databases. Hence standard statistical methods will not be helpful when applied out-of- 

the-box on unstructured text data. In this section, we cover some of the main concepts 

surrounding text analytics and discuss the definition and scope of text analytics, which 

will give you a broad idea of what you can expect in the upcoming chapters.

Text analytics, also known as text mining, is defined as the methodology and process 

followed to derive quality and actionable information and insights from textual data. This 

involves using natural language processing, information retrieval, and machine learning 

techniques to parse unstructured text data into more structured forms and deriving 

patterns and insights from this data that would be helpful to the end user. Text analytics 

comprises a collection of machine learning, linguistic, and statistical techniques that are 

used to model and extract information from text primarily for analysis needs, including 

business intelligence, exploratory, descriptive, and predictive analysis. Some of the main 

techniques and operations in text analytics are mentioned as follows.

• Text classification

• Text clustering

• Text summarization

• Sentiment analysis

• Entity extraction and recognition

• Similarity analysis and relation modeling

However, doing text analytics is a more involved process sometimes compared to 

normal statistical analysis or machine learning. The reason is that before applying a 

learning technique or algorithm, we have to convert the unstructured text data into a 

format acceptable to those algorithms. By definition, a body of text under analysis is 

often termed a document and by applying various techniques, we convert this to a vector 

of words. This is usually a numeric array whose values are specific weights for each 
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word, which could be its frequency, its occurrence, or various other depictions, some 

of which we explore in Chapter 3. Often the text needs to be cleaned and processed to 

remove noisy terms and data and this process is termed text preprocessing. Once we 

have the data in a machine readable and understandable format, we can apply relevant 

algorithms based on the problem to be solved. The applications of text analytics are 

manifold and some popular ones are as follows.

• Spam detection

• News articles categorization

• Social media analysis and monitoring

• Biomedical

• Security intelligence

• Marketing and CRM

• Sentiment analysis

• Ad placements

• Chatbots

• Virtual assistants

 Machine Learning
We can define machine learning (ML) as a subfield of artificial intelligence (AI). Machine 

learning is the art and science of leveraging techniques. It can allow machines to 

automatically learn latent patterns and relationships from underlying data and improve 

itself over time, without explicitly programming or hard-coding specific rules. Usually 

a combination of NLP and ML is often needed to solve real-world problems like text 

categorization, clustering, and so on. The three major categories of machine learning 

techniques include supervised, unsupervised, and reinforcement learning algorithms.
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 Deep Learning
The field of deep learning (DL) is a subfield of machine learning specializing in models 

and algorithms, which have been inspired by how the brain works and functions. Indeed 

the artificial neural network (ANN) was the first model built by drawing inspiration 

from the human brain. Although we are definitely quite far away from replicating what 

the brain does, neural networks are extremely complex non-linear models, which are 

capable of automatically learning hierarchical data representations. Deep learning 

or deep neural networks typically use multiple layers of non-linear processing units, 

also known as neurons. We prefer calling them processing units. Each layer performs 

some feature extraction, engineering, and transformation on its own using the output 

from the previous layer as its input. Hence, each level ends up learning hierarchical 

representations of the data at different levels of abstraction. We can use these models to 

solve both supervised and unsupervised problems. Recently, deep learning has shown a 

lot of promise with regard to solving NLP problems.

 Summary
Congratulations on staying with this long chapter! We have started our journey of text 

analytics with Python by taking a journey in the world of natural language processing 

and the various concepts and domains surrounding it. You now have a good idea 

of what natural language means and how it is significant in our world. We have also 

seen concepts surrounding the philosophy of language and language acquisition and 

usage. The field of linguistics gave us a flavor of the origins of language studies and 

how they have evolved with time. We covered language syntax and semantics in detail, 

including the essential concepts with interesting hands-on examples in Python to easily 

understand them. We also talked about resources for natural language, namely text 

corpora, and looked at some practical examples with code regarding how to interface 

and access corpora using Python and NLTK. Finally, we ended with a discussion 

about the various facets of natural language processing and text analytics. In the next 

chapter, we talk about using Python for text analytics, where we touch upon setting up 

your Python development environment for natural language processing, the various 

constructs of Python useful for text processing, and look at some of the popular state-of- 

the-art libraries, frameworks, and platforms used for NLP.
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CHAPTER 2

Python for Natural 
Language Processing
In the previous chapter, we took a journey into the world of natural language processing 

and explored several interesting concepts and domains associated with it. We now have 

a better understanding of the entire scope surrounding natural language processing, 

linguistics, and text analytics. If you refresh your memory, we also got our first taste of 

running Python code to look at essentials with regard to processing and understanding 

text. We also looked at ways to access and use text corpora resources with the help of 

the NLTK framework. In this chapter, we look at why Python is the language of choice 

for natural language processing (NLP), set up a robust Python environment, take a 

hands-on based approach to understanding essentials of string and text processing, 

manipulation, and transformation, and conclude by looking at some of the important 

libraries and frameworks associated with NLP and text analytics. This chapter is aimed 

to provide a quick refresher for getting started with Python and NLP.

This book assumes you have some knowledge of Python or any other programming 

language. If you are a Python practitioner or even a Python guru, you can skim through 

the chapter since a lot of the content here will start right from a brief history of Python, 

setting up your Python development environment, to basics of Python for working with 

text data. Our main focus in the chapter is exploring how text data is handled in Python 

and learning more about the state-of-the-art NLP tools and frameworks in Python. This 

chapter follows a more hands-on approach and we cover various concepts with practical 

examples. All the code examples showcased in this chapter are available on the book's 

official GitHub repository at  https://github.com/dipanjanS/text-analytics-with- 

python/tree/master/New-Second-Edition.

https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
https://github.com/dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition
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 Getting to Know Python
Before we can dive into the Python ecosystem and look at the various components 

associated with it, we need to take a brief look at the origins and philosophy behind 

Python and see how it has evolved over time to be the choice of language powering 

many applications, servers, and systems today. Python is a high-level open source 

general-purpose programming language widely used as a scripting as well as a 

programming language across different domains. Python is the brainchild of Guido Van 

Rossum and was conceived in the late 1980s as a successor to the ABC language, both of 

which were developed at the Centrum Wiskunde and Informatica (CWI), Netherlands. 

Python was originally designed to be a scripting and interpreted language and to this day 

it retains the essence of being one of the most popular scripting languages out there. But 

with object oriented principles (OOP) and constructs, you can use it just like any other 

object oriented language, e.g., Java. The name Python coined by Guido comes from the 

hit comedy show, Monty Python's Flying Circus.

Python is a general purpose programming language that supports multiple 

programming paradigms. The popular programming paradigms supported are as 

follows:

• Object oriented programming

• Functional programming

• Procedural programming

• Aspect oriented programming

A lot of object oriented programming concepts are present in Python, including 

classes, objects, data, and methods. Principles like abstraction, encapsulation, 

inheritance, and polymorphism can also be implemented and exhibited using 

Python. There are several advanced features in Python, including iterators, generators, 

list comprehensions, lambda expressions, and several modules like collections, 

itertools, and functools that provide the ability to write code following the functional 

programming paradigm. Python has been designed keeping in mind that simple and 

beautiful code is more elegant and easy to use than premature optimization and hard- 

to- interpret code.

Python's standard libraries are power-packed with a wide variety of capabilities and 

features, ranging from low-level hardware interfacing to handling files and working with 

text data. Easy extensibility and integration was considered when developing Python 
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so that it can be easily integrated with existing applications and even rich application 

programming interfaces (APIs) can be created to provide interfaces to other applications 

and tools. Python also has a thriving and helpful developer community that ensures 

there are a ton of helpful resources and documentation out there on the Internet. The 

community also organizes various workshops and conferences throughout the world!

Python boosts productivity by reducing the time taken to develop, run, debug, 

deploy, and maintain large codebases compared to other languages like Java, C++, and C.  

Large programs of over a 100 lines can be reduced to 20 lines or less on average by 

porting them to Python. High-level abstractions help developers focus on the problem 

to be solved at hand rather than worry about language specific nuances. The hindrance 

of compiling and linking is also bypassed with Python. Hence, Python is often the best 

choice, especially when rapid prototyping and development is essential for solving an 

important problem in less time.

One of the main advantages of Python is that it is a multi-purpose programming 

language that can be used for just about anything! From web applications to intelligent 

systems, Python powers a wide variety of applications and systems. Besides being a 

multi-purpose language, the wide variety of frameworks, libraries, and platforms that 

have been developed using Python and used with Python form a complete robust 

ecosystem around it. These libraries make our lives easier by giving us a wide variety 

of capabilities and functionality to perform various tasks with minimal code. Some 

examples include libraries for handling databases, text data, machine learning, signal 

processing, image processing, deep learning, artificial intelligence, and the list goes on.

 The Zen of Python
You might be wondering what on earth the Zen of Python is. However, if you are 

somewhat familiar with Python, this is one of the first things you’ll get to know. The 

beauty of Python lies in its simplicity and elegance. “The Zen of Python” is a set of 20 

guiding principles, also known as aphorisms, that have been influential behind Python's 

design. Long-time Pythoneer Tim Peters documented 19 of them in 1999 and they 

can be accessed at https://hg.python.org/peps/file/tip/pep-0020.txt as a part 

of the Python Enhancement Proposals (PEP) number 20 (PEP 20). The best part is, if 

you already have Python installed, you can access “The Zen of Python” by running the 

following code in the Python or IPython shell or a Jupyter notebook.
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# zen of python

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

This output shows us the 19 principles that form the Zen of Python and is included in 

the Python language itself as an Easter egg. The principles are written in simple English 

and a lot of them are pretty self-explanatory even if you have not written code before. 

Many of them contain inside jokes! Python focuses on writing simple and clean code 

that’s readable. It also encourages you to make sure you focus a lot on error handling and 

implementing code that’s easy to interpret and understand. The one principle I would 

like you to remember is “simple is better than complex,” which is applicable not only 

to Python but to a lot of things, especially when you are out there in the world solving 

problems. Sometimes a simple approach beats a more complex one as long as you know 

what you are doing.
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 Applications: When Should You Use Python?
Python—being a general and multi-purpose programming language—can be used 

to build applications and systems for different domains and solve diverse real-world 

problems. Python comes with a standard library that hosts a large number of useful 

libraries and modules that can be leveraged to solve various problems. Besides the 

standard library, there are thousands of third-party libraries that are readily available on 

the Internet encouraging open source and active development. The official repository 

that hosts third-party libraries and utilities for enhancing development in Python is the 

Python Package Index (PyPI) and you can access it by going to https://pypi.python.

org/ and checking out the various packages. Currently there are over 80,000 packages 

that you can install and use. While Python can be used for solving a lot of problems, we 

categorize some of the most popular domains and describe them as follows:

• Scripting: Python is often popularly known as a scripting language. 

It can be used to perform a wide variety of tasks like interfacing with 

networks and hardware, handling and processing files and databases, 

performing operating system (OS) operations, and receiving and 

sending e-mail.

• Web development: There are a lot of robust and stable Python 

frameworks out there that are used extensively for web development, 

such as Django, Flask, Web2Py, and Pyramid. You can use them 

to develop complete enterprise web applications and they 

support various architecture styles like RESTful APIs and the MVC 

architecture. They also provide ORM support to interact with 

databases and use object oriented programming on top of that. 

Python even has frameworks like Kivy, which support cross-platform 

development for developing apps on multiple platforms like iOS, 

Android, Windows, and OS X.

• Graphical user interfaces: A lot of desktop based applications with 

graphical user interfaces (GUIs) can be easily built with Python. 

Libraries and APIs like tkinter, PyQt, PyGTK, and wxPython allow 

developers to develop GUI-based apps with simple or complex 

interfaces. Various frameworks enable developers to create GUI- 

based apps for different OSes and platforms.
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• Systems programming: Python, being a high-level language, has 

many interfaces to low-level OS services and protocols and the 

abstractions on top of these services enable developers to write 

robust and portable system monitoring and administration tools. You 

can use Python to perform several OS operations, including creating, 

handling, searching, deleting, and managing files and directories. The 

Python Standard Library (PSL) has OS and POSIX bindings, which 

can be used for handling files, multi-threading, multi-processing, 

environment variables, controlling sockets, pipes, and processes.

• Database programming: Python is used to connect and access 

data from different types of databases, be it SQL or NoSQL. APIs and 

connectors exist for these databases like MySQL, MSSQL, MongoDB, 

Oracle, PostgreSQL, and SQLite. In fact, SQLite, a lightweight 

relational database, now comes as a part of the Python standard 

distribution. Popular libraries like SQLAlchemy and SQLObject 

provide interfaces to access various relational databases and have 

ORM components to help implement OOP style classes and objects 

on top of relational tables.

• Scientific computing: Python really shows its flair for being multi- 

purpose in areas like numeric and scientific computing. You can 

perform simple as well as complex mathematical operations, 

including algebra and calculus. Libraries like SciPy and NumPy help 

researchers, scientists, and developers leverage highly optimized 

functions and interfaces for numeric and scientific programming. 

These libraries are also used as the base for developing complex 

algorithms in various domains like machine learning.

• Machine learning and deep learning: Python is regarded as one 

of the most popular languages today for machine learning. There 

exists a wide suite of libraries and frameworks like Scikit-Learn, h2o, 

TensorFlow, Keras, PyTorch, and even core libraries like NumPy and 

SciPy for not only implementing machine learning algorithms but 

also using them to solve real-world advanced analytics problems.
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• NLP and text analytics: As mentioned, Python can handle text data 

really well and this has led to several popular libraries like NLTK, 

Gensim, and spaCy for natural language processing, information 

retrieval, and text analytics. You can also apply standard machine 

learning algorithms to solve problems related to text analytics. We 

explore several of these libraries in this book.

Even though this list might seem a bit overwhelming, this is just scratching the 

surface of what is possible with Python. It is widely used in several other domains 

including artificial intelligence, game development, robotics, internet of things, 

computer vision, media processing, and network and system monitoring, just to name a 

few. To know some of the widespread success stories achieved with Python in different 

diverse domains like arts, science, computer science, education and others, enthusiastic 

programmers and researchers can check out this link https://www.python.org/about/

success/. If you want to know about various popular applications developed using 

Python, you can check out https://www.python.org/about/apps/ and https://wiki.

python.org/moin/Applications, where you will definitely find some applications that 

you have used.

 Drawbacks: When Should You Not Use Python?
Just like any tool or language out there, Python has its own advantages and 

disadvantages, and in this section we highlight some of them so that you are aware of 

them when developing and writing code in Python.

• Execution speed performance: Performance is a pretty heavy 

term and can mean several things, so we pinpoint the exact area we 

want to talk about and that is execution speed. Since Python is not 

a fully compiled language, it will always be slower than low-level 

fully compiled programming languages like C and C++. There are 

several ways you can optimize your code, including multi-threading 

and multi-processing and using static typing and C extensions for 

Python, also known as Cython. You can also consider using PyPy, 

which is much faster than normal Python since it uses a Just in 

Time (JIT) compiler. See http://pypy.org/. Often, if you write well 

optimized code, you can develop applications in Python just fine that 
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do not need to depend on other languages. Remember that often the 

problem is not with the tool but with the code you write, something 

all developers and engineers realize with time and experience.

• Global interpreter lock: The Global Interpreter Lock (GIL) is 

a mutual exclusion lock used is several programming language 

interpreters like Python and Ruby. Interpreters using GIL only allow 

one single thread to effectively execute at a time even when run on 

a multi-core processor. This limits the effectiveness of parallelism 

achieved by multi-threading depending on whether the processes are 

I/O bound or CPU bound and how many calls it makes outside the 

interpreter. Python 3.x also has modules like asyncio, which can be 

used for asynchronous IO operations.

• Version incompatibility: If you have been following Python closely, 

you will know that once Python released the 3.x version from 2.7.x, it 

was backward incompatible in several aspects and it opened a huge 

can of worms. Several major libraries and packages had been built 

in Python 2.7.x and they started breaking when users unknowingly 

updated their Python versions. Code deprecation and version 

changes are some of the most important factors in systems breaking 

down. However, Python 3.x is quite stable now and the majority of 

the userbase has started using it actively in the last couple of years.

Many of these issues are not specific to Python but to other languages too. Hence, 

you should not be discouraged from using Python just because of these points. That said, 

you should definitely remember them when writing code and building systems.

 Python Implementations and Versions
There are several implementations of Python and different versions of Python that are 

released periodically since it is under active development. We discuss implementations 

and versions and their significance, and this should give you some idea of what Python 

environments exist and which ones you might want to use for your development needs. 

Currently, there are four major production-ready, robust, and stable implementations of 

Python:
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• CPython: This is the regular old Python we know as just Python. 

It is both a compiler and interpreter and comes with its own set 

of standard packages and modules that have all been written in 

standard C. This version can be used directly in all popular modern 

platforms. Most of the Python third-party packages and libraries are 

compatible with this version.

• PyPy: A faster alternative Python implementation that uses a Just- 

in- Time (JIT) compiler to make code run faster than the CPython 

implementation, sometimes giving speedups in the range of 10x - 

100x. It is also more memory efficient, supporting greenlets and 

stackless for high parallelism and concurrency.

• Jython: A Python implementation for the Java platform, supporting 

Java Virtual Machine (JVM) for any version of Java ideally above 

version 7. Using Jython you can write code leveraging all types of Java 

libraries, packages, and frameworks. It works best when you know 

more about the Java syntax and the OOP principles that are used 

extensively in Java like classes, objects, and interfaces.

• IronPython: The Python implementation for the popular Microsoft 

.NET framework, also called the Common Language Runtime 

(CLR). You can use all of Microsoft's CLR libraries and frameworks 

in IronPython and even though you do not essentially have to write 

code in C#, it is useful to know more about syntax and constructs for 

C# to use IronPython effectively.

To start, I suggest you use the default Python, which is the CPython implementation 

and experiment with the other versions only if you are interested in interfacing with 

other languages like C# and Java and need to use them in your codebase.

There are two major Python versions—the 2.x series and the 3.x series, where x is 

a number. Python 2.7 was the last major version in the 2.x series released in 2010 and 

from then on, future releases have bug fixes and performance improvements but no new 

features. A very important point to remember is that support for Python 2.x is ending 

by 2020. The 3.x series started with Python 3.0, which introduced many backward 

incompatible changes compared to Python 2.x and each version 3 release not only has 

bug fixes and improvements but also introduces new features like the AsyncIO module. 

At the time of writing this, Python 3.7 was the latest version in the 3.x series and it was 
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released in June 2018. There are many arguments over which version of Python should 

be used. Considering that support for Python 2 is ending by 2020 and no new features or 

enhancements are planned for it, we recommend you use Python 3 for all your projects, 

research, and development.

 Setting Up a Robust Python Environment
Now that you have been acquainted with Python and know more about the language, 

its capabilities, implementations, and versions, this section covers some essentials on 

how to set up your development environment and handle package management and 

virtual environments. This section gives you a good head start on getting things ready for 

following along with the various hands-on examples covered in this book.

 Which Python Version?
We have previously talked about two major Python versions—the 2.x series and the 3.x 

series. Both the versions are quite similar; however, there have been several backward 

incompatible changes in the 3.x version, which has led to a huge drift between people who 

use 2.x and people who use 3.x. Most legacy code and a large majority of Python packages 

on PyPI are developed in Python 2.7.x and the package owners do not have the time or the 

will to port all their codebases to Python 3.x. Some of the changes in 3.x are as follows:

• All text strings are Unicode by default

• print and exec are now functions and no longer statements

• Several methods like range() return a memory-efficient iterable 

instead of a list

• The style for classes have changed

• Libraries and names have changed based on convention and style 

violations

• More features, modules, and enhancements

To learn more about all the changes introduced in Python 3.x, check out https://

docs.python.org/3/whatsnew/3.7.html, which is the official documentation listing the 

changes. This should give you a pretty good idea of what changes can break your code if 

you are porting it from Python 2 to Python 3.
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Now addressing the problem of selecting which version, we definitely recommend 

using Python 3 at all times. The primary reason behind this is a recent announcement 

from the Python core group members that mentioned that support for Python 2 will be 

ending by 2020 and no new features or enhancements will be pushed to Python 2. We 

recommend checking out PEP 373 https://legacy.python.org/dev/peps/pep-0373/, 

which covers this issue in further detail. However, if you are working on a large legacy 

codebase with Python 2.x, you might need to stick to it until porting it to Python 3 is 

possible. We use Python 3.x in this book and recommend you do the same. For code in 

Python 2.x, you can refer to the previous release of this book as needed.

 Which Operating System?
There are several popular operating systems (OSes) out there and each person has their 

own preference. The beauty of Python is that is can run seamlessly on any OS without 

much hassle. Some of the different OSes that Python supports include:

• Windows

• Linux

• MacOS (also known as OS X)

You can choose any OS of your choice and use it to following along with the 

examples. We use a combination of Linux and Windows as our OS platforms. Python 

external packages are typically easy to install on UNIX-based OSes like Linux and 

MacOS. However, sometimes there are major issues in installing them on Windows, so 

we highlight such instances and address them so that executing any of the code snippets 

and samples here becomes easy for our Windows readers. You are most welcome to use 

any OS of your choice when following the examples in this book!

 Integrated Development Environments
Integrated development environments (IDEs) are software products that enable 

developers to be highly productive by providing a complete suite of tools and capabilities 

necessary for writing, managing, and executing code. The usual components of an 

IDE include a source editor, debugger, compiler, interpreter, and refactoring and build 

tools. They also have other capabilities like code-completion, syntax highlighting, error 

highlighting and checks, objects, and variable explorers. IDEs can be used to manage 
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entire codebases and are much better than trying to write code in a simple text editor, 

which takes more time. However, more experienced developers often use simple plain 

text editors to write code, especially if they are working in server environments. The 

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments link provides 

a list of IDEs used specially with Python. We use a combination of PyCharm, Spyder, 

Sublime Text and Jupyter notebooks. The code examples in this book are demonstrated 

on Jupyter notebooks mostly, which comes installed along with the Anaconda Python 

distribution for writing and executing the code.

 Environment Setup
In this section, we cover details regarding how to set up your Python environment with 

minimal effort and the main required components. You can head over to the official 

Python website and download Python 3.7 from https://www.python.org/downloads/ 

or you can download a complete Python distribution with over hundreds of packages 

specially built for data science and AI, known as the Anaconda Python distribution, from 

Anaconda (formerly known as Continuum Analytics). This provides a lot of advantages, 

especially to Windows users, where installing some of the packages like NumPy and SciPy 

can sometimes cause major issues. You can get more information about Anaconda and the 

excellent work they are doing by visiting https://www.anaconda.com. Anaconda comes 

with conda, an open source package and environment management system and Spyder 

(Scientific Python Development Environment), an IDE for writing and executing your code.

To start your environment setup, you can follow along the instructions mentioned 

at https://docs.anaconda.com/anaconda/install/windows for Windows or use the 

instructions for any other OS of your choice. Head over to https://www.anaconda.com/

download/ and download the 64- or 32-bit Python 3 installer for Windows, depending on 

your OS version. For other OSes, you can check the relevant instructions on the website. 

Start the executable and follow the instructions on the screen by clicking the Next button 

at each stage. Remember to set a proper install location, as depicted in Figure 2-1.
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Before starting the actual installation, remember to check the two options shown in 

Figure 2-2.

Figure 2-1. Installing the Anaconda Python distribution: setting up an install 
location
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Once the installation is complete, you can either start Spyder by double-clicking the 

relevant icon or start the Python or IPython shell from the command prompt. To start 

Jupyter notebooks, you can just type jupyter notebook from a terminal or command 

prompt. Spyder provides you with a complete IDE to write and execute code in both 

the regular Python and the IPython shell. Figure 2-3 shows you how to start a Jupyter 

notebook.

Figure 2-2. Installing the Anaconda Python distribution: adding to system path
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This should give you an idea how easy it is to showcase code and outputs 

interactively in Jupyter notebooks. We showcase our code usually through these 

notebooks. To test if Python is properly installed, you can simply type python --version 

from the terminal or even from your notebook, as depicted in Figure 2-4.

Figure 2-3. Starting a Jupyter notebook

Figure 2-4. Checking your Python installation
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 Package Management
We now cover package management briefly. You can use the pip or conda command to 

install, uninstall, and upgrade packages. The following shell command depicts installing 

the pandas library via pip. You can check if a package is installed using the pip freeze 

<package_name> command and install packages using the pip install <package_

name> command, as depicted in Figure 2-5. If you already have a package/library 

installed, you can use the --upgrade flag.

Figure 2-5. Python package management with pip

The conda package manager is better than pip in several aspects, since it provides a 

holistic view of what dependencies are going to be upgraded and the specific versions 

and other details during installation. pip often fails to install some packages in Windows; 

however, conda usually has no such issues during installation. Figure 2-6 depicts how to 

install and manage packages using conda.

Chapter 2  python for natural language proCessing



85

Now you have a much better idea of how to install external packages and libraries in 

Python. This will be useful later, whenever you want to install external Python packages 

in your environment. Your Python environment should now be set up and ready for 

executing code. Before we dive into techniques for handling text data in Python, we 

conclude with a discussion about virtual environments.

 Virtual Environments
A virtual environment, also called a venv, is a complete isolated Python environment 

with its own Python interpreter, libraries, modules, and scripts. This environment is 

a standalone environment isolated from other virtual environments and the default 

system level Python environment. Virtual environments are extremely useful when 

Figure 2-6. Python package management with conda
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you have multiple projects or codebases that have dependencies on different versions 

of the same packages or libraries. For example, if my project called TextApp1 depends 

on NLTK 2.0 and another project called TextApp2 depends on NLTK 3.0, then it would 

be impossible to run both projects on the same system. Hence the need for virtual 

environments that provide complete isolated environments, which can be activated and 

deactivated as needed.

To set up a virtual environment, you need the virtualenv package. We create a new 

directory where we want to keep our virtual environment and install virtualenv as 

follows:

E:\>mkdir Apress

E:\>cd Apress

E:\Apress>pip install virtualenv

Collecting virtualenv

Installing collected packages: virtualenv

Successfully installed virtualenv-16.0.0

Once the package is installed, you can create a virtual environment. Here we create 

a new project directory called test_proj and create the virtual environment inside the 

directory:

E:\Apress>mkdir test_proj && chdir test_proj

E:\Apress\test_proj>virtualenv venv

Using base prefix 'c:\\program files\\anaconda3'

New python executable in E:\Apress\test_proj\venv\Scripts\python.exe

Installing setuptools, pip, wheel...done.

Now that you have installed the virtual environment successfully, let's try to observe 

the major differences between the global system Python environment and our virtual 

environment. If you remember, we updated our global system Python's pandas package 

version to 0.23 in the previous section. We can verify it using the following commands.

E:\Apress\test_proj>echo 'This is Global System Python'

'This is Global System Python'

E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.23.3
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Now supposed we wanted an older version of pandas in our virtual environment 

but we don’t want to affect our global system Python environment. We can do this by 

activating our virtual environment and installing pandas.

E:\Apress\test_proj>venv\Scripts\activate

(venv) E:\Apress\test_proj>echo 'This is VirtualEnv Python'

'This is VirtualEnv Python'

(venv) E:\Apress\test_proj>pip install pandas==0.21.0

Collecting pandas==0.21.0

    100% |################################| 9.0MB 310kB/s

Collecting pytz>=2011k (from pandas==0.21.0)

Collecting python-dateutil>=2 (from pandas==0.21.0)

Collecting numpy>=1.9.0 (from pandas==0.21.0)

Collecting six>=1.5 (from python-dateutil>=2->pandas==0.21.0)

Installing collected packages: pytz, six, python-dateutil, numpy, pandas

Successfully installed numpy-1.14.5 pandas-0.21.0 python-dateutil-2.7.3 

pytz-2018.5 six-1.11.0

(venv) E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.21.0

For other OS platforms, you might need to use the command source venv/bin/

activate to activate the virtual environment. Once the virtual environment is active, 

you can see the (venv) notation, as shown in the preceding code output, and any new 

packages you install will be placed in the venv folder in complete isolation from the 

global system Python environment.

You can see from the previous code snippets how the pandas package has different 

versions in the same machine—0.23.3 for global Python and 0.21.0 for the virtual 

environment Python. Hence, these isolated virtual environments can run seamlessly on 

the same system. Once you have finished working in the virtual environment, you can 

deactivate it again as follows.

(venv) E:\Apress\test_proj>venv\Scripts\deactivate

E:\Apress\test_proj>pip freeze | grep pandas

pandas==0.23.3
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This will bring you back to the system’s default Python version with all its installed 

libraries and, as expected, the pandas version is the newer one that we had installed. 

This gives us a good idea about the utility and advantages of virtual environments and 

once you start working on several projects, you should definitely consider using it. To 

learn more about virtual environments, check out http://docs.python-guide.org/

en/latest/dev/virtualenvs/, which is the official documentation for the virtualenv 

package. This brings us to the end of our installation and setup activities. Next, we 

look into some basic concepts around Python syntax and structure before diving into 

handling text data with Python using hands-on examples.

 Python Syntax and Structure
We discuss briefly the basic syntax, structure, and design philosophies that are followed 

when writing Python code for applications and systems. There is a defined hierarchical 

syntax for Python code, which you should remember when writing code. Any big 

Python application or system is built using several modules, which are themselves 

comprised of Python statements. Each statement is like a command or direction to the 

system directing what operations it should perform. These statements are comprised 

of expressions and objects. Everything in Python is an object, including functions, data 

structures, types, classes, and so on. This hierarchy can be visualized better in Figure 2-7.

Python Application

Statements

Expressions
Objects

Module 1

Statements

Expressions
Objects

Module 2

Statements

Expressions
Objects

Module 3

Figure 2-7. Python program structure hierarchy
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The basic statements consist of objects and expressions (which use objects and 

process and perform operations on them). Objects can be anything from simple data 

types and structures to complex objects, including functions and reserved words that 

have their own specific roles. Python has around 30+ keywords or reserved words, all 

of which have their own designated role and function. We assume that you have some 

knowledge of basic programming constructs, but in case you do not, don't despair! In the 

next section, we showcase how to work with text data using detailed hands-on examples.

 Working with Text Data
In this section, we briefly cover specific data types tailored to handle text data and how 

these data types and their associated utilities, functions, and methods will be useful in 

the subsequent chapters. The main data types that are used to handle text data in Python 

are strings. These can be normal strings, bytes storing binary information, or Unicode. 

By default, all strings are Unicode in Python 3.x but are not so in Python 2.x. This is 

something you should definitely keep in mind when dealing with text in different Python 

distributions.

Strings are a sequence of characters in Python, similar to arrays and code with a set 

of attributes and methods that can be leveraged to manipulate and operate on text data 

easily. This makes Python the language of choice for text analytics in many scenarios. 

There are various types of strings that we discuss, with several examples in the next 

section.

 String Literals
There are various types of strings, as mentioned earlier. The following BNF (Backus-Naur 

Form) gives us the general lexical definitions for producing strings, as seen in the official 

Python docs.

stringliteral   ::=  [stringprefix](shortstring | longstring)

stringprefix    ::=  "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"

                     | "b" | "B" | "br" | "Br" | "bR" | "BR"

shortstring     ::=  "'" shortstringitem* "'" | '"' shortstringitem* '"'

longstring      ::=   "'''" longstringitem* "'''" | '"""' longstringitem* 

'"""'
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shortstringitem ::=  shortstringchar | escapeseq

longstringitem  ::=  longstringchar | escapeseq

shortstringchar ::=   <any source character except "\" or newline or the 

quote>

longstringchar  ::=  <any source character except "\">

escapeseq       ::=  "\" <any ASCII character>

These rules tell us that different types of string prefixes exist and can be used with 

different string types to produce string literals. In simple terms, the following types of 

string literals are used the most:

• Short strings: These strings are usually enclosed with single quotes 

(') or double quotes (") around the characters. Some examples are 

'Hello' and "Hello".

• Long strings: These strings are usually enclosed with three single 

(''') or double quotes (""") around the characters. Some examples 

are """Hello, I'm a long string""" or '''Hello I\'m a long 

string '''. Note the (\') indicates an escape sequence which we 

shall talk about soon.

• Escape sequences in strings: These strings often have escape 

sequences embedded in them, where the rule for escape sequences 

starts with a backslash (\) followed by any ASCII character. Hence, 

they perform backspace interpolation. Popular escape sequences 

include (\n), which indicates a newline character and (\t), indicating 

a tab.

• Bytes: These are used to represent bytestrings that create objects of 

the byte’s data type. These strings can be created as bytes('...') or 

using the b'...' notation. Examples include bytes('hello') and 

b'hello'.

• Raw strings: These strings were originally created specifically for 

regular expressions (regex) and regex patterns. These strings can be 

created using the r'...' notation and keep the string in its raw or 

native form. Hence, they do not perform any backspace interpolation 

and turn off the escape sequences. An example is r'Hello'.
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• Unicode: These strings support Unicode characters in text and 

they are usually non-ASCII character sequences. These strings are 

denoted with the u'...' notation. However, in Python 3.x all string 

literals are typically represented as Unicode. Besides the string 

notation, there are several specific ways to represent special Unicode 

characters in the string. The usual include the hex byte value escape 

sequence of the format '\xVV'. Besides this, we also have Unicode 

escape sequences of the form '\uVVVV' and '\uVVVVVVVV', where 

the first form uses four hex-digits for encoding a 16 bit character 

and the second uses eight hex-digits for encoding a 32-bit character. 

Some examples include u 'H\xe8llo' and u 'H\u00e8llo', which 

represents the string 'Hèllo'.

Now that we know the main types of string literals, let's look at ways to represent 

strings.

 Representing Strings
Strings are sequences or collections of characters that are used to store and represent 

textual data, which is our data type of choice in most of the book’s examples. Strings can 

be used to store text and bytes as information. Strings have a wide variety of methods 

that can be used for handling and manipulating strings, which we see in a subsequent 

section. An important point to remember is that strings are immutable and any 

operations performed on strings create a new string object (which can be checked using 

the id function) rather than just changing the value of the existing string object. Let's 

look at some basic string representations.

new_string = "This is a String"  # storing a string

print('ID:', id(new_string))  # shows the object identifier (address)

print('Type:', type(new_string))  # shows the object type

print('Value:', new_string)  # shows the object value

ID: 1907471142032

Type: <class 'str'>

Value: This is a String
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# simple string

simple_string = 'Hello!' + " I'm a simple string"

print(simple_string)

Hello! I'm a simple string

Representing multi-line strings is also quite easy and can be done as follows:

# multi-line string, note the \n (newline) escape character automatically 

created

multi_line_string = """Hello I'm

a multi-line

string!"""

multi_line_string

"Hello I'm\na multi-line\nstring!"

print(multi_line_string)

Hello I'm

a multi-line

string!

Let's now look at ways to represent escape sequences and raw strings in their native 

format, without any escape sequences.

# Normal string with escape sequences leading to a wrong file path!

escaped_string = "C:\the_folder\new_dir\file.txt"

print(escaped_string)  # will cause errors if we try to open a file here

C: he_folder

ew_dirile.txt

# raw string keeping the backslashes in its normal form

raw_string = r'C:\the_folder\new_dir\file.txt'

print(raw_string)

C:\the_folder\new_dir\file.txt

Let’s look at ways to represent non-ASCII characters leveraging Unicode, which can 

also be used to represent symbols like emojis.
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# unicode string literals

string_with_unicode = 'H\u00e8llo!'

print(string_with_unicode)

Hèllo!

more_unicode = 'I love Pizza 🍕!  Shall we book a cab 🚕 to get pizza?'

print(more_unicode)

I love Pizza 🍕!  Shall we book a cab 🚕 to get pizza?

print(string_with_unicode + '\n' + more_unicode)

Hèllo!

I love Pizza 🍕!  Shall we book a cab 🚕 to get pizza?

' '.join([string_with_unicode, more_unicode])

'Hèllo! I love Pizza 🍕!  Shall we book a cab 🚕 to get pizza?'

more_unicode[::-1]  # reverses the string

'?azzip teg ot 🚕 bac a koob ew llahS  !🍕 azziP evol I'

 String Operations and Methods
Strings are iterable sequences and hence a lot of operations can be performed on 

them. This is especially helpful when processing and parsing textual data into easy-to- 

consume formats. There are several operations that can be performed on strings. We 

have categorized them into the following segments.

• Basic operations

• Indexing and slicing

• Methods

• Formatting

• Regular expressions

These cover the most frequently used techniques for working with strings and form the 

base of what we would need to get started. In the next chapter, we look at understanding 

and processing textual data based on concepts we learned in the first two chapters.
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 Basic Operations

There are several basic operations you can perform on strings, including concatenation 

and checking for substrings, characters, and lengths. We start off with some basic 

examples of concatenating strings.

In [10]: 'Hello 😊' + ' and welcome ' + 'to Python 🐍!'

Out [10]: 'Hello 😊 and welcome to Python 🐍!'

In [11]: 'Hello 😊' ' and welcome ' 'to Python 🐍!'

Out [11]: 'Hello 😊 and welcome to Python 🐍!'

Let's now look at some ways of concatenating variables and literals when handling 

strings.

# concatenation of variables and literals

In [12]: s1 = 'Python 💻!'

    ...: 'Hello 😊 ' + s1

Out [12]: 'Hello 😊 Python 💻!'

In [13]: 'Hello 😊 ' s1

File "<ipython-input-17-da1762b9f01f>", line 1

    'Hello 😊 ' s1

                ^

SyntaxError: invalid syntax

We now look at some more ways of concatenating strings.

In [5]: s2 = '--🐍Python🐍--'

   ...: s2 * 5

Out [5]: '--🐍Python🐍----🐍Python🐍----🐍Python🐍----🐍Python🐍---- 

🐍Python🐍--'

In [6]: s1 + s2

Out [6]: 'Python 💻!--🐍Python🐍--'

In [7]: (s1 + s2)*3

Out [7]: 'Python 💻!--🐍Python🐍--Python 💻!--🐍Python🐍--Python 💻 

!--🐍Python🐍--'
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# concatenating several strings together in parentheses

In [8]: s3 = ('This '

   ...:       'is another way '

   ...:       'to concatenate '

   ...:       'several strings!')

   ...: s3

Out[8]: 'This is another way to concatenate several strings!'

Here are some more essential operations like checking for substrings and finding the 

length of a typical string.

In [9]: 'way' in s3

Out[9]: True

In [10]: 'python' in s3

Out[10]: False

In [11]: len(s3)

Out[11]: 51

 Indexing and Slicing

We have already discussed that strings are iterables and are sequences of characters. 

Hence they can be indexed, sliced, and iterated through, similar to other iterables 

like lists. Each character has a specific position in the string, which is its index. Using 

indexes, we can access specific parts of the string. Accessing a single character using a 

specific position or index in the string is called indexing and accessing a part of a string 

i.e., a substring using a start and end index, is called slicing. Python supports two types 

of indexes—one starting from 0 and increasing by 1 each character until the end of the 

string, and the other starting from -1 at the end of the string and decreasing by 1 each 

character until the beginning of the string. Figure 2-8 depicts the two types of indexes for 

the string, 'PYTHON'.

P Y T H O N

-6

0 1 2 3 4 5

-5 -4 -3 -2 -1

Figure 2-8. String-indexing syntax
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Let’s get started with some basic string indexing so you can get a feel for how to 

access specific characters in a string.

# creating a string

In [12]: s = 'PYTHON'

    ...: s, type(s)

Out[12]: ('PYTHON', str)

# depicting string indices

In [13]: for index, character in enumerate(s):

    ...:     print('Character ->', character, 'has index->', index)

Character -> P has index-> 0

Character -> Y has index-> 1

Character -> T has index-> 2

Character -> H has index-> 3

Character -> O has index-> 4

Character -> N has index-> 5

# string indexing

In [14]: s[0], s[1], s[2], s[3], s[4], s[5]

Out[14]: ('P', 'Y', 'T', 'H', 'O', 'N')

In [15]: s[-1], s[-2], s[-3], s[-4], s[-5], s[-6]

Out[15]: ('N', 'O', 'H', 'T', 'Y', 'P')

It is quite clear that you can access specific string elements with indices similar to 

how you would access a list. Let's look at some interesting ways to slice strings now with 

some hands-on examples!

# string slicing

In [16]: s[:]

Out[16]: 'PYTHON'

In [17]: s[1:4]

Out[17]: 'YTH'

In [18]: s[:3], s[3:]

Out[18]: ('PYT', 'HON')
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In [19]: s[-3:]

Out[19]: 'HON'

In [21]: s[:3] + s[-3:]

Out[21]: 'PYTHON'

In [22]: s[::1]  # no offset

Out[22]: 'PYTHON'

In [24]: s[::2]  # print every 2nd character in string

Out[24]: 'PTO'

The preceding snippets should give you some good perspective into how to slice and 

extract specific substrings from a given string. As mentioned, it is very similar to lists. 

However, the key difference is that strings are immutable. Let's try to understand this 

idea in the following examples.

# strings are immutable hence assignment throws error

In [27]: s[0] = 'X'

Traceback (most recent call last):

  File "<ipython-input-27-88104b3bc919>", line 1, in <module>

    s[0] = 'X'

TypeError: 'str' object does not support item assignment

# creates a new string

In [28]: print('Original String id:', id(s))

    ...: # creates a new string

    ...: s = 'X' + s[1:]

    ...: print(s)

    ...: print('New String id:', id(s))

Original String id: 2117246774552

XYTHON

New String id: 2117246656048

Based on the preceding examples, you can clearly see that strings are immutable and 

do not support assignment or modifications to the original string in any form. Even if you 

use the same variable and perform some operations on it, you get a completely new string.
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 Methods

Strings have a huge arsenal of built-in methods in base Python at your disposal, which 

you can use for performing various transformations, manipulations, and operations. 

Discussing each and every method in detail would be out of the current scope; however, 

this useful link in the official Python documentation https://docs.python.org/3/

library/stdtypes.html#string-methods provides all the information you need to 

know about every method, along with syntax and definition. Methods are extremely 

useful and increase your productivity, since you do not have to spend extra time writing 

boilerplate code to handle and manipulate strings. We show some popular examples of 

string methods in action in the following code snippets.

s = 'python is great'

# case conversions

In [33]: s.capitalize()

Out[33]: 'Python is great'

In [34]: s.upper()

Out[34]: 'PYTHON IS GREAT'

In [35]: s.title()

Out[35]: 'Python Is Great'

# string replace

In [36]: s.replace('python', 'NLP')

Out[36]: 'NLP is great'

# Numeric checks

In [37]: '12345'.isdecimal()

Out[37]: True

In [38]: 'apollo11'.isdecimal()

Out[38]: False

# Alphabet checks

In [39]: 'python'.isalpha()

Out[39]: True

In [40]: 'number1'.isalpha()

Out[40]: False
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# Alphanumeric checks

In [41]: 'total'.isalnum()

Out[41]: True

In [42]: 'abc123'.isalnum()

Out[42]: True

In [43]: '1+1'.isalnum()

Out[43]: False

The following snippets show some ways to split, join, and strip strings based on 

different hands-on examples.

# String splitting and joining

In [44]: s = 'I,am,a,comma,separated,string'

    ...: s.split(',')

Out[44]: ['I', 'am', 'a', 'comma', 'separated', 'string']

In [45]: ' '.join(s.split(','))

Out[45]: 'I am a comma separated string'

# Basic string stripping

In [46]: s = '   I am surrounded by spaces    '

    ...: s

Out[46]: '   I am surrounded by spaces    '

In [47]: s.strip()

Out[47]: 'I am surrounded by spaces'

# some more combinations

In [48]: sentences = 'Python is great. NLP is also good.'

    ...: sentences.split('.')

Out[48]: ['Python is great', ' NLP is also good', "]

In [49]: print('\n'.join(sentences.split('.')))

Python is great

 NLP is also good
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In [50]: print('\n'.join([sentence.strip()

    ...:                      for sentence in sentences.split('.')

    ...:                          if sentence]))

Python is great

NLP is also good

These examples just scratch the surface of the numerous manipulations and 

operations possible on strings. Feel free to try other operations using different methods 

mentioned in the docs. We use several of them in subsequent chapters.

 Formatting

String formatting is used to substitute specific data objects and types in a string. This is 

often used when displaying text to the user. There are two different types of formatting 

used for strings:

• Formatting expressions: These expressions are typically of the 

syntax '...%s...%s...' %(values), where the %s denotes a 

placeholder for substituting a string from the list of strings depicted 

in values. This is quite similar to the C style printf model and has 

been in Python since the beginning. You can substitute values of 

other types with the respective alphabet following the % symbol, like 

%d is for integers and %f for floating point numbers.

• Formatting methods: These strings take the form of '...{}...

{}...'.format(values), which uses the braces {} for placeholders 

to place strings from values using the format method. This was 

present in Python since the 2.6.x version.

The following code snippets depict both types of string formatting using several 

hands-on examples.

# Simple string formatting expressions - old style

In [51]: 'Hello %s' %('Python!')

Out[51]: 'Hello Python!'
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In [52]: 'Hello %s %s' %('World!', 'How are you?')

Out[52]: 'Hello World! How are you?'

# Formatting expressions with different data types - old style

In [53]: 'We have %d %s containing %.2f gallons of %s' %(2, 'bottles',  

2.5, 'milk')

Out[53]: 'We have 2 bottles containing 2.50 gallons of milk'

In [54]: 'We have %d %s containing %.2f gallons of %s' %(5.21, 'jugs',  

10.86763, 'juice')

Out[54]: 'We have 5 jugs containing 10.87 gallons of juice'

# Formatting strings using the format method - new style

In [55]: 'Hello {} {}, it is a great {} to meet you at {}'.format('Mr.',  

'Jones', 'pleasure', 5)

Out[55]: 'Hello Mr. Jones, it is a great pleasure to meet you at 5'

In [56]: 'Hello {} {}, it is a great {} to meet you at {} o\'  

clock'.format('Sir', 'Arthur', 'honor', 9)

Out[56]: "Hello Sir Arthur, it is a great honor to meet you at 9 o' clock"

# Alternative ways of using string format

In [57]: 'I have a {food_item} and a {drink_item} with me'.format(drink_

item='soda', food_item='sandwich')

Out[57]: 'I have a sandwich and a soda with me'

In [58]: 'The {animal} has the following attributes: {attributes}'.

format(animal='dog', attributes=['lazy', 'loyal'])

Out[58]: "The dog has the following attributes: ['lazy', 'loyal']"

From these examples, you can see that there is no hard and fast rule for formatting 

strings, so go ahead and experiment with different formats and use the one that’s best 

suited to your task. We do recommend going with the new style in general.
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 Regular Expressions

Regular expressions, known more popularly as regexes, allow you to create string patterns 

and use them for searching and substituting specific pattern matches in textual data. Python 

offers a rich module named re for creating and using regular expressions. Entire books have 

been written on this topic because it is easy to use but difficult to master. Discussing every 

aspect of regular expressions would not be possible in the current scope, but we cover the 

main areas with sufficient examples, which should be enough to get started on this topic.

Regular expressions or regexes are specific patterns often denoted using the 

raw string notation. These patterns match a specific set of strings based on the rules 

expressed by the patterns. These patterns then are usually compiled into bytecode, 

which is then executed for matching strings using a matching engine. The re module 

also provides several flags that can change the way the pattern matches are executed. 

Some important flags are:

• re.I or re.IGNORECASE is used to match patterns ignoring case 

sensitivity.

• re.S or re.DOTALL causes the period (.) character to match any 

character, including new lines.

• re.U or re.UNICODE helps match Unicode-based characters 

(deprecated in Python 3.x).

For pattern matching, there are various rules used in regexes. Some popular ones are:

• . for matching a single character

• ^ for matching the start of the string

• $ for matching the end of the string

• * for matching zero or more cases of the previous mentioned regex 

before the * symbol in the pattern

• ? for matching zero or one case of the previous mentioned regex 

before the ? symbol in the pattern

• [...] for matching any one of the set of characters inside the square 

brackets

• [^...] for matching a character not present in the square brackets 

after the ^ symbol
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• | denotes the OR operator for matching either the preceding or the 

next regex

• + for matching one or more cases of the previous mentioned regex 

before the + symbol in the pattern

• \d for matching decimal digits, which are also depicted as [0-9]

• \D for matching non-digits, also depicted as [^0-9]

• \s for matching whitespace characters

• \S for matching non-whitespace characters

• \w for matching alpha-numeric characters; also depicted as 

[a-zA-Z0-9_]

• \W for matching non alpha-numeric characters; also depicted as 

[^a-zA-Z0-9_]

Regular expressions can be compiled into pattern objects and then used with a 

variety of methods for pattern search and substitution in strings. The main methods 

offered by the re module for performing these operations are as follows:

• re.compile(): This method compiles a specified regular expression 

pattern into a regular expression object, which can be used for 

matching and searching. Takes a pattern and optional flags as input, 

which we discussed previously.

• re.match(): This method is used to match patterns at the beginning 

of strings.

• re.search(): This method is used to match patterns occurring at any 

position in the string.

• re.findall(): This method returns all non-overlapping matches of 

the specified regex pattern in the string.

• re.finditer(): This method returns all matched instances in the form 

of an iterator, for a specific pattern in a string when scanned from left 

to right.

• re.sub(): This method is used to substitute a specified regex pattern 

in a string with a replacement string. It only substitutes the left-most 

occurrence of the pattern in the string.
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The following code snippets depict some of these methods and show how they are 

typically used when dealing with strings and regular expressions.

# creating some strings

s1 = 'Python is an excellent language'

s2 = 'I love the Python language. I also use Python to build applications 

at work!'

# due to case mismatch there is no match found

In [61]: import re

    ...:

    ...: pattern = 'python'

    ...: #  match only returns a match if regex match is found at the 

beginning of the string

    ...: re.match(pattern, s1)

# pattern is in lower case hence ignore case flag helps in matching same pattern

# with different cases

In [62]: re.match(pattern, s1, flags=re.IGNORECASE)

Out[62]: <_sre.SRE_Match object; span=(0, 6), match='Python'>

# printing matched string and its indices in the original string

In [64]: m = re.match(pattern, s1, flags=re.IGNORECASE)

    ...:  print('Found match {} ranging from index {} - {} in the string 

"{}"'.format(m.group(0), m.start(), m.end(), s1))

Found match Python ranging from index 0 - 6 in the string "Python is an 

excellent language"

# match does not work when pattern is not there in the beginning of string s2

In [65]: re.match(pattern, s2, re.IGNORECASE)
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Let's now look at some examples that illustrate how the find(...) and search(...) 

methods work in regular expressions:

# illustrating find and search methods using the re module

In [66]: re.search(pattern, s2, re.IGNORECASE)

Out[66]: <_sre.SRE_Match object; span=(11, 17), match='Python'>

In [67]: re.findall(pattern, s2, re.IGNORECASE)

Out[67]: ['Python', 'Python']

In [68]: match_objs = re.finditer(pattern, s2, re.IGNORECASE)

    ...: match_objs

Out[68]: <callable_iterator at 0x1ecf5c1c828>

In [69]: print("String:", s2)

    ...: for m in match_objs:

    ...:      print('Found match "{}" ranging from index {} - {}'.format 

(m.group(0), m.start(), m.end()))

String: I love the Python language. I also use Python to build applications 

at work!

Found match "Python" ranging from index 11 - 17

Found match "Python" ranging from index 39 - 45

Regular expressions for text substitution are useful to find and replace specific text 

tokens in strings. We illustrate these using a few examples:

# illustrating pattern substitution using sub and subn methods

In [81]: re.sub(pattern, 'Java', s2, flags=re.IGNORECASE)

Out[81]: 'I love the Java language. I also use Java to build applications 

at work!'

In [82]: re.subn(pattern, 'Java', s2, flags=re.IGNORECASE)

Out[82]: ('I love the Java language. I also use Java to build applications 

at work!', 2)
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# dealing with unicode matching using regexes

In [83]: s = u'H\u00e8llo! this is Python 🐍'

    ...: s

Out[83]: 'Hèllo! this is Python 🐍'

In [84]: re.findall(r'\w+', s)

Out[84]: ['Hèllo', 'this', 'is', 'Python']

In [85]: re.findall(r"[A-Z]\w+", s, re.UNICODE)

Out[85]: ['Hèllo', 'Python']

In [86]: emoji_pattern = r"[' \U0001F300-\U0001F5FF'|'\U0001F600- 

\U0001F64F'|'\U0001F680-\U0001F6FF'|'\u2600- 

\u26FF\u2700-\u27BF']"

    ...: re.findall(emoji_pattern, s, re.UNICODE)

Out[86]: ['🐍']

This concludes our discussion of strings and their various aspects, including 

representation and operations. This should give you an idea of how strings can be 

utilized for working with text data and how they form the basis for processing text, which 

is an important component in text analytics. We now cover a basic text processing case 

study, where we bring everything together based on what we learned in the previous 

sections.

 Basic Text Processing and Analysis: Putting It All 
Together
Let's utilize what we have learned so far in this chapter as well as the previous chapter to 

build and solve a basic text-processing problem. For this, we load the King James version 

of the Bible from the Gutenberg corpus in NLTK. The following code shows us how to 

load the Bible corpus and display the first few lines in the corpus.

from nltk.corpus import gutenberg

import matplotlib.pyplot as plt

% matplotlib inline
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bible = gutenberg.open('bible-kjv.txt')

bible = bible.readlines()

bible[:5]

['[The King James Bible]\n',

 '\n',

 'The Old Testament of the King James Bible\n',

 '\n',

 'The First Book of Moses:  Called Genesis\n']

We can clearly see the first few lines of the Bible corpus in the preceding output. 

Let's do some basic preprocessing by removing all the empty newlines in our corpus and 

stripping away any newline characters from other lines.

In [88]: len(bible)

Out[88]: 99805

In [89]: bible = list(filter(None, [item.strip('\n') for item in bible]))

    ...: bible[:5]

Out[89]:

['[The King James Bible]',

 'The Old Testament of the King James Bible',

 'The First Book of Moses:  Called Genesis',

 '1:1 In the beginning God created the heaven and the earth.',

 '1:2 And the earth was without form, and void; and darkness was upon']

In [90]: len(bible)

Out[90]: 74645

We can clearly see that there were a lot of empty newlines in our corpus and we have 

been able to successfully remove them. Let's do some basic frequency analysis on our 

corpus now. Suppose we wanted to visualize the overall distribution of typical sentence 

or line lengths across the Bible. We can do that by computing the length of each sentence 

and then visualize this using a histogram, as shown in Figure 2-9.

line_lengths = [len(sentence) for sentence in bible]

h = plt.hist(line_lengths)
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Based on the plot depicted in Figure 2-9, it looks like most of the sentences are 

around 65-70 characters. Let's look at the total words per sentence distribution now. To 

get that distribution, first let's look at a way to tokenize each sentence in our corpus.

In [95]: tokens = [item.split() for item in bible]

    ...: print(tokens[:5])

[['[The', 'King', 'James', 'Bible]'], ['The', 'Old', 'Testament', 'of', 

'the', 'King', 'James', 'Bible'], ['The', 'First', 'Book', 'of', 'Moses:', 

'Called', 'Genesis'], ['1:1', 'In', 'the', 'beginning', 'God', 'created', 

'the', 'heaven', 'and', 'the', 'earth.'], ['1:2', 'And', 'the', 'earth', 

'was', 'without', 'form,', 'and', 'void;', 'and', 'darkness', 'was', 

'upon']]

Now that we have tokenized each sentence, we just have to compute the length of 

each sentence to get the total words per sentence and build a histogram to visualize this 

distribution. See Figure 2-10.

In [96]: total_tokens_per_line = [len(sentence.split()) for sentence in bible]

    ...: h = plt.hist(total_tokens_per_line, color='orange')
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Figure 2-9. Visualizing sentence length distributions in the Bible
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Based on the visualization depicted in Figure 2-10, we can clearly conclude that most 

sentences in the Bible have roughly 12-15 words, or tokens, in them. Let's now try to 

determine the most common words in the Bible corpus. We already have our sentences 

tokenized into words (lists of words). The first step involves flattening this big list of lists 

(each list is a tokenized sentence of words) into one big list of words.

words = [word for sentence in tokens for word in sentence]

print(words[:20])

['[The', 'King', 'James', 'Bible]', 'The', 'Old', 'Testament', 'of', 'the', 

'King', 'James', 'Bible', 'The', 'First', 'Book', 'of', 'Moses:', 'Called', 

'Genesis', '1:1']

Nice! We have our big list of tokens from our corpus. However, you can see the tokens 

are not totally clean and we have some unwanted symbols and special characters in 

some of the words. Let's use the power of regular expressions now to remove them.

words = list(filter(None, [re.sub(r'[^A-Za-z]', ", word) for word in 

words]))

print(words[:20])

['The', 'King', 'James', 'Bible', 'The', 'Old', 'Testament', 'of', 'the', 

'King', 'James', 'Bible', 'The', 'First', 'Book', 'of', 'Moses', 'Called', 

'Genesis', 'In']
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Figure 2-10. Visualizing total words per sentence distributions in the Bible
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Based on the regular expression we used in the preceding code, we just removed 

anything that was not an alphabetical character. Thus all numbers and special characters 

were removed. We can now determine the most frequent words using the following 

code.

In [99]: from collections import Counter

    ...:

    ...: words = [word.lower() for word in words]

    ...: c = Counter(words)

    ...: c.most_common(10)

Out[99]:

[('the', 64023),

 ('and', 51696),

 ('of', 34670),

 ('to', 13580),

 ('that', 12912),

 ('in', 12667),

 ('he', 10419),

 ('shall', 9838),

 ('unto', 8997),

 ('for', 8970)]

We see a lot of general filler words like pronouns, articles, and so on are the most 

frequent words, which makes perfect sense. But this doesn't convey much information. 

What if we could remove these words and focus on the more interesting ones? One 

approach could be to remove these filler words, popularly known as stopwords, and then 

compute the frequency as follows.

In [100]: import nltk

     ...:

     ...: stopwords = nltk.corpus.stopwords.words('english')

     ...:  words = [word.lower() for word in words if word.lower() not in 

stopwords]

     ...: c = Counter(words)

     ...: c.most_common(10)
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Out[100]:

[('shall', 9838),

 ('unto', 8997),

 ('lord', 7830),

 ('thou', 5474),

 ('thy', 4600),

 ('god', 4442),

 ('said', 3999),

 ('ye', 3983),

 ('thee', 3826),

 ('upon', 2748)]

Thus, we see that the results are better than before; however, many words are still 

filler or stopwords. This is more colloquial English, hence they are not a part of the 

standard English stopwords list so they were not removed. We can always build a custom 

stopword list as needed. (More on stopwords in Chapter 3.) This should give you a good 

idea of how we used all aspects pertaining to strings, methods, and transformations to 

process and analyze text data.

 Natural Language Processing Frameworks
We talked about the Python ecosystem being diverse and supporting a wide variety 

of libraries, frameworks, and modules in diverse domains. Since we will be analyzing 

textual data and solving several use cases on it, there are dedicated frameworks and 

libraries for natural language processing and text analytics, which you can just install 

and start using, just like any other built-in module in the Python standard library. These 

frameworks have been built over a long period of time and are usually still in active 

development. Often the way to assess a framework is to see how active its developer 

community is.

Each framework contains various methods, capabilities, and features for operating 

on text, getting insights, and making the data ready for further analysis, like applying 

machine learning algorithms on preprocessed textual data. Leveraging these frameworks 

saves a lot of effort and time that would have been spent on writing boilerplate code 

to handle, process, and manipulate text data. Thus, this enables the developers and 

researchers to focus more on solving the actual problem and the necessary logic and 
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algorithms needed. We have already seen some glimpses of the nltk library in the first 

chapter. The following list of libraries and frameworks are some of the most popular text 

analytics frameworks and we utilize several of them throughout the course of the book.

• nltk: The Natural Language Toolkit is a complete platform that 

contains over 50 corpora and lexical resources, such as WordNet. 

Besides this, it also provides the necessary tools, interfaces, and 

methods to process and analyze text data. The NLTK framework 

comes with a suite of efficient modules for classification, 

tokenization, stemming, lemmatization, tagging, parsing, and 

semantic reasoning. It is the standard workhorse of any NLP project 

in the industry.

• pattern: The pattern project gets an honorable mention here since 

we used it extensively in the first edition of the book. However, due 

to a lack of official support or a Python 3.x version, we will not be 

using it in this edition. This started out as a research project at the 

Computational Linguistics & Psycholinguistics Research Centre at 

the University of Antwerp. It provides tools and interfaces for web 

mining, information retrieval, natural language processing, machine 

learning, and network analysis.

• spacy: This is one of the newer libraries relatively as compared to the 

others but perhaps one of the best libraries for NLP. We can vouch 

for the fact that spaCy provides industrial-strength natural language 

processing capabilities by providing the best implementation of each 

technique and algorithm, which makes NLP tasks efficient in terms of 

performance and implementation. In fact, spaCy excels at large-scale 

information extraction tasks. It has been written from the ground up 

using efficient, memory-managed Cython. Extensive research has 

also confirmed that spaCy is the fastest in the world. spaCy also works 

seamlessly with deep learning and machine learning frameworks like 

TensorFlow, PyTorch, Scikit-Learn, Gensim, and the rest of Python's 

excellent AI ecosystem. The best part is that spaCy has support for 

several languages and provides pretrained word vectors!
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• gensim: The gensim library has a rich set of capabilities for semantic 

analysis, including topic modeling and similarity analysis. But 

the best part is that it contains a Python port of Google's very 

popular Word2Vec model (originally available as a C package), 

which is a neural network model implemented to learn distributed 

representations of words where similar words (semantic) occur close 

to each other. Thus, Gensim can be used for semantic analysis as well 

as feature engineering!

• textblob: This is another library that provides several capabilities, 

including text processing, phrase extraction, classification, POS 

tagging, text translation, and sentiment analysis. TextBlob makes a 

lot of difficult things very easy, including language translation and 

sentiment analysis, by its extremely intuitive and easy to use API.

Besides these, there are several other frameworks and libraries that are not dedicated 

to text analytics but will be useful when you want to use machine learning or deep 

learning techniques on textual data. These include the Scikit-Learn, NumPy, and SciPy 

stack, which are extremely useful for text feature engineering, handling feature sets in 

the form of matrices, and even performing popular machine learning tasks like similarity 

computation, text classification, and clustering.

Besides these, deep learning and tensor-based libraries like PyTorch, TensorFlow, 

and Keras also come in handy if you want to build advanced deep learning models 

based on deep neural nets, convnets, sequential, and generative models. You can install 

most of these libraries using the pip install <library> command from the command 

prompt or terminal. We cover any caveats in the upcoming chapters when we use these 

libraries.

 Summary
This chapter provided a bird’s-eye yet sufficiently detailed view of the entire Python 

ecosystem and what the language offers us in terms of its capabilities for handling 

text data. You have seen the origins behind the Python language and how it has been 

evolving with time. The language has benefits of being open source, which has resulted 

in an active developer community constantly striving to improve the language and add 

new features.
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By now, you also know when you should use Python and the drawbacks associated 

with the language that every developer should keep in mind when building systems and 

applications. This chapter also provides a clear idea about how to set up our own Python 

environment and deal with multiple virtual environments. Starting from the very basics, 

we have taken a deep dive into how to work with text data using the string data type and 

its various syntaxes, methods, operations, and formats. We have also seen the power of 

regular expressions and how useful they can be in pattern matching and substitutions.

To conclude our discussion, we looked at various popular text analytics and natural 

language processing frameworks, which are useful in solving problems and tasks dealing 

with natural language processing, analyzing, and extracting insights from text data. This 

should get you started with programming in Python and handling text data. In the next 

chapter, we build on the foundations of this chapter as we start to understand, process, 

and parse text data in usable formats.
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CHAPTER 3

Processing and  
Understanding Text
In the previous chapters, we saw a glimpse of the entire natural language processing and 

text analytics landscape with essential terminology and concepts. Besides this, we were 

also introduced to the Python programming language, essential constructs, syntax, and 

learned how to work with strings to manage textual data. To perform complex operations 

on text with machine learning or deep learning algorithms, you need to process and 

parse textual data into more easy-to-interpret formats. All machine learning algorithms, 

be they supervised or unsupervised techniques, work with input features, which are 

numeric in nature. While this is a separate topic under feature engineering, which we 

shall explore in detail in the next chapter, to get to that step, you will need to clean, 

normalize, and preprocess the initial textual data.

The text corpora and other textual data in their native raw formats are normally not 

well formatted and standardized and of course we should expect this, after all, text data 

is highly unstructured! Text processing or, to be more specific preprocessing, involves a 

wide variety of techniques that convert raw text into well-defined sequences of linguistic 

components that have standard structure and notation. Additional metadata is often 

also present in the form of annotations to give more meaning to the text components like 

tags. The following list gives us an idea of some of the most popular text preprocessing 

and understanding techniques, which we explore in this chapter.

• Removing HTML tags

• Tokenization

• Removing unnecessary tokens and stopwords

• Handling contractions

• Correcting spelling errors
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• Stemming

• Lemmatization

• Tagging

• Chunking

• Parsing

Besides these techniques, you also need to perform some basic operations, like 

case conversion, dealing with irrelevant components, and removing noise based on the 

problem to be solved. An important point to remember is that a robust text preprocessing 

system is always an essential part of any application on NLP and text analytics. The primary 

reason for that is because all the textual components obtained after preprocessing—be 

they words, phrases, sentences, or any other tokens—form the basic building blocks 

of input that’s fed into the further stages of the application that perform more complex 

analyses including learning patterns and extracting information. Hence, the saying 

“Garbage in Garbage out!” is relevant here because if we do not process the text properly, 

we will end up getting unwanted and irrelevant results from our applications and systems.

Besides this, text processing helps in cleaning and standardization of the text which 

not only helps in analytical systems like increasing the accuracy of classifiers but we 

also get additional information and metadata in the form of annotations. They are very 

useful in giving more information about the text. We will touch upon normalizing text 

using various techniques including cleaning, removing unnecessary tokens, stems, and 

lemmas in this chapter.

Another important aspect is understanding the textual data after processing and 

normalizing it. This will involve revisiting some of the concepts surrounding language 

syntax and structure from Chapter 1, where we talked about sentences, phrases, parts 

of speech, shallow parsing, and grammar. In this chapter, we look at ways to implement 

these concepts and use them on real data. We follow a structured and definite path 

in this chapter, starting from text processing, and gradually exploring the various 

concepts and techniques associated with it and then moving on to understanding text 

structure and syntax. Since this book is specifically aimed at practitioners, various code 

snippets and practical examples also equip you with the right tools and frameworks 

for implementing these concepts in solving practical problems. All the code examples 

showcased in this chapter are available on the book’s official GitHub repository, which 

you can access at  https://github.com/dipanjanS/text-analytics-with-python/

tree/master/New-Second-Edition.
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 Text Preprocessing and Wrangling
Text wrangling (also called preprocessing or normalization) is a process that consists of 

a series of steps to wrangle, clean, and standardize textual data into a form that could be 

consumed by other NLP and intelligent systems powered by machine learning and deep 

learning. Common techniques for preprocessing include cleaning text, tokenizing text, 

removing special characters, case conversion, correcting spellings, removing stopwords 

and other unnecessary terms, stemming, and lemmatization. In this section, we discuss 

various techniques that are commonly used for text wrangling based on the list we 

mentioned at the beginning of this chapter. The key idea is to remove unnecessary content 

from one or more text documents in a corpus (or corpora) and get clean text documents.

 Removing HTML Tags
Often, unstructured text contains a lot of noise, especially if you use techniques 

like web scraping or screen scraping to retrieve data from web pages, blogs, and 

online repositories. HTML tags, JavaScript, and Iframe tags typically don’t add much 

value to understanding and analyzing text. Our main intent is to extract meaningful 

textual content from the data extracted from the web. Let’s look at a section of a web 

page showing the King James version of the Bible, freely available thanks to Project 

Gutenberg, depicted in Figure 3-1.

Figure 3-1. Section of a web page showing a chapter from the Bible
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We will now leverage requests and retrieve the contents of this web page in Python. 

This is known as web scraping and the following code helps us achieve this.

import requests

data = requests.get('http://www.gutenberg.org/cache/epub/8001/pg8001.html')

content = data.content

print(content[1163:2200])

b'content="Ebookmaker 0.4.0a5 by Marcello Perathoner <webmaster@gutenberg.

org>" name="generator"/>\r\n</head>\r\n  <body><p id="id00000">Project 

Gutenberg EBook The Bible, King James, Book 1: Genesis</p>\r\n\r\n<p 

id="id00001">Copyright laws are changing all over the world. Be sure 

to check the\r\ncopyright laws for your country before downloading or 

redistributing\r\nthis or any other Project Gutenberg eBook.</p>\r\n\r\n<p 

id="id00002">This header should be the first thing seen when viewing this 

Project\r\nGutenberg file.  Please do not remove it.  Do not change or edit 

the\r\nheader without written permission.</p>\r\n\r\n<p id="id00003">Please 

read the "legal small print," and other information about the\r\neBook and 

Project Gutenberg at the bottom of this file.  Included is\r\nimportant 

information about your specific rights and restrictions in\r\nhow the 

file may be used.  You can also find out about how to make a\r\ndonation 

to Project Gutenberg, and how to get involved.</p>\r\n\r\n<p id="id00004" 

style="margin-top: 2em">**Welcome To The World of F'

We can clearly see from the preceding output that it is extremely difficult to decipher 

the actual textual content in the web page, due to all the unnecessary HTML tags. We 

need to remove those tags. The BeautifulSoup library provides us with some handy 

functions that help us remove these unnecessary tags with ease.

import re

from bs4 import BeautifulSoup

def strip_html_tags(text):

    soup = BeautifulSoup(text, "html.parser")

    [s.extract() for s in soup(['iframe', 'script'])]

    stripped_text = soup.get_text()

    stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text)
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    return stripped_text

clean_content = strip_html_tags(content)

print(clean_content[1163:2045])

*** START OF THE PROJECT GUTENBERG EBOOK, THE BIBLE, KING JAMES, BOOK 1***

This eBook was produced by David Widger

with the help of Derek Andrew's text from January 1992

and the work of Bryan Taylor in November 2002.

Book 01        Genesis

01:001:001 In the beginning God created the heaven and the earth.

01:001:002 And the earth was without form, and void; and darkness was

           upon the face of the deep. And the Spirit of God moved upon

           the face of the waters.

01:001:003 And God said, Let there be light: and there was light.

01:001:004 And God saw the light, that it was good: and God divided the

           light from the darkness.

01:001:005 And God called the light Day, and the darkness he called

           Night. And the evening and the morning were the first day.

01:001:006 And God said, Let there be a firmament in the midst of the

           waters,

You can compare this output with the raw web page content and see that we have 

successfully removed the unnecessary HTML tags. We now have a clean body of text 

that’s easier to interpret and understand.

 Text Tokenization
Chapter 1 explained textual structure, its components, and tokens. Tokens are 

independent and minimal textual components that have some definite syntax and 

semantics. A paragraph of text or a text document has several components, including 

sentences, which can be further broken down into clauses, phrases, and words. The 

most popular tokenization techniques include sentence and word tokenization, which 

are used to break down a text document (or corpus) into sentences and each sentence 

into words. Thus, tokenization can be defined as the process of breaking down or 

splitting textual data into smaller and more meaningful components called tokens. In the 

following sections, we look at some ways to tokenize text into sentences and words.
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 Sentence Tokenization

Sentence tokenization is the process of splitting a text corpus into sentences that act 

as the first level of tokens the corpus is comprised of. This is also known as sentence 

segmentation, since we try to segment the text into meaningful sentences. Any text 

corpus is a body of text where each paragraph comprises several sentences. There are 

various ways to perform sentence tokenization. Basic techniques include looking for 

specific delimiters between sentences like a period (.) or a newline character (\n) and 

sometimes even a semicolon (;). We will use the NLTK framework, which provides 

various interfaces for performing sentence tokenization. We primarily focus on the 

following sentence tokenizers:

• sent_tokenize

• Pretrained sentence tokenization models

• PunktSentenceTokenizer

• RegexpTokenizer

Before we can tokenize sentences, we need some text on which we can try these 

operations. We load some sample text and part of the Gutenberg corpus available in 

NLTK. We load the necessary dependencies using the following snippet.

import nltk

from nltk.corpus import gutenberg

from pprint import pprint

import numpy as np

# loading text corpora

alice = gutenberg.raw(fileids='carroll-alice.txt')

sample_text = ("US unveils world's most powerful supercomputer, beats China. "

                "The US has unveiled the world's most powerful supercomputer 

called 'Summit', "

                "beating the previous record-holder China's Sunway 

TaihuLight. With a peak performance "

                "of 200,000 trillion calculations per second, it is over 

twice as fast as Sunway TaihuLight, "

Chapter 3  proCessing and Understanding text 



121

                "which is capable of 93,000 trillion calculations per 

second. Summit has 4,608 servers, "

               "which reportedly take up the size of two tennis courts.")

sample_text

"US unveils world's most powerful supercomputer, beats China. The US 

has unveiled the world's most powerful supercomputer called 'Summit', 

beating the previous record-holder China's Sunway TaihuLight. With a 

peak performance of 200,000 trillion calculations per second, it is over 

twice as fast as Sunway TaihuLight, which is capable of 93,000 trillion 

calculations per second. Summit has 4,608 servers, which reportedly take up 

the size of two tennis courts."

We can check the length of the “Alice in Wonderland” corpus and the first few lines in 

it using the following snippet.

# Total characters in Alice in Wonderland

len(alice)

144395

# First 100 characters in the corpus

alice[0:100]

"[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER 

I. Down the Rabbit-Hole\n\nAlice was"

Default Sentence Tokenizer

The nltk.sent_tokenize(...) function is the default sentence tokenization function 

that NLTK recommends and it uses an instance of the PunktSentenceTokenizer class 

internally. However, this is not just a normal object or instance of that class. It has been 

pretrained on several language models and works really well on many popular languages 

besides English. The following snippet shows the basic usage of this function on our text 

samples.
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default_st = nltk.sent_tokenize

alice_sentences = default_st(text=alice)

sample_sentences = default_st(text=sample_text)

print('Total sentences in sample_text:', len(sample_sentences))

print('Sample text sentences :-')

print(np.array(sample_sentences))

print('\nTotal sentences in alice:', len(alice_sentences))

print('First 5 sentences in alice:-')

print(np.array(alice_sentences[0:5]))

Upon running this snippet, you get the following output depicting the total number 

of sentences and what those sentences look like in the text corpora.

Total sentences in sample_text: 4

Sample text sentences :-

["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called 

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it 

is over twice as fast as Sunway TaihuLight, which is capable of 93,000 

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis 

courts.']

Total sentences in alice: 1625

First 5 sentences in alice:-

["[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER I."

 "Down the Rabbit-Hole\n\nAlice was beginning to get very tired of sitting 

by her sister on the\nbank, and of having nothing to do: once or twice she 

had peeped into the\nbook her sister was reading, but it had no pictures 

or conversations in\nit, 'and what is the use of a book,' thought Alice 

'without pictures or\nconversation?'"

 'So she was considering in her own mind (as well as she could, for the\nhot 

day made her feel very sleepy and stupid), whether the pleasure\nof making 

a daisy-chain would be worth the trouble of getting up and\npicking the 

daisies, when suddenly a White Rabbit with pink eyes ran\nclose by her.'
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 "There was nothing so VERY remarkable in that; nor did Alice think it so\

nVERY much out of the way to hear the Rabbit say to itself, 'Oh dear!"

 'Oh dear!']

Now, as you can see, the tokenizer is quite intelligent. It doesn’t just use periods to 

delimit sentences, but also considers other punctuation and capitalization of words. We 

can also tokenize text of other languages using some pretrained models present in NLTK.

Pretrained Sentence Tokenizer Models

Suppose we were dealing with German text. We can use sent_tokenize, which 

is already trained, or load a pretrained tokenization model on German text into a 

PunktSentenceTokenizer instance and perform the same operation. The following 

snippet shows this. We start by loading a German text corpus and inspecting it.

from nltk.corpus import europarl_raw

german_text = europarl_raw.german.raw(fileids='ep-00-01-17.de')

# Total characters in the corpus

print(len(german_text))

# First 100 characters in the corpus

print(german_text[0:100])

157171

Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17. 

Dezember unterbrochene Sit

Next, we tokenize the text corpus into sentences using the default sent_

tokenize(...) tokenizer and a pretrained German language tokenizer by loading it 

from the NLTK resources.

# default sentence tokenizer

german_sentences_def = default_st(text=german_text, language='german')

# loading german text tokenizer into a PunktSentenceTokenizer instance

german_tokenizer = nltk.data.load(resource_url='tokenizers/punkt/german.

pickle')

german_sentences = german_tokenizer.tokenize(german_text)
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We can now verify the time of our German tokenizer and check if the results 

obtained by using the two tokenizers match!

# verify the type of german_tokenizer

# should be PunktSentenceTokenizer

print(type(german_tokenizer))

<class 'nltk.tokenize.punkt.PunktSentenceTokenizer'>

# check if results of both tokenizers match

# should be True

print(german_sentences_def == german_sentences)

True

Thus we see that indeed the german_tokenizer is an instance of 

PunktSentenceTokenizer, which specializes in dealing with the German language. We 

also checked if the sentences obtained from the default tokenizer are the same as the 

sentences obtained by this pretrained tokenizer. As expected, they are the same (true). 

We also print some sample tokenized sentences from the output.

# print first 5 sentences of the corpus

print(np.array(german_sentences[:5]))

[' \nWiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 

17. Dezember unterbrochene Sitzungsperiode des Europäischen Parlaments für 

wiederaufgenommen , wünsche Ihnen nochmals alles Gute zum Jahreswechsel und 

hoffe , daß Sie schöne Ferien hatten .'

 'Wie Sie feststellen konnten , ist der gefürchtete " Millenium-Bug " nicht 

eingetreten .'

 'Doch sind Bürger einiger unserer Mitgliedstaaten Opfer von schrecklichen 

Naturkatastrophen geworden .'

 'Im Parlament besteht der Wunsch nach einer Aussprache im Verlauf dieser 

Sitzungsperiode in den nächsten Tagen .'

 'Heute möchte ich Sie bitten - das ist auch der Wunsch einiger 

Kolleginnen und Kollegen - , allen Opfern der Stürme , insbesondere in den 

verschiedenen Ländern der Europäischen Union , in einer Schweigeminute zu 

gedenken .']
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Thus we see that our assumption was indeed correct and you can tokenize sentences 

belonging to different languages in two different ways.

PunktSentenceTokenizer

Using the default PunktSentenceTokenizer class is also pretty straightforward, as the 

following snippet shows.

punkt_st = nltk.tokenize.PunktSentenceTokenizer()

sample_sentences = punkt_st.tokenize(sample_text)

print(np.array(sample_sentences))

["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called 

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it 

is over twice as fast as Sunway TaihuLight, which is capable of 93,000 

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis 

courts.']

RegexpTokenizer

The last tokenizer we cover in sentence tokenization is using an instance of the 

RegexpTokenizer class to tokenize text into sentences, where we will use specific regular 

expression-based patterns to segment sentences. Recall the regular expressions from the 

previous chapter if you want to refresh your memory. The following snippet shows how 

to use a regex pattern to tokenize sentences.

SENTENCE_TOKENS_PATTERN = r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)

(?<=\.|\?|\!)\s'

regex_st = nltk.tokenize.RegexpTokenizer(

            pattern=SENTENCE_TOKENS_PATTERN,

            gaps=True)

sample_sentences = regex_st.tokenize(sample_text)

print(np.array(sample_sentences))
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["US unveils world's most powerful supercomputer, beats China."

 "The US has unveiled the world's most powerful supercomputer called 

'Summit', beating the previous record-holder China's Sunway TaihuLight."

 'With a peak performance of 200,000 trillion calculations per second, it 

is over twice as fast as Sunway TaihuLight, which is capable of 93,000 

trillion calculations per second.'

 'Summit has 4,608 servers, which reportedly take up the size of two tennis 

courts.']

This output shows that we obtained the same sentences as we had obtained using 

the other tokenizers. This gives us an idea of tokenizing text into sentences using 

different NLTK interfaces. In the following section, we look at tokenizing these sentences 

into words using several techniques.

 Word Tokenization

Word tokenization is the process of splitting or segmenting sentences into their 

constituent words. A sentence is a collection of words and with tokenization we 

essentially split a sentence into a list of words that can be used to reconstruct the 

sentence. Word tokenization is really important in many processes, especially in 

cleaning and normalizing text where operations like stemming and lemmatization work 

on each individual word based on its respective stems and lemma. Similar to sentence 

tokenization, NLTK provides various useful interfaces for word tokenization. We will 

touch up on the following main interfaces:

• word_tokenize

• TreebankWordTokenizer

• TokTokTokenizer

• RegexpTokenizer

• Inherited tokenizers from RegexpTokenizer

We leverage our sample text data from the previous section to demonstrate hands-on 

examples.
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Default Word Tokenizer

The nltk.word_tokenize(...) function is the default and recommended word 

tokenizer, as specified by NLTK. This tokenizer is an instance or object of the 

TreebankWordTokenizer class in its internal implementation and acts as a wrapper to 

that core class. The following snippet illustrates its usage.

default_wt = nltk.word_tokenize

words = default_wt(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'s", 'most', 'powerful',

       'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

       'previous', 'record-holder', 'China', "'s", 'Sunway', 'TaihuLight',

       '.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

       'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

       'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

       'which', 'is', 'capable', 'of', '93,000', 'trillion',

       'calculations', 'per', 'second', '.', 'Summit', 'has', '4,608',

       'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

       'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

TreebankWordTokenizer

The TreebankWordTokenizer is based on the Penn Treebank and uses various regular 

expressions to tokenize the text. Of course, one primary assumption here is that we have 

already performed sentence tokenization beforehand. The original tokenizer used in the 

Penn Treebank is available as a sed script and you can check it out at http://www.cis.

upenn.edu/~treebank/tokenizer.sed to get an idea of the patterns used to tokenize the 

sentences into words. Some of the main features of this tokenizer are mentioned here:

• Splits and separates out periods that appear at the end of a sentence

• Splits and separates commas and single quotes when followed by 

whitespace
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• Most punctuation characters are split and separated into 

independent tokens

• Splits words with standard contractions, such as don’t to do and n’t

The following snippet shows the usage of the TreebankWordTokenizer for word 

tokenization.

treebank_wt = nltk.TreebankWordTokenizer()

words = treebank_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'s", 'most', 'powerful',

       'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

       'previous', 'record-holder', 'China', "'s", 'Sunway',

       'TaihuLight.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

       'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

       'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

       'which', 'is', 'capable', 'of', '93,000', 'trillion',

       'calculations', 'per', 'second.', 'Summit', 'has', '4,608',

       'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

       'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

As expected, the output is similar to word_tokenize(), since they use the same 

tokenizing mechanism.

TokTokTokenizer

TokTokTokenizer is one of the newer tokenizers introduced by NLTK present in the 

nltk.tokenize.toktok module. In general, the tok-tok tokenizer is a general tokenizer, 

where it assumes that the input has one sentence per line. Hence, only the final period 

is tokenized. However, as needed, we can remove the other periods from the words 

using regular expressions. Tok-tok has been tested on, and gives reasonably good results 

for, English, Persian, Russian, Czech, French, German, Vietnamese, and many other 

languages. It is in fact a Python port of https://github.com/jonsafari/tok-tok, where 

there is also a Perl implementation. The following code shows a tokenization operation 

using the TokTokTokenizer.
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from nltk.tokenize.toktok import ToktokTokenizer

tokenizer = ToktokTokenizer()

words = tokenizer.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'", 's', 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'", 's', 'most', 'powerful',

       'supercomputer', 'called', "'", 'Summit', "'", ',', 'beating',

       'the', 'previous', 'record-holder', 'China', "'", 's', 'Sunway',

       'TaihuLight.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

       'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

       'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

       'which', 'is', 'capable', 'of', '93,000', 'trillion',

       'calculations', 'per', 'second.', 'Summit', 'has', '4,608',

       'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

       'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

RegexpTokenizer

We now look at how to use regular expressions and the RegexpTokenizer class to 

tokenize sentences into words. Remember that there are two main parameters that 

are useful in tokenization—the regex pattern for building the tokenizer and the gaps 

parameter, which, if set to true, is used to find the gaps between the tokens. Otherwise, it 

is used to find the tokens themselves. The following code snippet shows some examples 

of using regular expressions to perform word tokenization.

# pattern to identify tokens themselves

TOKEN_PATTERN = r'\w+'

regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN,

                                gaps=False)

words = regex_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', 's', 'most', 'powerful', 'supercomputer',

       'beats', 'China', 'The', 'US', 'has', 'unveiled', 'the', 'world',

       's', 'most', 'powerful', 'supercomputer', 'called', 'Summit',
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       'beating', 'the', 'previous', 'record', 'holder', 'China', 's',

       'Sunway', 'TaihuLight', 'With', 'a', 'peak', 'performance', 'of',

       '200', '000', 'trillion', 'calculations', 'per', 'second', 'it',

       'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

       'which', 'is', 'capable', 'of', '93', '000', 'trillion',

       'calculations', 'per', 'second', 'Summit', 'has', '4', '608',

       'servers', 'which', 'reportedly', 'take', 'up', 'the', 'size',

       'of', 'two', 'tennis', 'courts'], dtype='<U13')

# pattern to identify tokens by using gaps between tokens

GAP_PATTERN = r'\s+'

regex_wt = nltk.RegexpTokenizer(pattern=GAP_PATTERN,

                                gaps=True)

words = regex_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', "world's", 'most', 'powerful', 'supercomputer,',

       'beats', 'China.', 'The', 'US', 'has', 'unveiled', 'the',

       "world's", 'most', 'powerful', 'supercomputer', 'called',

       "'Summit',", 'beating', 'the', 'previous', 'record-holder',

       "China's", 'Sunway', 'TaihuLight.', 'With', 'a', 'peak',

       'performance', 'of', '200,000', 'trillion', 'calculations', 'per',

       'second,', 'it', 'is', 'over', 'twice', 'as', 'fast', 'as',

       'Sunway', 'TaihuLight,', 'which', 'is', 'capable', 'of', '93,000',

       'trillion', 'calculations', 'per', 'second.', 'Summit', 'has',

       '4,608', 'servers,', 'which', 'reportedly', 'take', 'up', 'the',

       'size', 'of', 'two', 'tennis', 'courts.'], dtype='<U14')

Thus, you can see that there are multiple ways of obtaining the same results 

leveraging token patterns themselves or gap patterns. The following code shows us how 

to obtain the token boundaries for each token during the tokenize operation.

word_indices = list(regex_wt.span_tokenize(sample_text))

print(word_indices)

print(np.array([sample_text[start:end] for start, end in word_indices]))

[(0, 2), (3, 10), (11, 18), (19, 23), (24, 32), (33, 47), (48, 53), (54, 

60), (61, 64), (65, 67), (68, 71), (72, 80), (81, 84), (85, 92), (93, 97), 
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(98, 106), (107, 120), (121, 127), (128, 137), (138, 145), (146, 149), 

(150, 158), (159, 172), (173, 180), (181, 187), (188, 199), (200, 204), 

(205, 206), (207, 211), (212, 223), (224, 226), (227, 234), (235, 243), 

(244, 256), (257, 260), (261, 268), (269, 271), (272, 274), (275, 279), 

(280, 285), (286, 288), (289, 293), (294, 296), (297, 303), (304, 315), 

(316, 321), (322, 324), (325, 332), (333, 335), (336, 342), (343, 351), 

(352, 364), (365, 368), (369, 376), (377, 383), (384, 387), (388, 393), 

(394, 402), (403, 408), (409, 419), (420, 424), (425, 427), (428, 431), 

(432, 436), (437, 439), (440, 443), (444, 450), (451, 458)]

['US' 'unveils' "world's" 'most' 'powerful' 'supercomputer,' 'beats'

 'China.' 'The' 'US' 'has' 'unveiled' 'the' "world's" 'most' 'powerful'

 'supercomputer' 'called' "'Summit'," 'beating' 'the' 'previous'

 'record-holder' "China's" 'Sunway' 'TaihuLight.' 'With' 'a' 'peak'

 'performance' 'of' '200,000' 'trillion' 'calculations' 'per' 'second,'

 'it' 'is' 'over' 'twice' 'as' 'fast' 'as' 'Sunway' 'TaihuLight,' 'which'

 'is' 'capable' 'of' '93,000' 'trillion' 'calculations' 'per' 'second.'

 'Summit' 'has' '4,608' 'servers,' 'which' 'reportedly' 'take' 'up' 'the'

 'size' 'of' 'two' 'tennis' 'courts.']

Inherited Tokenizers from RegexpTokenizer

Besides the base RegexpTokenizer class, there are several derived classes that  

perform different types of word tokenization. The WordPunktTokenizer uses the pattern 

r'\w+|[^\w\s]+' to tokenize sentences into independent alphabetic and  

non-alphabetic tokens.

wordpunkt_wt = nltk.WordPunctTokenizer()

words = wordpunkt_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', 'world', "'", 's', 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'", 's', 'most', 'powerful',

       'supercomputer', 'called', "'", 'Summit', "',", 'beating', 'the',

       'previous', 'record', '-', 'holder', 'China', "'", 's', 'Sunway',

       'TaihuLight', '.', 'With', 'a', 'peak', 'performance', 'of', '200',
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       ',', '000', 'trillion', 'calculations', 'per', 'second', ',', 'it',

       'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight',

       ',', 'which', 'is', 'capable', 'of', '93', ',', '000', 'trillion',

       'calculations', 'per', 'second', '.', 'Summit', 'has', '4', ',',

       '608', 'servers', ',', 'which', 'reportedly', 'take', 'up', 'the',

       'size', 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

The WhitespaceTokenizer tokenizes sentences into words based on whitespace, like 

tabs, newlines, and spaces. The following snippet shows demonstrations of these tokenizers.

whitespace_wt = nltk.WhitespaceTokenizer()

words = whitespace_wt.tokenize(sample_text)

np.array(words)

array(['US', 'unveils', "world's", 'most', 'powerful', 'supercomputer,',

       'beats', 'China.', 'The', 'US', 'has', 'unveiled', 'the',

       "world's", 'most', 'powerful', 'supercomputer', 'called',

       "'Summit',", 'beating', 'the', 'previous', 'record-holder',

       "China's", 'Sunway', 'TaihuLight.', 'With', 'a', 'peak',

       'performance', 'of', '200,000', 'trillion', 'calculations', 'per',

       'second,', 'it', 'is', 'over', 'twice', 'as', 'fast', 'as',

       'Sunway', 'TaihuLight,', 'which', 'is', 'capable', 'of', '93,000',

       'trillion', 'calculations', 'per', 'second.', 'Summit', 'has',

       '4,608', 'servers,', 'which', 'reportedly', 'take', 'up', 'the',

       'size', 'of', 'two', 'tennis', 'courts.'], dtype='<U14')

 Building Robust Tokenizers with NLTK and spaCy

For a typical NLP pipeline, I recommend leveraging state-of-the-art libraries like NLTK 

and spaCy and using some of their robust utilities to build a custom function to perform 

both sentence- and word-level tokenization. A simple example is depicted in the 

following snippets. We start with looking at how we can leverage NLTK.

def tokenize_text(text):

    sentences = nltk.sent_tokenize(text)

    word_tokens = [nltk.word_tokenize(sentence) for sentence in sentences]

    return word_tokens
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sents = tokenize_text(sample_text)

np.array(sents)

array([list([ 'US', 'unveils', 'world', "'s", 'most', 'powerful', 

'supercomputer', ',', 'beats', 'China', '.']),

        list([ 'The', 'US', 'has', 'unveiled', 'the', 'world', "'s", 'most', 

'powerful', 'supercomputer', 'called', "'Summit", "'", ',', 

'beating', 'the', 'previous', 'record-holder', 'China', "'s", 

'Sunway', 'TaihuLight', '.']),

        list([ 'With', 'a', 'peak', 'performance', 'of', '200,000', 

'trillion', 'calculations', 'per', 'second', ',', 'it', 'is', 

'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', 

',', 'which', 'is', 'capable', 'of', '93,000', 'trillion', 

'calculations', 'per', 'second', '.']),

       list([ 'Summit', 'has', '4,608', 'servers', ',', 'which', 

'reportedly', 'take', 'up', 'the', 'size', 'of', 'two', 

'tennis', 'courts', '.'])], dtype=object)

We can also get to the level of word-level tokenization by leveraging list 

comprehensions, as depicted in the following code.

words = [word for sentence in sents for word in sentence]

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'s", 'most', 'powerful',

       'supercomputer', 'called', "'Summit", "'", ',', 'beating', 'the',

       'previous', 'record-holder', 'China', "'s", 'Sunway', 'TaihuLight',

       '.', 'With', 'a', 'peak', 'performance', 'of', '200,000',

       'trillion', 'calculations', 'per', 'second', ',', 'it', 'is',

       'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', ',',

       'which', 'is', 'capable', 'of', '93,000', 'trillion',

       'calculations', 'per', 'second', '.', 'Summit', 'has', '4,608',

       'servers', ',', 'which', 'reportedly', 'take', 'up', 'the', 'size',

       'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')
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In a similar way, we can leverage spaCy to perform sentence- and word-level 

tokenizations really quickly, as depicted in the following snippets.

import spacy

nlp = spacy.load('en_core', parse = True, tag=True, entity=True)

text_spacy = nlp(sample_text)

sents = np.array(list(text_spacy.sents))

sents

array([US unveils world's most powerful supercomputer, beats China.,

        The US has unveiled the world's most powerful supercomputer called 

'Summit', beating the previous record-holder China's Sunway TaihuLight.,

        With a peak performance of 200,000 trillion calculations per second, 

it is over twice as fast as Sunway TaihuLight, which is capable of 

93,000 trillion calculations per second.,

        Summit has 4,608 servers, which reportedly take up the size of two 

tennis courts.],

      dtype=object)

sent_words = [[word.text for word in sent] for sent in sents]

np.array(sent_words)

array([list([ 'US', 'unveils', 'world', "'s", 'most', 'powerful', 

'supercomputer', ',', 'beats', 'China', '.']),

        list([ 'The', 'US', 'has', 'unveiled', 'the', 'world', "'s", 'most', 

'powerful', 'supercomputer', 'called', "'", 'Summit', "'", 

',', 'beating', 'the', 'previous', 'record', '-', 'holder', 

'China', "'s", 'Sunway', 'TaihuLight', '.']),

        list([ 'With', 'a', 'peak', 'performance', 'of', '200,000', 

'trillion', 'calculations', 'per', 'second', ',', 'it', 'is', 

'over', 'twice', 'as', 'fast', 'as', 'Sunway', 'TaihuLight', 

',', 'which', 'is', 'capable', 'of', '93,000', 'trillion', 

'calculations', 'per', 'second', '.']),

       list([ 'Summit', 'has', '4,608', 'servers', ',', 'which', 

'reportedly', 'take', 'up', 'the', 'size', 'of', 'two', 

'tennis', 'courts', '.'])],

      dtype=object)
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words = [word.text for word in text_spacy]

np.array(words)

array(['US', 'unveils', 'world', "'s", 'most', 'powerful',

       'supercomputer', ',', 'beats', 'China', '.', 'The', 'US', 'has',

       'unveiled', 'the', 'world', "'s", 'most', 'powerful',

       'supercomputer', 'called', "'", 'Summit', "'", ',', 'beating',

       'the', 'previous', 'record', '-', 'holder', 'China', "'s",

       'Sunway', 'TaihuLight', '.', 'With', 'a', 'peak', 'performance',

       'of', '200,000', 'trillion', 'calculations', 'per', 'second', ',',

       'it', 'is', 'over', 'twice', 'as', 'fast', 'as', 'Sunway',

       'TaihuLight', ',', 'which', 'is', 'capable', 'of', '93,000',

       'trillion', 'calculations', 'per', 'second', '.', 'Summit', 'has',

       '4,608', 'servers', ',', 'which', 'reportedly', 'take', 'up',

       'the', 'size', 'of', 'two', 'tennis', 'courts', '.'], dtype='<U13')

This should be more than enough to get you started with text tokenization. We 

encourage you to play around with more text data and see if you can make it even better!

 Removing Accented Characters
Usually in any text corpus, you might be dealing with accented characters/letters, especially 

if you only want to analyze the English language. Hence, we need to make sure that these 

characters are converted and standardized into ASCII characters. This shows a simple 

example — converting é to e. The following function is a simple way of tackling this task.

import unicodedata

def remove_accented_chars(text):

     text = unicodedata.normalize('NFKD', text).encode('ascii',  'ignore').

decode('utf-8', 'ignore')

    return text

remove_accented_chars('Sómě Áccěntěd těxt')

'Some Accented text'

The preceding function shows us how we can easily convert accented characters to 

normal English characters, which helps standardize the words in our corpus.
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 Expanding Contractions
Contractions are shortened versions of words or syllables. These exist in written and 

spoken forms. Shortened versions of existing words are created by removing specific 

letters and sounds. In the case of English contractions, they are often created by 

removing one of the vowels from the word. Examples include “is not” to “isn’t” and 

“will not” to “won’t”, where you can notice the apostrophe being used to denote the 

contraction and some of the vowels and other letters being removed.

Contractions are often avoided when in formal writing, but are used quite extensively 

in informal communication. Various forms of contractions exist and they are tied to the 

type of auxiliary verbs, which give us normal contractions, negated contractions, and 

other special colloquial contractions, some of which may not involve auxiliaries.

By nature, contractions pose a problem for NLP and text analytics because, to start 

with, we have a special apostrophe character in the word. Besides this, we also have two 

or more words represented by a contraction and this opens a whole new can of worms 

when we try to tokenize them or standardize the words. Hence, there should be some 

definite process for dealing with contractions when processing text.

Ideally, you can have a proper mapping for contractions and their corresponding 

expansions and then use that to expand all the contractions in your text. I have created 

a vocabulary for contractions and their corresponding expanded forms, which you can 

access in the file named contractions.py in a Python dictionary (available along with 

the code files for this chapter). A part of the contractions dictionary is shown in the 

following snippet.

CONTRACTION_MAP = {

    "ain't": "is not",

    "aren't": "are not",

    "can't": "cannot",

    "can't've": "cannot have",

     .

     .

     .

    "you'll've": "you will have",

    "you're": "you are",

    "you've": "you have"

}
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Remember, however, that some of the contractions can have multiple forms, such 

the contraction “you’ll” which can be either “you will” or “you shall”. To make things 

simple here, we use only one of these expanded forms for each contraction. For our next 

step, to expand contractions, we use the following code snippet.

from contractions import CONTRACTION_MAP

import re

def expand_contractions(text, contraction_mapping=CONTRACTION_MAP):

     contractions_pattern = re.compile('({})'.format('|'.join(contraction_

mapping.keys())), flags=re.IGNORECASE|re.DOTALL)

    def expand_match(contraction):

        match = contraction.group(0)

        first_char = match[0]

        expanded_contraction = contraction_mapping.get(match)\

                                if contraction_mapping.get(match)\

                                else contraction_mapping.get(match.lower())

        expanded_contraction = first_char+expanded_contraction[1:]

        return expanded_contraction

    expanded_text = contractions_pattern.sub(expand_match, text)

    expanded_text = re.sub("'", "", expanded_text)

    return expanded_text

In this snippet, we use the expanded_match function inside the main  

expand_contractions function to find each contraction that matches the regex pattern 

we create out of all the contractions in our CONTRACTION_MAP dictionary. On matching 

any contraction, we substitute it with its corresponding expanded version and retain the 

correct case of the word. Let’s see this process in action now!

expand_contractions("Y'all can't expand contractions I'd think")

'You all cannot expand contractions I would think'

We can see how our function helps expand the contractions from the preceding 

output. Are there better ways of doing this? Definitely! If we have enough examples, we 

can even train a deep learning model for better performance.
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 Removing Special Characters
Special characters and symbols are usually non-alphanumeric characters or even 

occasionally numeric characters (depending on the problem), which add to the extra 

noise in unstructured text. Usually, simple regular expressions (regexes) can be used to 

remove them. The following code helps us remove special characters.

def remove_special_characters(text, remove_digits=False):

    pattern = r'[^a-zA-z0-9\s]' if not remove_digits else r'[^a-zA-z\s]'

    text = re.sub(pattern, '', text)

    return text

remove_special_characters("Well this was fun! What do you think? 123#@!",

                          remove_digits=True)

'Well this was fun What do you think '

I’ve kept removing digits optional, because often we might need to keep them in the 

preprocessed text.

 Case Conversions
Often you might want to modify the case of words or sentences to make things easier, 

like matching specific words or tokens. Usually, there are two types of case conversion 

operations that are used a lot. These are lower- and uppercase conversions, where a 

body of text is converted completely to lowercase or uppercase. There are other forms 

also like sentence case or title case. Lowercase is a form where all the letters of the text 

are small letters and in uppercase they are all capitalized. Title case will capitalize the 

first letter of each word in the sentence. The following snippet illustrates these concepts.

# lowercase

text = 'The quick brown fox jumped over The Big Dog'

text.lower()

'the quick brown fox jumped over the big dog'

# uppercase

text.upper()

'THE QUICK BROWN FOX JUMPED OVER THE BIG DOG'
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# title case

text.title()

'The Quick Brown Fox Jumped Over The Big Dog'

 Text Correction
One of the main challenges faced in text wrangling is the presence of incorrect words 

in the text. The definition of incorrect here covers words that have spelling mistakes as 

well as words with several letters repeated that do not contribute much to its overall 

significance. To illustrate some examples, the word “finally” could be mistakenly written 

as “fianlly” or someone expressing intense emotion could write it as “finalllllyyyyyy”. The 

main objective here is to standardize different forms of these words to the correct form 

so that we do not end up losing vital information from different tokens in the text. We 

cover dealing with repeated characters as well as correcting spellings in this section.

 Correcting Repeating Characters

We just mentioned words that often contain several repeating characters that could be 

due to incorrect spellings, slang language, or even people wanting to express strong 

emotions. We show a method here that uses a combination of syntax and semantics to 

correct these words. We start by correcting the syntax of these words and then move on 

to semantics.

The first step in our algorithm is to identify repeated characters in a word using 

a regex pattern and then use a substitution to remove the characters one by one. 

Let’s consider the word “finalllyyy” from the earlier example. The pattern r'(\w*)

(\w)\2(\w*)' can be used to identify characters that occur twice among other 

characters in the word. In each step, we try to eliminate one of the repeated characters 

using a substitution for the match by utilizing the regex match groups (groups 1, 2, and 

3) using the pattern r'\1\2\3'. Then we keep iterating through this process until no 

repeated characters remain. The following snippet illustrates this process.

old_word = 'finalllyyy'

repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

match_substitution = r'\1\2\3'

step = 1
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while True:

    # remove one repeated character

    new_word = repeat_pattern.sub(match_substitution,

                                  old_word)

    if new_word != old_word:

         print('Step: {} Word: {}'.format(step, new_word))

         step += 1 # update step

         # update old word to last substituted state

         old_word = new_word

         continue

    else:

         print("Final word:", new_word)

         break

Step: 1 Word: finalllyy

Step: 2 Word: finallly

Step: 3 Word: finally

Step: 4 Word: finaly

Final word: finaly

This snippet shows us how one repeated character is removed at each stage and we 

end up with the word “finaly” in the end. However, this word is incorrect and the correct 

word was “finally,” which we had obtained in Step 3. We will now utilize the WordNet 

corpus to check for valid words at each stage and terminate the loop once it is obtained. 

This introduces the semantic correction needed for our algorithm, as illustrated in the 

following snippet.

from nltk.corpus import wordnet

old_word = 'finalllyyy'

repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

match_substitution = r'\1\2\3'

step = 1

while True:

    # check for semantically correct word

    if wordnet.synsets(old_word):

        print("Final correct word:", old_word)

        break
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    # remove one repeated character

    new_word = repeat_pattern.sub(match_substitution,

                                  old_word)

    if new_word != old_word:

        print('Step: {} Word: {}'.format(step, new_word))

        step += 1 # update step

        # update old word to last substituted state

        old_word = new_word

        continue

    else:

        print("Final word:", new_word)

        break

Step: 1 Word: finalllyy

Step: 2 Word: finallly

Step: 3 Word: finally

Final correct word: finally

Thus, we see from this snippet that the code correctly terminated after the third step 

and we obtained the correct word adhering to both syntax and semantics. We can build a 

better version of this code by writing the logic in a function, as depicted here, to make it 

more generic to deal with incorrect tokens from a list of tokens.

from nltk.corpus import wordnet

def remove_repeated_characters(tokens):

    repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')

    match_substitution = r'\1\2\3'

    def replace(old_word):

        if wordnet.synsets(old_word):

            return old_word

        new_word = repeat_pattern.sub(match_substitution, old_word)

        return replace(new_word) if new_word != old_word else new_word

    correct_tokens = [replace(word) for word in tokens]

    return correct_tokens
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In this snippet, we use the inner function replace() to basically emulate the 

behavior of our algorithm that we illustrated earlier and then call it repeatedly on each 

token in a sentence in the outer function remove_repeated_characters(). We can see 

the code in action in the following snippet with an example sentence.

sample_sentence = 'My schooool is realllllyyy amaaazingggg'

correct_tokens = remove_repeated_characters(nltk.word_tokenize(sample_

sentence))

' '.join(correct_tokens)

'My school is really amazing'

We can see from this output that our function performs as intended and replaces the 

repeating characters in each token, giving us correct tokens as desired.

 Correcting Spellings

The second problem we face with words is incorrect or wrong spellings that occur due to 

human error and even machine based errors, which you might have seen with features 

like auto-correcting text. There are various ways to deal with incorrect spellings where 

the final objective is to have tokens of text with the correct spelling. We will talk about 

one of the famous algorithms developed by Peter Norvig, the director of research at 

Google. You can find the complete detailed post explaining his algorithm and findings at 

http://norvig.com/spell-correct.html, which we will be exploring in this section.

The main objective of this exercise is that given a problematic word, we need to find 

the most likely correct form of that word. The approach we follow is to generate a set of 

candidate words that are near to our input word and select the most likely word from 

this set as the correct word. We use a corpus of correct English words in this context 

to identify the correct word based on its frequency in the corpus from our final set of 

candidates with the nearest distance to our input word. This distance measures how 

near or far a word is from our input word and is also called the edit distance.

The input corpus we use is a file with several books from the Gutenberg corpus 

and a list of most frequent words from Wiktionary and the British National Corpus. You 

can find the file under the name big.txt in this chapter’s code resources or you can 

download it from Norvig’s direct link at http://norvig.com/big.txt and use it. We 

use the following code snippet to generate a map of frequently occurring words in the 

English language and their counts.
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import re, collections

def tokens(text):

    """

    Get all words from the corpus

    """

    return re.findall('[a-z]+', text.lower())

WORDS = tokens(open('big.txt').read())

WORD_COUNTS = collections.Counter(WORDS)

# top 10 words in corpus

WORD_COUNTS.most_common(10)

[('the', 80030), ('of', 40025), ('and', 38313), ('to', 28766), ('in', 22050),

 ('a', 21155), ('that', 12512), ('he', 12401), ('was', 11410), ('it', 10681)]

Once we have our vocabulary, we define three functions that compute sets of words 

that are zero, one, and two edits away from our input word. These edits can be made by 

the means of insertions, deletions, additions, and transpositions. The following code 

defines the functions.

def edits0(word):

    """

    Return all strings that are zero edits away

    from the input word (i.e., the word itself).

    """

    return {word}

def edits1(word):

    """

    Return all strings that are one edit away

    from the input word.

    """

    alphabet = 'abcdefghijklmnopqrstuvwxyz'

    def splits(word):

        """

        Return a list of all possible (first, rest) pairs

        that the input word is made of.

        """
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        return [(word[:i], word[i:])

                for i in range(len(word)+1)]

    pairs      = splits(word)

    deletes    = [a+b[1:]           for (a, b) in pairs if b]

    transposes = [a+b[1]+b[0]+b[2:] for (a, b) in pairs if len(b) > 1]

    replaces   = [a+c+b[1:]         for (a, b) in pairs for c in alphabet if b]

    inserts    = [a+c+b             for (a, b) in pairs for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

def edits2(word):

    """Return all strings that are two edits away

    from the input word.

    """

    return {e2 for e1 in edits1(word) for e2 in edits1(e1)}

We also define a function called known(), which returns a subset of words from our 

candidate set of words obtained from the edit functions based on whether they occur in 

our vocabulary dictionary WORD_COUNTS. This gives us a list of valid words from our set of 

candidate words.

def known(words):

    """

    Return the subset of words that are actually

    in our WORD_COUNTS dictionary.

    """

    return {w for w in words if w in WORD_COUNTS}

We can see these functions in action on our test input word in the following code 

snippet, which shows lists of possible candidate words based on edit distances from the 

input word.

# input word

word = 'fianlly'

# zero edit distance from input word

edits0(word)

{'fianlly'}
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# returns null set since it is not a valid word

known(edits0(word))

set()

# one edit distance from input word

edits1(word)

{'afianlly',

 'aianlly',

 .

 .

'yianlly',

'zfianlly',

'zianlly'}

# get correct words from above set

known(edits1(word))

{'finally'}

# two edit distances from input word

edits2(word)

{'fchnlly',

 'fianjlys',

  .

  .

 'fiapgnlly',

 'finanlqly'}

# get correct words from above set

known(edits2(word))

{'faintly', 'finally', 'finely', 'frankly'}

This output shows a set of valid candidate words that could be potential 

replacements for the incorrect input word. We select our candidate words from the list 

by giving higher priority to words whose edit distances are the smallest from the input 

word. The following code snippet illustrates this.
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candidates = (known(edits0(word)) or

              known(edits1(word)) or

              known(edits2(word)) or

              [word])

candidates

{'finally'}

In case there is a tie in the candidates, we resolve it by taking the highest occurring 

word from our vocabulary dictionary WORD_COUNTS using the max(candidates, key=WORD_

COUNTS.get) function. Thus, we now define our function to correct words using this logic.

def correct(word):

    """

    Get the best correct spelling for the input word

    """

    # Priority is for edit distance 0, then 1, then 2

    # else defaults to the input word itself.

    candidates = (known(edits0(word)) or

                  known(edits1(word)) or

                  known(edits2(word)) or

                  [word])

    return max(candidates, key=WORD_COUNTS.get)

We can use the function on incorrect words directly to correct them, as illustrated in 

the following snippet.

correct('fianlly')

'finally'

correct('FIANLLY')

'FIANLLY'

We see that this function is case sensitive and fails to correct words that are not 

lowercase, hence we write the following functions to make this generic to the case of 

words and correct their spelling regardless. The logic here is to preserve the original case 

of the word, convert it to lowercase, correct its spelling, and finally convert it back to its 

original case using the case_of function.
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def correct_match(match):

    """

    Spell-correct word in match,

    and preserve proper upper/lower/title case.

    """

    word = match.group()

    def case_of(text):

        """

        Return the case-function appropriate

        for text: upper, lower, title, or just str.:

            """

        return (str.upper if text.isupper() else

                str.lower if text.islower() else

                str.title if text.istitle() else

                str)

    return case_of(word)(correct(word.lower()))

def correct_text_generic(text):

    """

    Correct all the words within a text,

    returning the corrected text.

    """

    return re.sub('[a-zA-Z]+', correct_match, text)

We can now use the function to correct words irrespective of their case, as illustrated 

in the following snippet.

correct_text_generic('fianlly')

'finally'

correct_text_generic('FIANLLY')

'FINALLY'
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Of course this method is not always completely accurate and there might be words 

that are not corrected if they do not occur in our vocabulary dictionary. Using more data 

would help in this case as long as we cover different words with correct spellings in our 

vocabulary. This same algorithm is available to be used out-of-the-box in the TextBlob 

library. This is depicted in the following snippet.

from textblob import Word

w = Word('fianlly')

w.correct()

'finally'

# check suggestions

w.spellcheck()

[('finally', 1.0)]

# another example

w = Word('flaot')

w.spellcheck()

[('flat', 0.85), ('float', 0.15)]

Besides this, there are several robust libraries available in Python, including 

PyEnchant based on the enchant library (http://pythonhosted.org/pyenchant/), 

autocorrect, which is available at https://github.com/phatpiglet/autocorrect/, 

and aspell- python, which is a Python wrapper around the popular GNU Aspell. With 

the advent of deep learning, sequential models like RNNs and LSTMs coupled with 

word embeddings often out-perform these traditional methods. I also recommend 

readers take a look at DeepSpell, which is available at https://github.com/MajorTal/

DeepSpell. It leverages deep learning to build a spelling corrector. Feel free to check 

them out and use them for correcting word spellings!

 Stemming
To understand the process of stemming, we need to understand what word stems 

represent. In Chapter 1, we talked about morphemes, which are the smallest 

independent unit in any natural language. Morphemes consist of units that are stems 

and affixes. Affixes are units like prefixes, suffixes, and so on, which are attached to word 
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stems to change their meaning or create a new word altogether. Word stems are also 

often known as the base form of a word and we can create new words by attaching affixes 

to them. This process is known as inflection. The reverse of this is obtaining the base 

form of a word from its inflected form and this is known as stemming.

Consider the word “JUMP”, you can add affixes to it and form several new words like 

“JUMPS”, “JUMPED”, and “JUMPING”. In this case, the base word is “JUMP” and this is 

the word stem. If we were to carry out stemming on any of its three inflected forms, we 

would get the base form. This is depicted more clearly in Figure 3-2.

Figure 3-2 depicts how the word stem is present in all its inflections since it forms the 

base on which each inflection is built upon using affixes. Stemming helps us standardize 

words to their base stem irrespective of their inflections, which helps many applications 

like classifying or clustering text or even in information retrieval. Search engines use 

such techniques extensively to give better accurate results irrespective of the word form. 

The NLTK package has several implementations for stemmers. These stemmers are 

implemented in the stem module, which inherits the StemmerI interface in the nltk.

stem.api module. You can even create your own stemmer by using this class (technically 

it is an interface) as your base class. One of the most popular stemmers is the Porter 

stemmer, which is based on the algorithm developed by its inventor, Martin Porter. 

Originally, the algorithm is said to have a total of five different phases for reduction of 

inflections to their stems, where each phase has its own set of rules. There also exists a 

Porter2 algorithm, which was the original stemming algorithm with some improvements 

suggested by Dr. Martin Porter. You can see the Porter stemmer in action in the following 

code snippet.

Figure 3-2. Word stem and inflections
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# Porter Stemmer

In [458]: from nltk.stem import PorterStemmer

     ...: ps = PorterStemmer()

     ...: ps.stem('jumping'), ps.stem('jumps'), ps.stem('jumped')

(jump, jump, jump)

In [460]: ps.stem('lying')

'lie'

In [461]: ps.stem('strange')

'strang'

The Lancaster stemmer is based on the Lancaster stemming algorithm, also 

often known as the Paice/Husk stemmer, which was invented by Chris D. Paice. This 

stemmer is an iterative stemmer with over 120 rules, which specify specific removal 

or replacement for affixes to obtain the word stems. The following snippet shows the 

Lancaster stemmer in action.

# Lancaster Stemmer

In [465]: from nltk.stem import LancasterStemmer

     ...: ls = LancasterStemmer()

     ...:  print ls.stem('jumping'), ls.stem('jumps'), ls.stem('jumped')

(jump, jump, jump)

In [467]: ls.stem('lying')

'lying'

In [468]: ls.stem('strange')

'strange'

You can see the behavior of this stemmer is different from the previous Porter 

stemmer. Besides these two, there are several other stemmers, including RegexpStemmer, 

where you can build your own stemmer based on user-defined rules and 

SnowballStemmer, which supports stemming in 13 different languages besides English. 

The following code snippet shows some ways of using them for performing stemming. 

The RegexpStemmer uses regular expressions to identify the morphological affixes in 

words and any part of the string matching them is removed.
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# Regex based stemmer

In [471]: from nltk.stem import RegexpStemmer

     ...: rs = RegexpStemmer('ing$|s$|ed$', min=4)

     ...:  rs.stem('jumping'), rs.stem('jumps'), rs.stem('jumped')

(jump, jump, jump)

In [473]: rs.stem('lying')

'ly'

In [474]: rs.stem('strange')

'strange'

You can see how the stemming results are different from the previous stemmers 

and is based completely on our custom defined rules based on regular expressions. 

The following snippet shows how we can use the SnowballStemmer to stem words 

in other languages. You can find more details about the Snowball Project at http://

snowballstem.org/.

# Snowball Stemmer

In [486]: from nltk.stem import SnowballStemmer

     ...: ss = SnowballStemmer("german")

     ...: print('Supported Languages:', SnowballStemmer.languages)

Supported Languages: (u'danish', u'dutch', u'english', u'finnish', 

u'french', u'german', u'hungarian', u'italian', u'norwegian', u'porter', 

u'portuguese', u'romanian', u'russian', u'spanish', u'swedish')

# stemming on German words

# autobahnen -> cars

# autobahn -> car

In [488]: ss.stem('autobahnen')

'autobahn'

# springen -> jumping

# spring -> jump

In [489]: ss.stem('springen')

'spring'
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The Porter stemmer is used most frequently, but you should choose your stemmer 

based on your problem and after trial and error. The following is a basic function that 

can be used for stemming text.

def simple_stemmer(text):

    ps = nltk.porter.PorterStemmer()

    text = ' '.join([ps.stem(word) for word in text.split()])

    return text

simple_stemmer("My system keeps crashing his crashed yesterday, ours 

crashes daily")

'My system keep crash hi crash yesterday, our crash daili'

Feel free to leverage this function for your own stemming needs. Also, if needed, you 

can even build your own stemmer with your own defined rules!

 Lemmatization
The process of lemmatization is very similar to stemming, where we remove word affixes 

to get to a base form of the word. However in this case, this base form is also known 

as the root word but not the root stem. The difference between the two is that the root 

stem may not always be a lexicographically correct word, i.e., it may not be present in 

the dictionary but the root word, also known as the lemma, will always be present in the 

dictionary.

The lemmatization process is considerably slower than stemming because an 

additional step is involved where the root form or lemma is formed by removing the affix 

from the word if and only if the lemma is present in the dictionary. The NLTK package 

has a robust lemmatization module where it uses WordNet and the word’s syntax and 

semantics like part of speech and context to get the root word or lemma. Remember 

from Chapter 1 when we discussed parts of speech? There were three entities of nouns, 

verbs, and adjectives that occur most frequently in natural language. The following code 

snippet depicts how to use lemmatization for words belonging to each of those types.
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In [514]: from nltk.stem import WordNetLemmatizer

     ...: wnl = WordNetLemmatizer()

# lemmatize nouns

In [515]: print(wnl.lemmatize('cars', 'n'))

     ...: print(wnl.lemmatize('men', 'n'))

car

men

# lemmatize verbs

In [516]: print(wnl.lemmatize('running', 'v'))

     ...: print(wnl.lemmatize('ate', 'v'))

run

eat

# lemmatize adjectives

In [517]: print(wnl.lemmatize('saddest', 'a'))

     ...: print(wnl.lemmatize('fancier', 'a'))

sad

fancy

This snippet shows us how each word is converted to its base form using 

lemmatization. This helps us standardize words. This code leverages the 

WordNetLemmatizer class, which internally uses the morphy() function belonging to the 

WordNetCorpusReader class. This function basically finds the base form or lemma for a 

given word using the word and its part of speech by checking the WordNet corpus and 

uses a recursive technique for removing affixes from the word until a match is found 

in WordNet. If no match is found, the input word is returned unchanged. The part of 

speech is extremely important because if that is wrong, the lemmatization will not be 

effective, as you can see in the following snippet.

# ineffective lemmatization

In [518]: print wnl.lemmatize('ate', 'n')

     ...: print wnl.lemmatize('fancier', 'v')

ate

fancier
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SpaCy makes things a lot easier since it performs parts of speech tagging and 

effective lemmatization for each token in a text document without you worrying about 

if you are using lemmatization effectively. The following function can be leveraged for 

performing effective lemmatization, thanks to spaCy!

import spacy

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

text = 'My system keeps crashing his crashed yesterday, ours crashes daily'

def lemmatize_text(text):

    text = nlp(text)

     text = ' '.join([word.lemma_ if word.lemma_ != '-PRON-' else word.text 

for word in text])

    return text

lemmatize_text("My system keeps crashing! his crashed yesterday, ours 

crashes daily")

'My system keep crash ! his crash yesterday , ours crash daily'

You can leverage NLTK or spaCy to build your own lemmatizers. Feel free to 

experiment with these functions on your own data.

 Removing Stopwords
Stopwords are words that have little or no significance and are usually removed from 

text when processing it so as to retain words having maximum significance and context. 

Stopwords usually occur most frequently if you aggregate a corpus of text based on 

singular tokens and checked their frequencies. Words like “a,” “the,” “and,” and so on are 

stopwords. There is no universal or exhaustive list of stopwords and often each domain 

or language has its own set of stopwords. We depict a method to filter out and remove 

stopwords for English in the following code snippet.

from nltk.tokenize.toktok import ToktokTokenizer

tokenizer = ToktokTokenizer()

stopword_list = nltk.corpus.stopwords.words('english')

def remove_stopwords(text, is_lower_case=False):

    tokens = tokenizer.tokenize(text)

    tokens = [token.strip() for token in tokens]
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    if is_lower_case:

         filtered_tokens = [token for token in tokens if token not in 

stopword_list]

    else:

         filtered_tokens = [token for token in tokens if token.lower() not 

in stopword_list]

    filtered_text = ' '.join(filtered_tokens)

    return filtered_text

remove_stopwords("The, and, if are stopwords, computer is not")

', , stopwords , computer'

There is no universal stopword list, but we use a standard English language 

stopwords list from NLTK. You can also add your own domain-specific stopwords 

as needed. In the previous function, we leverage the use of NLTK, which has a list of 

stopwords for English, and use it to filter out all tokens that correspond to stopwords. 

This output shows us a reduced number of tokens compared to what we had earlier and 

you can compare and check the tokens that were removed as stopwords. To see the list of 

all English stopwords in NLTK’s vocabulary, you can print the contents of nltk.corpus.

stopwords.words('english') to get an idea of the various stopwords. One important 

thing to remember is that negations like “not” and “no” are removed in this case (in the 

first sentence) and often it is essential to preserve them so as the actual meaning of the 

sentence is not lost in applications like sentiment analysis. So you would need to make 

sure you do not remove these words in those scenarios.

 Bringing It All Together — Building a Text Normalizer
Let’s now bring everything we learned together and chain these operations to build a text 

normalizer to preprocess text data. We focus on including the major components often 

used for text wrangling in our custom function.

def normalize_corpus(corpus, html_stripping=True, contraction_expansion=True,

                     accented_char_removal=True, text_lower_case=True,

                     text_lemmatization=True, special_char_removal=True,

                     stopword_removal=True, remove_digits=True):
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    normalized_corpus = []

    # normalize each document in the corpus

    for doc in corpus:

        # strip HTML

        if html_stripping:

            doc = strip_html_tags(doc)

        # remove accented characters

        if accented_char_removal:

            doc = remove_accented_chars(doc)

        # expand contractions

        if contraction_expansion:

            doc = expand_contractions(doc)

        # lowercase the text

        if text_lower_case:

            doc = doc.lower()

        # remove extra newlines

        doc = re.sub(r'[\r|\n|\r\n]+', ' ',doc)

        # lemmatize text

        if text_lemmatization:

            doc = lemmatize_text(doc)

        # remove special characters and\or digits

        if special_char_removal:

            # insert spaces between special characters to isolate them

            special_char_pattern = re.compile(r'([{.(-)!}])')

            doc = special_char_pattern.sub(" \\1 ", doc)

            doc = remove_special_characters(doc, remove_digits=remove_digits)

        # remove extra whitespace

        doc = re.sub(' +', ' ', doc)

        # remove stopwords

        if stopword_removal:

            doc = remove_stopwords(doc, is_lower_case=text_lower_case)

        normalized_corpus.append(doc)

    return normalized_corpus
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Let’s now put this function in action! We will leverage our sample text from the 

previous sections as the input document, which we will preprocess using the preceding 

function.

{'Original': sample_text,

 'Processed': normalize_corpus([sample_text])[0]}

{'Original': "US unveils world's most powerful supercomputer, beats 

China. The US has unveiled the world's most powerful supercomputer called 

'Summit', beating the previous record-holder China's Sunway TaihuLight. 

With a peak performance of 200,000 trillion calculations per second, 

it is over twice as fast as Sunway TaihuLight, which is capable of 

93,000 trillion calculations per second. Summit has 4,608 servers, which 

reportedly take up the size of two tennis courts.",

 'Processed': 'us unveil world powerful supercomputer beat china us unveil 

world powerful supercomputer call summit beat previous record holder chinas 

sunway taihulight peak performance trillion calculation per second twice 

fast sunway taihulight capable trillion calculation per second summit 

server reportedly take size two tennis court'}

Thus, you can see how our text preprocessor helps in preprocessing our sample 

news article! In the next section, we look at ways of analyzing and understanding various 

facets of textual data with regard to its syntactic properties and structure.

 Understanding Text Syntax and Structure
We talked about language syntax and structure in detail in Chapter 1. If you don’t 

remember the basics, head over to the section titled “Language Syntax and Structure” 

in Chapter 1 and skim through it quickly to get an idea of the various ways of analyzing 

and understanding the syntax and structure of textual data. To refresh your memory, let’s 

briefly cover the importance of text syntax and structure.

For any language, syntax and structure usually go hand in hand, where a set of specific 

rules, conventions, and principles govern the way words are combined into phrases; 

phrases are combined into clauses; and clauses are combined into sentences. We will 

be talking specifically about the English language syntax and structure in this section. 

In English, words usually combine to form other constituent units. These constituents 
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include words, phrases, clauses, and sentences. The sentence “The brown fox is quick and 

he is jumping over the lazy dog” is made of a bunch of words. Just looking at the words by 

themselves doesn’t tell us much (see Figure 3-3).

Figure 3-3. A bunch of unordered words doesn’t convey much information

Knowledge about the structure and syntax of language is helpful in many areas like 

text processing, annotation, and parsing for further operations such as text classification 

or summarization. In this section, we implement some of the concepts and techniques 

used to understand text syntax and structure. This is extremely useful in natural 

language processing and is usually done after text processing and wrangling. We focus 

on implementing the following techniques:

• Parts of speech (POS) tagging

• Shallow parsing or chunking

• Dependency parsing

• Constituency parsing

This book is targeted toward practitioners and enforces and emphasizes on 

best approaches for implementing and using techniques and algorithms in real-

world problems. Hence in the following sections, we look at the best possible ways 

of leveraging libraries like NLTK and spaCy to implement some of these techniques. 

Besides this, since you might be interested in the internals and implementing some of 

these techniques on your own, we also look at ways to accomplish this. Before jumping 

into the details, we look at the necessary dependencies and installation details for the 

required libraries, since some of them are not very straightforward.
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 Installing Necessary Dependencies
We leverage several libraries and dependencies:

• The nltk library

• The spacy library

• The Stanford Parser

• Graphviz and necessary libraries for visualization

We touched upon installing NLTK in Chapter 1. You can install it directly by going to 

your terminal or command prompt and typing pip install nltk, which will download 

and install it. Remember to install the library preferably equal to or higher than version 

3.2.4. After downloading and installing NLTK, remember to download the corpora, 

which we also discussed in Chapter 1. For more details on downloading and installing 

NLTK, you can follow the information at http://www.nltk.org/install.html and 

http://www.nltk.org/data.html, which tells you how to install the data dependencies. 

Start the Python interpreter and use the following snippet.

import nltk

# download all dependencies and corpora

nltk.download('all', halt_on_error=False)

# OR use a GUI based downloader and select dependencies

nltk.download()

To install spaCy, type pip install spacy from the terminal or conda install spaCy. 

Once it’s done, download the English language model using the command, python -m 

spacy.en.download from the terminal, which will download around 500MB of  

data in the directory of the spaCy package. For more details, you can refer to the link 

https://spacy.io/docs/#getting-started, which tells you how to get started with 

using spaCy. We will use spaCy for tagging and depicting dependency based parsing. 

However, in case you face issues loading spaCy’s language models, feel free to follow the 

steps highlighted here to resolve this issue. (I faced this issue in one of my systems but it 

doesn’t always occur.)
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# OPTIONAL: ONLY USE IF SPACY FAILS TO LOAD LANGUAGE MODEL

# Use the following command to install spaCy

> pip install -U spacy

OR

> conda install -c conda-forge spacy

# Download the following language model and store it in disk

https://github.com/explosion/spacy-models/releases/tag/en_core_web_md-2.0.0

# Link the same to spacy

> python -m spacy link ./spacymodels/en_core_web_md-2.0.0/en_core_web_md 

en_core Linking successful

    ./spacymodels/en_core_web_md-2.0.0/en_core_web_md --> ./Anaconda3/lib/

site-packages/spacy/data/en_core

You can now load the model via spacy.load('en_core')

The Stanford Parser is a Java-based implementation for a language parser developed 

at Stanford, which helps parse sentences to understand their underlying structure. We 

perform both dependency and constituency grammar based parsing using the Stanford 

Parser and NLTK, which provides an excellent wrapper to leverage and use the parser 

from Python itself without the need to write code in Java. You can refer to the official 

installation guide at https://github.com/nltk/nltk/wiki/Installing-Third-Party- 

Software, which tells us how to download and install the Stanford Parser and integrate 

it with NLTK. Personally, I faced several issues especially in Windows based systems; 

hence, I will provide one of the best known methods for installation of the Stanford 

Parser and its necessary dependencies.

To start with, make sure you download and install the Java Development Kit (not just 

JRE also known as Java Runtime Environment) by going to http://www.oracle.com/

technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp. Use any 

version typically on or after Java SE 8u101 / 8u102. I used 8u102 since I haven’t upgraded 

Java in a while. After installing, make sure that you have set the path for Java by adding it 

to the path system environment variable. You can also create a JAVA_HOME environment 

variable pointing to the java.exe file belonging to the JDK.

In my experience neither worked for me when running the code from Python and I 

had to explicitly use the Python os library to set the environment variable, which I will be 
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showing when we dive into the implementation details. Once Java is installed, download 

the official Stanford Parser from http://nlp.stanford.edu/software/stanford- 

parser- full-2015-04-20.zip, which seems to work quite well. You can try a later 

version by going to http://nlp.stanford.edu/software/lex-parser.shtml#Download 

and checking the “Release History” section. After downloading, unzip it to a known 

location in your filesystem. Once you’re done, you are now ready to use the parser from 

NLTK, which we will be exploring soon!

Graphviz is not a necessity and we will only be using it to view the dependency 

parse tree generated by the Stanford Parser. You can download Graphviz from its official 

website at http://www.graphviz.org/Download_windows.php and install it. Next you 

need to install pygraphviz, which you can get by downloading the wheel file from 

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz based on your system 

architecture and Python version. Then install it using the pip install pygraphviz-

1.3.1- cp34-none-win_amd64.whl command for a 64-bit system running Python 3.x. 

Once it’s installed, pygraphviz should be ready to work. Some people reported running 

into additional issues and you might need to install pydot-ng and graphviz in the same 

order using the following snippet in the terminal.

pip install pydot-ng

pip install graphviz

We also leverage NLTK’s plotting capabilities to visualize parse trees in Jupyter 

notebooks. To enable this, you might need to install ghostscript in case NLTK throws 

an error. Instructions for installation and setup are depicted as follows.

## download and install ghostscript from https://www.ghostscript.com/

download/gsdnld.html

# often need to add to the path manually (for windows)

os.environ['PATH'] = os.environ['PATH']+";C:\\Program Files\\gs\\gs9.09\\bin\\"

With this, we are done with installing our necessary dependencies and can start 

implementing and looking at practical examples. However, we are not ready just yet. 

We need to go through a few basic concepts of machine learning before we dive into the 

code and examples.

Chapter 3  proCessing and Understanding text 

http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://www.graphviz.org/Download_windows.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
https://www.ghostscript.com/download/gsdnld.html


162

 Important Machine Learning Concepts
We will be implementing and training some of our own taggers in the following section 

using corpora and leverage existing taggers. There are some important concepts 

related to analytics and machine learning, which you must know to understand the 

implementations more clearly.

• Data preparation: Usually consists of preprocessing the data before 

extracting features and training

• Feature extraction: The process of extracting useful features from 

raw data that are used to train machine learning models

• Features: Various useful attributes of the data (examples could be 

age, weight, and so on for personal data)

• Training data: A set of data points used to train a model

• Testing/validation data: A set of data points on which a pretrained 

model is tested and evaluated to see how well it performs

• Model: This is built using a combination of data/features and 

a machine learning algorithm that could be supervised or 

unsupervised

• Accuracy: How well the model predicts something (also has other 

detailed evaluation metrics like precision, recall, and F1-score)

These terms should be enough to get you started. Going into details is beyond the 

current scope; however, you will find a lot of resources on the web on machine learning 

if you are interested in exploring some of them further. We recommend checking out 

Practical Machine Learning with Python, Apress 2018, if you are interested in learning 

machine learning using a hands-on approach. Besides this, we cover supervised and 

unsupervised learning with regards to textual data in subsequent chapters.
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 Parts of Speech Tagging
Parts of speech (POS) are specific lexical categories to which words are assigned based 

on their syntactic context and role. If you remember from Chapter 1, we covered some 

ground on POS, where we mentioned the main POS being nouns, verbs, adjectives, and 

adverbs. The process of classifying and labeling POS tags for words is defined as parts of 

speech tagging (POS tagging).

POS tags are used to annotate words and depict their POS, which is really helpful 

when we need to use the same annotated text later in NLP-based applications because 

we can filter by specific parts of speech an-d utilize that information to perform 

specific analysis. We can narrow down nouns and determine which ones are the most 

prominent. Considering our previous example sentence, “The brown fox is quick and he 

is jumping over the lazy dog”, if we were to annotate it using basic POS tags, it would look 

like Figure 3-4.

Figure 3-4. POS tagging for a sentence

Thus, a sentence typically follows a hierarchical structure consisting of the following 

components: sentence → clauses → phrases → words.

We will be using the Penn Treebank notation for POS tagging and most of the 

recommended POS taggers also leverage it. You can find out more information about 

various POS tags and their notation at http://www.cis.uni-muenchen.de/~schmid/

tools/TreeTagger/data/Penn-Treebank-Tagset.pdf, which contains detailed 

documentation explaining each tag with examples. The Penn Treebank project is a part 

of the University of Pennsylvania and their web page can be found at https://catalog.

ldc.upenn.edu/docs/LDC95T7/treebank2.index.html, which gives more information 

about the project. Remember there are various tags, such as POS tags for parts of speech 

assigned to words, chunk tags, which are usually assigned to phrases, and some tags are 

secondary tags, which are used to depict relations.

Table 3-1 provides a detailed overview of different tags with examples in case you do 

not want to go through the detailed documentation for Penn Treebank tags. You can use 

this as a reference anytime to understand POS tags and parse trees in a better way.
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Table 3-1. Parts of Speech Tags

Sl No. TAG DESCRIPTION EXAMPLE(S)

1 CC Coordinating conjunction and, or

2 CD Cardinal number five, one, 2

3 DT determiner a, the

4 EX existential there there were two cars

5 FW Foreign word d'hoevre, mais

6 IN preposition/subordinating conjunction of, in, on, that

7 JJ adjective quick, lazy

8 JJR adjective, comparative quicker, lazier

9 JJS adjective, superlative quickest, laziest

10 LS List item marker 2)

11 MD Verb, modal could, should

12 NN noun, singular or mass fox, dog

13 NNS noun, plural foxes, dogs

14 NNP noun, proper singular John, alice

15 NNPS noun, proper plural Vikings, indians, germans

16 PDT predeterminer both cats

17 POS possessive ending boss's

18 PRP pronoun, personal me, you

19 PRP$ pronoun, possessive our, my, your

20 RB adverb naturally, extremely, hardly

21 RBR adverb, comparative better

22 RBS adverb, superlative best

23 RP adverb, particle about, up

24 SYM symbol %, $

25 TO infinitival to how to, what to do

(continued)
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This table shows us the main POS tag set used in the Penn Treebank and is the most 

widely used POS tag set in various text analytics and NLP applications. In the following 

sections, we look at some hands-on implementations of POS tagging.

Table 3-1. (continued)

Sl No. TAG DESCRIPTION EXAMPLE(S)

26 UH interjection oh, gosh, wow

27 VB Verb, base form run, give

28 VBD Verb, past tense ran, gave

29 VBG Verb, gerund/present participle running, giving

30 VBN Verb, past participle given

31 VBP Verb, non-third person singular present i think, i take

32 VBZ Verb, third person singular present he thinks, he takes

33 WDT Wh-determiner which, whatever

34 WP Wh-pronoun, personal who, what

35 WP$ Wh-pronoun, possessive whose

36 WRB Wh-adverb where, when

37 NP noun phrase the brown fox

38 PP prepositional phrase in between, over the dog

39 VP Verb phrase was jumping

40 ADJP adjective phrase warm and snug

41 ADVP adverb phrase also

42 SBAR subordinating conjunction whether or not

43 PRT particle up

44 INTJ interjection hello

45 PNP prepositional noun phrase over the dog, as of today

46 -SBJ sentence subject the fox jumped over the dog

47 -OBJ sentence object the fox jumped over the dog
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 Building POS Taggers

We will be leveraging NLTK and spaCy, which use the Penn Treebank notation for POS 

tagging. To demonstrate how things work, we will leverage a news headline from our 

sample news article from the previous sections. Let’s look at how POS tagging can be 

implemented using spaCy. See Figure 3-5.

sentence = "US unveils world's most powerful supercomputer, beats China."

import pandas as pd

import spacy

nlp = spacy.load('en_core', parse=True, tag=True, entity=True)

sentence_nlp = nlp(sentence)

# POS tagging with Spacy

spacy_pos_tagged = [(word, word.tag_, word.pos_) for word in sentence_nlp]

pd.DataFrame(spacy_pos_tagged, columns=['Word', 'POS tag', 'Tag type']).T

Thus, we can clearly see in Figure 3-5 the POS tag for each token in our sample news 

headline, as defined using spaCy, and they make perfect sense. Let’s try to perform the 

same task using NLTK (see Figure 3-6).

# POS tagging with nltk

import nltk

nltk_pos_tagged = nltk.pos_tag(nltk.word_tokenize(sentence))

pd.DataFrame(nltk_pos_tagged, columns=['Word', 'POS tag']).T

Figure 3-5. POS tagging for our news headline using spaCy

Figure 3-6. POS tagging for our news headline using NLTK
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The output in Figure 3-6 gives us tags that purely follow the Penn Treebank format 

specifying the specific form of adjective, noun, or verbs in more detail.

We will now explore some techniques to build our own POS taggers! We leverage 

some classes provided by NLTK. To evaluate the performance of our taggers, we use 

some test data from the treebank corpus in NLTK. We will also be using some training 

data for training some of our taggers. To start with, we will first get the necessary data for 

training and evaluating the taggers by reading in the tagged treebank corpus.

from nltk.corpus import treebank

data = treebank.tagged_sents()

train_data = data[:3500]

test_data = data[3500:]

print(train_data[0])

[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 

'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the', 

'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), 

('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.', '.')]

We will use the test data to evaluate our taggers and see how they work on our 

sample sentence by using its tokens as input. All the taggers we will be leveraging from 

NLTK are a part of the nltk.tag package. Each tagger is a child class of the base TaggerI 

class and each tagger implements a tag() function, which takes a list of sentence 

tokens as input and returns the same list of words with their POS tags as output. Besides 

tagging, there is also an evaluate() function, which is used to evaluate the performance 

of the tagger. This is done by tagging each input test sentence and then comparing the 

result with the actual tags of the sentence. We will be using the same function to test the 

performance of our taggers on test_data.

We will first look at the DefaultTagger, which inherits from the 

SequentialBackoffTagger base class and assigns the same user input POS tag to each 

word. This might seem to be really naïve but it is an excellent way to form a baseline POS 

tagger and improve upon it.

# default tagger

from nltk.tag import DefaultTagger

dt = DefaultTagger('NN')
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# accuracy on test data

dt.evaluate(test_data)

0.1454158195372253

# tagging our sample headline

dt.tag(nltk.word_tokenize(sentence))

[('US', 'NN'), ('unveils', 'NN'), ('world', 'NN'), ("'s", 'NN'), ('most', 'NN'),

 ('powerful', 'NN'), ('supercomputer', 'NN'), (',', 'NN'), ('beats', 'NN'),

 ('China', 'NN'), ('.', 'NN')]

We can see from this output we have obtained 14% accuracy in correctly tagging 

words from the treebank test dataset, which is not great. The output tags on our sample 

sentence are all nouns, just like we expected since we fed the tagger with the same tag. 

We will now use regular expressions and the RegexpTagger to see if we can build a better 

performing tagger.

# regex tagger

from nltk.tag import RegexpTagger

# define regex tag patterns

patterns = [

        (r'.*ing$', 'VBG'),               # gerunds

        (r'.*ed$', 'VBD'),                # simple past

        (r'.*es$', 'VBZ'),                # 3rd singular present

        (r'.*ould$', 'MD'),               # modals

        (r'.*\'s$', 'NN$'),               # possessive nouns

        (r'.*s$', 'NNS'),                 # plural nouns

        (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers

        (r'.*', 'NN')                     # nouns (default) ...

]

rt = RegexpTagger(patterns)

# accuracy on test data

rt.evaluate(test_data)

0.24039113176493368

# tagging our sample headline
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rt.tag(nltk.word_tokenize(sentence))

[('US', 'NN'), ('unveils', 'NNS'), ('world', 'NN'), ("'s", 'NN$'), ('most', 'NN'),

 ('powerful', 'NN'), ('supercomputer', 'NN'), (',', 'NN'), ('beats', 'NNS'),

 ('China', 'NN'), ('.', 'NN')]

This output shows us that the accuracy has now increased to 24%, but can we do 

better? We will now train some n-gram taggers. If you don’t know already, n-grams 

are contiguous sequences of n items from a sequence of text or speech. These items 

could consist of words, phonemes, letters, characters, or syllables. Shingles are n-grams 

where the items only consist of words. We will use n-grams of size 1, 2, and 3, which 

are also known as unigram, bigram, and trigram, respectively. The UnigramTagger, 

BigramTagger, and TrigramTagger are classes that inherit from the base class 

NGramTagger, which itself inherits from the ContextTagger class, which inherits from the 

SequentialBackoffTagger class. We will use the train_data as training data to train the 

n-gram taggers based on sentence tokens and their POS tags. Then we will evaluate the 

trained taggers on test_data and see the result upon tagging our sample sentence.

## N gram taggers

from nltk.tag import UnigramTagger

from nltk.tag import BigramTagger

from nltk.tag import TrigramTagger

ut = UnigramTagger(train_data)

bt = BigramTagger(train_data)

tt = TrigramTagger(train_data)

# testing performance of unigram tagger

print(ut.evaluate(test_data))

print(ut.tag(nltk.word_tokenize(sentence)))

0.8619421047536063

[('US', 'NNP'), ('unveils', None), ('world', 'NN'), ("'s", 'POS'), ('most', 

'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), ('beats', 

None), ('China', 'NNP'), ('.', '.')]

# testing performance of bigram tagger

print(bt.evaluate(test_data))

print(bt.tag(nltk.word_tokenize(sentence)))
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0.1359279697937845

[('US', None), ('unveils', None), ('world', None), ("'s", None), ('most', 

None), ('powerful', None), ('supercomputer', None), (',', None), ('beats', 

None), ('China', None), ('.', None)]

# testing performance of trigram tagger

print(tt.evaluate(test_data))

print(tt.tag(nltk.word_tokenize(sentence)))

0.08142124116565011

[('US', None), ('unveils', None), ('world', None), ("'s", None), ('most', 

None), ('powerful', None), ('supercomputer', None), (',', None), ('beats', 

None), ('China', None), ('.', None)]

This output clearly shows us that we obtain 86% accuracy on the test set using 

unigram tagger alone, which is really good compared to our last tagger. The None tag 

indicates the tagger was unable to tag that word and the reason for that would be that 

it was unable to get a similar token in the training data. Accuracies of the bigram and 

trigram models are far lower because the same bigrams and trigrams observed in the 

training data aren’t always present in the same way in the testing data.

We now look at an approach to combine all the taggers by creating a combined 

tagger with a list of taggers and use a backoff tagger. Essentially, we would create a chain 

of taggers and each tagger would fall back on a backoff tagger if it cannot tag the input 

tokens.

def combined_tagger(train_data, taggers, backoff=None):

    for tagger in taggers:

        backoff = tagger(train_data, backoff=backoff)

    return backoff

ct = combined_tagger(train_data=train_data,

                     taggers=[UnigramTagger, BigramTagger, TrigramTagger],

                     backoff=rt)

# evaluating the new combined tagger with backoff taggers

print(ct.evaluate(test_data))

print(ct.tag(nltk.word_tokenize(sentence)))
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0.9108335753703166

[('US', 'NNP'), ('unveils', 'NNS'), ('world', 'NN'), ("'s", 'POS'), 

('most', 'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), 

('beats', 'NNS'), ('China', 'NNP'), ('.', '.')]

We now obtain an accuracy of 91% on the test data, which is excellent. Also we see 

that this new tagger can successfully tag all the tokens in our sample sentence (even 

though a couple of them are not correct, like beats should be a verb).

For our final tagger, we will use a supervised classification algorithm to train 

our tagger. The ClassifierBasedPOSTagger class enables us train a tagger by using 

a supervised learning algorithm in the classifier_builder parameter. This class 

is inherited from the ClassifierBasedTagger and it has a feature_detector() 

function that forms the core of the training process. This function is used to generate 

various features from the training data like word, previous word, tag, previous tag, 

case, and so on. In fact, you can even build your own feature detector function and 

pass it to the feature_detector parameter when instantiating an object of the 

ClassifierBasedPOSTagger class.

The classifier we will be using is the NaiveBayesClassifier. It uses the Bayes’ 

theorem to build a probabilistic classifier assuming the features are independent. You 

can read more about it at https://en.wikipedia.org/wiki/Naive_Bayes_classifier 

since going into details about the algorithm is out of our current scope. The following 

code snippet shows a classification based approach to building and evaluating a POS 

tagger.

from nltk.classify import NaiveBayesClassifier, MaxentClassifier

from nltk.tag.sequential import ClassifierBasedPOSTagger

nbt = ClassifierBasedPOSTagger(train=train_data,

                               classifier_builder=NaiveBayesClassifier.train)

# evaluate tagger on test data and sample sentence

print(nbt.evaluate(test_data))

print(nbt.tag(nltk.word_tokenize(sentence)))

0.9306806079969019

[('US', 'PRP'), ('unveils', 'VBZ'), ('world', 'VBN'), ("'s", 'POS'), 

('most', 'JJS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), 

('beats', 'VBZ'), ('China', 'NNP'), ('.', '.')]
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Using this tagger, we get an accuracy of 93% on our test data, which is the highest 

out of all our taggers. Also if you observe the output tags for the sample sentence, you 

will see they are correct and make perfect sense. This gives us an idea of how powerful 

and effective classifier based POS taggers can be! Feel free to use a different classifier like 

MaxentClassifier and compare the performance with this tagger. We have included the 

code in the notebook to make things easier.

There are also several other ways to build and use POS taggers using NLTK and other 

packages. Even though it is not necessary and this should be enough to cover your POS 

tagging needs, you can go ahead and explore other methods to compare with these 

methods and satisfy your curiosity.

 Shallow Parsing or Chunking
Shallow parsing, also known as light parsing or chunking, is a technique of analyzing the 

structure of a sentence to break it down into its smallest constituents, which are tokens 

like words, and group them together into higher-level phrases. In shallow parsing, there 

is more focus on identifying these phrases or chunks rather than diving into further 

details of the internal syntax and relations inside each chunk, like we see in grammar 

based parse trees obtained from deep parsing. The main objective of shallow parsing is 

to obtain semantically meaningful phrases and observe relations among them.

You can look at the “Language Syntax and Structure” section from Chapter 1 just 

to refresh your memory regarding how words and phrases give structure to a sentence 

consisting of a bunch of words. Based on the hierarchy we depicted earlier, groups of 

words make up phrases. There are five major categories of phrases:

• Noun phrase (NP): These are phrases where a noun acts as the head 

word. Noun phrases act as a subject or object to a verb.

• Verb phrase (VP): These phrases are lexical units that have a verb 

acting as the head word. Usually, there are two forms of verb phrases. 

One form has the verb components as well as other entities such as 

nouns, adjectives, or adverbs as parts of the object.

• Adjective phrase (ADJP): These are phrases with an adjective as 

the head word. Their main role is to describe or qualify nouns and 

pronouns in a sentence, and they will be placed before or after the 

noun or pronoun.
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• Adverb phrase (ADVP): These phrases act like adverbs since the 

adverb acts as the head word in the phrase. Adverb phrases are used 

as modifiers for nouns, verbs, or adverbs by providing further details 

that describe or qualify them.

• Prepositional phrase (PP): These phrases usually contain a 

preposition as the head word and other lexical components like 

nouns, pronouns, and so on. These act like an adjective or adverb, 

describing other words or phrases.

A shallow parsed tree is depicted in Figure 3-7 for a sample sentence just to refresh 

your memory on its structure.

We will now look at ways in which we can implement shallow parsing on text data 

using a wide variety of techniques, including regular expressions, chunking, chinking, 

and tag based training.

 Building Shallow Parsers

We use several techniques like regular expressions and tagging based learners to build 

our own shallow parsers. Just like POS tagging, we use some training data to train our 

parsers if needed and evaluate all our parsers on some test data and on our sample 

sentence. The treebank corpus is available in NLTK with chunk annotations. We load it 

and then prepare our training and testing datasets using the following code snippet.

from nltk.corpus import treebank_chunk

data = treebank_chunk.chunked_sents()

train_data = data[:3500]

test_data = data[3500:]

Figure 3-7. An example of shallow parsing depicting higher level phrase annotations
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# view sample data

print(train_data[7])

(S

  (NP A/DT Lorillard/NNP spokewoman/NN)

  said/VBD

  ,/,

  ``/``

  (NP This/DT)

  is/VBZ

  (NP an/DT old/JJ story/NN)

  ./.)

From this output, you can see that our data points are sentences and are already 

annotated with phrase and POS tags metadata, which will be useful in training shallow 

parsers. We start by using regular expressions for shallow parsing using concepts of 

chunking and chinking. Using the process of chunking, we can use and specify specific 

patterns to identify what we would want to chunk or segment in a sentence, such as 

phrases based on specific metadata. Chinking is the reverse of chunking, where we 

specify which specific tokens we do not want to be a part of any chunk and then form the 

necessary chunks excluding these tokens. Let’s consider a simple sentence (our news 

headline) and use regular expressions. We leverage the RegexpParser class to create 

shallow parsers to illustrate chunking and chinking for noun phrases.

from nltk.chunk import RegexpParser

# get POS tagged sentence

tagged_simple_sent = nltk.pos_tag(nltk.word_tokenize(sentence))

print('POS Tags:', tagged_simple_sent)

# illustrate NP chunking based on explicit chunk patterns

chunk_grammar = """

NP: {<DT>?<JJ>*<NN.*>}

"""

rc = RegexpParser(chunk_grammar)

c = rc.parse(tagged_simple_sent)

# print and view chunked sentence using chunking
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print(c)

c

(S

  (NP US/NNP)

  (NP unveils/JJ world/NN)

  's/POS

  most/RBS

  (NP powerful/JJ supercomputer/NN)

  ,/,

  beats/VBZ

  (NP China/NNP)

  ./.)

We can see how the shallow parse tree looks in Figure 3-8 with only NP chunks using 

chunking. Let’s look at building this using chinking now.

# illustrate NP chunking based on explicit chink patterns

chink_grammar = """

NP:

    {<.*>+}             # Chunk everything as NP

    }<VBZ|VBD|JJ|IN>+{  # Chink sequences of VBD\VBZ\JJ\IN

"""

rc = RegexpParser(chink_grammar)

c = rc.parse(tagged_simple_sent)

# print and view chunked sentence using chinking

print(c)

c

(S

  (NP US/NNP)

Figure 3-8. Shallow parsing using chunking
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  unveils/JJ

  (NP world/NN 's/POS most/RBS)

  powerful/JJ

  (NP supercomputer/NN ,/,)

  beats/VBZ

  (NP China/NNP ./.))

We can see how the shallow parse tree looks in Figure 3-9, with verbs and 

adjectives forming chinks and separating out noun phrases. Remember that chunks 

are sequences of tokens that are included in a collective group (chunk) and chinks 

are tokens or sequences of tokens that are excluded from chunks. We will now train a 

more generic regular expression-based shallow parser and test its performance on our 

test treebank data. Internally there are several steps that are executed to perform this 

parsing. The Tree structures used to represent parsed sentences in NLTK are converted 

to ChunkString objects. We create an object of RegexpParser using defined chunking 

and chinking rules. Objects of the ChunkRule and ChinkRule classes help create the 

complete shallow parsed tree with the necessary chunks based on specified patterns. 

The following code snippet represents a shallow parser using regular expression based 

patterns.

# create a more generic shallow parser

grammar = """

NP: {<DT>?<JJ>?<NN.*>}

ADJP: {<JJ>}

ADVP: {<RB.*>}

PP: {<IN>}

VP: {<MD>?<VB.*>+}

"""

rc = RegexpParser(grammar)

c = rc.parse(tagged_simple_sent)

Figure 3-9. Shallow parsing using chinking

Chapter 3  proCessing and Understanding text 



177

# print and view shallow parsed sample sentence

print(c)

c

(S

  (NP US/NNP)

  (NP unveils/JJ world/NN)

  's/POS

  (ADVP most/RBS)

  (NP powerful/JJ supercomputer/NN)

  ,/,

  (VP beats/VBZ)

  (NP China/NNP)

  ./.)

We can see how the shallow parse tree looks in Figure 3-10, with more specific rules 

for specific phrases. Let’s take a look at how this parser performs on the test dataset we 

built earlier.

# Evaluate parser performance on test data

print(rc.evaluate(test_data))

ChunkParse score:

    IOB Accuracy:  46.1%%

    Precision:     19.9%%

    Recall:        43.3%%

    F-Measure:     27.3%%

From the output, we can see that the parse tree for our sample sentence is very 

similar to the one we obtained from the out-of-the-box parser in the previous section. 

Also the accuracy of the overall test data is 54.5%, which is quite decent for a start. To 

Figure 3-10. Shallow parsing using more specific rules
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get more details as to what each performance metric signifies, you can refer to the 

“Evaluating Classification Models” section in Chapter 5.

Remember when we said annotated tagged metadata for text is useful in many ways? 

We use the chunked and tagged treebank training data now to build a shallow parser. 

We leverage two chunking utility functions—tree2conlltags to get triples of word, tag, 

and chunk tags for each token and conlltags2tree to generate a parse tree from these 

token triples.

We use these functions to train our parser later. First, let’s see how these two 

functions work. Remember the chunk tags use a popular format, known as the IOB 

format. In this format, you will notice some new notations with I, O, and B prefixes, which 

is the popular IOB notation used in chunking. It depicts Inside, Outside, and Beginning. 

The B- prefix before a tag indicates it is the beginning of a chunk; the I- prefix indicates 

that it is inside a chunk. The O tag indicates that the token does not belong to any chunk. 

The B- tag is always used when there are subsequent tags following it of the same type 

without the presence of O tags between them.

from nltk.chunk.util import tree2conlltags, conlltags2tree

# look at a sample training tagged sentence

train_sent = train_data[7]

print(train_sent)

(S

  (NP A/DT Lorillard/NNP spokewoman/NN)

  said/VBD

  ,/,

  ``/``

  (NP This/DT)

  is/VBZ

  (NP an/DT old/JJ story/NN)

  ./.)

# get the (word, POS tag, Chunk tag) triples for each token

wtc = tree2conlltags(train_sent)

wtc

[('A', 'DT', 'B-NP'),

 ('Lorillard', 'NNP', 'I-NP'),
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 ('spokewoman', 'NN', 'I-NP'),

 ('said', 'VBD', 'O'),

 (',', ',', 'O'),

 ('``', '``', 'O'),

 ('This', 'DT', 'B-NP'),

 ('is', 'VBZ', 'O'),

 ('an', 'DT', 'B-NP'),

 ('old', 'JJ', 'I-NP'),

 ('story', 'NN', 'I-NP'),

 ('.', '.', 'O')]

# get shallow parsed tree back from the WTC triples

tree = conlltags2tree(wtc)

print(tree)

(S

  (NP A/DT Lorillard/NNP spokewoman/NN)

  said/VBD

  ,/,

  ``/``

  (NP This/DT)

  is/VBZ

  (NP an/DT old/JJ story/NN)

  ./.)

Now that we know how these functions work, we define a function called conll_tag_

chunks() to extract POS and Chunk tags from sentences with chunked annotations and 

reuse our combined_taggers() function from POS tagging to train multiple taggers with 

backoff taggers, as depicted in the following code snippet.

def conll_tag_chunks(chunk_sents):

  tagged_sents = [tree2conlltags(tree) for tree in chunk_sents]

  return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents]

def combined_tagger(train_data, taggers, backoff=None):

    for tagger in taggers:

        backoff = tagger(train_data, backoff=backoff)

    return backoff
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We now define a NGramTagChunker class, which will take in tagged sentences 

as training input, get their WTC triples (word, POS tag, chunk tag), and train a 

BigramTagger with a UnigramTagger as the backoff tagger. We also define a parse() 

function to perform shallow parsing on new sentences.

from nltk.tag import UnigramTagger, BigramTagger

from nltk.chunk import ChunkParserI

class NGramTagChunker(ChunkParserI):

  def __init__(self, train_sentences,

               tagger_classes=[UnigramTagger, BigramTagger]):

    train_sent_tags = conll_tag_chunks(train_sentences)

    self.chunk_tagger = combined_tagger(train_sent_tags, tagger_classes)

  def parse(self, tagged_sentence):

    if not tagged_sentence:

        return None

    pos_tags = [tag for word, tag in tagged_sentence]

    chunk_pos_tags = self.chunk_tagger.tag(pos_tags)

    chunk_tags = [chunk_tag for (pos_tag, chunk_tag) in chunk_pos_tags]

    wpc_tags = [(word, pos_tag, chunk_tag) for ((word, pos_tag), chunk_tag)

                     in zip(tagged_sentence, chunk_tags)]

    return conlltags2tree(wpc_tags)

In this class, the constructor __init__() function is used to train the shallow parser 

using n-gram tagging based on the WTC triples for each sentence. Internally, it takes a 

list of training sentences as input, which is annotated with chunked parse tree metadata. 

It uses the conll_tag_chunks() function, which we defined earlier, to get a list of WTC 

triples for each chunked parse tree. Finally, it trains a BigramTagger with a Unigram 

tagger as a backoff tagger using these triples and stores the training model in self.

chunk_tagger.

Remember that you can parse other n-gram based taggers for training by using the 

tagger_classes parameter. Once trained, the parse() function can be used to evaluate 

the tagger on test data and shallow parse new sentences. Internally, it takes a POS tagged 

sentence as input, separates the POS tags from the sentence, and uses our trained self.

chunk_tagger to get the IOB chunk tags for the sentence. This is then combined with 
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the original sentence tokens and we use the conlltags2tree() function to get our final 

shallow parsed tree. The following snippet shows our parser in action. See Figure 3-11.

# train the shallow parser

ntc = NGramTagChunker(train_data)

# test parser performance on test data

print(ntc.evaluate(test_data))

ChunkParse score:

    IOB Accuracy:  97.2%%

    Precision:     91.4%%

    Recall:        94.3%%

    F-Measure:     92.8%%

# parse our sample sentence

sentence_nlp = nlp(sentence)

tagged_sentence = [(word.text, word.tag_) for word in sentence_nlp]

tree = ntc.parse(tagged_sentence)

print(tree)

tree

(S

  (NP US/NNP)

  unveils/VBZ

  (NP world/NN 's/POS most/RBS powerful/JJ supercomputer/NN)

  ,/,

  beats/VBZ

  (NP China/NNP)

  ./.)

Figure 3-11. Shallow parsed news headline using n-gram based chunking on 
treebank data
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This output depicts our parser performance on the treebank test set data, which has 

an overall accuracy of 99.6%, which is excellent! Figure 3-11 also shows us how the parse 

tree looks for our sample news headline.

Let’s now train and evaluate our parser on the conll2000 corpus, which contains 

excerpts from The Wall Street Journal and is a much larger corpus. We will train our 

parser on the first 10,000 sentences and test its performance on the remaining 940+ 

sentences. The following snippet depicts this process.

from nltk.corpus import conll2000

wsj_data = conll2000.chunked_sents()

train_wsj_data = wsj_data[:10000]

test_wsj_data = wsj_data[10000:]

# look at a sample sentence in the corpus

print(train_wsj_data[10])

(S

  (NP He/PRP)

  (VP reckons/VBZ)

  (NP the/DT current/JJ account/NN deficit/NN)

  (VP will/MD narrow/VB)

  (PP to/TO)

  (NP only/RB #/# 1.8/CD billion/CD)

  (PP in/IN)

  (NP September/NNP)

  ./.)

# train the shallow parser

tc = NGramTagChunker(train_wsj_data)

# test performance on the test data

print(tc.evaluate(test_wsj_data))

ChunkParse score:

    IOB Accuracy:  89.1%%

    Precision:     80.3%%

    Recall:        86.1%%

    F-Measure:     83.1%%
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This output shows that our parser achieved an overall accuracy of around 89%, 

which is quite good considering this corpus is much larger compared to the treebank 

corpus. Let’s look at how it chunks our sample news headline.

# parse our sample sentence

tree = tc.parse(tagged_sentence)

print(tree)

tree

(S

  (NP US/NNP)

  (VP unveils/VBZ)

  (NP world/NN)

  (NP 's/POS most/RBS powerful/JJ supercomputer/NN)

  ,/,

  (VP beats/VBZ)

  (NP China/NNP)

  ./.)

Figure 3-12 shows us how the parse tree looks for our sample news headline with 

more defined verb phrases as compared to previous parse trees. You can also look at 

implementing shallow parsers using other techniques, like supervised classifiers, by 

leveraging the ClassifierBasedTagger class.

 Dependency Parsing
In dependency-based parsing, we try to use dependency-based grammars to analyze 

and infer both structure and semantic dependencies and relationships between tokens 

in a sentence. Refer to the “Dependency Grammars” subsection under “Grammar” 

in the “Language Syntax and Structure” section of Chapter 1 to refresh your memory. 

Dependency grammars help us annotate sentences with dependency tags, which 

Figure 3-12. Shallow parsed news headline using n-gram based chunking on 
conll2000 data
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are one-to-one mappings between tokens signifying dependencies between them. A 

dependency grammar-based parse tree representation is a labeled and directed tree or 

graph to be more precise. The nodes are always the lexical tokens and the labeled edges 

depict dependency relationships between the heads and their dependents. The labels on 

the edges indicate the grammatical role of the dependent.

The basic principle behind a dependency grammar is that in any sentence in the 

language, all words except one have some relationship or dependency on other words 

in the sentence. The word that has no dependency is called the root of the sentence. The 

verb is taken as the root of the sentence in most cases. All the other words are directly or 

indirectly linked to the root verb using links , which are the dependencies. If we wanted 

to draw the dependency syntax tree for our sentence, “The brown fox is quick and he is 

jumping over the lazy dog,” we would have the structure depicted in Figure 3-13.

These dependency relationships each have their own meanings and are part of a  

list of universal dependency types. This is discussed in an original paper, entitled 

“Universal Stanford Dependencies: A Cross-Linguistic Typology,” by de Marneffe et al., 

2014. You can check out the exhaustive list of dependency types and their meanings at 

http://universaldependencies.org/u/dep/index.html. Just to refresh your memory, 

if we observe some of these dependencies, it is not too hard to understand them.

Figure 3-13. A dependency parse tree for a sample sentence
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• The dependency tag det is pretty intuitive — it denotes the determiner 

relationship between a nominal head and the determiner. Usually, 

the word with POS tag DET will also have the det dependency tag 

relation. Examples include fox → the and dog → the.

• The dependency tag amod stands for adjectival modifier and stands 

for any adjective that modifies the meaning of a noun. Examples 

include fox → brown and dog → lazy.

• The dependency tag nsubj stands for an entity that acts as a subject 

or agent in a clause. Examples include is → fox and jumping → he.

• The dependencies cc and conj have more to do with linkages related 

to words connected by coordinating conjunctions. Examples include 

is → and and is → jumping.

• The dependency tag aux indicates the auxiliary or secondary verb in 

the clause. Example: jumping → is.

• The dependency tag acomp stands for adjective complement  

and acts as the complement or object to a verb in the sentence. 

Example: is → quick.

• The dependency tag prep denotes a prepositional modifier, which 

usually modifies the meaning of a noun, verb, adjective, or preposition. 

Usually, this representation is used for prepositions having a noun or 

noun phrase complement. Example: jumping → over.

• The dependency tag pobj is used to denote the object of a 

preposition. This is usually the head of a noun phrase following a 

preposition in the sentence. Example: over → dog.

Let’s look at some ways in which we can build dependency parsers for parsing 

unstructured text!

 Building Dependency Parsers

We use a couple of state-of-the-art libraries, including NLTK and spaCy, to generate 

dependency-based parse trees and test them on our sample news headline. SpaCy had 

two types of English dependency parsers based on what language models you use. You can 

find more details at https://spacy.io/api/annotation#section-dependency- parsing. 
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Based on language models, you can use the Universal Dependencies Scheme or the 

CLEAR Style Dependency Scheme, also available in NLP4Jnow. We now leverage spaCy 

and print the dependencies for each token in our news headline.

dependency_pattern = '{left}<---{word}[{w_type}]--->{right}\n--------'

for token in sentence_nlp:

    print(dependency_pattern.format(word=token.orth_,

                                  w_type=token.dep_,

                                  left=[t.orth_

                                            for t

                                            in token.lefts],

                                  right=[t.orth_

                                             for t

                                             in token.rights]))

[]<---US[nsubj]--->[]

--------

['US']<---unveils[ROOT]--->['supercomputer', ',', 'beats', '.']

--------

[]<---world[poss]--->["'s"]

--------

[]<---'s[case]--->[]

--------

[]<---most[advmod]--->[]

--------

['most']<---powerful[amod]--->[]

--------

['world', 'powerful']<---supercomputer[dobj]--->[]

--------

[]<---,[punct]--->[]

--------

[]<---beats[conj]--->['China']

--------

[]<---China[dobj]--->[]

--------

[]<---.[punct]--->[]

--------
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This output gives us each token and its dependency type. The left arrow points to the 

dependencies on its left and the right arrow points to the dependencies on its right. It 

is evident that the verb “beats” is the root since it doesn’t have any other dependencies 

as compared to the other tokens. To learn more about each annotation, you can always 

refer to the CLEAR dependency scheme at https://emorynlp.github.io/nlp4j/

components/dependency-parsing.html. We can also visualize these dependencies in a 

better way using the following code. See Figure 3-14.

from spacy import displacy

displacy.render(sentence_nlp, jupyter=True,

                options={'distance': 110,

                         'arrow_stroke': 2,

                         'arrow_width': 8})

You can also leverage NLTK and the Stanford Dependency Parser to visualize and 

build the dependency tree. We showcase the dependency tree in its raw and annotated 

forms. We start by building the annotated dependency tree and showing it using 

Graphviz. See Figure 3-15.

from nltk.parse.stanford import StanfordDependencyParser

sdp = StanfordDependencyParser(path_to_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/

stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar')

Figure 3-14. Visualizing our news headline dependency tree using spaCy
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# perform dependency parsing

result = list(sdp.raw_parse(sentence))[0]

# generate annotated dependency parse tree

result

Figure 3-15. Visualizing our news headline annotated dependency tree using 
NLTK and the Stanford Dependency Parser
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We can also look at the actual dependency components in the form of triplets using 

the following code snippet.

# generate dependency triples

[item for item in result.triples()]

[(('beats', 'VBZ'), 'ccomp', ('unveils', 'VBZ')),

 (('unveils', 'VBZ'), 'nsubj', ('US', 'NNP')),

 (('unveils', 'VBZ'), 'dobj', ('supercomputer', 'NN')),

 (('supercomputer', 'NN'), 'nmod:poss', ('world', 'NN')),

 (('world', 'NN'), 'case', ("'s", 'POS')),

 (('supercomputer', 'NN'), 'amod', ('powerful', 'JJ')),

 (('powerful', 'JJ'), 'advmod', ('most', 'RBS')),

 (('beats', 'VBZ'), 'nsubj', ('China', 'NNP'))]

This gives us a detailed view into each token and the dependency relationships 

between tokens. Let’s build and visualize the raw dependency tree now. See Figure 3-16.

# print simple dependency parse tree

dep_tree = result.tree()

print(dep_tree)

(beats (unveils US (supercomputer (world 's) (powerful most))) China)

# visualize simple dependency parse tree

dep_tree

Figure 3-16. Visualizing our news headline raw dependency tree using NLTK and 
Stanford Dependency Parser
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Notice the similarities with the tree we obtained earlier in Figure 3-15. The 

annotations help with understanding the type of dependency among the different 

tokens. You can also see how easily we can generate dependency parse trees for 

sentences and analyze and understand relationships and dependencies among the 

tokens. The Stanford Parser is quite stable and robust. It integrates well with NLTK. We 

recommend using the NLTK or spaCy parsers, as both of them are quite good.

 Constituency Parsing
Constituent based grammars are used to analyze and determine the constituents that 

a sentence is composed of. Besides determining the constituents, another important 

objective is to determine the internal structure of these constituents and how they link 

to each other. There are usually several rules for different types of phrases based on the 

type of components they can contain and we can use them to build parse trees. Refer to 

the “Constituency Grammars” subsection under “Grammar” in the “Language Syntax 

and Structure” section of Chapter 1 to refresh your memory and look at some examples 

of sample parse trees.

In general, constituency based grammar helps specify how we can break a sentence 

into various constituents. Once that is done, it helps in breaking down those constituents 

into further subdivisions; this process repeats until we reach the level of individual 

tokens or words. Typically, these grammar types can be used to model or represent the 

internal structure of sentences in terms of a hierarchically ordered structure of their 

constituents. Each word usually belongs to a specific lexical category in the case and 

forms the head word of different phrases. These phrases are formed based on rules 

called phrase structure rules.

Phrase structure rules form the core of constituency grammars, because they talk 

about syntax and rules that govern the hierarchy and ordering of the various constituents 

in the sentences. These rules cater to two things primarily:

• They determine what words are used to construct the phrases or 

constituents.

• They determine how we need to order these constituents.

The generic representation of a phrase structure rule is S → AB , which depicts that 

the structure S consists of constituents A and B , and the ordering is A followed by B . 

While there are several rules (refer to Chapter 1 if you want to dive deeper), the most 
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important rule describes how to divide a sentence or a clause. The phrase structure 

rule denotes a binary division for a sentence or a clause as S → NP VP, where S is the 

sentence or clause, and it is divided into the subject, denoted by the noun phrase (NP) 

and the predicate, denoted by the verb phrase (VP).

These grammars have various production rules and usually a context free  

grammar (CFG) or Phrase Structured Grammar is sufficient for this. A constituency 

parser can be built based on such grammars/rules, which are usually collectively 

available as context-free grammar (CFG) or phrase-structured grammar. The parser will 

process input sentences according to these rules and help in building a parse tree.  

A sample tree is depicted in Figure 3-17.

The parser brings the grammar to life and can be said to be a procedural 

interpretation of the grammar. There are various types of parsing algorithms some of 

which are mentioned as follows:

• Recursive Descent parsing

• Shift Reduce parsing

• Chart parsing

• Bottom-up parsing

Figure 3-17. An example of constituency parsing showing a nested hierarchical 
structure
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• Top-down parsing

• PCFG parsing

Going through these in detail would be impossible in the current scope. However, 

NLTK provides some excellent information on them at http://www.nltk.org/book/

ch08.html in their official book. We describe some of these parsers briefly and look at 

PCFG parsing in detail when we implement our own parser later.

• Recursive Descent parsing usually follows a top-down parsing 

approach; it reads in tokens from the input sentence and tries to 

match them with the terminals from the grammar production rules. 

It keeps looking ahead by one token and advances the input read 

pointer each time it gets a match.

• Shift Reduce parsing follows a bottom-up parsing approach where 

it finds sequences of tokens (words/phrases) that correspond to the 

right side of grammar productions and then replaces it with the left 

side for that rule. This process continues until the whole sentence is 

reduced to give us a parse tree.

• Chart parsing uses dynamic programming to store intermediate 

results and reuses them when needed to get significant efficiency 

gains. In this case, chart parsers store partial solutions and look them 

up when needed to get to the complete solution.

 Building Constituency Parsers

We will be using NLTK and the Stanford Parser to generate parse trees since they are 

state-of-the-art and work very well.

Prerequisites download the official stanford parser from http://nlp.
stanford.edu/software/stanford-parser-full-2015-04-20.zip, 
which seems to work quite well. You can try a later version by going to http://
nlp.stanford.edu/software/lex-parser.shtml#Download and checking 
the release history section. after downloading, unzip it to a known location in your 
filesystem. once you’re done, you are now ready to use the parser from nLtK, 
which we will be exploring shortly.
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The Stanford Parser generally uses a PCFG (probabilistic context-free grammar) 

parser. A PCFG is a context-free grammar that associates a probability with each of its 

production rules. The probability of a parse tree generated from a PCFG is simply the 

production of the individual probabilities of the productions used to generate it. Let’s 

put this parser to action now! See Figure 3-18.

# set java path

import os

java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'

os.environ['JAVAHOME'] = java_path

# create parser object

from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser.jar',

                     path_to_models_jar='E:/stanford/stanford-parser-

full-2015-04-20/stanford-parser-3.5.2-models.jar')

# get parse tree

result = list(scp.raw_parse(sentence))[0]

# print the constituency parse tree

print(result)

(ROOT

  (SINV

    (S

      (NP (NNP US))

      (VP

        (VBZ unveils)

        (NP

          (NP (NN world) (POS 's))

          (ADJP (RBS most) (JJ powerful))

          (NN supercomputer))))

    (, ,)

    (VP (VBZ beats))

    (NP (NNP China))

    (. .)))
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Figure 3-18. Constituency parsing on our sample news headline

# visualize the parse tree

from IPython.display import display

display(result)

We can see the nested hierarchical structure of the constituents in the preceding 

output as compared to the flat structure in shallow parsing. In case you are wondering 

what SINV means, it represents an inverted declarative sentence, i.e. one in which the 

subject follows the tensed or modal verb. Refer to the “Penn Treebank Reference” at 

https://web.archive.org/web/20130517134339/http://bulba.sdsu.edu/jeanette/

thesis/PennTags.html as needed to look up other tags.

There are various ways that you can build your own constituency parsers, including 

creating your own CFG production rules and then using a parser to use that grammar. To 

build your own CFG, you can use the nltk.CFG.fromstring function to feed in your own 

production rules and then use parsers like ChartParser or RecursiveDescentParser, 

which both belong to the NLTK package. Feel free to build some toy grammars and play 

around with these parsers.

We now look at a way to build a constituency parser that scales well and is efficient. 

The problem with regular CFG parsers like chart and recursive descent parsers is that 

they can get easily overwhelmed by the sheer number of total possible parses and can 
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become extremely slow. This is where weighted grammars like PCFG (Probabilistic 

Context Free Grammar) and probabilistic parsers like the Viterbi parser prove to be more 

effective.

A PCFG is a context free grammar that associates a probability with each of its 

production rules. The probability of a parse tree generated from a PCFG is simply the 

production of the individual probabilities of the productions that were used to generate 

it. We will use NLTK’s ViterbiParser to train a parser on the treebank corpus, which 

provides annotated parse trees for each sentence in the corpus. This parser is a bottom- 

up PCFG parser that uses dynamic programming to find the most likely parse at each 

step. We start our process of building our own parser by loading the necessary training 

data and dependencies.

import nltk

from nltk.grammar import Nonterminal

from nltk.corpus import treebank

# load and view training data

training_set = treebank.parsed_sents()

print(training_set[1])

(S

  (NP-SBJ (NNP Mr.) (NNP Vinken))

  (VP

    (VBZ is)

    (NP-PRD

      (NP (NN chairman))

      (PP

        (IN of)

        (NP

          (NP (NNP Elsevier) (NNP N.V.))

          (, ,)

          (NP (DT the) (NNP Dutch) (VBG publishing) (NN group))))))

  (. .))

Chapter 3  proCessing and Understanding text 



196

Now we build the production rules for our grammar by extracting the productions 

from the tagged and annotated training sentences and adding them.

# extract the productions for all annotated training sentences

treebank_productions = list(

                        set(production

                            for sent in training_set

                            for production in sent.productions()

                        )

                    )

# view some production rules

treebank_productions[0:10]

[VP -> VB NP-2 PP-CLR ADVP-MNR,

 NNS -> 'foods',

 NNP -> 'Joanne',

 JJ -> 'state-owned',

 VP -> VBN PP-LOC,

 NN -> 'turmoil',

 SBAR -> WHNP-240 S,

 QP -> DT VBN CD TO CD,

 NN -> 'cultivation',

 NNP -> 'Graham']

# add productions for each word, POS tag

for word, tag in treebank.tagged_words():

    t = nltk.Tree.fromstring("("+ tag + " " + word  +")")

    for production in t.productions():

        treebank_productions.append(production)

# build the PCFG based grammar

treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'), treebank_

productions)

Now that we have our necessary grammar with production rules, we create our 

parser using the following snippet by training it on the grammar and then try to evaluate 

it on our sample news headline.
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# build the parser

viterbi_parser = nltk.ViterbiParser(treebank_grammar)

# get sample sentence tokens

tokens = nltk.word_tokenize(sentence)

# get parse tree for sample sentence

result = list(viterbi_parser.parse(tokens))

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-87-2b0fd95b2fbd> in <module>()

     16

     17 # get parse tree for sample sentence

---> 18 result = list(viterbi_parser.parse(tokens))

ValueError: Grammar does not cover some of the input words: "'unveils', 

'beats'".

Unfortunately, we get an error when we try to parse our sample sentence tokens with 

our newly built parser. The reason is quite clear from the error that some of the words in 

our sample sentence are not covered by the Treebank-based grammar because they are 

not present in our treebank corpus. Since this constituency based grammar uses POS 

tags and phrase tags to build the tree based on the training data, we will add the token 

and POS tags for our sample sentence in our grammar and rebuild the parser.

# get tokens and their POS tags and check it

tagged_sent = nltk.pos_tag(nltk.word_tokenize(sentence))

print(tagged_sent)

[('US', 'NNP'), ('unveils', 'JJ'), ('world', 'NN'), ("'s", 'POS'), ('most', 

'RBS'), ('powerful', 'JJ'), ('supercomputer', 'NN'), (',', ','), ('beats', 

'VBZ'), ('China', 'NNP'), ('.', '.')]

# extend productions for sample sentence tokens

for word, tag in tagged_sent:

    t = nltk.Tree.fromstring("("+ tag + " " + word  +")")

    for production in t.productions():

        treebank_productions.append(production)
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# rebuild grammar

treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),

                                         treebank_productions)

# rebuild parser

viterbi_parser = nltk.ViterbiParser(treebank_grammar)

# get parse tree for sample sentence

result = list(viterbi_parser.parse(tokens))[0]

# print parse tree

print(result)

(S

  (NP-SBJ-2

    (NP (NNP US))

    (NP

      (NP (JJ unveils) (NN world) (POS 's))

      (JJS most)

      (JJ powerful)

      (NN supercomputer)))

  (, ,)

  (VP (VBZ beats) (NP-TTL (NNP China)))

  (. .)) (p=5.08954e-43)

# visualize parse tree

result

Figure 3-19. Constituency parse tree for our sample news headline based on 
Treebank annotations
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We are now able to successfully generate the parse tree for our sample news 

headline. You can see the visual representation of the tree in Figure 3-19. Remember 

that this is a probabilistic PCFG parser and you can see the overall probability of this 

tree mentioned in the output when we printed our parse tree. The notations of the tags 

followed here are all based on the Treebank annotations discussed earlier. Thus, this 

shows us how to build our own constituency-based parser.

 Summary
We have covered a lot concepts, techniques, and implementations with regard to text 

processing and wrangling, syntactic analysis, and understanding text data. A lot of 

the concepts from Chapter 1 should seem more relevant and clear now that we have 

implemented them on real examples. The content covered in this chapter is two-fold.

We looked at concepts related to text processing and wrangling. You now know 

the importance of processing and normalizing text and, as we move on to future 

chapters, you will see why it becomes more and more important to have well processed 

and standardized textual data. We have covered a wide variety of techniques for 

wrangling including text cleaning and tokenization, removing special characters, case 

conversions, and expanding contractions. We also looked at techniques for correcting 

text, like spelling corrections. We also built our own spelling corrector and contraction 

expander in the same context. We found a way to leverage WordNet and correct words 

with repeated characters. Finally, we looked at various stemming and lemmatization 

techniques and learned about ways to remove irrelevant words, known as stopwords.

The next part of our chapter was dedicated to analyzing and understanding text 

syntax and structure. We revisited concepts from Chapter 1, including POS tagging, 

shallow parsing, dependency parsing, and constituency parsing. You now know how 

to use taggers and parsers on real-world textual data and how to implement your own 

taggers and parsers. We dive more into analyzing and deriving insights from text in 

future chapters using various machine learning techniques including classification, 

clustering, and summarization. Stay tuned!
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CHAPTER 4

Feature Engineering 
for Text Representation
In the previous chapters, we saw how to understand, process, and wrangle text data. 

However, all machine learning or deep learning models are limited because they 

cannot understand text data directly and they only understand numeric representations 

of features as inputs. In this chapter, we look at how to work with text data, which is 

definitely one of the most abundant sources of unstructured data. Text data usually 

consists of documents that can represent words, sentences, or even paragraphs of 

free-flowing text. The inherent lack of structure (no neatly formatted data columns!) 

and noisy nature of textual data makes it harder for machine learning methods to 

directly work on raw text data. Hence, in this chapter, we follow a hands-on approach 

to exploring some of the most popular and effective strategies for extracting meaningful 

features from text data. These features can then be used to represent text efficiently, 

which can be further leveraged in building machine learning or deep learning models 

easily to solve complex tasks.

Feature engineering is very important and is often known as the secret sauce to 

creating superior and better performing machine learning models. Just one excellent 

feature could be your ticket to winning a Kaggle challenge or getting more returns based 

on your forecast! Feature engineering is even more important for unstructured, textual 

data because we need to convert free-flowing text into some numeric representations, 

which can then be understood by machine learning algorithms. Even with the advent 

of automated feature engineering capabilities, you still need to understand the core 

concepts behind different feature engineering strategies before applying them as black 

box models. Always remember, “If you are given a box of tools to repair a house, you 

should know when to use a power drill and when to use a hammer!” .
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In this chapter, we cover a wide variety of techniques for feature engineering to 

represent text data. We look at traditional models as well as newer models based on deep 

learning. We cover the following techniques in this chapter:

• Bag of Words model

• Bag of N-Grams model

• TF-IDF model

• Similarity features

• Topic models

• Word2Vec

• GloVe

• FastText

We look at important concepts pertaining to each feature engineering technique and 

learn how the model is used to represent text data. We also showcase full-fledged hands- 

on examples, because learning by doing works best! All the code examples showcased in 

this chapter are available on the book’s official GitHub repository, which you can access 

at https://github.com/dipanjanS/text-analytics-with-python/tree/master/New- 

Second- Edition.

 Understanding Text Data
I’m sure must have a fair idea of what textual data is, considering we covered three 

chapters on it! Do remember you can always have text data in the form of structured 

data attributes, but usually those fall under the umbrella of structured, categorical data. 

In this scenario, we are talking about free-flowing text in the form of words, phrases, 

sentences, and entire documents. Essentially, we do have some syntactic structure. 

Words make phrases, which in turn make sentences, which in turn make paragraphs. 

However, there is no inherent structure to text documents because you can have a 

wide variety of words that can vary across documents and each sentence will also be of 

variable length as compared to a fixed number of data dimensions in structured datasets. 

This chapter is a perfect example of text data! An important question might be how can 

we represent text data so it’s easy for machines to comprehend and understand?
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A vector space model is a useful concept when dealing with textual data and is very 

popular in information retrieval and document ranking. The vector space model is also 

called the term vector model and is defined as a mathematical and algebraic model for 

transforming and representing text documents as numeric vectors of specific terms, which 

form the vector dimensions. Mathematically, this can be defined as follows. Consider 

we have a document D in a document vector space VS. The number of dimensions or 

columns for each document will be the total number of distinct terms or words for all 

documents in the vector space. Hence the vector space can be denoted as follows:

VS = {W1, W2,  ... , Wn}

where there are n distinct words across all documents. Now we can represent document 

D in this vector space as follows:

D = {wD1, wD2,  ... , wDn}

where wDn denotes the weight for word n in document D. This weight is a numeric value 

and can be anything ranging from the frequency of that word in the document, the 

average frequency of occurrence, embedding weights, or even the TF-IDF weight, which 

we discuss shortly.

An important point to remember about feature extraction and engineering is that 

once we build a feature engineering model using transformations and mathematical 

operations, we need to make sure we use the same process when extracting features 

from new documents to be predicted and not rebuild the whole algorithm again based 

on the new documents.

 Building a Text Corpus
We need a text corpus to work on and demonstrate different feature engineering and 

representation methodologies. To keep things simple and easy to understand, we build a 

simple text corpus in this section. To get started, load the following dependencies in your 

Jupyter notebook.

import pandas as pd

import numpy as np

import re
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import nltk

import matplotlib.pyplot as plt

pd.options.display.max_colwidth = 200

%matplotlib inline

Let’s now build a sample corpus of documents on which we will run most of our 

analyses in this chapter. A corpus is typically a collection of text documents usually 

belonging to one or more subjects or topics. The following code helps us create this 

corpus. You can see this sample text corpus in the output in Figure 4-1.

# building a corpus of documents

corpus = ['The sky is blue and beautiful.',

          'Love this blue and beautiful sky!',

          'The quick brown fox jumps over the lazy dog.',

           "A king's breakfast has sausages, ham, bacon, eggs, toast and beans",

          'I love green eggs, ham, sausages and bacon!',

          'The brown fox is quick and the blue dog is lazy!',

          'The sky is very blue and the sky is very beautiful today',

          'The dog is lazy but the brown fox is quick!'

]

labels = ['weather', 'weather', 'animals', 'food', 'food', 'animals', 

'weather', 'animals']

corpus = np.array(corpus)

corpus_df = pd.DataFrame({'Document': corpus, 'Category': labels})

corpus_df = corpus_df[['Document', 'Category']]

corpus_df
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Figure 4-1 shows that we have taken a few sample text documents belonging to 

different categories for our toy corpus. Before we talk about feature engineering, we 

need to do some data preprocessing and wrangling to remove unnecessary characters, 

symbols, and tokens.

 Preprocessing Our Text Corpus
There can be multiple ways of cleaning and preprocessing textual data. In the following 

points, we highlight some of the most important ones that are used heavily in Natural 

Language Processing (NLP) pipelines. A lot of this will be a refresher if you have read 

Chapter 3.

• Removing tags: Our text often contains unnecessary content like 

HTML tags, which do not add much value when analyzing text. The 

BeautifulSoup library does an excellent job in providing necessary 

functions for this.

• Removing accented characters: In any text corpus, especially if you 

are dealing with the English language, you might be dealing with 

accented characters/letters. Hence, you need to make sure that these 

characters are converted and standardized into ASCII characters.  

A simple example is converting é to e.

Figure 4-1. Our sample text corpus
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• Expanding contractions: In the English language, contractions 

are basically shortened versions of words or syllables, created by 

removing specific letters and sounds. Examples include do not to 

don’t and I would to I’d. Converting each contraction to its expanded, 

original form often helps with text standardization.

• Removing special characters: Special characters and symbols that 

are usually non alphanumeric characters often add to the extra noise 

in unstructured text. More often than not, simple regular expressions 

(regexes) can be used to achieve this.

• Stemming and lemmatization: Word stems are the base form of 

possible words that can be created by attaching affixes like prefixes 

and suffixes to the stem to create new words. This is known as 

inflection. The reverse process of obtaining the base form of a word 

is known as stemming. A simple example are the words watches, 

watching, and watched. They have the word root stem watch as the 

base form. Lemmatization is very similar to stemming, where we 

remove word affixes to get to the base form of a word. However, 

the base form in this case is known as the root word but not the 

root stem. The difference being that the root word is always a 

lexicographically correct word (present in the dictionary) but the root 

stem may not always be correct.

• Removing stopwords: Words that have little or no significance, 

especially when constructing meaningful features from text, are 

known as stopwords. These are usually words that end up having the 

maximum frequency if you do a simple term or word frequency in 

a corpus. Words like “a,” “an,” “the,” and so on are considered to be 

stopwords. There is no universal stopword list, but we use a standard 

English language stopwords list from NLTK. You can also add your 

own domain specific stopwords as needed.

You can also do other standard operations like tokenization, removing extra 

whitespace, text lowercasing and more advanced operations like spelling corrections, 

grammatical error corrections, removing repeated characters, and so on. If you are 

interested, check out the detailed section on text preprocessing and wrangling in 

Chapter 3.
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Since the focus of this article is on feature engineering, we build a simple text 

preprocessor that focuses on removing special characters, extra whitespace, digits, 

stopwords, and then lowercasing the text corpus.

wpt = nltk.WordPunctTokenizer()

stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

    # lowercase and remove special characters\whitespace

    doc = re.sub(r'[^a-zA-Z\s]', '', doc, re.I|re.A)

    doc = doc.lower()

    doc = doc.strip()

    # tokenize document

    tokens = wpt.tokenize(doc)

    # filter stopwords out of document

    filtered_tokens = [token for token in tokens if token not in stop_words]

    # re-create document from filtered tokens

    doc = ' '.join(filtered_tokens)

    return doc

normalize_corpus = np.vectorize(normalize_document)

Once we have our basic preprocessing pipeline ready, let’s apply it to our sample 

corpus so we can use it for feature engineering.

norm_corpus = normalize_corpus(corpus)

norm_corpus

array(['sky blue beautiful', 'love blue beautiful sky',

       'quick brown fox jumps lazy dog',

       'kings breakfast sausages ham bacon eggs toast beans',

       'love green eggs ham sausages bacon',

       'brown fox quick blue dog lazy', 'sky blue sky beautiful today',

       'dog lazy brown fox quick'], dtype='<U51')

This output should give you a clear view of how each of our sample documents look 

after preprocessing. Let’s explore various feature engineering techniques now!
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 Traditional Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data belong to 

a family of models popularly known as the Bag of Words model. This includes term 

frequencies, TF-IDF (term frequency-inverse document frequency), N-grams, topic 

models, and so on. While they are effective methods for extracting features from text, 

due to the inherent nature of the model being just a bag of unstructured words, we lose 

additional information like the semantics, structure, sequence, and context around 

nearby words in each text document. There are more advanced models that take care of 

these aspects and we cover them in a subsequent section in this chapter. The traditional 

feature engineering models are built using mathematical and statistical methodologies. 

We look at some of these models and apply them to our sample corpus.

 Bag of Words Model
This is perhaps the most simple vector space representational model for unstructured 

text. A vector space model is simply a mathematical model to represent unstructured 

text (or any other data) as numeric vectors, such that each dimension of the vector is 

a specific feature/attribute. The Bag of Words model represents each text document 

as a numeric vector where each dimension is a specific word from the corpus and the 

value could be its frequency in the document, occurrence (denoted by 1 or 0), or even 

weighted values. The model’s name is such because each document is represented 

literally as a bag of its own words, disregarding word order, sequences, and grammar.

from sklearn.feature_extraction.text import CountVectorizer

# get bag of words features in sparse format

cv = CountVectorizer(min_df=0., max_df=1.)

cv_matrix = cv.fit_transform(norm_corpus)

cv_matrix

<8x20 sparse matrix of type '<class 'numpy.int64'>'

      with 42 stored elements in Compressed Sparse Row format>

# view non-zero feature positions in the sparse matrix

print(cv_matrix)
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  (0, 2)     1

  (0, 3)     1

  (0, 17)    1

  (1, 14)    1

  ...

  ...

  (6, 17)    2

  (7, 6)     1

  (7, 13)    1

  (7, 8)     1

  (7, 5)     1

  (7, 15)    1

The feature matrix is traditionally represented as a sparse matrix since the number 

of features increases phenomenally with each document considering each distinct word 

becomes a feature. The preceding output tells us the total count for each (x, y) pair. Here, 

x represents a document and y represents a specific word/feature and the value is the 

number of times y occurs in x. We can leverage the following code to view the output in a 

dense matrix representation.

# view dense representation

# warning might give a memory error if data is too big

cv_matrix = cv_matrix.toarray()

cv_matrix

array([[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

       [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],

       [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0],

       [1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0],

       [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0],

       [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],

       [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1],

        [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]], 

dtype=int64)
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Thus, you can see that these documents have been converted into numeric vectors 

so that each document is represented by one vector (row) in the feature matrix and each 

column represents a unique word as a feature. The following code represents this in a 

more easy to understand format. See Figure 4-2.

# get all unique words in the corpus

vocab = cv.get_feature_names()

# show document feature vectors

pd.DataFrame(cv_matrix, columns=vocab)

Figure 4-2. Our Bag of Words model based document feature vectors

Figure 4-2 should make things more clear! You can clearly see that each column 

or dimension in the feature vectors represents a word from the corpus and each row 

represents one of our documents. The value in any cell represents the number of times 

that word (represented by column) occurs in the specific document (represented by 

row). A simple example would be the first document has the words blue, beautiful, and 

sky occurring once each and hence the corresponding features have a value of 1 for the 

first row in the preceding output. Hence, if a corpus of documents consists of N unique 

words across all the documents, we would have an N-dimensional vector for each of  

the documents.

 Bag of N-Grams Model
A word is just a single token, often known as a unigram or 1-gram. We already know that 

the Bag of Words model doesn’t consider the order of words. But what if we also wanted 

to take into account phrases or collection of words that occur in a sequence? N-grams 

help us do that. An N-gram is basically a collection of word tokens from a text document 

such that these tokens are contiguous and occur in a sequence. Bi-grams indicate 
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n-grams of order 2 (two words), tri-grams indicate n-grams of order 3 (three words), and 

so on. The Bag of N-Grams model is just an extension of the Bag of Words model that 

leverages N-gram based features. The following example depicts bi-gram based features 

in each document feature vector. See Figure 4-3.

# you can set the n-gram range to 1,2 to get unigrams as well as bigrams

bv = CountVectorizer(ngram_range=(2,2))

bv_matrix = bv.fit_transform(norm_corpus)

bv_matrix = bv_matrix.toarray()

vocab = bv.get_feature_names()

pd.DataFrame(bv_matrix, columns=vocab)

Figure 4-3. Bi-gram based feature vectors using the Bag of N-Grams model

This gives us feature vectors for our documents, where each feature consists of a 

bi-gram representing a sequence of two words and values represent how many times 

the bi-gram was present for our documents. We encourage you to play around with the 

ngram_range argument. Try out these functions by setting ngram_range to (1, 3) and 

see the outputs!

 TF-IDF Model
There are some potential problems that might arise with the Bag of Words model 

when it is used on large corpora. Since the feature vectors are based on absolute term 

frequencies, there might be some terms that occur frequently across all documents and 

these may tend to overshadow other terms in the feature set. Especially words that don’t 

occur as frequently, but might be more interesting and effective as features to identify 
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specific categories. This is where TF-IDF comes into the picture. TF-IDF stands for term 

frequency-inverse document frequency. It’s a combination of two metrics, term frequency 

(tf ) and inverse document frequency (idf). This technique was originally developed as a 

metric for ranking search engine results based on user queries and has come to be a part 

of information retrieval and text feature extraction.

Let’s formally define TF-IDF now and look at the mathematical representations 

before diving into its implementation. Mathematically, TD-IDF is the product of two 

metrics and can be represented as follows:

 tfidf tf idf= ´  

where term frequency (tf) and inverse-document frequency (idf) represent the two 

metrics we just talked about. Term frequency, denoted by tf, is what we computed in 

the Bag of Words model in the previous section. Term frequency in any document 

vector is denoted by the raw frequency value of that term in a particular document. 

Mathematically it can be represented as follows:

 
tf w D fwD

,( ) =  

where fwD
 denoted frequency for word w in document D, which becomes the term 

frequency (tf ). Sometimes you can also normalize the absolute raw frequency using 

logarithms or averaging the frequency. We use the raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency 

for each term and is computed by dividing the total number of documents in our corpus 

by the document frequency for each term and then applying logarithmic scaling to the 

result. In our implementation, we will be adding 1 to the document frequency for each 

term to indicate that we also have one more document in our corpus, which essentially 

has every term in the vocabulary. This is to prevent potential division by zero errors 

and smoothen the inverse document frequencies. We also add 1 to the result of our idf 

computation to avoid ignoring terms that might have zero idf. Mathematically, our 

implementation for idf can be represented as follows:

 
idf w D

N

df w
,( ) = +

+ ( )
1

1
log
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where idf  (w, D) represents the idf for the term/word w in document D, N represents 

the total number of documents in our corpus, and df (t) represents the number of 

documents in which the term w is present.

Thus, the term frequency-inverse document frequency can be computed by 

multiplying these two measures. The final TF-IDF metric that we will be using is a 

normalized version of the tfidf matrix that we get from the product of tf and idf. We 

will normalize the tfidf matrix by dividing it by the L2 norm of the matrix, also known 

as the Euclidean norm, which is the square root of the sum of the square of each term’s 

tfidf weight. Mathematically we can represent the final tfidf feature vector as follows:

 
tfidf

tfidf

tfidf
=
   

where ∥tfidf∥ represents the Euclidean L2 norm for the tfidf matrix. There are multiple 

variants of this model but they all end up with similar results. Let’s apply this on our 

corpus now!

 Using TfidfTransformer

The following code shows an implementation of getting the tfidf-based feature vectors 

considering we already have our Bag of Words feature vectors from a previous section. 

See Figure 4-4.

from sklearn.feature_extraction.text import TfidfTransformer

tt = TfidfTransformer(norm='l2', use_idf=True)

tt_matrix = tt.fit_transform(cv_matrix)

tt_matrix = tt_matrix.toarray()

vocab = cv.get_feature_names()

pd.DataFrame(np.round(tt_matrix, 2), columns=vocab)
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You can see that we used the L2 norm option in the parameters and made sure we 

smoothen the IDFs to give weight to terms that may have zero IDF so that we do not 

ignore them.

 Using TfidfVectorizer

You don’t always need to generate features beforehand using a Bag of Words or count 

based model before engineering TF-IDF features. The TfidfVectorizer by Scikit-Learn 

enables us to directly compute the tfidf vectors by taking the raw documents as 

input and internally computing the term frequencies as well as the inverse document 

frequencies. This eliminates the need to use CountVectorizer to compute the term 

frequencies based on the Bag of Words model. Support is also present for adding 

n-grams to the feature vectors. We can see the function in action in the following snippet. 

See Figure 4-5.

from sklearn.feature_extraction.text import TfidfVectorizer

tv = TfidfVectorizer(min_df=0., max_df=1., norm='l2',

                     use_idf=True, smooth_idf=True)

tv_matrix = tv.fit_transform(norm_corpus)

tv_matrix = tv_matrix.toarray()

vocab = tv.get_feature_names()

pd.DataFrame(np.round(tv_matrix, 2), columns=vocab)

Figure 4-4. Our TF-IDF model based document feature vectors using 
TfidfTransformer
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You can see that, just like before, we used the L2 norm option in the parameters and 

made sure we smoothened the idfs. You can see from the output that the tfidf feature 

vectors match to the ones we obtained previously.

 Understanding the TF-IDF Model

This section is dedicated to machine learning experts and our curious readers who are 

often interested in how things work behind the scenes! We start by loading the necessary 

dependencies and computing the term frequencies (TF) for our sample corpus. See 

Figure 4-6.

# get unique words as feature names

unique_words = list(set([word for doc in [doc.split() for doc in norm_corpus]

                         for word in doc]))

def_feature_dict = {w: 0 for w in unique_words}

print('Feature Names:', unique_words)

print('Default Feature Dict:', def_feature_dict)

Feature Names: ['lazy', 'fox', 'love', 'jumps', 'sausages', 'blue', 'ham', 

'beautiful', 'brown', 'kings', 'eggs', 'quick', 'bacon', 'breakfast', 

'toast', 'beans', 'green', 'today', 'dog', 'sky']

Default Feature Dict: {'lazy': 0, 'fox': 0, 'kings': 0, 'love': 0, 'jumps': 

0, 'sausages': 0, 'breakfast': 0, 'today': 0, 'brown': 0, 'ham': 0, 

'beautiful': 0, 'green': 0, 'eggs': 0, 'blue': 0, 'bacon': 0, 'toast': 0, 

'beans': 0, 'dog': 0, 'sky': 0, 'quick': 0}

Figure 4-5. Our TF-IDF model based document feature vectors using 
Tfidf Vectorizer
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from collections import Counter

# build bag of words features for each document - term frequencies

bow_features = []

for doc in norm_corpus:

    bow_feature_doc = Counter(doc.split())

    all_features = Counter(def_feature_dict)

    bow_feature_doc.update(all_features)

    bow_features.append(bow_feature_doc)

bow_features = pd.DataFrame(bow_features)

bow_features

Figure 4-6. Constructing count-based Bag of Words features from scratch for our 
corpus

We now compute our document frequencies (DF) for each term based on the 

number of documents in which the term occurs. The following snippet shows how to 

obtain it from our Bag of Words features. See Figure 4-7.

import scipy.sparse as sp

feature_names = list(bow_features.columns)

# build the document frequency matrix

df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)

df = 1 + df # adding 1 to smoothen idf later

# show smoothened document frequencies

pd.DataFrame([df], columns=feature_names)
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This tells us the document frequency (DF) for each term and you can verify it with 

the documents in our sample corpus. Remember that we added 1 to each frequency 

value to smoothen the IDF values later and prevent division by zero errors by assuming 

we have a document (imaginary) that has all the terms once. Thus, if you check in the 

corpus, you will see that “bacon” occurs 2(+1) times, “sky” occurs 3(+1) times, and so on 

considering (+1) for our smoothening.

Now that we have the document frequencies, we compute the inverse document 

frequency (IDF) by using our formula, which we defined earlier. Remember to add 1 to 

the total count of documents in the corpus to add the document, which we had assumed 

earlier to contain all the terms at least once for smoothening the idfs. See Figure 4-8.

# compute inverse document frequencies

total_docs = 1 + len(norm_corpus)

idf = 1.0 + np.log(float(total_docs) / df)

# show smoothened idfs

pd.DataFrame([np.round(idf, 2)], columns=feature_names)

Figure 4-7. Document frequencies for each feature in our corpus

Figure 4-8. Inverse document frequencies for each feature in our corpus

Thus, we can see that Figure 4-8 depicts the inverse document frequencies 

(smoothed) for each feature in our corpus. We now convert this into a matrix for easier 

operations when we compute the overall TF-IDF score later. See Figure 4-9.

# compute idf diagonal matrix

total_features = bow_features.shape[1]

idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)

idf_dense = idf_diag.todense()

# print the idf diagonal matrix

pd.DataFrame(np.round(idf_dense, 2))
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You can now see the idf matrix that we created based on our mathematical 

equation. We also convert it to a diagonal matrix, which will be helpful later when we 

want to compute the product with term frequency. Now that we have our TFs and IDFs, 

we can compute the raw TF-IDF feature matrix using matrix multiplication, as depicted 

in the following snippet. See Figure 4-10.

# compute tfidf feature matrix

tf = np.array(bow_features, dtype='float64')

tfidf = tf * idf

# view raw tfidf feature matrix

pd.DataFrame(np.round(tfidf, 2), columns=feature_names)

Figure 4-9. Constructing an n-verse document frequency diagonal matrix for each 
feature in our corpus
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We now have our tfidf feature matrix, but wait! We still have to divide this by the 

L2 norm, if you remember from our equations depicted earlier. The following snippet 

computes the tfidf norms for each document and then divides the tfidf weights by the 

norm to give us the final desired tfidf matrix. See Figure 4-11.

from numpy.linalg import norm

# compute L2 norms

norms = norm(tfidf, axis=1)

# print norms for each document

print (np.round(norms, 3))

[ 3.013  3.672  4.761  6.534  5.319  4.35   5.019  4.049]

# compute normalized tfidf

norm_tfidf = tfidf / norms[:, None]

# show final tfidf feature matrix

pd.DataFrame(np.round(norm_tfidf, 2), columns=feature_names)

Figure 4-10. Constructing the raw TF-IDF matrix from the TF and IDF 
components

Figure 4-11. Constructing the final normalized TF-IDF matrix
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If you compare obtained tfidf feature matrix in Figure 4-11 for the documents in our 

corpus to the feature matrix obtained using TfidfTransformer or TfidfVectorizer 

earlier. You will notice they are exactly the same, thus verifying that our mathematical 

implementation was correct. In fact, this very same implementation is adopted by Scikit- 

Learn behind the scenes using some more optimizations.

 Extracting Features for New Documents
Suppose you built a machine learning model to classify and categorize news articles 

and it is in currently in production. How can you generate features for completely new 

documents so that you can feed it into the machine learning models for prediction? The 

Scikit-Learn API provides the transform(...) function for the vectorizers we discussed 

previously and we can leverage it to get features for a completely new document that was 

not present in our corpus (when we trained our model). See Figure 4-12.

new_doc = 'the sky is green today'

pd.DataFrame(np.round(tv.transform([new_doc]).toarray(), 2),

             columns=tv.get_feature_names())

Figure 4-12. Generating the TF-IDF feature vector for a completely new document

Thus, always leverage the fit_transform(...) function to build a feature matrix on 

all documents in your corpus. This typically becomes the training feature set on which 

you build and train your predictive or other machine learning models. Once ready, 

leverage the transform(...) function to generate feature vectors of new documents. 

This can then be fed into your trained models to generate insights as needed.

 Document Similarity
Document similarity is the process of using a distance or similarity based metric that 

can identify how similar a text document is to any other document(s) based on features 

extracted from the documents, like Bag of Words or TF-IDF. Thus you can see that we can 

build on top of the TF-IDF-based features we engineered in the previous section and use 

them to generate new features. Domains such as search engines, document clustering, 

and information retrieval can be leveraged using these similarity based features.
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Pairwise document similarity in a corpus involves computing document similarity 

for each pair of documents in a corpus. Thus, if you have C documents in a corpus, 

you would end up with a C x C matrix, such that each row and column represents the 

similarity score for a pair of documents. This represents the indices at the row and 

column, respectively. There are several similarity and distance metrics that are used 

to compute document similarity. These include cosine distance/similarity, Euclidean 

distance, manhattan distance, BM25 similarity, jaccard distance, and so on. In our 

analysis, we use perhaps the most popular and widely used similarity metrics—cosine 

similarity and compare pairwise document similarity—based on their TF-IDF feature 

vectors. See Figure 4-13.

from sklearn.metrics.pairwise import cosine_similarity

similarity_matrix = cosine_similarity(tv_matrix)

similarity_df = pd.DataFrame(similarity_matrix)

similarity_df

Figure 4-13. Pairwise document similarity matrix (cosine similarity)

Cosine similarity gives us a metric representing the cosine of the angle between the 

feature vector representations of two text documents. The smaller the angle between the 

documents, the closer and more similar they are, as depicted with the scores in Figure 4- 

13 and with some sample document vectors in Figure 4-14.
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Looking closely at the similarity matrix in Figure 4-13, you can clearly see that 

documents 0, 1, and 6 and 2, 5, and 7 are very similar to one another, whereas 

documents 3 and 4 are slightly similar to each other. This must indicate these similar 

documents have some similar features. This is a perfect example of grouping or 

clustering that can be solved by unsupervised learning, especially when you are dealing 

with huge corpora of millions of text documents.

 Document Clustering with Similarity Features

We have been building a lot of features, but let’s use some of them now for a real-world 

problem of grouping similar documents! Clustering leverages unsupervised learning to 

group data points (documents in this scenario) into groups or clusters. We leverage an 

unsupervised hierarchical clustering algorithm here to try to group similar documents 

from our toy corpus by leveraging the document similarity features we generated earlier.

There are two types of hierarchical clustering algorithms—agglomerative and 

divisive. We use an agglomerative clustering algorithm, which is hierarchical clustering 

using a bottom-up approach, i.e., each observation or document starts in its own cluster 

and clusters are successively merged using a distance metric that measures distances 

between data points and a linkage merge criterion. A sample depiction is shown in 

Figure 4-15.

Figure 4-14. Cosine similarity depictions for text document feature vectors
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The selection of the linkage criterion governs the merge strategy. Some examples of 

linkage criteria are Ward, Complete linkage, Average linkage, and so on. This criterion is 

very useful for choosing the pair of clusters (individual documents at the lowest step and 

clusters in higher steps) to merge at each step, which is based on the optimal value of 

an objective function. We choose the Ward’s minimum variance method as our linkage 

criterion to minimize total within-cluster variance. Hence, at each step, we find the 

pair of clusters that leads to the minimum increase in total within-cluster variance after 

merging. Since we already have our similarity features, let’s build the linkage matrix on 

our sample documents. See Figure 4-16.

from scipy.cluster.hierarchy import dendrogram, linkage

Z = linkage(similarity_matrix, 'ward')

pd.DataFrame(Z, columns=['Document\Cluster 1', 'Document\Cluster 2',

                         'Distance', 'Cluster Size'], dtype='object')

Figure 4-15. Agglomerative hierarchical clustering
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If you closely look at the linkage matrix in Figure 4-16, you can see that each step 

(row) of the linkage matrix tells us which data points (or clusters) were merged. If you 

have n data points, the linkage matrix, Z will have a shape of (n − 1) × 4 where Z[i] 

will tell us which clusters were merged at step i. Each row has four elements; the first 

two elements are either data point identifiers or cluster labels (in the later parts of the 

matrix once multiple data points are merged), the third element is the cluster distance 

between the first two elements (either data points or clusters), and the last element is 

the total number of elements/data points in the cluster once the merge is complete. 

We recommend you refer to the SciPy documentation, which explains this in detail. 

Let’s now visualize this matrix as a dendrogram to understand the elements better! See 

Figure 4-17.

plt.figure(figsize=(8, 3))

plt.title('Hierarchical Clustering Dendrogram')

plt.xlabel('Data point')

plt.ylabel('Distance')

dendrogram(Z)

plt.axhline(y=1.0, c='k', ls='--', lw=0.5)

Figure 4-16. Linkage matrix for our corpus
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We can see how each data point starts as an individual cluster and is slowly 

merged with other data points to form clusters. On a high level from the colors and the 

dendrogram, you can see that the model has correctly identified three major clusters 

if you consider a distance metric of around 1.0 or above (denoted by the dotted line). 

Leveraging this distance, we get our cluster labels. See Figure 4-18.

from scipy.cluster.hierarchy import fcluster

max_dist = 1.0

cluster_labels = fcluster(Z, max_dist, criterion='distance')

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)

Figure 4-17. Dendrogram visualizing our hierarchical clustering process

Figure 4-18. Clustering our documents into groups with hierarchical clustering
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Thus you can clearly see our algorithm has correctly identified the three distinct 

categories in our documents based on the cluster labels assigned to them. This should 

give you a good idea of how our TF-IDF features were leveraged to build our similarity 

features, which in turn helped in clustering our documents. You can use this pipeline in 

the future for clustering your own documents. We discuss text clustering in further detail 

with more models and examples in a future chapter in this book.

 Topic Models
While we are covering topic modeling in detail in a separate chapter in this book, 

a discussion about feature engineering is not complete without talking about topic 

models. We can use some summarization techniques to extract topic- or concept-based 

features from text documents. The idea of topic models revolves around the process of 

extracting key themes or concepts from a corpus of documents, which are represented 

as topics. Each topic can be represented as a bag or collection of words/terms from the 

document corpus. Together, these terms signify a specific topic, theme, or a concept 

and each topic can be easily distinguished from other topics by virtue of the semantic 

meaning conveyed by these terms.

However, often you do end up with overlapping topics based on the data. These 

concepts can range from simple facts and statements to opinions and outlook. Topic 

models are extremely useful in summarizing large corpus of text documents to extract 

and depict key concepts. They are also useful in extracting features from text data that 

capture latent patterns in the data. See Figure 4-19.
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There are various techniques for topic modeling and most of them involve some 

form of matrix decomposition. Some techniques like Latent Semantic Indexing (LSI) use 

matrix decomposition operations, more specifically Singular Valued Decomposition. We 

use another technique called Latent Dirichlet Allocation (LDA), which uses a generative 

probabilistic model where each document consists of a combination of several topics 

and each term or word can be assigned to a specific topic. This is similar to the pLSI- 

based model (probabilistic LSI). Each latent topic contains a Dirichlet priority over them 

in the case of LDA. The math behind in this technique is pretty involved, so I will try to 

keep things simple here. We cover topic modeling in detail in a subsequent chapter also! 

See Figure 4-20.

Figure 4-19. Clustering our documents into groups using hierarchical clustering
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The black box in Figure 4-20 represents the core algorithm that uses the previously 

mentioned parameters to extract K topics from M documents. The steps outlined in 

Figure 4-22 give a simplistic explanation of what happens behind the scenes.

Figure 4-20. End-to-end LDA framework (courtesy of C. Doig, Introduction to 
Topic Modeling in Python)
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Once this runs for several iterations, we should have topic mixtures for each 

document and then generate the constituents of each topic from the terms that point to 

that topic. Frameworks like Gensim or Scikit-Learn enable us to leverage the LDA model 

for generating topics. For the purpose of feature engineering, which is the intent of this 

chapter, you need to remember that when LDA is applied to a document-term matrix 

(TF-IDF or Bag of Words feature matrix), it is broken into two main components.

• A document-topic matrix, which would be the feature matrix we are 

looking for.

• A topic-term matrix, which helps us look at potential topics in the 

corpus.

Figure 4-21. Major steps in the LDA topic modeling algorithm
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Let’s now leverage Scikit-Learn to get the document-topic matrix as follows. This can 

be used as features for any subsequent modeling requirements. See Figure 4-22.

from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=3, max_iter=10000, random_state=0)

dt_matrix = lda.fit_transform(cv_matrix)

features = pd.DataFrame(dt_matrix, columns=['T1', 'T2', 'T3'])

features

Figure 4-22. Document-topic feature matrix from our LDA model

You can clearly see which documents contribute the most to which of the three 

topics in this output. You can view the topics and their main constituents as follows.

tt_matrix = lda.components_

for topic_weights in tt_matrix:

    topic = [(token, weight) for token, weight in zip(vocab, topic_weights)]

    topic = sorted(topic, key=lambda x: -x[1])

    topic = [item for item in topic if item[1] > 0.6]

    print(topic)

    print()

[('sky', 4.3324395825632624), ('blue', 3.373753174831771), ('beautiful', 

3.3323652405224857), ('today', 1.3325579841038182), ('love', 

1.3304224288080069)]
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[('bacon', 2.332695948479998), ('eggs', 2.332695948479998), ('ham', 

2.332695948479998), ('sausages', 2.332695948479998), ('love', 

1.335454457601996), ('beans', 1.332773525378464), ('breakfast', 

1.332773525378464), ('kings', 1.332773525378464), ('toast', 

1.332773525378464), ('green', 1.3325433207547732)]

[('brown', 3.3323474595768783), ('dog', 3.3323474595768783), ('fox', 

3.3323474595768783), ('lazy', 3.3323474595768783), ('quick', 

3.3323474595768783), ('jumps', 1.3324193736202712), ('blue', 

1.2919635624485213)]

Thus, you can clearly see the three topics are quite distinguishable from each other 

based on their constituent terms. The first one is talking about weather, the second 

one is about food, and the last one is about animals. Choosing the number of topics for 

topic modeling is an entire technique of its own and is an art as well as a science. There 

are various methods and heuristics to get the optimal number of topics, but due to the 

detailed nature of these techniques, we don’t discuss them here.

 Advanced Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve models 

belonging to a family of models, popularly known as the Bag of Words model. This 

includes term frequencies, TF-IDF (term frequency-inverse document frequency), 

N-Grams, and so on. While they are effective methods for extracting features from text, 

due to the inherent nature of the model being just a bag of unstructured words, we lose 

additional information like the semantics, structure, sequence, and context around 

nearby words in each text document. This forms as enough motivation for us to explore 

more sophisticated models that can capture this information and give us features that 

are vector representation of words, popularly known as embeddings.

While this does make some sense, why should we be motivated enough to learn and 

build these word embeddings? With regard to speech or image recognition systems, all 

the information is already present in the form of rich dense feature vectors embedded in 

high-dimensional datasets like audio spectrograms and image pixel intensities. However, 

when it comes to raw text data, especially count-based models like Bag of Words, we are 

dealing with individual words that may have their own identifiers and do not capture the 
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semantic relationship among words. This leads to huge sparse word vectors for textual 

data and thus if we do not have enough data, we may end up getting poor models or 

even overfitting the data due to the curse of dimensionality. See Figure 4-23.

Figure 4-23. Comparing feature representations for audio, image, and text

To overcome the shortcomings of the Bag of Words model, we need to use vector 

space models (VSMs) in such a way that we can embed word vectors in this continuous 

vector space based on semantic and contextual similarity. In fact, the distributional 

hypothesis in the field of distributional semantics tells us that words that occur and 

are used in the same context are semantically similar to one another and have similar 

meanings. In simple terms, “a word is characterized by the company it keeps”.

One of the famous papers talking about these semantic word vectors and various 

types in detail is “Don’t count, predict! A systematic comparison of context-counting vs. 

context-predicting semantic vectors,” by Baroni et al. We won’t go into extensive depth, 

but in short, there are two main types of methods for contextual word vectors. Count- 

based methods like Latent Semantic Analysis (LSA) can be used to calculate statistical 

measures of how often words occur with their neighboring words in a corpus and then 

build dense word vectors for each word from these measures. Predictive methods like 

neural network based language models try to predict words from their neighboring 

words by looking at word sequences in the corpus. In the process, it learns distributed 

representations giving us dense word embeddings. We focus on these predictive 

methods in this section.
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 Loading the Bible Corpus
To train and showcase some of the capabilities of these advanced deep learning based 

feature representation models, we typically need a larger corpus. While we will still be 

using our previous corpus for demonstrations, let’s also load our other corpus based on 

the King James version of the Bible using NLTK. Then we preprocess the text to showcase 

examples that might be more relevant depending on the models we implement later.

from nltk.corpus import gutenberg

from string import punctuation

bible = gutenberg.sents('bible-kjv.txt')

remove_terms = punctuation + '0123456789'

norm_bible = [ [word.lower() for word in sent if word not in remove_terms] 

for sent in bible]

norm_bible = [' '.join(tok_sent) for tok_sent in norm_bible]

norm_bible = filter(None, normalize_corpus(norm_bible))

norm_bible = [tok_sent for tok_sent in norm_bible if len(tok_sent.split()) > 2]

print('Total lines:', len(bible))

print('\nSample line:', bible[10])

print('\nProcessed line:', norm_bible[10])

The following output shows the total number of lines in our corpus and how the 

preprocessing works on the Bible corpus.

Total lines: 30103

Sample line: ['1', ':', '6', 'And', 'God', 'said', ',', 'Let', 'there', 

'be', 'a', 'firmament', 'in', 'the', 'midst', 'of', 'the', 'waters', ',', 

'and', 'let', 'it', 'divide', 'the', 'waters', 'from', 'the', 'waters', '.']

Processed line: god said let firmament midst waters let divide waters 

waters

Let’s now look at some of the popular word embedding models and engineer 

meaningful features from our corpora!
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 Word2Vec Model
This model was created by Google in 2013 and is a predictive deep learning based 

model to compute and generate high quality, distributed, and continuous dense vector 

representations of words that capture contextual and semantic similarity. Essentially 

these are unsupervised models that can take in massive textual corpora, create a 

vocabulary of possible words, and generate dense word embeddings for each word in 

the vector space representing that vocabulary. Usually, you can specify the size of the 

word embedding vectors and the total number of vectors are essentially the size of the 

vocabulary. This makes the dimensionality of this dense vector space much lower than 

the high-dimensional sparse vector space built using traditional Bag of Words models.

There are two different model architectures that can be leveraged by Word2Vec to 

create these word embedding representations. These include:

• The Continuous Bag of Words (CBOW) model

• The Skip-Gram model

There were introduced by Mikolov et al. and I recommend interested readers 

read up on the original papers around these models, which includes “Distributed 

Representations of Words and Phrases and their Compositionality” by Mikolov et al. and 

“Efficient Estimation of Word Representations in Vector Space” by Mikolov et al. to gain 

an in-depth perspective.

 The Continuous Bag of Words (CBOW) Model

The CBOW model (see Figure 4-24) architecture tries to predict the current target word 

(the center word) based on the source context words (surrounding words). Considering 

a simple sentence, “the quick brown fox jumps over the lazy dog”, this can be pairs of 

(context _ window, target _ word), where if we consider a context window of size 2, we 

have examples like ([quick, fox], brown), ([the, brown], quick), ([the, dog], lazy), and 

so on. Thus, the model tries to predict the target_word based on the context_window 

words.
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Because the Word2Vec family of models is unsupervised, you can just give it a corpus 

without additional labels or information and it can construct dense word embeddings 

from the corpus. But you still need to leverage a supervised, classification methodology 

once you have this corpus to get to these embeddings. We do that from within the corpus 

itself, without any auxiliary information. We can model this CBOW architecture as a 

deep learning classification model such that we take in the context words as our input, 

X, and try to predict the target word, Y. In fact, building this architecture is simpler than 

the Skip-Gram model, whereby we try to predict a whole bunch of context words from a 

source target word.

Figure 4-24. The CBOW model architecture (Source: https://arxiv.org/
pdf/1301.3781.pdf Mikolov et al.)
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 Implementing the Continuous Bag of Words (CBOW) Model

While it’s excellent to use robust frameworks that have the Word2Vec model like Gensim, 

let’s try to implement this from scratch to gain some perspective on how things work 

behind the scenes. We leverage the Bible corpus contained in the norm_bible variable to 

train our model. The implementation will focus on four parts:

• Build the corpus vocabulary

• Build a CBOW (context, target) generator

• Build the CBOW model architecture

• Train the model

• Get word embeddings

Without further delay, let’s get started!

Build the Corpus Vocabulary

To start off, we will build our corpus vocabulary, where we extract each unique word 

from our vocabulary and map a unique numeric identifier to it.

from keras.preprocessing import text

from keras.utils import np_utils

from keras.preprocessing import sequence

tokenizer = text.Tokenizer()

tokenizer.fit_on_texts(norm_bible)

word2id = tokenizer.word_index

# build vocabulary of unique words

word2id['PAD'] = 0

id2word = {v:k for k, v in word2id.items()}

wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in 

norm_bible]

vocab_size = len(word2id)

embed_size = 100

window_size = 2 # context window size
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print('Vocabulary Size:', vocab_size)

print('Vocabulary Sample:', list(word2id.items())[:10])

Vocabulary Size: 12425

Vocabulary Sample: [('base', 2338), ('feller', 10771), ('sanctuary', 455), 

('plunge', 10322), ('azariah', 1120), ('enlightened', 4438), ('horns', 

838), ('kareah', 2920), ('nursing', 5943), ('baken', 3492)]

Thus, you can see that we created a vocabulary of unique words in our corpus and 

ways to map a word to its unique identifier and vice versa. The PAD term is typically used 

to pad context words to a fixed length if needed.

Build a CBOW (Context, Target) Generator

We need pairs that consist of a target center word and surround the context words. In 

our implementation, a target word is of length 1 and the surrounding context is of length 

2 × window _ size, where we take window_size words before and after the target word in 

our corpus. This will become clearer with the following example.

def generate_context_word_pairs(corpus, window_size, vocab_size):

    context_length = window_size*2

    for words in corpus:

        sentence_length = len(words)

        for index, word in enumerate(words):

            context_words = []

            label_word   = []

            start = index - window_size

            end = index + window_size + 1

            context_words.append([words[i]

                                 for i in range(start, end)

                                 if 0 <= i < sentence_length

                                 and i != index])

            label_word.append(word)

            x = sequence.pad_sequences(context_words, maxlen=context_length)

            y = np_utils.to_categorical(label_word, vocab_size)

            yield (x, y)
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# Test this out for some samples

i = 0

for x, y in generate_context_word_pairs(corpus=wids, window_size=window_

size, vocab_size=vocab_size):

    if 0 not in x[0]:

        print('Context (X):', [id2word[w] for w in x[0]], '-> Target (Y):',

                  id2word[np.argwhere(y[0])[0][0]])

        if i == 10:

            break

        i += 1

Context (X): ['old','testament','james','bible'] -> Target (Y): king

Context (X): ['first','book','called','genesis'] -> Target(Y): moses

Context(X):['beginning','god','heaven','earth'] -> Target(Y):created

Context (X):['earth','without','void','darkness'] -> Target(Y): form

Context (X): ['without','form','darkness','upon'] -> Target(Y): void

Context (X): ['form', 'void', 'upon', 'face'] -> Target(Y): darkness

Context (X): ['void', 'darkness', 'face', 'deep'] -> Target(Y): upon

Context (X): ['spirit', 'god', 'upon', 'face'] -> Target (Y): moved

Context (X): ['god', 'moved', 'face', 'waters'] -> Target (Y): upon

Context (X): ['god', 'said', 'light', 'light'] -> Target (Y): let

Context (X): ['god', 'saw', 'good', 'god'] -> Target (Y): light

The preceding output should give you some more perspective of how X forms 

our context words and we are trying to predict the target center word Y, based on this 

context. For example, say the original text was “in the beginning god created heaven and 

earth” which, after preprocessing and removal of stopwords, became “beginning god 

created heaven earth”. Given [beginning, god, heaven, earth] as the context, the target 

center word is “created” in this case.

Build the CBOW Model Architecture

We now leverage Keras on top of TensorFlow to build our deep learning architecture 

for the CBOW model. For this, our inputs will be our context words, which are passed 

to an embedding layer (initialized with random weights). The word embeddings are 
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propagated to a lambda layer where we average the word embeddings (hence called 

CBOW because we don’t really consider the order or sequence in the context words 

when averaged). Then we pass this averaged context embedding to a dense softmax 

layer, which predicts our target word. We match this with the actual target word, 

compute the loss by leveraging the categorical_crossentropy loss, and perform back- 

propagation with each epoch to update the embedding layer in the process. He following 

code shows the model architecture. See Figure 4-25.

import keras.backend as K

from keras.models import Sequential

from keras.layers import Dense, Embedding, Lambda

# build CBOW architecture

cbow = Sequential()

cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_

length=window_size*2))

cbow.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(embed_size,)))

cbow.add(Dense(vocab_size, activation='softmax'))

cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop')

# view model summary

print(cbow.summary())

# visualize model structure

from IPython.display import SVG

from keras.utils.vis_utils import model_to_dot

SVG(model_to_dot(cbow, show_shapes=True, show_layer_names=False,

                 rankdir='TB').create(prog='dot', format='svg'))
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In case you still have difficulty visualizing this deep learning model, I 

recommend you read through the papers I mentioned earlier. I try to summarize 

the core concepts of this model in simple terms. We have input context words of 

dimensions (2 × window _ size), and we will pass them to an embedding layer of size 

(vocab _ size × embed _ size), which will give us dense word embeddings for each of these 

context words (1 × embed _ size for each word). Next, we use a lambda layer to average 

these embeddings and get an average dense embedding (1 × embed _ size), which is sent 

to the dense softmax layer, which outputs the most likely target word. We compare this 

with the actual target word, compute the loss, back-propagate the errors to adjust the 

weights (in the embedding layer), and repeat this process for all (context, target) pairs for 

multiple epochs. Figure 4-26 tries to explain this process.

Figure 4-25. CBOW model summary and architecture
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We are now ready to train this model on our corpus using our data generator to feed 

in the (context, target_word) pairs.

Train the Model

Running the model on our complete corpus takes a fair bit of time, so I just ran it for five 

epochs. You can leverage the following code and increase it for more epochs if necessary.

for epoch in range(1, 6):

    loss = 0.

    i = 0

Figure 4-26. Visual depiction of the CBOW deep learning model
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     for x, y in generate_context_word_pairs(corpus=wids, window_

size=window_size, vocab_size=vocab_size):

        i += 1

        loss += cbow.train_on_batch(x, y)

        if i % 100000 == 0:

            print('Processed {} (context, word) pairs'.format(i))

    print('Epoch:', epoch, '\tLoss:', loss)

    print()

Epoch: 1     Loss: 4257900.60084

Epoch: 2     Loss: 4256209.59646

Epoch: 3     Loss: 4247990.90456

Epoch: 4     Loss: 4225663.18927

Epoch: 5     Loss: 4104501.48929

Note running this model is computationally expensive and works better if 
trained using a gpu. i trained this on an aWs p2.x instance with a tesla K80 gpu 
and it took me close to 1.5 hours for just five epochs!

Once this model is trained, similar words should have similar weights based on the 

embedding layer.

Get Word Embeddings

To get word embeddings for our entire vocabulary, we can extract them from our 

embedding layer by leveraging the following code. We don’t take the embedding at 

position 0 since it belongs to the padding (PAD) term, which is not really a word of 

interest. See Figure 4-27.

weights = cbow.get_weights()[0]

weights = weights[1:]

print(weights.shape)

pd.DataFrame(weights, index=list(id2word.values())[1:]).head()
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Thus, you can clearly see that each word has a dense embedding of size (1 × 100), as 

depicted in the output in Figure 4-27. Let’s try to find some contextually similar words 

for specific words of interest based on these embeddings. For this, we build a pairwise 

distance matrix among all the words in our vocabulary based on the dense embedding 

vectors and then find the n-nearest neighbors of each word of interest based on the 

shortest (Euclidean) distance.

from sklearn.metrics.pairwise import euclidean_distances

# compute pairwise distance matrix

distance_matrix = euclidean_distances(weights)

print(distance_matrix.shape)

# view contextually similar words

similar_words = {search_term: [id2word[idx]

                    for idx in distance_matrix[word2id[search_term]-1].

argsort()[1:6]+1]

                       for search_term in ['god', 'jesus', 'noah', 'egypt', 

'john', 'gospel', 'moses','famine']}

similar_words

(12424, 12424)

{'egypt': ['destroy', 'none', 'whole', 'jacob', 'sea'],

 'famine': ['wickedness', 'sore', 'countries', 'cease', 'portion'],

 'god': ['therefore', 'heard', 'may', 'behold', 'heaven'],

 'gospel': ['church', 'fowls', 'churches', 'preached', 'doctrine'],

Figure 4-27. Word embeddings for our vocabulary based on the CBOW model
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 'jesus': ['law', 'heard', 'world', 'many', 'dead'],

 'john': ['dream', 'bones', 'held', 'present', 'alive'],

 'moses': ['pharaoh', 'gate', 'jews', 'departed', 'lifted'],

 'noah': ['abram', 'plagues', 'hananiah', 'korah', 'sarah']}

You can clearly see that some of these make sense contextually (god, heaven), 

(gospel, church) and so on and some do not. Training for more epochs usually ends 

up giving better results. We now explore the Skip-Gram architecture, which often gives 

better results than CBOW.

 The Skip-Gram Model

The Skip-Gram model architecture tries to achieve the reverse of what the CBOW model 

does. It tries to predict the source context words (surrounding words) given a target 

word (the center word). Consider our simple sentence from earlier, “the quick brown fox 

jumps over the lazy dog”. If we used the CBOW model, we get pairs of (context_window, 

target_word), where if we consider a context window of size 2, we have examples such as 

([quick, fox], brown), ([the, brown], quick), ([the, dog], lazy) and so on. Now, considering 

that the Skip-Gram model’s aim is to predict the context from the target word, the model 

typically inverts the contexts and targets and tries to predict each context word from its 

target word. Hence the task becomes to predict the context [quick, fox], given target word 

“brown” or [the, brown] given target word “quick,” and so on. Thus the model tries to 

predict the context_window words based on the target_word. See Figure 4-28.

Chapter 4  Feature engineering For text representation



245

As we discussed in the CBOW model, we need to model this Skip-Gram architecture 

as a deep learning classification model, so we take in the target word as our input 

and try to predict the context words. This becomes slightly complex since we have 

multiple words in our context. We simplify this further by breaking down each 

(target, context _ words) pair into (target, context) pairs so the context consists of only one 

word. Hence our dataset from earlier gets transformed into pairs like (brown, quick), 

(brown, fox), (quick, the), (quick, brown), and so on. But how do we supervise or train 

the model to know what is contextual and what is not?

For this, we feed our Skip-Gram model pairs of (X, Y), where X is our input and Y is 

our label. We do this by using [(target, context), 1] pairs as positive input samples, where 

target is our word of interest and context is a context word occurring near the target 

word. The positive label 1 indicates this is a contextually relevant pair. We also feed in 

[(target, random), 0] pairs as negative input samples, where target is again our word of 

Figure 4-28. The Skip-Gram model architecture (Source: https://arxiv.org/
pdf/1301.3781.pdf Mikolov et al.)
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interest but random is just a randomly selected word from our vocabulary and it has 

no context or association with our target word. Hence the negative label 0 indicates 

this is a contextually irrelevant pair. We do this so that the model can then learn which 

pairs of words are contextually relevant and which are not and then generate similar 

embeddings for semantically similar words.

 Implementing the Skip-Gram Model

Let’s now try to implement this model from scratch to gain some perspective on how 

things work behind the scenes and so that we can compare it to our implementation 

of the CBOW model. We leverage our Bible corpus as usual, which is contained in the 

norm_bible variable for training our model. The implementation will focus on five parts:

• Build the corpus vocabulary

• Build a Skip-Gram [(target, context), relevancy] generator

• Build the Skip-Gram model architecture

• Train the model

• Get word embeddings

Let’s get cracking and build our Skip-Gram Word2Vec model!

Build the Corpus Vocabulary

To start, we follow the standard process of building our corpus vocabulary where we 

extract each unique word from our vocabulary and assign a unique identifier, similar 

to what we did in the CBOW model. We also maintain mappings to transform words to 

their unique identifiers and vice versa.

from keras.preprocessing import text

tokenizer = text.Tokenizer()

tokenizer.fit_on_texts(norm_bible)

word2id = tokenizer.word_index

id2word = {v:k for k, v in word2id.items()}

vocab_size = len(word2id) + 1

embed_size = 100
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wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in 

norm_bible]

print('Vocabulary Size:', vocab_size)

print('Vocabulary Sample:', list(word2id.items())[:10])

Vocabulary Size: 12425

Vocabulary Sample: [('base', 2338), ('feller', 10771), ('sanctuary', 455), 

('plunge', 10322), ('azariah', 1120), ('enlightened', 4438), ('horns', 

838), ('kareah', 2920), ('nursing', 5943), ('baken', 3492)]

Each unique word from the corpus is now part of our vocabulary and has a unique 

numeric identifier.

Build a Skip-Gram [(target, context), relevancy] Generator

It’s now time to build our Skip-Gram generator, which will give us pair of words and their 

relevance, as we discussed earlier. Luckily, Keras has a nifty Skip-Grams utility that can 

be used and we don’t have to manually implement this generator like we did in CBOW.

the function skipgrams(...) is present in keras.preprocessing.
sequence. this function transforms a sequence of word indexes (list of integers) 
into tuples of words of the form:

1. (word, word in the same window), with label 1 (positive samples).

2. (word, random word from the vocabulary), with label 0 (negative samples).

from keras.preprocessing.sequence import skipgrams

# generate skip-grams

skip_grams = [skipgrams(wid, vocabulary_size=vocab_size, window_size=10) 

for wid in wids]

# view sample skip-grams

pairs, labels = skip_grams[0][0], skip_grams[0][1]

for i in range(10):
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    print("({:s} ({:d}), {:s} ({:d})) -> {:d}".format(

          id2word[pairs[i][0]], pairs[i][0],

          id2word[pairs[i][1]], pairs[i][1],

          labels[i]))

(bible (5766), stank (5220)) -> 0

(james (1154), izri (9970)) -> 0

(king (13), bad (2285)) -> 0

(king (13), james (1154)) -> 1

(king (13), lucius (8272)) -> 0

(james (1154), king (13)) -> 1

(james (1154), bazluth (10091)) -> 0

(james (1154), bible (5766)) -> 1

(king (13), bible (5766)) -> 1

(bible (5766), james (1154)) -> 1

thus, you can see we have successfully generated our required skip-grams and, 
based on the sample skip-grams in the preceding output, you can clearly see what 
is relevant and what is irrelevant based on the label (0 or 1).

Build the Skip-Gram Model Architecture

We now leverage Keras on top of TensorFlow to build our deep learning architecture for 

the Skip-Gram model. For this, our inputs will be our target word and context or random 

word pair. Each of these are passed to an embedding layer (initialized with random 

weights) of its own. Once we obtain the word embeddings for the target and the context 

word, we pass it to a merge layer where we compute the dot product of these two vectors. 

Then we pass this dot product value to a dense sigmoid layer, which predicts either a 1 or 

a 0 depending on if the pair of words are contextually relevant or just random words (Y’).

We match this with the actual relevance label (Y), compute the loss by leveraging the 

mean_squared_error loss, and perform back-propagation with each epoch to update the 

embedding layer in the process. The following code shows our model architecture. See 

Figure 4-29.
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from keras.layers import Dot

from keras.layers.core import Dense, Reshape

from keras.layers.embeddings import Embedding

from keras.models import Sequential

from keras.models import Model

# build skip-gram architecture

word_model = Sequential()

word_model.add(Embedding(vocab_size, embed_size, embeddings_initializer=

                         "glorot_uniform", input_length=1))

word_model.add(Reshape((embed_size, )))

context_model = Sequential()

context_model.add(Embedding(vocab_size, embed_size,

                  embeddings_initializer="glorot_uniform",

                  input_length=1))

context_model.add(Reshape((embed_size,)))

model_arch = Dot(axes=1)([word_model.output, context_model.output])

model_arch = Dense(1, kernel_initializer="glorot_uniform", 

activation="sigmoid")(model_arch)

model = Model([word_model.input,context_model.input], model_arch)

model.compile(loss="mean_squared_error", optimizer="rmsprop")

# view model summary

print(model.summary())

# visualize model structure

from IPython.display import SVG

from keras.utils.vis_utils import model_to_dot

SVG(model_to_dot(model, show_shapes=True, show_layer_names=False,

                 rankdir='TB').create(prog='dot', format='svg'))
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Understanding the deep learning model is pretty straightforward. However, I will try 

to summarize the core concepts of this model in simple terms for ease of understanding. 

We have a pair of input words for each training example consisting of one input target 

word with a unique numeric identifier and one context word with a unique numeric 

identifier. If it is a positive sample, the word has contextual meaning, is a context word, 

and our label Y = 1. Otherwise, if it is a negative sample, the word has no contextual 

meaning, is just a random word, and our label Y = 0. We will pass each of these to an 

embedding layer of their own, having size (vocab _ size × embed _ size), which will give 

us dense word embeddings for each of these two words (1 × embed _ size for each word).

Next, we use a merge layer to compute the dot product of these two embeddings and 

get the dot product value. This is then sent to the dense sigmoid layer, which outputs a 

1 or 0. We compare this to the actual label Y (1 or 0), compute the loss, back-propagate 

the errors to adjust the weights (in the embedding layer), and repeat this process for all 

(target, context) pairs for multiple epochs. Figure 4-30 tries to explain this process.

Figure 4-29. Skip-Gram model summary and architecture
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Let’s now start training our model with our Skip-Grams.

Train the Model

Running the model on our complete corpus takes a fair bit of time, but it’s quicker than 

the CBOW model. I ran it for five epochs. You can leverage the following code and run 

more epochs if necessary.

for epoch in range(1, 6):

    loss = 0

    for i, elem in enumerate(skip_grams):

        pair_first_elem = np.array(list(zip(*elem[0]))[0], dtype='int32')

        pair_second_elem = np.array(list(zip(*elem[0]))[1], dtype='int32')

Figure 4-30. Visual depiction of the Skip-Gram deep learning model
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        labels = np.array(elem[1], dtype='int32')

        X = [pair_first_elem, pair_second_elem]

        Y = labels

        if i % 10000 == 0:

             print('Processed {} (skip_first, skip_second, relevance) 

pairs'.format(i))

        loss += model.train_on_batch(X,Y)

    print('Epoch:', epoch, 'Loss:', loss)

Epoch: 1 Loss: 4474.41281086

Epoch: 2 Loss: 3750.71884749

Epoch: 3 Loss: 3752.47489296

Epoch: 4 Loss: 3793.9177565

Epoch: 5 Loss: 3718.15081862

Once this model is trained, similar words should have similar weights based on the 

embedding layer.

Get Word Embeddings

To get word embeddings for our entire vocabulary, we can extract them from our 

embedding layer by leveraging the following code. Note that we are only interested in 

the target word embedding layer, so we extract the embeddings from our word_model 

embedding layer. We don’t take the embedding at position 0 since none of our words in 

the vocabulary have a numeric identifier of 0. See Figure 4-31.

word_embed_layer = model.layers[2]

weights = word_embed_layer.get_weights()[0][1:]

print(weights.shape)

pd.DataFrame(weights, index=id2word.values()).head()

Figure 4-31. Word embeddings for our vocabulary based on the Skip-Gram model
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Thus, you can clearly see that each word has a dense embedding of size (1 × 100), as 

depicted in the preceding output. This is similar to what we obtained from the CBOW 

model. Let’s now apply the Euclidean distance metric on these dense embedding 

vectors to generate a pairwise distance metric for each word in our vocabulary. We can 

then determine the n-nearest neighbors of each word of interest based on the shortest 

(Euclidean) distance, similar to what we did on the embeddings from our CBOW model.

from sklearn.metrics.pairwise import euclidean_distances

distance_matrix = euclidean_distances(weights)

print(distance_matrix.shape)

similar_words = {search_term: [id2word[idx]

                        for idx in distance_matrix[word2id[search_term]-1].

argsort()[1:6]+1]

                           for search_term in ['god', 'jesus', 'noah', 

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

(12424, 12424)

{'egypt': ['taken', 'pharaoh', 'wilderness', 'gods', 'became'],

 'famine': ['moved', 'awake', 'driven', 'howl', 'snare'],

 'god': ['strength', 'given', 'blessed', 'wherefore', 'lord'],

 'gospel': ['preached', 'must', 'preach', 'desire', 'grace'],

 'jesus': ['disciples', 'christ', 'dead', 'peter', 'jews'],

 'john': ['peter', 'hold', 'mountain', 'ghost', 'preached'],

 'moses': ['commanded', 'third', 'congregation', 'tabernacle', 'tribes'],

 'noah': ['ham', 'terah', 'amon', 'adin', 'zelophehad']}

You can clearly see from the results that a lot of the similar words for each of the 

words of interest are making sense and we have obtained better results as compared 

to our CBOW model. Let’s visualize these word embeddings using t-SNE, which stands 

for t-distributed stochastic neighbor embedding. It’s a popular dimensionality reduction 

technique used to visualize higher dimension spaces in lower dimensions (e.g. 2D). See 

Figure 4-32.
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from sklearn.manifold import TSNE

words = sum([[k] + v for k, v in similar_words.items()], [])

words_ids = [word2id[w] for w in words]

word_vectors = np.array([weights[idx] for idx in words_ids])

print('Total words:', len(words), '\tWord Embedding shapes:', word_vectors.

shape)

tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=3)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(word_vectors)

labels = words

plt.figure(figsize=(14, 8))

plt.scatter(T[:, 0], T[:, 1], c='steelblue', edgecolors='k')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

     plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset 

points')

Figure 4-32. Visualizing Skip-Gram Word2Vec word embeddings using t-SNE
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The circles in Figure 4-32 show different words of contextual similarity positioned 

near each other in the vector space. If you find any other interesting patterns, feel free to 

let me know!

 Robust Word2Vec Models with Gensim
While our implementations are decent enough, they are not optimized to work well on 

large corpora. The Gensim framework, created by Radim Řehůřek, consists of a robust, 

efficient, and scalable implementation of the Word2Vec model. We will leverage this 

on our Bible corpus. In our workflow, we will tokenize our normalized corpus and then 

focus on the following four parameters in the Word2Vec model to build it. The basic idea 

is to provide a corpus of documents as input and get feature vectors for the output.

Internally, it constructs a vocabulary based on the input text documents and learns 

vector representations for words based on various techniques, which we mentioned 

earlier. Once this is complete, it builds a model that can be used to extract word vectors 

for each word in a document. Using various techniques like average weighting or TF- 

IDF weighting, we can compute the averaged vector representation of a document using 

its word vectors. You can get more details about the interface for Gensim's Word2Vec 

implementation at http://radimrehurek.com/gensim/models/word2vec.html. We 

will be mainly focusing on the following parameters when we build our model from our 

sample training corpus.

• size: This parameter is used to set the size or dimension for the word 

vectors and can range from tens to thousands. You can try various 

dimensions to see which gives the best result.

• window: This parameter is used to set the context or window size 

that specifies the length of the window of words that should be 

considered for the algorithm to take into account as context when 

training.

• min_count: This parameter specifies the minimum word count 

needed across the corpus for the word to be considered in the 

vocabulary. This helps remove very specific words that may not have 

much significance since they occur very rarely in the documents.

• sample: This parameter is used to downsample effects of occurrence 

of frequent words. Values between 0.01 and 0.0001 are usually ideal.
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After building our model, we will use our words of interest to see the top similar 

words for each of them.

from gensim.models import word2vec

# tokenize sentences in corpus

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_bible]

# Set values for various parameters

feature_size = 100    # Word vector dimensionality

window_context = 30          # Context window size

min_word_count = 1   # Minimum word count

sample = 1e-3   # Downsample setting for frequent words

w2v_model = word2vec.Word2Vec(tokenized_corpus, size=feature_size,

                          window=window_context, min_count=min_word_count,

                          sample=sample, iter=50)

# view similar words based on gensim's model

similar_words = {search_term: [item[0]

                      for item in w2v_model.wv.most_similar([search_term], 

topn=5)]

                          for search_term in ['god', 'jesus', 'noah', 

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

{'egypt': ['pharaoh', 'egyptians', 'bondage', 'rod', 'flowing'],

 'famine': ['pestilence', 'peril', 'blasting', 'mildew', 'morever'],

 'god': ['lord', 'promised', 'worldly', 'glory', 'reasonable'],

 'gospel': ['faith', 'afflictions', 'christ', 'persecutions', 'godly'],

 'jesus': ['peter', 'messias', 'apostles', 'immediately', 'neverthless'],

 'john': ['baptist', 'james', 'peter', 'galilee', 'zebedee'],

 'moses': ['congregation', 'children', 'aaron', 'ordinance', 'doctor'],

 'noah': ['shem', 'japheth', 'ham', 'noe', 'henoch']}
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The similar words are more closely related to our words of interest and this is 

expected, given we ran this model for more iterations, which must yield better and more 

contextual embeddings. Do you notice any interesting associations? See Figure 4-33.

Figure 4-33. Noah’s sons come up as the most contextually similar entities from 
our model!

Let’s also visualize the words of interest and their similar words using their 

embedding vectors after reducing their dimensions to a 2D space with t-SNE. See 

Figure 4-34.

from sklearn.manifold import TSNE

words = sum([[k] + v for k, v in similar_words.items()], [])

wvs = w2v_model.wv[words]

tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=2)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(wvs)

labels = words

plt.figure(figsize=(14, 8))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

     plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset 

points')
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The circles have been drawn by me to point out some interesting associations. We 

can clearly see based on what I depicted earlier that Noah and his sons are quite close to 

each other based on the word embeddings from our model!

 Applying Word2Vec Features for Machine Learning Tasks
If you remember from the previous section in this chapter, you might have seen me using 

features for some actual machine learning tasks like clustering. Let’s leverage our other 

corpus and try to achieve this result. To start, we build a simple Word2Vec model on the 

corpus and visualize the embeddings. See Figure 4-35.

# build word2vec model

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_corpus]

# Set values for various parameters

feature_size = 10    # Word vector dimensionality

window_context = 10          # Context window size

min_word_count = 1   # Minimum word count

sample = 1e-3   # Downsample setting for frequent words

Figure 4-34. Visualizing our Word2Vec word embeddings using t-SNE

Chapter 4  Feature engineering For text representation



259

w2v_model = word2vec.Word2Vec(tokenized_corpus, size=feature_size,

                               window=window_context, min_count =  min_word_

count, sample=sample, iter=100)

# visualize embeddings

from sklearn.manifold import TSNE

words = w2v_model.wv.index2word

wvs = w2v_model.wv[words]

tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=2)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(wvs)

labels = words

plt.figure(figsize=(12, 6))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

     plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset 

points')

Figure 4-35. Visualizing Word2Vec word embeddings on our other sample corpus
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Remember that our corpus is extremely small, so to get meaningful word 

embeddings and for the model to get more context and semantics, we need more data. 

Now what is a word embedding in this scenario? It’s typically a dense vector for each 

word, as depicted in the following example for the word “sky”.

w2v_model.wv['sky']

array([ 0.04576328,  0.02328374, -0.04483001,  0.0086611 ,  0.05173225,

         0.00953358, -0.04087641, -0.00427487, -0.0456274 ,  0.02155695], 

dtype=float32)

 Strategy for Getting Document Embeddings

Now suppose we wanted to cluster the eight documents from our toy corpus. We would 

need to get the document-level embeddings from each of the words present in each 

document. One strategy would be to average the word embeddings for each word in a 

document. This is an extremely useful strategy and you can adopt it to your own problems. 

Let’s apply this on our corpus to get features for each document. See Figure 4- 36.

def average_word_vectors(words, model, vocabulary, num_features):

    feature_vector = np.zeros((num_features,),dtype="float64")

    nwords = 0.

    for word in words:

        if word in vocabulary:

            nwords = nwords + 1.

            feature_vector = np.add(feature_vector, model[word])

    if nwords:

        feature_vector = np.divide(feature_vector, nwords)

    return feature_vector

def averaged_word_vectorizer(corpus, model, num_features):

    vocabulary = set(model.wv.index2word)

    features =  [average_word_vectors(tokenized_sentence, model, vocabulary, 

num_features) for tokenized_sentence in corpus]

    return np.array(features)
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# get document level embeddings

w2v_feature_array = averaged_word_vectorizer(corpus=tokenized_corpus, 

model=w2v_model, num_features=feature_size)

pd.DataFrame(w2v_feature_array)

Figure 4-36. Document-level embeddings

Now that we have our features for each document, let’s cluster these documents 

using the affinity propagation algorithm, which is a clustering algorithm based on 

the concept of “message passing” between data points. It does not need the number 

of clusters as an explicit input, which is often required by partition-based clustering 

algorithms. This is discussed in more detail in Chapter 7. See Figure 4-37.

from sklearn.cluster import AffinityPropagation

ap = AffinityPropagation()

ap.fit(w2v_feature_array)

cluster_labels = ap.labels_

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)
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We can see that our algorithm has clustered each document into the right group 

based on our Word2Vec features. Pretty neat! We can also visualize how each document 

is positioned in each cluster by using Principal Component Analysis (PCA) to reduce the 

feature dimensions to 2D and then visualizing them (by color coding each cluster). See 

Figure 4-38.

from sklearn.decomposition import PCA

pca = PCA(n_components=2, random_state=0)

pcs = pca.fit_transform(w2v_feature_array)

labels = ap.labels_

categories = list(corpus_df['Category'])

plt.figure(figsize=(8, 6))

for i in range(len(labels)):

    label = labels[i]

    color = 'orange' if label == 0 else 'blue' if label == 1 else 'green'

    annotation_label = categories[i]

    x, y = pcs[i]

    plt.scatter(x, y, c=color, edgecolors='k')

    plt.annotate(annotation_label, xy=(x+1e-4, y+1e-3), xytext=(0, 0),

                 textcoords='offset points')

Figure 4-37. Clusters assigned based on the document features from Word2Vec
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Everything looks to be in order, as documents in each cluster are closer to each other 

and far apart from the other clusters.

 The GloVe Model
The GloVe (Global Vectors) model is a unsupervised learning model that can be used 

to obtain dense word vectors similar to Word2Vec. However, the technique is different 

and training is performed on an aggregated global word-word co-occurrence matrix, 

giving us a vector space with meaningful sub-structures. This method was invented in 

Stanford by Pennington et al. and I recommend you read the original paper on GloVe, 

entitled “GloVe: Global Vectors for Word Representation,” by Pennington et al., which is 

an excellent read to get some perspective on how this model works.

Figure 4-38. Visualizing our document clusters
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We won’t cover the implementation of the model from scratch in too much detail, 

but if you are interested in the actual code, you can check out the official GloVe page at 

https://nlp.stanford.edu/projects/glove/. We keep things simple here and try to 

understand the basic concepts behind the GloVe model.

We talked about count-based matrix factorization methods like LSA and predictive 

methods like Word2Vec. The paper claims that currently, both families suffer significant 

drawbacks. Methods like LSA efficiently leverage statistical information but they do 

relatively poorly on the word analogy task like how we found out semantically similar 

words. Methods like Skip-Gram may do better on the analogy task, but they poorly utilize 

the statistics of the corpus on a global level.

The basic methodology of the GloVe model is to first create a huge word-context 

co-occurrence matrix consisting of (word, context) pairs such that each element in this 

matrix represents how often a word occurs with the context (which can be a sequence 

of words). The idea then is to apply matrix factorization to approximate this matrix, as 

depicted in Figure 4-39.

Figure 4-39. Conceptual model for the GloVe model’s implementation

Considering the Word-Context (WC) matrix, Word-Feature (WF) matrix, and 

Feature-Context (FC) matrix, we try to factorize

 WC WF FC= ´  

such that we we aim to reconstruct WC from WF and FC by multiplying them. For this, 

we typically initialize WF and FC with some random weights and attempt to multiply 

them to get WC’ (an approximation of WC) and measure how close it is to WC. We do this 

multiple times using Stochastic Gradient Descent (SGD) to minimize the error.

Chapter 4  Feature engineering For text representation

https://nlp.stanford.edu/projects/glove/


265

Finally, the Word-Feature matrix (WF) gives us the word embeddings for each word, 

where F can be preset to a specific number of dimensions. A very important point to 

remember is that both Word2Vec and GloVe models are very similar in how they work. 

Both of them aim to build a vector space where the position of each word is influenced 

by its neighboring words based on their context and semantics. Word2Vec starts with 

local individual examples of word co-occurrence pairs and GloVe starts with global 

aggregated co-occurrence statistics across all words in the corpus.

 Applying GloVe Features for Machine Learning Tasks
Let’s try to leverage GloVe-based embeddings for our document clustering task. The 

very popular spaCy framework comes with capabilities to leverage GloVe embeddings 

based on different language models. You can also get pretrained word vectors from 

Stanford NLP’s website (https://nlp.stanford.edu/projects/glove/) and load 

them as needed using Gensim or spaCy. We will install spaCy and use the en_vectors_

web_lg model (https://spacy.io/models/en#en_vectors_web_lg), which consists 

of 300-dimensional word vector dense embeddings trained on the Common Crawl 

(http://commoncrawl.org/) with GloVe.

# Use the following command to install spaCy

> pip install -U spacy

OR

> conda install -c conda-forge spacy

# Download the following language model and store it in disk

https://github.com/explosion/spacy-models/releases/tag/en_vectors_web_lg- 2.0.0

# Link the same to spacy

> python -m spacy link ./spacymodels/en_vectors_web_lg-2.0.0/en_vectors_

web_lg en_vecs

Linking successful

     ./spacymodels/en_vectors_web_lg-2.0.0/en_vectors_web_lg -->  

./Anaconda3/lib/site-packages/spacy/data/en_vecs

You can now load the model via spacy.load('en_vecs')
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There are automated ways to install models in spaCy too. You can check the Models 

& Languages page at https://spacy.io/usage/models for more information if needed. 

I had some issues with it, so I had to manually load them. We now load our language 

model using spaCy.

import spacy

nlp = spacy.load('en_vecs')

total_vectors = len(nlp.vocab.vectors)

print('Total word vectors:', total_vectors)

Total word vectors: 1070971

This validates that everything is working and in order. Let’s get the GloVe 

embeddings for each of our words now in our toy corpus. See Figure 4-40.

unique_words = list(set([word for sublist in [doc.split() for doc in norm_

corpus] for word in sublist]))

word_glove_vectors = np.array([nlp(word).vector for word in unique_words])

pd.DataFrame(word_glove_vectors, index=unique_words)

Figure 4-40. GloVe embeddings for words in our sample corpus
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We can now use t-SNE to visualize these embeddings, similar to what we did using 

our Word2Vec embeddings. See Figure 4-41.

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=3)

np.set_printoptions(suppress=True)

T = tsne.fit_transform(word_glove_vectors)

labels = unique_words

plt.figure(figsize=(12, 6))

plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')

for label, x, y in zip(labels, T[:, 0], T[:, 1]):

     plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset 

points')

Figure 4-41. Visualizing GloVe word embeddings on our sample corpus

The beauty of spaCy is that it automatically provides the averaged embeddings 

for words in each document without us having to implement a function like we did in 

Word2Vec. We will now leverage spaCy to get document features for our corpus and use 

k-means clustering to cluster our documents. See Figure 4-42.
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doc_glove_vectors = np.array([nlp(str(doc)).vector for doc in norm_corpus])

km = KMeans(n_clusters=3, random_state=0)

km.fit_transform(doc_glove_vectors)

cluster_labels = km.labels_

cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])

pd.concat([corpus_df, cluster_labels], axis=1)

Figure 4-42. Clusters assigned based on our document features from GloVe

We see consistent clusters similar to what we obtained from our Word2Vec model, 

which is good! The GloVe model claims to perform better than the Word2Vec model 

in many scenarios, as illustrated in Figure 4-43, which is from the original paper by 

Pennington et al.
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These experiments were done by training 300-dimensional vectors on the same 6B 

token corpus (Wikipedia 2014 + Gigaword 5) with the same 400,000 word vocabulary and 

a symmetric context window of size 10 (in case you are interested in the details).

 The FastText Model
The FastText model was introduced by Facebook in 2016 as an extension and supposedly 

improvement of the vanilla Word2Vec model. It’s based on the original paper entitled 

“Enriching Word Vectors with Subword Information” by Mikolov et al., which is an 

excellent read to gain in-depth understanding into how this model works. Overall, 

FastText is a framework for learning word representations and performing robust, fast, 

and accurate text classifications. The framework is open sourced by Facebook on GitHub 

and claims to have the following.

• Recent state-of-the-art English word vectors

• Word vectors for 157 languages trained on Wikipedia and Crawl

• Models for language identification and various supervised tasks

Figure 4-43. GloVe vs Word2Vec performance (Source: https://nlp.stanford.
edu/pubs/glove.pdf by Pennington et al.)
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Although I haven’t implemented this model from scratch, based on the research 

paper, the following is what I learned about how the model works. In general, predictive 

models like Word2Vec consider each word a distinct entity (e.g., where) and generate 

a dense embedding for the word. However, this is a serious limitation with languages 

that have massive vocabularies and many rare words. The Word2Vec model typically 

ignores the morphological structure of each word and considers a word a single entity. 

The FastText model considers each word a Bag of Character n-grams. This is also called a 

subword model in the paper.

We add special boundary symbols < and > at the beginning and end of words. This 

enables us to distinguish prefixes and suffixes from other character sequences. We also 

include the letter w in the set of its n-grams to learn a representation for each word (in 

addition to its character n-grams). Taking the word “where” and n=3 (tri-grams) as an 

example, it will be represented by the character n-grams: <wh, whe, her, ere, re> and the 

special sequence <where>, which represents the whole word. Note that the sequence 

corresponding to the word <her> is different from the tri-gram “her” and the word 

“where”.

In practice, the paper recommends extracting all the n-grams for n ≥ 3 and n ≤ 6. 

This is a very simple approach, and different sets of n-grams could be considered, for 

example taking all prefixes and suffixes. We typically associate a vector representation 

(embedding) to each n-gram for a word. Thus, we can represent a word by the sum of the 

vector representations of its n-grams or the average of the embedding of these n-grams. 

Thus, due to this effect of leveraging n-grams from individual words based on their 

characters, there is a higher chance for rare words to get good representation since their 

character-based n-grams should occur across other words of the corpus.

 Applying FastText Features to Machine Learning Tasks
The Gensim package has wrappers that provide interfaces to leverage the FastText model 

available under the gensim.models.fasttext module. Let’s apply this once again to the 

Bible corpus and look at the words of interest and their most similar words.

from gensim.models.fasttext import FastText

wpt = nltk.WordPunctTokenizer()

tokenized_corpus = [wpt.tokenize(document) for document in norm_bible]
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# Set values for various parameters

feature_size = 100    # Word vector dimensionality

window_context = 50          # Context window size

min_word_count = 5   # Minimum word count

sample = 1e-3   # Downsample setting for frequent words

# sg decides whether to use the skip-gram model (1) or CBOW (0)

ft_model = FastText(tokenized_corpus, size=feature_size, window=window_

context, min_count=min_word_count,sample=sample, sg=1, iter=50)

# view similar words based on gensim's FastText model

similar_words = {search_term: [item[0]

                     for item in ft_model.wv.most_similar([search_term], 

topn=5)]

                         for search_term in ['god', 'jesus', 'noah', 

'egypt', 'john', 'gospel', 'moses','famine']}

similar_words

{'egypt': ['land', 'pharaoh', 'egyptians', 'pathros', 'assyrian'],

 'famine': ['pestilence', 'sword', 'egypt', 'dearth', 'blasted'],

 'god': ['lord', 'therefore', 'jesus', 'christ', 'truth'],

 'gospel': ['preached', 'preach', 'christ', 'preaching', 'gentiles'],

 'jesus': ['christ', 'god', 'disciples', 'paul', 'grace'],

 'john': ['baptist', 'baptize', 'peter', 'philip', 'baptized'],

 'moses': ['aaron', 'commanded', 'congregation', 'spake', 'tabernacle'],

 'noah': ['shem', 'methuselah', 'creepeth', 'adam', 'milcah']}

You can see a lot of similarity in the results (see Figure 4-44). Do you notice any 

interesting associations and similarities?
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Having these embeddings, we can perform some interesting natural language tasks. 

One of these is to determine the similarity between different words (entities).

print(ft_model.wv.similarity(w1='god', w2='satan'))

print(ft_model.wv.similarity(w1='god', w2='jesus'))

0.333260876685

0.698824900473

st1 = "god jesus satan john"

print('Odd one out for [',st1, ']:', ft_model.wv.doesnt_match(st1.split()))

st2 = "john peter james judas"

print('Odd one out for [',st2, ']:', ft_model.wv.doesnt_match(st2.split()))

Odd one out for [ god jesus satan john ]: satan

Odd one out for [ john peter james judas ]: judas

We can see that “god” is more closely associated with “jesus” than “satan,” based on 

the text in the Bible corpus. Similar results can be seen in both cases for the odd entity 

among the other words.

Figure 4-44. Moses, his brother Aaron, and the Tabernacle of Moses come up as 
similar entities from our model
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 Summary
We covered a wide variety of feature engineering techniques and models in this chapter. 

We covered traditional and advanced, newer models of text representation. Remember 

that traditional strategies are based on concepts from mathematics, information 

retrieval, and natural language processing. Hence, these tried and tested methods over 

time have proven to be successful in a wide variety of datasets and problems. We covered 

a wide variety of traditional feature engineering models, including the Bag of Words, Bag 

of N-Grams, TF-IDF, similarity, and topic models. We also implemented some models 

from scratch to better understand the concepts with hands-on examples.

Traditional models have some limitations considering sparse representations, 

leading to feature explosion. This causes the curse of dimensionality and losing context, 

ordering, and sequence of related words in text data. This is where we covered advanced 

feature engineering models, which leverage deep learning and neural network models to 

generate dense embeddings for every word in any corpus.

We took a deep dive into Word2Vec and even trained deep learning models from 

scratch to showcase how the CBOW and Skip-Gram models work. Understanding how to 

use a feature engineering model in the real world is also important and we demonstrated 

how to extract and build document-level features and use them for text clustering. 

Finally, we covered essential concepts and detailed examples of two other advanced 

feature engineering models—GloVe and FastText. We encourage you to try leveraging 

these models in your own problems. We also use these models in the next chapter on 

text classification!
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CHAPTER 5

Text Classification
Learning to process and understand text is one of the first, yet most essential, steps on 

the journey to getting meaningful insights from textual data. While it is important to 

understand language syntax, structure, and semantics, it is not sufficient on its own to 

be able to derive useful patterns and insights and get maximum use out of vast volumes 

of text data. Knowledge of language processing coupled with concepts from artificial 

intelligence, machine learning, and deep learning help in building intelligent systems, 

which can leverage text data and help solve real-world practical problems that benefit 

businesses and enterprises.

There are various aspects in machine learning, which include supervised learning, 

unsupervised learning, reinforcement learning, and more recently, deep learning. Each 

of these domains have several techniques and algorithms, which can be leveraged on 

top of text data and thus enable us to build self-learning systems, which do not need 

too much manual supervision. A machine learning model is a combination of data and 

algorithms and we got a taste of them in Chapter 3 when we were building our own 

parsers and taggers. The benefit of machine learning is that once a model is trained, we 

can directly use that model on new and previously unseen data to start seeing useful 

insights and desired results—the key to predictive and prescriptive analytics!

One of the most relevant and challenging problems in the domain of natural 

language processing is text classification or categorization, also popularly known as 

document classification. This task involves categorizing or classifying text documents 

into various (predefined) categories based on inherent properties or attributes of each 

text document. This has applications in diverse domains and businesses, including 

email spam identification and news categorization. The concept might seem simple and 

if you have a small number of documents, you can look at each document and gain some 

idea about what it is trying to indicate. Based on this knowledge, you can group similar 

documents into categories or classes. It starts getting more challenging once the number 

of text documents to be classified increases to several hundred thousands or millions. 

This is where techniques like feature extraction and supervised or unsupervised 
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machine learning come in handy. Document classification is a generic problem not 

limited to text alone but also can be extended for other items like music, images, video, 

and other media.

To formalize this problem more clearly, we will have a given set of classes and several 

text documents. Remember that documents are basically sentences or paragraphs of 

text. This forms a corpus. Our task is to determine which class or classes each document 

belongs to. This entire process involves several steps, which we will be discussing in 

more detail shortly. Briefly, for a supervised classification problem, we need to have 

some labeled data that we can use for training a text classification model. This data 

is essentially curated documents that are already assigned to some specific class or 

category beforehand. Using this, we essentially extract features and attributes from each 

document and make our model learn these attributes corresponding to each particular 

document and its class/category. This is done by feeding it to a supervised machine 

learning algorithm.

Of course the data needs to be preprocessed and normalized before building the 

model. Once done, we follow the same process of normalization and feature extraction 

and then feed it to the model to predict the class or category for new documents. 

However, for an unsupervised classification problem, we essentially do not have any 

labeled training documents and instead use techniques like clustering and document 

similarity measures to cluster documents based on their inherent properties and assign 

labels to them.

In this chapter, we discuss the concept of text document classification and learn how 

it can be formulated as a supervised machine learning problem. We also talk about the 

various forms of classification and what they indicate. A clear depiction of the essential 

steps necessary to complete a text classification workflow are also presented and we cover 

the essential steps from the same workflow. Some of these we covered in Chapters 3  

and 4, including text wrangling and feature engineering and newer aspects including 

supervised machine learning classifiers, model evaluation, and tuning. Finally we put all 

these components together to build an end-to-end text classification system. All the code 

examples showcased in this chapter are available on the book’s official GitHub repository, 

which you can access at  https://github.com/dipanjanS/text-analytics- with-

python/tree/master/New-Second-Edition.
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 What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and 

what we mean by classification. The textual data involved here can be anything ranging 

from a phrase, a sentence, or a complete document with paragraphs of text that can 

be obtained from corpora, blogs, anywhere from the web, or even an enterprise data 

warehouse. Text classification is also often called document classification just to cover 

all forms of textual content under the term “document”. While the term “document” 

can be defined as some form of concrete representation of thoughts or events, which 

could be in the form of writing, recorded speech, drawings, or presentations, we use the 

term “document” to represent textual data like sentences or paragraphs belonging to the 

English language (feel free to extend this to other languages as long as you are able to 

parse and process that language!).

Text classification is also often called text categorization. However, we explicitly 

use the word “classification” for two reasons. The first reason is because it depicts the 

same essence as text categorization, where we want to classify documents. The second 

reason is to depict that we are using classification or a supervised machine learning 

approach to classify or categorize text. Text categorization can be done in many ways. 

We focus explicitly on using a supervised approach using classification. The process of 

classification is not restricted to text alone and is used quite frequently in other domains 

like science, healthcare, weather, and technology.

 Formal Definition
Now that we have all our background assumptions cleared, we can formally define the 

task of text classification and its overall scope. Text or document classification is defined 

as the process of assigning text documents into one or more classes or categories, 

assuming that we have a predefined set of classes. Documents are textual documents 

and each document can contain a sentence or even a paragraph of words. A text 

classification system can successfully classify each document to its correct class(es) 

based on inherent properties of the document.

Mathematically, we can define it as, given some description and attributes d 

for a document D, where d ∈ D, and given a set of predefined classes or categories, 

C = {c1, c2, c3,  … , cn}. The actual document D can have many inherent properties and 

attributes, which lead it to being an entity in a high-dimensional space. Using a subset 

of that space with a limited set of descriptions and features depicted by d, we should be 
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able to successfully assign the original document, D to its correct class Cx using a text 

classification system T. This can be represented by T : D → Cx. We talk more about the 

text classification system in detail in subsequent sections. Figure 5-1 shows a high-level 

conceptual representation of the text classification process.

Figure 5-1. Conceptual overview of text classification

In Figure 5-1, we can see there are several documents that can be assigned to 

various categories of food, mobile phones, and movies. Initially, these documents are 

all present together, just like a text corpus has various documents in it. Once it goes 

through a text classification system, which is represented as a black box, we can see 

that each document is assigned to one specific class or category we defined previously. 

The documents are just represented by their names in real data; they can contain 

descriptions of each product, specific attributes like movie genre, product specifications, 

constituents, and much more, which are basically properties that can be used as features 

in the text classification system, to make document identification and classification 

easier.

 Major Text Classification Variants
There are various types of text classification. We mention two major types that are based 

on the type of content that make up the documents. They are as follows.

• Content-based classification

• Request-based classification
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These are more like different philosophies behind approaches to classifying text 

documents rather than specific technical algorithms or processes. Content-based 

classification is the type of text classification where priorities or weights are given to 

specific subjects or topics in the text content, which help determine the class of the 

document. A conceptual example is that of a book with more than 30% of the content 

about food preparation. It can be classified under cooking/recipes. Request-based 

classification is influenced based on user requests and is targeted toward specific user 

groups and audience. This type of classification is governed by specific policies and 

ideals based on user behavior and decisions.

 Automated Text Classification
We have an idea of the definition and scope of text classification. We have also formally 

defined text classification conceptually and mathematically, where we talked about 

a “text classification system” being able to classify text documents to their respective 

categories or classes. Consider several humans going through each document and 

classifying it. They would then be a part of the text classification system that we are 

talking about. However, that would not scale very well once we had millions of text 

documents to be classified in short time intervals. To make the process more efficient 

and faster, we can automate the task of text classification, which brings us to automated 

text classification. To automate text classification, we use several machine learning 

techniques and concepts. There are two main types of machine learning techniques that 

are relevant to solving this problem. They are as follows:

• Supervised machine learning

• Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms 

like reinforcement learning and semi-supervised learning. We’ll look at supervised 

and unsupervised learning algorithms in more detail from both a machine learning 

perspective as well as how they can be leveraged in classifying text documents.

Unsupervised learning refers to specific machine learning techniques or algorithms 

that do not require any prelabeled training data samples to build a model. The focus 

is more on pattern mining and finding latent substructures in the data rather than 

predictive analytic’. We usually have a collection of data points, which could be textual or 

numeric depending on the problem we are trying to solve. We extract features from each 
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of the data points using a process known as feature engineering and then we feed the 

feature set for each data point into our algorithm and try to extract meaningful patterns 

from the data, like trying to group together similar data points using techniques like 

clustering or summarizing documents based on topic models.

This is extremely useful in text document categorization and is also called document 

clustering, where we cluster documents into groups based on their features, similarity, 

and attributes, without training any model on previously labeled data. We discuss 

unsupervised learning more in future chapters when we cover topic models, document 

summarization, similarity analysis, and clustering.

Supervised learning refers to specific machine learning techniques or algorithms 

that are trained on prelabeled data samples, known as training data, and corresponding 

training labels/classes. Features are extracted from this data using feature engineering 

and each data point has its own feature set and corresponding class/label. The algorithm 

learns various patterns for each type of class from the training data. Once this process is 

complete, we have a trained model. This model can then be used to predict the class for 

future test data samples once we feed their features to the model. Thus, the machine has 

actually learned, based on previous training data samples, how to predict the class for 

new unseen data samples. There are two major types of supervised learning algorithms, 

described as follows:

• Classification: Supervised learning algorithms are known as 

classification when the outcomes to be predicted are distinct 

categories, thus the outcome variable is a categorical variable in this 

case. Examples are news categories and movie genres.

• Regression: Supervised learning algorithms are known as regression 

algorithms when the outcome we want to predict is a continuous 

numeric variable. Examples are house prices and weather 

temperature.

We specifically focus on classification for our problem because the name of the 

chapter speaks for itself. We are trying to classify text documents into distinct classes. 

We follow supervised learning approaches using different classification models in our 

implementations.
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 Formal Definition
Now we are ready to mathematically define the process of automated or machine 

learning based text classification. Consider we now have a training set of documents 

labeled with their corresponding class or category. This can be represented by TS, which 

is a set of paired documents and labels, TS = {(d1, c1), (d2, c2),  … , (dn, cn)}, where d1, d2, … , 

dn is the list of text documents. Their corresponding labels are c1, c2, … , cn such that 

cx ∈ C = {c1, c2,  … , cn} where cx denoted the class label for document x and C denotes 

the set of all possible distinct classes, any of which can be the class for each document. 

Assuming we have our training set, we can define a supervised learning algorithm F 

such that, when it is trained on our training dataset TS, we build a classification model or 

classifier γ and F(TS) = γ. Thus, the supervised learning algorithm F takes the input set of 

(document, class) pairs TS and gives us the trained classifier γ, which is our model. This 

process is known as the training process. This model can then take a new, previously 

unseen document ND and predict its class cND such that cND ∈ C. This process is known 

as the prediction process and can be represented by γ : TD → cND. Thus, we can see that 

there are two main stages in the supervised text classification process:

• Training

• Prediction

An important point to remember is that some manually labeled training data 

is necessary for supervised text classification so even though we are talking about 

automated text classification, to kick start the process, we need some manual effort. Of 

course the benefits of this are manifold since, once we have a trained classifier, we can 

keep using it to predict and classify new documents with minimal effort and manual 

supervision. There are various learning methods or algorithms, which we discuss in 

a future section. These learning algorithms are not specific just for text data but are 

generic machine learning algorithms that can be applied to various types of data after 

due preprocessing and feature engineering. We touch upon several supervised machine 

learning algorithms and use them in solving our real-world text classification problem.

These algorithms are usually trained on the training dataset and often an optional 

validation set so that the trained model does not overfit to the training data, which 

basically means it would then not be able to generalize well and predict properly for 

new instances of text documents. The model is often tuned based on several of its 

internal parameters (known as hyperparameters) based on the learning algorithm and 
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by evaluating various performance metrics like accuracy on the validation set or by using 

cross-validation, where we split the training dataset into training and validation sets by 

random sampling. This is comprised of the training process whose outcome yields a fully 

trained model that’s ready to predict. In the prediction stage, we usually have new data 

points from the test dataset. We can use them to feed into the model after normalization 

and feature engineering and see how well the model is performing by evaluating its 

prediction performance.

 Text Classification Task Variants
There are several variants of text classification tasks, based on the number of classes to 

predict and the nature of predictions. They are as follows:

• Binary classification

• Multi-class classification

• Multi-label classification

These types of classification are based on the dataset, the number of classes/

categories pertaining to that dataset, and the number of classes that can be predicted 

on any data point. Binary classification is when the total number of distinct classes or 

categories is two and any prediction can contain either one of those classes. Multi- 

class classification is also known as multinomial classification and refers to a problem 

where the total number of classes is more than two and each prediction gives one class 

or category, which can belong to any of those classes. This this is an extension of the 

binary classification problem, where the total number of classes is more than two. Multi- 

label classification refers to problems where each prediction can yield more than one 

outcome/predicted class for any data point.

 Text Classification Blueprint
Now that we know the basic scope that the automated text classification entails, we 

present a blueprint for a complete workflow of building an automated text classifier 

system in this section. This consists of a series of steps that must be followed in the 

training and testing phases. To build a text classification system, we need to make sure 
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we have our source of data and retrieve that data so that we can start feeding it to our 

system. The following main steps outline a typical workflow for a text classification 

system, assuming that we have our dataset already downloaded and ready to be used.

• Prepare train and test datasets (optionally a validation dataset)

• Preprocess and normalize text documents

• Feature extraction and engineering

• Model training

• Model prediction and evaluation

• Model deployment

These are the main steps that are carried out in that order for building a text 

classifier. Figure 5-2 shows a detailed workflow for a text classification system with the 

main components highlighted in training and prediction.

Figure 5-2. Blueprint for building an automated text classification system

Chapter 5  text ClassifiCation



284

From Figure 5-2, we notice that there are two main boxes called training and 

prediction, which are the two main stages involved in building a text classifier. In 

general, the dataset that we have is usually divided into two or three splits called the 

training, validation (optional), and testing datasets. Notice an overlap of the “Text 

Normalization” module and the “Feature Extraction” module in Figure 5-2 for both the 

processes. This indicates that no matter which document we want to classify and predict, 

it must go through the same series of transformations in the training and prediction 

process. Each document in first preprocessed and normalized and then specific features 

pertaining to the document are extracted. These processes are always uniform in both 

the “training” and “prediction” processes to make sure that our classification model 

performs consistently in its predictions.

In the “training” process, each document has its own corresponding class/category, 

which was manually labeled or curated beforehand. These training text documents are 

preprocessed and normalized in the “Text Normalization” module, giving us clean and 

standardized training text documents. They are then passed to the “Feature Extraction” 

module, where different feature extraction or engineering techniques are used to extract 

meaningful features from the processed text documents. Popular feature extraction 

techniques were covered extensively in Chapter 4 and we use some of them in this 

chapter! These features are usually numeric arrays or vectors, the reason being that 

standard machine learning algorithms work only on numeric vectors and can’t work on 

raw unstructured data like text. Once we have our features, we select one or more than 

one supervised machine learning algorithms and train our model.

Training the model involves feeding the feature vectors from the documents and the 

corresponding labels such that the algorithm can learn various patterns corresponding 

to each class/category and can reuse this knowledge to predict classes for future new 

documents. Often an optional validation dataset is used to evaluate the performance 

of the classification algorithm to make sure it generalizes well with the data during 

training. A combination of these features and the machine learning algorithm yields 

a classification model, which is the end artifact or output from the “training” process. 

Often this model is tuned using various model parameters using a process called 

hyperparameter tuning to build a better performing optimal model. We explore this 

shortly during our hands-on examples.

The “prediction” process involves trying to either predict classes for new documents 

or evaluate how predictions are working on new, previously unseen, test data. The test 

dataset documents go through the same process of normalization and feature extraction 

and engineering. Then, the test document feature vectors are passed to the trained 
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“classification model,” which predicts the possible class for each of the documents based 

on previously learned patterns (no training happens here—maybe later if you have a 

model that learns from feedback). If you have the true class labels for the documents that 

were manually labeled, you can evaluate the prediction performance of the model by 

comparing the true labels and the predicted labels using various metrics like accuracy, 

precision, recall, and F1-score, to name a few. This would give you an idea of how well 

the model performs based on its predictions for new documents.

Once we have a stable and working model, the last step is to deploy the model, 

which usually involves saving the model and its necessary dependencies and deploying 

it as a service, API, or as a running program. It predicts categories for new documents 

as a batch job or based on serving user requests if accessed as a web service. There are 

various ways to deploy machine learning models and this usually depends on how you 

would want to access it later. We now discuss each of the main modules and components 

from this blueprint and implement/reuse these modules so that we can integrate them 

to build a real-world automated text classifier.

 Data Retrieval
Obviously, the first step in any data science or machine learning pipeline is to access 

and retrieve the data necessary for our analysis and for building machine learning 

models. For this, we use the very popular but non-trivial 20 Newsgroups dataset, which 

is available for download directly using Scikit-Learn. The 20 Newsgroups dataset 

comprises around 18,000 newsgroups posts spread across 20 different categories or 

topics, thus making it a 20-class classification problem, which is definitely non-trivial as 

compared to predicting spam in emails. Remember, the higher the number of classes, 

the more complex it gets to build an accurate classifier.

Details pertaining to the dataset can be found at http://scikit-learn.org/0.19/

datasets/twenty_newsgroups.html and it is recommended to remove the headers, 

footers, and quotes from the text documents to prevent the model from overfitting or 

not generalizing well due to certain specific headers or email addresses. Thankfully, 

Scikit-Learn recognizes this problem and the functions that load the 20 Newsgroups data 

provide a parameter called remove, telling it what kinds of information to strip out of 

each file. The remove parameter should be a tuple containing any subset of ('headers', 

'footers', 'quotes'), telling it to remove headers, signature blocks, and quotation 

blocks, respectively.
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We will also remove documents that are empty or have no content after removing 

these three items during the data preprocessing stage, because it would be pointless to 

try to extract features from empty documents. Let’s start by loading the necessary dataset 

and defining functions for building the training and testing datasets. We load the usual 

dependencies including the text preprocessing and normalization module we built in 

Chapter 3, called text_normalizer.

from sklearn.datasets import fetch_20newsgroups

import numpy as np

import text_normalizer as tn

import matplotlib.pyplot as plt

import pandas as pd

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

We now leverage the helper function from Scikit-Learn to fetch the required data. 

Once we get the data, we transform this data into an easy-to-use dataframe. See Figure 5- 3.

data = fetch_20newsgroups(subset='all', shuffle=True,

                          remove=('headers', 'footers', 'quotes'))

data_labels_map = dict(enumerate(data.target_names))

Downloading 20news dataset. This may take a few minutes.

Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)

# building the dataframe

corpus, target_labels, target_names = (data.data, data.target,

                                       [data_labels_map[label] for label in 

data.target])

data_df = pd.DataFrame({'Article': corpus, 'Target Label': target_labels, 

'Target Name': target_names})

print(data_df.shape)

data_df.head(10)

(18846, 3)
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From this dataset, we can see that each document has some textual content and the 

label can be denoted by a specific number, which maps to a newsgroup category name. 

Some data samples are depicted in Figure 5-3.

 Data Preprocessing and Normalization
Before, we preprocess and normalize our documents, let’s first take a look at potential 

empty documents in our dataset and remove them.

total_nulls = data_df[data_df.Article.str.strip() == "].shape[0]

print("Empty documents:", total_nulls)

Empty documents: 515

We can now do use a simple pandas filter operation and remove all the records with 

no textual content in the article as follows.

data_df = data_df[~(data_df.Article.str.strip() == ")]

data_df.shape

(18331, 3)

Figure 5-3. The 20 Newsgroups dataset
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This is neat! Now we need to think about the general text preprocessing or wrangling 

stage. This involves cleaning, preprocessing, and normalizing text to bring text 

components like sentences, phrases, and words to some standard format. This enables 

standardization across our document corpus, which helps in building meaningful 

features and helps reduce noise, which can be introduced due to many factors like 

irrelevant symbols, special characters, XML and HTML tags, and so on. We have 

already talked about this in detail in Chapter 3. However, just for a brief recap, the main 

components in our text normalization pipeline are described as follows. Remember they 

are all available as a part of the text_normalizer module, which is present in the text_

normalizer.py file.

• Cleaning text: Our text often contains unnecessary content, like 

HTML tags, which do not add much value when analyzing sentiment. 

Hence, we need to make sure we remove them before extracting 

features. The BeautifulSoup library does an excellent job at providing 

necessary functions for this. Our strip_html_tags(...) function 

cleans and strips out HTML code.

• Removing accented characters: In our dataset, we are dealing 

with reviews in the English language so we need to make sure that 

characters with any other format, especially accented characters, are 

converted and standardized into ASCII characters. A simple example 

is converting é to e. Our remove_accented_chars(...) function 

helps in this respect.

• Expanding contractions: In the English language, contractions are 

basically shortened versions of words or syllables. These shortened 

versions of existing words or phrases are created by removing specific 

letters and sounds. More often than not, vowels are removed from 

the words. Examples include do not to don’t and I would to I’d. 

Contractions pose a problem in text normalization because we have 

to deal with special characters like apostrophes and we also have to 

convert each contraction to its expanded, original form. The expand_

contractions(...) function uses regular expressions and various 

contractions mapped in the contractions.py module to expand all 

contractions in our text corpus.
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• Removing special characters: Another important task in text 

cleaning and normalization is to remove special characters and 

symbols that often add to the extra noise in unstructured text. Simple 

regexes can be used to achieve this. Our function remove_special_

characters(...) helps remove special characters. In our code, we 

have retained numbers but you can also remove numbers if you do 

not want them in your normalized corpus.

• Stemming or lemmatization: Word stems are usually the base 

form of possible words that can be created by attaching affixes, 

like prefixes and suffixes, to the stem to create new words. This is 

known as inflection. The reverse process of obtaining the base form 

of a word is known as stemming. A simple example is “watches,” 

“watching,” and “watched,” which have the word root stem “watch” 

as the base form. The NLTK package offers a wide range of stemmers 

like the PorterStemmer and LancasterStemmer. Lemmatization 

is very similar to stemming, where we remove word affixes to get 

to the base form of a word. However, the base form in this case 

is known as the root word but not the root stem. The difference 

being that the root word is always a lexicographically correct word 

(present in the dictionary) but the root stem may not be correct. 

We use lemmatization only in our normalization pipeline to retain 

lexicographically correct words. The function lemmatize_text(...) 

helps us in that respect.

• Removing stopwords: Words that have little or no significance, 

especially when constructing meaningful features from text, are 

known as stopwords. These are usually words that end up having the 

maximum frequency if you do a simple term or word frequency in a 

document corpus. Words like “a,” “an,” “the,” and so on are stopwords. 

There is no universal stopword list but we use a standard English 

language stopwords list from NLTK. You can add your own domain 

specific stopwords if needed. The function remove_stopwords(...) 

helps remove stopwords and retain words having the most 

significance and context in a corpus.
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We use all these components and tie them together in the function called 

normalize_corpus(...), which can be used to take a document corpus as input 

and return the same corpus with cleaned and normalized text documents. This is 

already available in our text normalization module. Let’s put this to the test now! 

See Figure 5-4.

import nltk

stopword_list = nltk.corpus.stopwords.words('english')

# just to keep negation if any in bi-grams

stopword_list.remove('no')

stopword_list.remove('not')

# normalize our corpus

norm_corpus = tn.normalize_corpus(corpus=data_df['Article'], html_stripping=True,

                                  contraction_expansion=True, accented_char_removal=True,

                                  text_lower_case=True, text_lemmatization=True,

                                  text_stemming=False, special_char_removal=True,

                                 remove_digits=True, stopword_removal=True,

                                 stopwords=stopword_list)

data_df['Clean Article'] = norm_corpus

# view sample data

data_df = data_df[['Article', 'Clean Article', 'Target Label', 'Target Name']]

data_df.head(10)

Figure 5-4. The 20 Newsgroups dataset after text preprocessing
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We now have a nice preprocessed and normalized corpus of articles. But wait, it’s not 

over yet! There might have been some documents that, after preprocessing, might end 

up being empty or null. We use the following code to test this assumption and remove 

these documents from our corpus.

data_df = data_df.replace(r'^(\s?)+$', np.nan, regex=True)

data_df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 18331 entries, 0 to 18845

Data columns (total 4 columns):

Article          18331 non-null object

Clean Article    18304 non-null object

Target Label     18331 non-null int64

Target Name      18331 non-null object

dtypes: int64(1), object(3)

memory usage: 1.3+ MB

We definitely have some null articles after our preprocessing operation. We can 

safely remove these null documents using the following code.

data_df = data_df.dropna().reset_index(drop=True)

data_df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 18304 entries, 0 to 18303

Data columns (total 4 columns):

Article          18304 non-null object

Clean Article    18304 non-null object

Target Label     18304 non-null int64

Target Name      18304 non-null object

dtypes: int64(1), object(3)

memory usage: 572.1+ KB

We can now use this dataset for building our text classification system. Feel free 

to store the dataset using the following code if needed so you don’t need to run the 

preprocessing step every time.

data_df.to_csv('clean_newsgroups.csv', index=False)
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 Building Train and Test Datasets
To build a machine learning system, we need to build our models on training data and 

then test and evaluate their performance on test data. Hence, we split our dataset into 

train and test datasets. We take a train dataset : test dataset split of 67%/33% of the total 

data.

from sklearn.model_selection import train_test_split

train_corpus, test_corpus, train_label_nums, test_label_nums,  train_label_

names, test_label_names = train_test_split(np.array(data_df['Clean Article']),

                                          np.array(data_df['Target Label']),

                                          np.array(data_df['Target Name']),

                                          test_size=0.33, random_state=42)

train_corpus.shape, test_corpus.shape

((12263,), (6041,))

You can also observe the distribution of the various articles by the different 

newsgroup categories using the following code. We can then get an idea of how many 

documents will be used to train the model and how many are used to test the model. See 

Figure 5-5.

from collections import Counter

trd = dict(Counter(train_label_names))

tsd = dict(Counter(test_label_names))

(pd.DataFrame([[key, trd[key], tsd[key]] for key in trd],

             columns=['Target Label', 'Train Count', 'Test Count'])

.sort_values(by=['Train Count', 'Test Count'],

             ascending=False))
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We now briefly cover the various feature engineering techniques, which we use in 

this chapter to build our text classification models.

 Feature Engineering Techniques
There are various feature extraction or feature engineering techniques that can be 

applied on text data, but before we jump into then, let’s briefly recap what we mean by 

features, why we need them, and how they are useful. In a dataset, there are typically 

many data points, which are usually the rows of the dataset, and the columns are various 

features or properties of the dataset with specific values for each row or observation.  

Figure 5-5. Distribution of train and test articles by the 20 newsgroups
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In machine learning terminology, features are unique measurable attributes or 

properties for each observation or data point in a dataset. Features are usually numeric 

in nature and can be absolute numeric values or categorical features that can be 

encoded as binary features for each category in the list using a process called one-hot 

encoding. They can be represented as distinct numerical entities using a process called 

label-encoding. The process of extracting and selecting features is both an art and a 

science and this process is called feature extraction or feature engineering.

Feature engineering is very important and is often known as the secret sauce to 

creating superior and better performing machine learning models. Extracted features are 

fed into machine learning algorithms for learning patterns that can be applied on future 

new data points for getting insights. These algorithms usually expect features in the 

form of numeric vectors because each algorithm is at heart a mathematical operation 

of optimization and minimizing loss and error when it tries to learn patterns from data 

points and observations. Hence, with textual data comes the added challenge of figuring 

out how to transform and extract numeric features from textual data.

We covered state-of-the-art feature engineering techniques for text data in detail in 

Chapter 4. In the following sections we briefly recap the methods used in this chapter. 

But for a deep dive, I recommend readers check out Chapter 4.

 Traditional Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve 

models belonging to a family of models, popularly known as the Bag of Words model 

in general. While they are effective methods for extracting features from text, due to the 

inherent nature of the model being just a bag of unstructured words, we lose additional 

information like the semantics, structure, sequence, and context around nearby words in 

each text document.

• Bag of Words (term frequency) model: The Bag of Words model 

represents each text document as a numeric vector where each 

dimension is a specific word from the corpus and the value could be 

its frequency in the document, occurrence (denoted by 1 or 0),  

or even weighted values. The model’s name is such because 

each document is represented literally as a bag of its own words, 

disregarding word orders, sequences, and grammar.
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• Bag of N-Grams model: An N-gram is basically a collection of word 

tokens from a text document such that these tokens are contiguous 

and occur in a sequence. Bi-grams indicate n-grams of order 2 (two 

words), tri-grams indicate n-grams of order 3 (three words), and 

so on. The Bag of N-Grams model is just an extension of the Bag of 

Words model so we can also leverage N-gram based features.

• TF-IDF model: TF-IDF stands for Term Frequency-Inverse 

Document Frequency and it’s a combination of two metrics, 

term frequency (TF) and inverse document frequency (IDF). This 

technique was originally developed as a metric for for showing 

search engine results based on user queries and has become part of 

information retrieval and text feature extraction.

 Advanced Feature Engineering Models
Traditional (count-based) feature engineering strategies for textual data involve models 

belonging to a family of models popularly known as the Bag of Words model. This 

includes term frequencies, TF-IDF (term frequency-inverse document frequency), 

N-grams, and so on. While they are effective methods for extracting features from text, 

there are severe limitations where we lose additional information like the semantics, 

structure, sequence, and context around nearby words in each text document. This 

forms as enough motivation for us to explore more sophisticated models that can 

capture this information and give us features that are vector representation of words, 

popularly known as embeddings. We use predictive methods, like Neural Network based 

Language Models, which try to predict words from its neighboring words by looking 

at word sequences in the corpus. In the process, it learns distributed representations 

giving us dense word embeddings. These models are commonly also known as word 

embedding models.

• Word2Vec model: This model was created by Google in 2013 and is a 

predictive deep learning based model to compute and generate high 

quality, distributed, and continuous dense vector representations 

of words that capture contextual and semantic similarity. You can 

usually specify the size of the word embedding vectors and the total 

number of vectors is essentially the size of the vocabulary. This 

makes the dimensionality of this dense vector space much lower 
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than the high-dimensional sparse vector space built using traditional 

Bag of Words models. There are two different model architectures 

that can be leveraged by Word2Vec to create these word embedding 

representations. These include The Continuous Bag of Words 

(CBOW) model and the Skip-Gram model.

• GloVe model: The GloVe model stands for Global Vectors. It’s an 

unsupervised learning model that can be used to obtain dense word 

vectors, similar to Word2Vec. However, the technique is different 

and training is performed on an aggregated global word-word co- 

occurrence matrix, giving us a vector space with meaningful sub- 

structures.

• FastText model: The FastText model was introduced by Facebook 

in 2016 as an extension and supposedly an improvement of the 

vanilla Word2Vec model. It’s based on the original paper entitled 

“Enriching Word Vectors with Subword Information” by Mikolov 

et al., which is an excellent read to gain an in-depth understanding of 

how this model works. Overall, FastText is a framework for learning 

word representations and performing robust, fast, and accurate 

text classifications. The Word2Vec model typically ignores the 

morphological structure of each word and considers a word a single 

entity. The FastText model considers each word a Bag of Character 

n-grams. This is also called a subword model in the paper.

This should give us enough perspective into the types of feature engineering 

techniques that we use in our articles to get effective feature representation in the 

form of structured numeric vectors from unstructured textual data. In the next section, 

we take a quick conceptual glance at some of the common supervised learning/

classification models that we use later to build our text classification system.

 Classification Models
Classification models are supervised machine learning algorithms that are used to 

classify, categorize, or label data points based on what it has observed in the past. Each 

classification algorithm is a supervised learning algorithm so it requires training data. 

This training data consists of a set of training observations where each observation 
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is a pair that consists of an input data point, which is usually a feature vector like we 

observed earlier, and a corresponding output outcome for that input observation. There 

are three stages that classification algorithms go through during the modeling phase:

• Training

• Evaluation

• Tuning

Training is the process where the supervised learning algorithm tries to infer 

patterns out of the training data so that it can identify which patterns lead to a specific 

outcome. These outcomes are often known as the class labels/class variables/response 

variables. We usually carry out the process of feature extraction or feature engineering to 

derive meaningful features from the raw data before training. These feature sets are fed 

to an algorithm of our choice, which then tries to identify patterns from these features 

and their corresponding outcomes. The result of this is an inferred function known as a 

model or a classification model. This model is expected to be generalized enough from 

learning patterns in the training set so that it can predict the classes or outcomes for new 

data points in the future.

Evaluation involves trying to test the prediction performance of our model to see 

how well it has trained and learned on the training dataset. For this, we use a validation 

dataset and test the performance of our model by predicting on that dataset and testing 

our predictions against the actual class labels, also called the ground truth. We also often 

use cross validation where the data is divided into folds and a chunk of it is used for 

training and the remaining is used to validate the trained model.

A point to remember is that we also tune the model based on the validation results 

to get to an optimal configuration, which yields the maximum accuracy and minimum 

error. We also evaluate our model against a holdout or test dataset, but we never tune 

our model against that dataset because that would lead to the model being biased or 

overfit against very specific features from the test dataset. The holdout or test dataset is 

somewhat of a representative sample of what new real data samples might look like, for 

which the model will generate predictions and how it might perform on these new data 

samples. We look at various metrics, which are typically used to evaluate and measure 

model performance in a future section.

Tuning is also known as hyperparameter tuning or optimization, where we focus 

on trying to optimize a model to maximize its prediction power and reduce errors. 

Each model is at heart a mathematical function, which has several parameters 
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determining model complexity, learning capability, and so on. These are known as 

hyperparameters because they cannot be learned directly from data and must be set 

prior to running and training the model. Hence, the process of choosing an optimal 

set of model hyperparameters such that the performance of the model yields good 

prediction accuracy is known as model tuning and we can carry it out in various ways, 

like randomized search and grid search. We look at some model tuning aspects during 

our hands-on implementations.

Typically, there are various classification algorithms but we will not be venturing into 

each algorithm in detail since the scope of this chapter is related to text classification and 

this is not a book only focusing on machine learning. However, we will touch upon a few 

algorithms, which we use shortly when building our classification models.

• Multinomial Naïve Bayes

• Logistic regression

• Support vector machines

• Random forest

• Gradient boosting machine

There are also several other classification algorithms; however, these are some of 

the most common and popular algorithms for text data. The last two models mentioned 

in this list are ensemble techniques, which use a collection or ensemble of models to 

learn and predict outcomes, including random forests and gradient boosting. Besides 

these, deep learning based techniques have also recently become popular which use 

multiple hidden layers and combine several neural network models to build a complex 

classification model. We now briefly look at some basic concepts surrounding these 

algorithms before using them for our classification problem.

 Multinomial Naïve Bayes
This is a special case of the popular Naïve Bayes algorithm used specifically for 

prediction and classification tasks where we have more than two classes. Before looking 

at multinomial Naïve Bayes, let’s look at the definition and formulation of the Naïve 

Bayes algorithm. The Naïve Bayes algorithm is a supervised learning algorithm that 

puts into action the very popular Bayes theorem. However there is a “naïve” assumption 

here that each feature is completely independent of the others. Mathematically, we can 
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formulate this as, given a response class variable y and a set of n features in the form of a 

feature vector, {x1, x2,  … , xn} and using the Bayes theorem, we can denote the probability 

of the occurrence of y given the features as follows:

P y x x x
P y P x x x y

P x x xn
n

n
1 2
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under the assumption that

P(xi|y, x1, x2,  … , xi − 1, xi + 1,  … , xn) = P(xi|y)

and for all i we can represent this as follows:
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where i ranges from 1 to n. In simple terms, this can be written as follows:
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and now since P(x1, x2,  … , xn) is constant, the model can be expressed as follows:
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This means that under the previous assumptions of independence among the 

features where each feature is conditionally independent of every other feature, the 

conditional distribution over the class variable to be predicted, y, can be represented 

using the following mathematical equation as follows:
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where the evidence measure, Z = p(x), is a constant scaling factor dependent on 

the feature variables. From this equation, we can build the Naïve Bayes classifier by 

combining it with a rule known as the MAP decision rule, which stands for maximum 
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a posteriori. Going into the statistical details would be impossible in the current scope 

but by using it, the classifier can be represented as a mathematical function, which can 

assign a predicted class label ŷ Ck=  for some k using the following representation:

ˆ argmaxy P C P x C
k K

k
i

n

i k= ( )´ ( )
Î ¼{ } =

Õ
1 2 1, , ,

This classifier is often said to be simple, quite evident from its name and because of 

several assumptions that we make about our data and features that might not be so in 

the real world. Nevertheless, this algorithm still works remarkably well in many use cases 

related to classification, including multi-class document classification, spam filtering, 

and so on. They can train really fast compared to other classifiers and work well even 

when we do not have sufficient training data. Models often do not perform well when 

they have a lot of features and this phenomenon is known as curse of dimensionality. 

Naïve Bayes takes care of this problem by decoupling the class variable related 

conditional feature distributions, thus leading to each distribution being independently 

estimated as a single dimension distribution.

Multinomial Naïve Bayes is an extension of the algorithm for predicting and 

classifying data points, where the number of distinct classes or outcomes are more 

than two. In this case, the feature vectors are usually assumed to be word counts from 

the bag of words model, but TF-IDF-based weights also work. One limitation is that 

negative weight based features can’t be fed into this algorithm. This distribution can be 

represented as py = {py1, py2,  … , pyn} for each class label y and the total number of features 

is n which could be represented as the total vocabulary of distinct words or terms in text 

analytics. From the equation, pyi = P(xi|y) represents the probability of feature i in any 

observation sample that has an outcome or class y. The parameter py can be estimated 

with a smoothened version of maximum likelihood estimation (with relative frequency 

of occurrences) and represented as follows:

 
p̂

F

F nyi
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y
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where F xyi ix TD
=

Îå  is the frequency of occurrence for the feature i in a sample for class 

label y in our training dataset TD and F Fy yii

TD
=

=å 1
 is the total frequency of all features 

for the class label y. There is some amount of smoothening done with the help of priors 
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α ≥ 0, which accounts for the features that are not present in the learning data points and 

helps get rid of zero probability related issues. There are some specific settings for this 

parameter, which are used quite often. The value of α = 1 is known as Laplace smoothing 

and α < 1 is known as Lidstone smoothing. The Scikit-Learn library provides an excellent 

implementation for Multinomial Naïve Bayes in the class MultinomialNB, which we 

leverage when we build our text classifier later. Remember not to set the α value to be 

too high blindly because this can lead the model to assume wrongly that some features 

that are not present are important features for predicting specific classes due to excessive 

smoothing.

 Logistic Regression
The logistic regression model is actually a statistical model developed by statistician 

David Cox in 1958. It is also known as the logit or logistic model since it uses the 

logistic (popularly also known as sigmoid) mathematical function to estimate the 

parameter values. These are the coefficients of all our features such that the overall loss 

is minimized when predicting the outcome—in this case, the newsgroup categories. 

However, we don’t focus on errors but more about maximizing the likelihood of the 

predicted values to the observed values using Maximum-Likelihood Estimation (MLE).

Considering a binary classification problem of predicting two classes, a 0 or a 1, in 

the logistic model, the log-odds (the logarithm of the odds) for the class/category labeled 

as 1 are basically the equation of the linear regression model (linear combination of one 

or more independent features, which can be categorical or continuous). However, we 

need to predict discrete classes or categories. Thus, the corresponding probability of the 

class labeled 1 can vary between 0 and 1, depicting the confidence of the prediction. The 

function that helps us convert the log-odds to probability is the logistic function. The 

standard sigmoid or logistic function can be depicted mathematically by this formula:

 

1

1+ -e x  

Where e is the exponent (Euler’s number) and x indicates the typical equation, 

which can be derived from the linear regression equation where we try to estimate 

the coefficients of our features. This function typically looks like an S-shaped curve, as 

depicted in Figure 5-6.
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The standard unit of measurement for the log-odds scale is called a logit, from 

logistic unit, hence we have the alternative names for this model. To understand how 

this model works, you need to dive into the math and the intent of this book is not to give 

a course in machine learning. However, we briefly cover this for our more math-oriented 

folks! Consider a standard multiple linear regression model, depicted as follows:

y = β0 + β1x1 + β2x2 +  …  + βnxn

Such that {x1, x2,  … , xn} are our features and we are trying to estimate the coefficients, 

{β1, β2,  … , βn}. Considering we need to predict the categorical classes, we can represent 

this as the log-odds, as follows using the logit of the probability p.

logodds = logit(p) = β0 + β1x1 + β2x2 +  …  + βnxn

This means that if p is the probability of predicting a specific class, the odds of 

that is 
p

p1-
, which is basically the ratio of the favorable outcomes to the unfavorable 

outcomes. Likewise, the logit of p is basically the log-odds. Thus, we can mathematically 

derive this as follows:

logit p
p

p
x x xn n( ) =

-
æ

è
ç

ö

ø
÷ = + + +×××+log

1 0 1 1 2 2b b b b

Figure 5-6. The standard sigmoid or logistic function
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If we want to get to the class probability values that the logistic regression model 

outputs for us, we can derive the following equation, which is the heart of the logistic 

regression model:

p
e x x xn n

=
+ - + + +×××+( )

1

1 0 1 1 2 2b b b b

Finally, we can use MLE to optimize and estimate the optimal coefficients for 

each feature, which helps in maximizing the likelihood function. In Scikit-Learn, the 

LogisticRegression model can be leveraged to use the logistic regression model 

for classification. The solvers implemented in the LogisticRegression class are 

"liblinear", "newton-cg", "lbfgs", "sag", and "saga". Each of them has its own 

distinct implementations. In the case of multi-class classification, just like in our 

problem, the training algorithm uses the one-vs-rest (OvR) scheme if the multi_class 

option is set to ovr and uses the cross-entropy loss if the multi_class option is set to 

multinomial.

 Support Vector Machines
In machine learning, support vector machines, known popularly as SVMs, are 

supervised learning algorithms. They are used for classification, regression, novelty 

and anomaly, and outlier detection. Considering a binary classification problem, if we 

have training data such that each data point or observation belongs to a specific class, 

the SVM algorithm can be trained based on this data such that it can assign future data 

points into one of the two classes. This algorithm represents the training data samples 

as points in space such that points belonging to either class can be separated by a wide 

gap between them (hyperplane) and the new data points to be predicted are assigned 

classes based on which side of this hyperplane they fall into. This process is for a typical 

linear classification process. However, SVM can also perform non-linear classification 

by an interesting approach known as a kernel trick, where kernel functions are used to 

operate on high-dimensional feature spaces that are non-linear separable. Usually, inner 

products between data points in the feature space help achieve this.

The SVM algorithm takes in a set of training data points and constructs a hyperplane 

of a collection of hyperplanes for a high-dimensional feature space. The larger the 

margins of the hyperplane, the better the separation. This leads to lower generalization 

errors of the classifier. Let’s represent this formally and mathematically. Considering 
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a training dataset of n data points 
 

x y x yn n1 1, ,( ) ¼ ( ), ,  such that the class variable 

yi ∈ {−1, 1} where each value indicates the class corresponding to the point 


xi . Each data 

point 


xi  is a feature vector. The objective of the SVM algorithm is to find the max-margin 

hyperplane which separates the set of data points having class label of yi = 1 from the set 

of data points having class label yi =  − 1 so that the distance between the hyperplane 

and sample data points from either class nearest to it is maximized. These sample data 

points are known as the support vectors. Figure 5-7 shows how the vector space with the 

hyperplane looks.

From Figure 5-7, you can clearly see the hyperplane and the support vectors. The 

hyperplane can be defined as the set of points 


x  which satisfy w x b
�� �
× + = 0 , where 



w  is 

the normal vector to the hyperplane and 
b

w
�� ���  gives us the offset of the hyperplane from 

the origin to the support vectors highlighted in Figure 5-7. There are two main types of 

margins that help in separating the data points belonging to the different classes.

Figure 5-7. Two-class SVM depicting hyperplane and support vectors
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When the data is linearly separable, like in Figure 5-7, we can have hard margins, 

which are basically represented by the two parallel hyperplanes depicted by the dotted 

lines. This helps in separating the data points belonging to the two different classes. This 

is done by taking into account that the distance between them is as large as possible. 

The region bounded by these two hyperplanes forms the margin with the max-margin 

hyperplane being in the middle. These hyperplanes have the equations w x b
�� �
× + =1   

and w x b
�� �
× + = -1 .

Often, the data points are not linearly separable, for which we can use the hinge loss 

function, which can be represented as max 0 1, - × +( )( )y w x bi i

�� �
. In fact, the Scikit-Learn 

implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier, where we 

use the hinge loss function (set by default) to optimize and build the model. This loss 

function helps us get the soft margins and is often known as a soft-margin SVM. You 

can also use different kernel functions to convert the existing feature space into an even 

higher dimensional feature space, where the data can be separated linearly. This is 

popularly known as the kernel trick in SVM! However, we don’t recommend this a lot for 

text data problems since you already deal with a huge number of dimensions right from 

the start.

For a multi-class classification problem, if we have n classes, for each class a binary 

classifier is trained and learned that helps is separating between each class and the 

other n-1 classes. During prediction, the scores (distances to hyperplanes) for each 

classifier are computed and the maximum score is chosen for selecting the class label. 

The stochastic gradient descent is often used for minimizing the loss function in SVM 

algorithms. Figure 5-8 shows how three classifiers are trained in total for a three-class 

SVM problem over the very popular iris dataset. This figure is built using a Scikit-Learn 

model and is obtained from their official documentation, available at http://scikit- 

learn.org/.
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From Figure 5-8, you can clearly see that a total of three SVM classifiers have been 

trained for each of the three classes. They are combined for the final predictions so that 

data points belonging to each class can be labeled correctly. Thus, multi-class support is 

handled according to a one-vs-the-rest scheme, similar to the logistic regression model.

 Ensemble Models
Ensemble models are essentially models or meta-estimators that are literally made up of 

other models or estimators. These sub-models are models that are simple estimators and may 

not be able to make accurate predictions to the extent of what you get when you combine 

several of these estimators. In the case of random forest, the sub-models are decision trees. 

Typically, random forests train many decision trees and combine them to generate a single 

prediction. There are a wide variety of ensemble models. We briefly mention two categories 

since we will be covering an example from each of these categories shortly.

• Bagging: A very popular ensemble modeling technique. In bagging, 

you take subsets of the data (bootstrap samples typically) and train 

a model on each subset in parallel. Then the subsets are allowed to 

simultaneously vote on the outcome and the final outcome is usually 

an average aggregation. The random forest model is perhaps the 

most popular example of a bagging model.

Figure 5-8. Multi-class SVM on three classes (courtesy: scikit-learn.org)
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• Boosting: Another ensemble technique where, rather than building 

multiple models in parallel like with bagging, you use sequential 

modeling and try to improve one model from the mistakes of the 

previous model! Boosting typically uses the output of one model as 

an input into the next in a form of sequential processing. Gradient 

boosting machines is one of the most popular boosting models.

 Random Forest
Decision trees are a family of supervised machine learning algorithms that can represent 

and interpret sets of rules automatically from the underlying data. They use metrics like 

information gain and gini-index to build the tree. However, a major drawback of decision 

trees is that since they are non-parametric, the more data there is, greater the depth of 

the tree. We can end up with really huge and deep trees that are prone to overfitting. The 

model might work really well on training data, but instead of learning, it just memorizes 

all the training samples and builds very specific rules to them. Hence, it performs really 

poorly on the test data. Random forests try to tackle this problem.

A random forest is a meta-estimator or an ensemble model that fits a number of 

decision tree classifiers on various sub-samples of the dataset and uses averaging to 

improve the predictive accuracy and control over-fitting. The sub-sample size is always 

the same as the original input sample size, but the samples are drawn with replacement 

(bootstrap samples). In random forests, all the trees are trained in parallel (bagging 

model/bootstrap aggregation). Besides this, each tree in the ensemble is built from a 

sample drawn with replacement (i.e., a bootstrap sample) from the training set. Also, 

when splitting a node during the construction of the tree, the split that is chosen is no 

longer the best split among all features. Instead, the split that is picked is the best split 

among a random subset of the features. Thus the randomness introduced in a random 

forest is both due to random sampling of data and random selection of features when 

splitting nodes in each tree. Hence, due to this randomness, the bias of the forest 

usually slightly increases (with respect to the bias of a single non-random decision tree). 

However, due to averaging, the overall variance of the model decreases significantly as 

compared to the increase in bias and hence it gives us an overall better model.

When building a random forest, you can set specific model parameters for both 

the base decision trees and the overall forest. For the trees, you usually have the same 

parameters as a normal decision tree model like the tree depth, number of leaves, 
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number of features in each split, samples per leaf, criteria for the node splits, information 

gain, and gini impurity. For the forest, you can tune the total number of trees needed, the 

number of features to be used per tree, and so on.

 Gradient Boosting Machines
Gradient boosting machines, popularly known as GBMs, can be used for regression 

and classification. Typically, GBMs builds an additive model in a forward stage-wise 

sequential fashion; they allow for the optimization of arbitrary differentiable loss 

functions. GBMs can usually work on any combination of models (weak learners) 

and loss functions. Scikit-Learn uses GBRTs (Gradient Boosted Regression Trees), 

which are generalized boosting models that can be applied to arbitrary differentiable 

loss functions. The beauty of this model is that is accurate and can be used for both 

regression and classification problems. GBRT considers additive models that can be 

mathematically represented as follows:

F x h x
m

M

m m( ) = ( )
=
å

1

g

Where hm(x) can be defined as the base models or weak learners—in this case the 

decision trees. Similar to other boosting algorithms, GBRT builds the additive model 

in forward stage wise sequential manner. Mathematically, this can be represented as 

follows:

Fm(x) = Fm − 1(x) + γmhm(x)

At each stage, the next decision tree hm(x) is chosen to minimize the loss function L 

given the previous decision tree model Fm − 1 and its fit Fm − 1(xi). This can be represented 

as follows:
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Typically, decision trees are used as the base models and we end up minimizing the 

residuals (regression trees) or the negative log likelihood (classification trees).
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There are a lot of resources and books dedicated entirely to supervised machine 

learning and classification. We encourage readers to check them out to gain more 

in-depth knowledge into how these techniques work and how they can be applied to 

various problems in analytics. We also recommend readers check out the latest state-of- 

the-art ensemble models, like XGBoost, CatBoost, and LightGBM.

 Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics 

lifecycle, but it’s even more important to know how well these models are performing. 

Performance of classification models is usually based on how well they are predicting 

outcomes for new data points. Usually this performance is measured against a test or 

holdout dataset, which consists of data points that were not used to influence or train the 

classifier in any way. This test dataset has several observations and their corresponding 

labels. We extract features in the same way as when training the model. These features 

are fed to the already trained model and we obtain predictions for each data point. These 

predictions are then matched against the actual labels to see how well or how accurately 

the model has predicted. There are several metrics to determine a model’s prediction 

performance. We mainly focus on the following metrics.

• Accuracy

• Precision

• Recall

• F1-score

Let’s take a classic example of the very popular Wisconsin Diagnostic Breast Cancer 

dataset. This dataset has 30 attributes or features and a corresponding label for each 

data point (breast mass) depicting if it has cancer (malignant: label value 1) or no cancer 

(benign: label value 0). Let’s assume we already have this data and will be building 

a basic logistic regression model and evaluating it. We take the assumption that we 

have 398 observations in our train dataset and 171 observations in our test dataset. We 

will be leveraging a nifty module we have created for model evaluation. It is named 

model_evaluation_utils and you can find it along with the code files and notebooks for 

this chapter. We recommend you check out the code, which leverages the Scikit-Learn 

metrics module to compute most of the evaluation metrics and plots.
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 Confusion Matrix
A confusion matrix is one of the most popular ways to evaluate a classification model. 

Although the matrix by itself is not a metric, the matrix representation can be used 

to define a variety of metrics, all of which become important in some specific case or 

scenario. A confusion matrix can be created for both a binary classification as well as a 

multi-class classification model.

A confusion matrix is created by comparing the predicted class label of a data point 

with its actual class label. This comparison is repeated for the whole dataset and the 

results of this comparison are compiled in a matrix or tabular format. This resultant 

matrix is our confusion matrix. Before we go any further, let’s build a logistic regression 

model on our breast cancer dataset and look at the confusion matrix for the model 

predictions on the test dataset.

from sklearn import linear_model

# train and build the model

logistic = linear_model.LogisticRegression()

logistic.fit(X_train,y_train)

# predict on test data and view confusion matrix

import model_evaluation_utils as meu

y_pred = logistic.predict(X_test)

meu.display_confusion_matrix(true_labels=y_test, predicted_labels=y_pred, 

classes=[0, 1])

          Predicted:

                   0    1

Actual: 0         59    4

        1          2  106

The preceding output depicts the confusion matrix with necessary annotations. 

We can see that out of 63 observations with label 0 (benign), our model has correctly 

predicted 59 observations. Similarly, out of 108 observations with label 1 (malignant), 

our model has correctly predicted 106 observations. More detailed analysis is coming 

right up!

Chapter 5  text ClassifiCation



311

 Understanding the Confusion Matrix

While the name itself sounds pretty overwhelming, understanding the confusion matrix 

is not that confusing once you have the basics right! To reiterate what we learned in the 

previous section, the confusion matrix is a tabular structure that keeps a track of correct 

classifications as well as misclassifications. This is useful to evaluate the performance 

of a classification model for which we know the true data labels and can compare with 

the predicted data labels. Each column in the confusion matrix represents classified 

instance counts based on predictions from the model and each row of the matrix 

represents instance counts based on the actual/true class labels. This structure can also 

be reversed, i.e. predictions depicted by rows and true labels by columns. In a typical 

binary classification problem, we usually have a class label that’s defined as the positive 

class, which is basically the class of our interest. For instance, in our breast cancer 

dataset, we are interested in detecting breast cancer, hence label 1 is our positive class. 

Figure 5-9 shows a typical confusion matrix for a binary classification problem, where p 

denotes the positive class and n denotes the negative class.

Figure 5-9. Typical structure of a confusion matrix
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Figure 5-9 should make things more clear with regard to the structure of confusion 

matrices. In general, we usually have a positive class as we discussed earlier and the 

other class is the negative class. Based on this structure, we can clearly see four terms of 

importance.

• True Positive (TP): This is the count of the total number of instances 

from the positive class where the true class label was equal to the 

predicted class label, i.e., the total instances where we correctly 

predicted the positive class label with our model.

• False Positive (FP): This is the count of the total number of instances 

from the negative class where our model misclassified them by 

predicting them as positive. Hence, the name, “false” positive.

• True Negative (FN): This is the count of the total number of 

instances from the negative class, where the true class label was 

equal to the predicted class label, i.e., the total instances where we 

correctly predicted the negative class label with our model.

• False Negative (FN): This is the count of the total number of 

instances from the positive class where our model misclassified them 

by predicting them as negative. Hence the name, “false” negative.

Based on this information, can you compute these metrics for our confusion matrix 

based on the model predictions on the breast cancer test data?

positive_class = 1

TP = 106

FP = 4

TN = 59

FN = 2

Performance Metrics

The confusion matrix by itself is not a performance measure for classification models. 

But it can be used to calculate several metrics that are useful measures for different 

scenarios. We describe how the major metrics can be calculated from the confusion 

matrix, compute them manually using necessary formulae, compare the results with 

functions provided by Scikit-Learn on our predicted results, and give an intuition of 

scenarios where each of those metric can be used.
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Accuracy is one of the most popular measures of classifier performance. It is defined 

as the overall proportion of correct predictions of the model. The formula for computing 

accuracy from the confusion matrix is as follows:

 
Accuracy

TP TN

TP FP TN FN
=

+
+ + +  

Accuracy is normally used when our classes are almost balanced and correct 

predictions of those classes are equally important. The following code computes 

accuracy on our model predictions.

fw_acc = round(meu.metrics.accuracy_score(y_true=y_test, y_pred=y_pred), 5)

mc_acc = round((TP + TN) / (TP + TN + FP + FN), 5)

print('Framework Accuracy:', fw_acc)

print('Manually Computed Accuracy:', mc_acc)

Framework Accuracy: 0.96491

Manually Computed Accuracy: 0.96491

Precision, also known as positive predictive value, is another metric that can be 

derived from the confusion matrix. It is defined as the number of predictions made that 

are actually correct or relevant out of all the predictions based on the positive class. The 

formula for precision is as follows:

 
Precision

TP

TP FP
=

+  

A model with high precision will identify a higher fraction of positive classes as 

compared to a model with a lower precision. Precision becomes important in cases 

where we are more concerned about finding the maximum number of positive classes 

even if the total accuracy reduces. The following code computes precision on our model 

predictions.

fw_prec = round(meu.metrics.precision_score(y_true=y_test, y_pred=y_pred), 5)

mc_prec = round((TP) / (TP + FP), 5)

print('Framework Precision:', fw_prec)

print('Manually Computed Precision:', mc_prec)

Framework Precision: 0.96364

Manually Computed Precision: 0.96364
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Recall, also known as sensitivity, is a measure of a model to identify the percentage 

of relevant data points. It is defined as the number of instances of the positive class that 

were correctly predicted. This is also known as hit rate, coverage, or sensitivity. The 

formula for recall is as follows:

 
Recall

TP

TP FN
=

+  

Recall becomes an important measure of classifier performance when we want to 

catch the most number of instances of a particular class even when it increases our false 

positives. For example, consider the case of bank fraud. A model with high recall will give 

us higher number of potential fraud cases. But it will also help us raise alarm for most of 

the suspicious cases. The following code computes recall on our model predictions.

fw_rec = round(meu.metrics.recall_score(y_true=y_test, y_pred=y_pred), 5)

mc_rec = round((TP) / (TP + FN), 5)

print('Framework Recall:', fw_rec)

print('Manually Computed Recall:', mc_rec)

Framework Recall: 0.98148

Manually Computed Recall: 0.98148

There are some cases in which we want a balanced optimization of both precision 

and recall. The F1-score is the harmonic mean of precision and recall and helps us 

optimize a classifier for balanced precision and recall performance.

The formula for the F1-score is as follows:

 
F Score

Precision Recall

Precision Recall
1

2
=

´ ´
+  

Let’s compute the F1-score on the predictions made by our model using the 

following code.

fw_f1 = round(meu.metrics.f1_score(y_true=y_test, y_pred=y_pred), 5)

mc_f1 = round((2*mc_prec*mc_rec) / (mc_prec+mc_rec), 5)

print('Framework F1-Score:', fw_f1)

print('Manually Computed F1-Score:', mc_f1)

Framework F1-Score: 0.97248

Manually Computed F1-Score: 0.97248
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Thus, you can see how our manually computed metrics match the results obtained 

from Scikit-Learn functions. This should give you a good idea of how to evaluate 

classification models with these metrics.

 Building and Evaluating Our Text Classifier
We have gone through all the steps necessary for building a classification system, 

including data retrieval, wrangling, text preprocessing and normalization, feature 

extraction and engineering, classification models, and model performance evaluation. 

In this section, we put everything together to build and evaluate our text classification 

system! Our training and test datasets are cleaned and ready to go. We will use the 

following workflows to build our text classifiers.

• Traditional feature representation (BOW, TF-IDF) and classification 

models

• Advanced feature representation (Word2Vec, GloVe, FastText) and 

classification models

We also use techniques like cross-validation and grid search for evaluating as well as 

tuning for our best models.

 Bag of Words Features with Classification Models
Let’s start by using a basic Bag of Words, the term frequency-based feature engineering 

model, to extract features from our train and test datasets.

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import cross_val_score

# build BOW features on train articles

cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0)

cv_train_features = cv.fit_transform(train_corpus)

# transform test articles into features

cv_test_features = cv.transform(test_corpus)
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print('BOW model:> Train features shape:', cv_train_features.shape,

      ' Test features shape:', cv_test_features.shape)

BOW model:> Train features shape: (12263, 66865)  Test features shape: 

(6041, 66865)

We now build several classifiers on these features using the training data and test 

their performance on the test dataset using all the classification models we discussed 

earlier. We also check model accuracies using five-fold cross validation just to see if 

the model performs consistently across the validation folds of data (we use this same 

strategy to tune the models later).

# Naïve Bayes Classifier

from sklearn.naive_bayes import MultinomialNB

mnb = MultinomialNB(alpha=1)

mnb.fit(cv_train_features, train_label_names)

mnb_bow_cv_scores = cross_val_score(mnb, cv_train_features, train_label_

names, cv=5)

mnb_bow_cv_mean_score = np.mean(mnb_bow_cv_scores)

print('CV Accuracy (5-fold):', mnb_bow_cv_scores)

print('Mean CV Accuracy:', mnb_bow_cv_mean_score)

mnb_bow_test_score = mnb.score(cv_test_features, test_label_names)

print('Test Accuracy:', mnb_bow_test_score)

CV Accuracy (5-fold): [ 0.68468102  0.68241042  0.67835304  0.67741935   

0.6792144 ]

Mean CV Accuracy: 0.680415648396

Test Accuracy: 0.680185399768

# Logistic Regression

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(penalty='l2', max_iter=100, C=1, random_state=42)

lr.fit(cv_train_features, train_label_names)

lr_bow_cv_scores = cross_val_score(lr, cv_train_features, train_label_

names, cv=5)

lr_bow_cv_mean_score = np.mean(lr_bow_cv_scores)

print('CV Accuracy (5-fold):', lr_bow_cv_scores)

Chapter 5  text ClassifiCation



317

print('Mean CV Accuracy:', lr_bow_cv_mean_score)

lr_bow_test_score = lr.score(cv_test_features, test_label_names)

print('Test Accuracy:', lr_bow_test_score)

CV Accuracy (5-fold): [ 0.70418529  0.69788274  0.69384427  0.6998775   

0.69599018]

Mean CV Accuracy: 0.698355996012

Test Accuracy: 0.703856977322

# Support Vector Machines

from sklearn.svm import LinearSVC

svm = LinearSVC(penalty='l2', C=1, random_state=42)

svm.fit(cv_train_features, train_label_names)

svm_bow_cv_scores = cross_val_score(svm, cv_train_features, train_label_

names, cv=5)

svm_bow_cv_mean_score = np.mean(svm_bow_cv_scores)

print('CV Accuracy (5-fold):', svm_bow_cv_scores)

print('Mean CV Accuracy:', svm_bow_cv_mean_score)

svm_bow_test_score = svm.score(cv_test_features, test_label_names)

print('Test Accuracy:', svm_bow_test_score)

CV Accuracy (5-fold): [ 0.64120276  0.64169381  0.64900122  0.64107799   

0.63993453]

Mean CV Accuracy: 0.642582064348

Test Accuracy: 0.656679357722

# SVM with Stochastic Gradient Descent

from sklearn.linear_model import SGDClassifier

svm_sgd = SGDClassifier(loss='hinge', penalty='l2', max_iter=5, random_

state=42)

svm_sgd.fit(cv_train_features, train_label_names)

svmsgd_bow_cv_scores = cross_val_score(svm_sgd, cv_train_features, train_

label_names, cv=5)

svmsgd_bow_cv_mean_score = np.mean(svmsgd_bow_cv_scores)

print('CV Accuracy (5-fold):', svmsgd_bow_cv_scores)

print('Mean CV Accuracy:', svmsgd_bow_cv_mean_score)
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svmsgd_bow_test_score = svm_sgd.score(cv_test_features, test_label_names)

print('Test Accuracy:', svmsgd_bow_test_score)

CV Accuracy (5-fold): [ 0.66030069  0.62459283  0.65185487  0.63209473   

0.64157119]

Mean CV Accuracy: 0.642082864709

Test Accuracy: 0.633007780169

# Random Forest

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=10, random_state=42)

rfc.fit(cv_train_features, train_label_names)

rfc_bow_cv_scores = cross_val_score(rfc, cv_train_features, train_label_

names, cv=5)

rfc_bow_cv_mean_score = np.mean(rfc_bow_cv_scores)

print('CV Accuracy (5-fold):', rfc_bow_cv_scores)

print('Mean CV Accuracy:', rfc_bow_cv_mean_score)

rfc_bow_test_score = rfc.score(cv_test_features, test_label_names)

print('Test Accuracy:', rfc_bow_test_score)

CV Accuracy (5-fold): [ 0.52052011  0.51669381  0.53485528  0.51327072   

0.5212766 ]

Mean CV Accuracy: 0.521323304518

Test Accuracy: 0.52987915908

# Gradient Boosting Machines

from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=10, random_state=42)

gbc.fit(cv_train_features, train_label_names)

gbc_bow_cv_scores = cross_val_score(gbc, cv_train_features, train_label_

names, cv=5)

gbc_bow_cv_mean_score = np.mean(gbc_bow_cv_scores)

print('CV Accuracy (5-fold):', gbc_bow_cv_scores)

print('Mean CV Accuracy:', gbc_bow_cv_mean_score)

gbc_bow_test_score = gbc.score(cv_test_features, test_label_names)

print('Test Accuracy:', gbc_bow_test_score)
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CV Accuracy (5-fold): [ 0.55424624  0.53827362  0.54219323  0.55206207   

0.55441899]

Mean CV Accuracy: 0.548238828239

Test Accuracy: 0.547922529383

It is interesting to see that simpler models like Naïve Bayes and Logistic Regression 

performed much better than the ensemble models. Let’s look at the next model pipeline 

now.

 TF-IDF Features with Classification Models
We use TF-IDF features to train our classification models. Assuming TF-IDF weighs 

down unimportant features, we might get better performing models. Let’s test our 

assumption!

from sklearn.feature_extraction.text import TfidfVectorizer

# build BOW features on train articles

tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0)

tv_train_features = tv.fit_transform(train_corpus)

# transform test articles into features

tv_test_features = tv.transform(test_corpus)

print('TFIDF model:> Train features shape:', tv_train_features.shape,

      ' Test features shape:', tv_test_features.shape)

TFIDF model:> Train features shape: (12263, 66865)  Test features shape: 

(6041, 66865)

We now build several classifiers on these features using the training data and test 

their performance on the test dataset using all the classification models. We also check 

model accuracies using five-fold cross validation, just like we did earlier.

# Naïve Bayes

mnb = MultinomialNB(alpha=1)

mnb.fit(tv_train_features, train_label_names)

mnb_tfidf_cv_scores = cross_val_score(mnb, tv_train_features, train_label_

names, cv=5)

mnb_tfidf_cv_mean_score = np.mean(mnb_tfidf_cv_scores)
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print('CV Accuracy (5-fold):', mnb_tfidf_cv_scores)

print('Mean CV Accuracy:', mnb_tfidf_cv_mean_score)

mnb_tfidf_test_score = mnb.score(tv_test_features, test_label_names)

print('Test Accuracy:', mnb_tfidf_test_score)

CV Accuracy (5-fold): [ 0.71759447  0.70969055  0.71585813  0.7121274   

0.7111293 ]

Mean CV Accuracy: 0.713279971122

Test Accuracy: 0.713954643271

# Logistic Regression

lr = LogisticRegression(penalty='l2', max_iter=100, C=1, random_state=42)

lr.fit(tv_train_features, train_label_names)

lr_tfidf_cv_scores = cross_val_score(lr, tv_train_features, train_label_

names, cv=5)

lr_tfidf_cv_mean_score = np.mean(lr_tfidf_cv_scores)

print('CV Accuracy (5-fold):', lr_tfidf_cv_scores)

print('Mean CV Accuracy:', lr_tfidf_cv_mean_score)

lr_tfidf_test_score = lr.score(tv_test_features, test_label_names)

print('Test Accuracy:', lr_tfidf_test_score)

CV Accuracy (5-fold): [ 0.74725721  0.73493485  0.73257236  0.74520212   

0.73076923]

Mean CV Accuracy: 0.738147156079

Test Accuracy: 0.745240854163

# Support Vector Machines

svm = LinearSVC(penalty='l2', C=1, random_state=42)

svm.fit(tv_train_features, train_label_names)

svm_tfidf_cv_scores = cross_val_score(svm, tv_train_features, train_label_

names, cv=5)

svm_tfidf_cv_mean_score = np.mean(svm_tfidf_cv_scores)

print('CV Accuracy (5-fold):', svm_tfidf_cv_scores)

print('Mean CV Accuracy:', svm_tfidf_cv_mean_score)

svm_tfidf_test_score = svm.score(tv_test_features, test_label_names)

print('Test Accuracy:', svm_tfidf_test_score)

Chapter 5  text ClassifiCation



321

CV Accuracy (5-fold): [ 0.76635514  0.7536645   

0.75743987  0.76439363  0.75695581]

Mean CV Accuracy: 0.75976178901

Test Accuracy: 0.762456546929

# SVM with Stochastic Gradient Descent

svm_sgd = SGDClassifier(loss='hinge', penalty='l2', max_iter=5, random_

state=42)

svm_sgd.fit(tv_train_features, train_label_names)

svmsgd_tfidf_cv_scores = cross_val_score(svm_sgd, tv_train_features, train_

label_names, cv=5)

svmsgd_tfidf_cv_mean_score = np.mean(svmsgd_tfidf_cv_scores)

print('CV Accuracy (5-fold):', svmsgd_tfidf_cv_scores)

print('Mean CV Accuracy:', svmsgd_tfidf_cv_mean_score)

svmsgd_tfidf_test_score = svm_sgd.score(tv_test_features, test_label_names)

print('Test Accuracy:', svmsgd_tfidf_test_score)

CV Accuracy (5-fold): [ 0.76513612  0.75570033  0.75377089  0.76112699   

0.75695581]

Mean CV Accuracy: 0.75853802856

Test Accuracy: 0.765767257077

# Random Forest

rfc = RandomForestClassifier(n_estimators=10, random_state=42)

rfc.fit(tv_train_features, train_label_names)

rfc_tfidf_cv_scores = cross_val_score(rfc, tv_train_features, train_label_

names, cv=5)

rfc_tfidf_cv_mean_score = np.mean(rfc_tfidf_cv_scores)

print('CV Accuracy (5-fold):', rfc_tfidf_cv_scores)

print('Mean CV Accuracy:', rfc_tfidf_cv_mean_score)

rfc_tfidf_test_score = rfc.score(tv_test_features, test_label_names)

print('Test Accuracy:', rfc_tfidf_test_score)

CV Accuracy (5-fold): [ 0.53596099  0.5252443   

0.53852426  0.51204573  0.54296236]

Mean CV Accuracy: 0.53094752738

Test Accuracy: 0.545936103294
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# Gradient Boosting

gbc = GradientBoostingClassifier(n_estimators=10, random_state=42)

gbc.fit(tv_train_features, train_label_names)

gbc_tfidf_cv_scores = cross_val_score(gbc, tv_train_features, train_label_

names, cv=5)

gbc_tfidf_cv_mean_score = np.mean(gbc_tfidf_cv_scores)

print('CV Accuracy (5-fold):', gbc_tfidf_cv_scores)

print('Mean CV Accuracy:', gbc_tfidf_cv_mean_score)

gbc_tfidf_test_score = gbc.score(tv_test_features, test_label_names)

print('Test Accuracy:', gbc_tfidf_test_score)

CV Accuracy (5-fold): [ 0.55790329  0.53827362  0.55768447  0.55859535  0.54541735]

Mean CV Accuracy: 0.551574813725

Test Accuracy: 0.548584671412

It’s interesting to see that the overall accuracy of several models increases by 

quite a bit, including logistic regression, Naïve Bayes, and SVM. Interestingly, the 

ensemble models don’t perform as well. Using more estimators might improve them, 

but still wouldn’t be as good as the other models and it would take a huge amount of 

training time.

 Comparative Model Performance Evaluation
We can now do a nice comparison of all the models we have tried so far with the two 

different feature engineering techniques. We will build a dataframe from our modeling 

results and compare the results. See Figure 5-10.

pd.DataFrame([['Naive Bayes', mnb_bow_cv_mean_score, mnb_bow_test_score,

               mnb_tfidf_cv_mean_score, mnb_tfidf_test_score],

               ['Logistic Regression', lr_bow_cv_mean_score, lr_bow_test_

score, lr_tfidf_cv_mean_score, lr_tfidf_test_score],

              ['Linear SVM', svm_bow_cv_mean_score, svm_bow_test_score,

               svm_tfidf_cv_mean_score, svm_tfidf_test_score],

               ['Linear SVM (SGD)', svmsgd_bow_cv_mean_score, svmsgd_bow_test_

score, svmsgd_tfidf_cv_mean_score, svmsgd_tfidf_test_score],
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              ['Random Forest', rfc_bow_cv_mean_score, rfc_bow_test_score,

               rfc_tfidf_cv_mean_score, rfc_tfidf_test_score],

               ['Gradient Boosted Machines', gbc_bow_cv_mean_score, gbc_bow_

test_score, gbc_tfidf_cv_mean_score, gbc_tfidf_test_score]],

              columns=['Model', 'CV Score (TF)', 'Test Score (TF)',

                      'CV Score (TF-IDF)', 'Test Score (TF-IDF)'],

             ).T

Figure 5-10. Comparative model performance evaluation

Figure 5-10 clearly shows us that the best performing models were SVM followed by 

Logistic Regression and Naïve Bayes. Ensemble models didn’t perform as well on this 

dataset.

 Word2Vec Embeddings with Classification Models
Let’s try using the newer advanced feature engineering techniques with our 

classification models. We start by generating Word2Vec embeddings. An important point 

to note here is that word embedding models generate a dense embedding vector of fixed 

lengths for each word. Hence, we need some scheme to generate fixed embeddings for 

each document. One way is to average the word embeddings for all the words in the 

document (or even take the TF-IDF weighted average!). Let’s build a scheme to generate 

document embeddings from the averaged word embeddings.

def document_vectorizer(corpus, model, num_features):

    vocabulary = set(model.wv.index2word)

    def average_word_vectors(words, model, vocabulary, num_features):

        feature_vector = np.zeros((num_features,), dtype="float64")

        nwords = 0.
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        for word in words:

            if word in vocabulary:

                nwords = nwords + 1.

                feature_vector = np.add(feature_vector, model.wv[word])

        if nwords:

            feature_vector = np.divide(feature_vector, nwords)

        return feature_vector

     features =  [average_word_vectors(tokenized_sentence, model, vocabulary, 

num_features) for tokenized_sentence in corpus]

    return np.array(features)

We use Gensim, an excellent Python framework, to generate Word2Vec embeddings 

for all words in our corpus.

# tokenize corpus

tokenized_train = [tn.tokenizer.tokenize(text)

                   for text in train_corpus]

tokenized_test = [tn.tokenizer.tokenize(text)

                   for text in test_corpus]

# generate word2vec word embeddings

import gensim

# build word2vec model

w2v_num_features = 1000

w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_features, 

window=100, min_count=2, sample=1e-3, sg=1, iter=5, workers=10)

# generate document level embeddings

# remember we only use train dataset vocabulary embeddings

# so that test dataset truly remains an unseen dataset

# generate averaged word vector features from word2vec model

avg_wv_train_features = document_vectorizer(corpus=tokenized_train, 

model=w2v_model, num_features=w2v_num_features)

Chapter 5  text ClassifiCation



325

avg_wv_test_features = document_vectorizer(corpus=tokenized_test, 

model=w2v_model, num_features=w2v_num_features)

print('Word2Vec model:> Train features shape:',  avg_wv_train_features.

shape,' Test features shape:', avg_wv_test_features.shape)

Word2Vec model:> Train features shape: (12263, 1000)  Test features shape: 

(6041, 1000)

Let’s try using one of our best models, SVM with SGD, to check the model 

performance on the test data.

from sklearn.svm import LinearSVC

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import SGDClassifier

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_

iter=500)

svm.fit(avg_wv_train_features, train_label_names)

svm_w2v_cv_scores = cross_val_score(svm, avg_wv_train_features, train_

label_names, cv=5)

svm_w2v_cv_mean_score = np.mean(svm_w2v_cv_scores)

print('CV Accuracy (5-fold):', svm_w2v_cv_scores)

print('Mean CV Accuracy:', svm_w2v_cv_mean_score)

svm_w2v_test_score = svm.score(avg_wv_test_features, test_label_names)

print('Test Accuracy:', svm_w2v_test_score)

CV Accuracy (5-fold): [0.76026006 0.74796417 0.73746433 0.73989383 0.74386252]

Mean CV Accuracy: 0.7458889820674891

Test Accuracy: 0.7381228273464658

Definitely a good model performance but not better than our TF-IDF based model, 

which gave much better test accuracy.
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 GloVe Embeddings with Classification Models
We now generate GloVe-based word embeddings for each word, generate document- 

level embeddings, and use our SVM model to test the model performance. We use 

spaCy’s default word embeddings generated from the common crawl corpus.

# feature engineering with GloVe model

train_nlp = [tn.nlp(item) for item in train_corpus]

train_glove_features = np.array([item.vector for item in train_nlp])

test_nlp = [tn.nlp(item) for item in test_corpus]

test_glove_features = np.array([item.vector for item in test_nlp])

print('GloVe model:> Train features shape:', train_glove_features.shape,

      ' Test features shape:', test_glove_features.shape)

GloVe model:> Train features shape: (12263, 300)  Test features shape: 

(6041, 300)

# Building our SVM model

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_

iter=500)

svm.fit(train_glove_features, train_label_names)

svm_glove_cv_scores = cross_val_score(svm, train_glove_features, train_

label_names, cv=5)

svm_glove_cv_mean_score = np.mean(svm_glove_cv_scores)

print('CV Accuracy (5-fold):', svm_glove_cv_scores)

print('Mean CV Accuracy:', svm_glove_cv_mean_score)

svm_glove_test_score = svm.score(test_glove_features, test_label_names)

print('Test Accuracy:', svm_glove_test_score)

CV Accuracy (5-fold): [ 0.68996343  0.67711726  0.67101508  0.67006942   

0.66448445]

Mean CV Accuracy: 0.674529928944

Test Accuracy: 0.666777023672

It looks like the performance is not as good and that could be because we’re using 

pre-generated word embeddings. Let’s now take a look at FastText!
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 FastText Embeddings with Classification Models
We now leverage Gensim again, but use Facebook’s FastText model to generate word 

embeddings from which we will build our document embeddings.

from gensim.models.fasttext import FastText

ft_num_features = 1000

# sg decides whether to use the skip-gram model (1) or CBOW (0)

ft_model = FastText(tokenized_train, size=ft_num_features, window=100,

                    min_count=2, sample=1e-3, sg=1, iter=5, workers=10)

# generate averaged word vector features from word2vec model

avg_ft_train_features = document_vectorizer(corpus=tokenized_train, 

model=ft_model, num_features=ft_num_features)

avg_ft_test_features = document_vectorizer(corpus=tokenized_test,  

model=ft_model, num_features=ft_num_features)

print('FastText model:> Train features shape:', avg_ft_train_features.shape,

      ' Test features shape:', avg_ft_test_features.shape)

FastText model:> Train features shape: (12263, 1000)  Test features shape: 

(6041, 1000)

Now, just like the previous pipelines, we train and evaluate our SVM model on these 

features.

svm = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_iter=500)

svm.fit(avg_ft_train_features, train_label_names)

svm_ft_cv_scores = cross_val_score(svm, avg_ft_train_features, train_label_

names, cv=5)

svm_ft_cv_mean_score = np.mean(svm_ft_cv_scores)

print('CV Accuracy (5-fold):', svm_ft_cv_scores)

print('Mean CV Accuracy:', svm_ft_cv_mean_score)

svm_ft_test_score = svm.score(avg_ft_test_features, test_label_names)

print('Test Accuracy:', svm_ft_test_score)
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CV Accuracy (5-fold): [0.76391711 0.74307818 0.74194863 0.74724377 

0.74795417]

Mean CV Accuracy: 0.7488283727085712

Test Accuracy: 0.7434199635821884

This is definitely the best performing model out of all the word embedding based 

models, but it’s still not better than our TF-IDF based model. Let’s quickly build a two- 

hidden layer neural network and see if we get a better model performance.

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(solver='adam', alpha=1e-5, learning_rate='adaptive', 

early_stopping=True, activation = 'relu', hidden_layer_sizes=(512, 512), 

random_state=42)

mlp.fit(avg_ft_train_features, train_label_names)

svm_ft_test_score = mlp.score(avg_ft_test_features, test_label_names)

print('Test Accuracy:', svm_ft_test_score)

Test Accuracy: 0.7328256911107432

What does this tell us? Word embedding models or deep learning models might be 

good, but that doesn’t mean they are a silver bullet for all our problems. Often traditional 

models might out-perform them, depending on the problem and the context!

 Model Tuning
Model tuning is perhaps one of the key stages in the machine learning process and 

can lead to better performing models. Any machine learning model typically has 

hyperparameters, which are high-level concepts much like configuration settings 

that you can tune like knobs in a device! A very important point to remember is that 

hyperparameters are model parameters that are not directly learned within estimators 

and do not depend on the underlying data (as opposed to model parameters or 

coefficients like the coefficients of logistic regression, which can change based on the 

underlying training data).
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It is possible and recommended to search the hyperparameter space for the best 

cross-validation score for which we use a five-fold cross validation scheme along with 

grid search for finding the best hyperparameter values. A typical search for the best 

hyperparameter values during tuning consists of the following major components:

• A model or estimator like LogisticRegression from Scikit-Learn

• A hyperparameter space that we can define with values and ranges

• A method for searching or sampling candidates like Grid Search

• A cross-validation scheme, like five-fold cross-validation

• A score function, like accuracy, for classification models

There are two very common approaches for sampling search candidates also 

available in Scikit-Learn. We have GridSearchCV, which exhaustively considers all 

parameter combinations set by users. However, RandomizedSearchCV typically samples a 

given number of candidates from a parameter space with a specified distribution instead 

of taking all combinations. We use Grid Search for our tuning experiments.

To tune the experiments, we also use a Scikit-Learn Pipeline object, which is an 

excellent way to chain multiple components together where we sequentially apply a 

list of transforms like data preprocessors, feature engineering methods, and a model 

estimator for predictions. Intermediate steps of the pipeline must be some form of a 

“transformer,” that is, they must implement fit and transform methods.

The purpose of the pipeline and why we want to use it is so that we can assemble 

multiple components like feature engineering and modeling so that they can be cross- 

validated while setting different hyperparameter values for grid search. Let’s get started 

with tuning our Naïve Bayes model!

# Tuning our Multinomial Naïve Bayes model

from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import TfidfVectorizer

mnb_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

                        ('mnb', MultinomialNB())

                       ])
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param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

              'mnb__alpha': [1e-5, 1e-4, 1e-2, 1e-1, 1]

}

gs_mnb = GridSearchCV(mnb_pipeline, param_grid, cv=5, verbose=2)

gs_mnb = gs_mnb.fit(train_corpus, train_label_names)

Fitting 5 folds for each of 10 candidates, totalling 50 fits

[CV] mnb__alpha=1e-05, tfidf__ngram_range=(1, 1) .....................

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent 

workers.

[CV] ...... mnb__alpha=1e-05, tfidf__ngram_range=(1, 1), total=   1.5s

[CV] mnb__alpha=1e-05, tfidf__ngram_range=(1, 1) .....................

...

...

[CV] mnb__alpha=1, tfidf__ngram_range=(1, 2) .........................

[CV] .......... mnb__alpha=1, tfidf__ngram_range=(1, 2), total=   6.2s

[Parallel(n_jobs=1)]: Done  50 out of  50 | elapsed:  4.7min finished

We can now inspect the hyperparameter values chosen for our best estimator/model 

using the following code.

gs_mnb.best_estimator_.get_params()

{'memory': None,

 'steps': [('tfidf',

   TfidfVectorizer(analyzer='word', max_df=1.0, min_df=1, ngram_range=(1, 2),

                   norm='l2', ...,  use_idf=True),

  ('mnb', MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True))],

  'tfidf': TfidfVectorizer(analyzer='word', max_df=1.0, min_df=1, ngram_

range=(1, 2),

                         norm='l2', ...,  use_idf=True),

 'mnb': MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True),

  'tfidf__analyzer': 'word', 'tfidf__binary': False, 'tfidf__decode_error': 

'strict',

Chapter 5  text ClassifiCation



331

  'tfidf__dtype': numpy.float64, 'tfidf__encoding': 'utf-8', 'tfidf__input': 

'content',

  'tfidf__lowercase': True, 'tfidf__max_df': 1.0, 'tfidf__max_features': None,

 'tfidf__min_df': 1, 'tfidf__ngram_range': (1, 2), 'tfidf__norm': 'l2',

  'tfidf__preprocessor': None, 'tfidf__smooth_idf': True, 'tfidf__stop_

words': None,

 'tfidf__strip_accents': None, 'tfidf__sublinear_tf': False,

  'tfidf__token_pattern': '(?u)\\b\\w\\w+\\b', 'tfidf__tokenizer': None, 

'tfidf__use_idf': True,

 'tfidf__vocabulary': None, 'mnb__alpha': 0.01, 'mnb__class_prior': None,

 'mnb__fit_prior': True}

Now you might be wondering how these hyperparameters specifically were selected 

for the best estimator. Well, it decided this based on the model performance, with those 

hyperparameter values on the five-folds of validation data during cross-validation. See 

Figure 5-11.

cv_results = gs_mnb.cv_results_

results_df = pd.DataFrame({'rank': cv_results['rank_test_score'],

                           'params': cv_results['params'],

                           'cv score (mean)': cv_results['mean_test_score'],

                           'cv score (std)': cv_results['std_test_score']}

              )

results_df = results_df.sort_values(by=['rank'], ascending=True)

pd.set_option('display.max_colwidth', 100)

results_df
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From the table in Figure 5-11, you can see how the best hyperparameters including 

bi-gram TF-IDF features gave the best cross-validation accuracy. Note that we are never 

tuning our models based on test data scores, because that would end up biasing our 

model toward the test dataset. We can now check our tuned model’s performance on the 

test data.

best_mnb_test_score = gs_mnb.score(test_corpus, test_label_names)

print('Test Accuracy :', best_mnb_test_score)

Test Accuracy : 0.7735474259228604

Looks like we have achieved a model accuracy of 77.3%, which is an improvement of 

6% over the base model! Let’s look at how it performs for logistic regression now.

# Tuning our Logistic Regression model

lr_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

                         ('lr', LogisticRegression(penalty='l2', max_

iter=100, random_state=42))

                       ])

Figure 5-11. Model performances across different hyperparameter values in the 
hyperparameter space
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param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

              'lr__C': [1, 5, 10]

}

gs_lr = GridSearchCV(lr_pipeline, param_grid, cv=5, verbose=2)

gs_lr = gs_lr.fit(train_corpus, train_label_names)

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[CV] lr__C=1, tfidf__ngram_range=(1, 1) ..............................

[CV] ............... lr__C=1, tfidf__ngram_range=(1, 1), total=   5.9s

[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    7.1s remaining:    0.0s

[CV] lr__C=1, tfidf__ngram_range=(1, 1) ..............................

[CV] ............... lr__C=1, tfidf__ngram_range=(1, 1), total=   6.5s

...

...

[CV] lr__C=10, tfidf__ngram_range=(1, 2) .............................

[CV] .............. lr__C=10, tfidf__ngram_range=(1, 2), total=  47.8s

[Parallel(n_jobs=1)]: Done  30 out of  30 | elapsed: 13.0min finished

# evaluate best tuned model on the test dataset

best_lr_test_score = gs_lr.score(test_corpus, test_label_names)

print('Test Accuracy :', best_lr_test_score)

Test Accuracy : 0.766926005628

We get an overall test accuracy of approximately 77%, which is almost a 2.5% 

improvement from the base logistic regression model. Finally, let’s tune our top two SVM 

models—the regular Linear SVM model and the SVM with Stochastic Gradient Descent.

# Tuning the Linear SVM model

svm_pipeline = Pipeline([('tfidf', TfidfVectorizer()),

                        ('svm', LinearSVC(random_state=42))

                       ])

param_grid = {'tfidf__ngram_range': [(1, 1), (1, 2)],

              'svm__C': [0.01, 0.1, 1, 5]

}
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gs_svm = GridSearchCV(svm_pipeline, param_grid, cv=5, verbose=2)

gs_svm = gs_svm.fit(train_corpus, train_label_names)

# evaluating best tuned model on the test dataset

best_svm_test_score = gs_svm.score(test_corpus, test_label_names)

print('Test Accuracy :', best_svm_test_score)

Test Accuracy : 0.77685813607

This is definitely the highest overall accuracy we have obtained so far! However, not a 

huge improvement from the default linear SVM model performance. The SVM with SGD 

gives us a tuned model accuracy of 76.8%.

 Model Performance Evaluation
Choosing the best model for deployment depends on a number of factors, like the model 

speed, accuracy, ease of use, understanding, and so on. Based on all the models we 

have built, the Naïve Bayes model is the fastest to train and, even though the SVM model 

might be slightly better on the test dataset in terms of accuracy, SVMs are notoriously 

slow and often hard to scale. Let’s take a detailed performance evaluation of our best, 

tuned Naïve Bayes model on the test dataset. We use our nifty model_evaluation_utils 

module for the purpose of model evaluation.

import model_evaluation_utils as meu

mnb_predictions = gs_mnb.predict(test_corpus)

unique_classes = list(set(test_label_names))

meu.get_metrics(true_labels=test_label_names, predicted_labels=mnb_

predictions)

Accuracy: 0.7735

Precision: 0.7825

Recall: 0.7735

F1 Score: 0.7696

It is good to see good consistency with the classification metrics. Besides seeing the 

holistic view of model performance metrics, often a more granular view into per-class 

model performance metrics helps. Let’s take a look at that.
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meu.display_classification_report(true_labels=test_label_names,

                                  predicted_labels=mnb_predictions,

                                  classes=unique_classes)

                          precision    recall  f1-score   support

 comp.os.ms-windows.misc       0.76      0.72      0.74       315

      talk.politics.misc       0.72      0.68      0.70       244

           comp.graphics       0.64      0.75      0.69       289

          comp.windows.x       0.79      0.84      0.81       287

      talk.religion.misc       0.67      0.21      0.32       199

comp.sys.ibm.pc.hardware       0.69      0.76      0.72       324

   comp.sys.mac.hardware       0.78      0.77      0.77       295

               sci.crypt       0.79      0.85      0.82       302

   talk.politics.mideast       0.85      0.87      0.86       326

            misc.forsale       0.83      0.77      0.80       314

                 sci.med       0.88      0.88      0.88       322

         rec.motorcycles       0.88      0.74      0.80       351

         sci.electronics       0.80      0.72      0.76       307

        rec.sport.hockey       0.88      0.92      0.90       308

      talk.politics.guns       0.65      0.81      0.72       281

               sci.space       0.84      0.81      0.83       324

      rec.sport.baseball       0.94      0.88      0.91       336

             alt.atheism       0.80      0.57      0.67       268

               rec.autos       0.82      0.74      0.78       328

  soc.religion.christian       0.57      0.92      0.70       321

               micro avg       0.77      0.77      0.77      6041

               macro avg       0.78      0.76      0.76      6041

            weighted avg       0.78      0.77      0.77      6041

This gives us a nice overview into the model performance for each newsgroup class 

and interestingly some categories like religion, Christianity, and atheism have slightly 

lower performance. Could it be that the model is getting some of these mixed up? The 

confusion matrix is a great way to test this assumption. Let’s first look at the newsgroup 

name to number mappings. See Figure 5-12.
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label_data_map = {v:k for k, v in data_labels_map.items()}

label_map_df = pd.DataFrame(list(label_data_map.items()),

                            columns=['Label Name', 'Label Number'])

label_map_df

Figure 5-12. Mapping between class label names and numbers

We can now build a confusion matrix to show the correct and misclassified instances 

of each class label, which we represent by numbers for display purposes, due to the long 

names. See Figure 5-13.
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unique_class_nums = label_map_df['Label Number'].values

mnb_prediction_class_nums = [label_data_map[item] for item in mnb_predictions]

meu.display_confusion_matrix_pretty(true_labels=test_label_nums,

                                    predicted_labels=mnb_prediction_class_

nums, classes=unique_class_nums)

Figure 5-13. Confusion matrix for the predictions of our Naïve Bayes model on 
test data

The diagonal of our confusion matrix has the meat of the numbers, which indicates 

that most of our predictions match the actual class labels! Interestingly, class labels 0, 

15, and 19 seem to have a lot of misclassifications. Let’s take a closer look at these class 

labels to see what their newsgroup names are. See Figure 5-14.

label_map_df[label_map_df['Label Number'].isin([0, 15, 19])]
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Just like we suspected, all the newsgroups pertaining to different aspects of religion 

have more misclassifications, which that indicates the model must be misclassifying 

instances of one of these classes. Let’s dive a bit deeper into this and explore some 

specific instances.

# Extract test document row numbers

train_idx, test_idx = train_test_split(np.array(range(len(data_df 

['Article']))), test_size=0.33, random_state=42)

test_idx

array([ 4105, 12650,  7039, ...,  4772,  7803,  9616])

We now add two columns to our dataframe in our test dataset. The first column is the 

predicted label from our Naïve Bayes model and the second column is the confidence of 

the model when making the prediction, which is basically the probability of the model 

prediction. See Figure 5-15.

predict_probas = gs_mnb.predict_proba(test_corpus).max(axis=1)

test_df = data_df.iloc[test_idx]

test_df['Predicted Name'] = mnb_predictions

test_df['Predicted Confidence'] = predict_probas

test_df.head()

Figure 5-14. Class label numbers and names for misclassified newsgroups
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Based on the dataframe snapshot depicted in Figure 5-15, it looks like everything 

is in order with the test dataset articles, actual labels, predicted labels, and confidence 

scores. Let’s now take a look at some articles that were from the newsgroup talk.

religion.misc, but our model predicted soc.religion.christian with the highest 

confidence. See Figure 5-16.

pd.set_option('display.max_colwidth', 200)

res_df = (test_df[(test_df['Target Name'] == 'talk.religion.misc')

                  & (test_df['Predicted Name'] ==  'soc.religion.christian')]

          .sort_values(by=['Predicted Confidence'], ascending=False).head(5))

res_df

Figure 5-15. Adding additional metadata to our test dataset with model 
predictions and confidence scores

Figure 5-16. Looking at mode misclassification instances for religion.misc and 
religion.christian
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This should enable you to take a deep dive into which instances might be getting 

misclassified and why. It looks like there are definitely some aspects of Christianity 

also mentioned in some of these articles, which leads the model to predict the soc.

religion.christian category. Let’s now take a look at some articles that were of the 

newsgroup talk.religion.misc but our model predicted alt.atheism with the highest 

confidence. See Figure 5-17.

pd.set_option('display.max_colwidth', 200)

res_df = (test_df[(test_df['Target Name'] == 'talk.religion.misc')

                  & (test_df['Predicted Name'] == 'alt.atheism')]

           .sort_values(by=['Predicted Confidence'], ascending=False).

head(5))

res_df

Figure 5-17. Looking at mode misclassification instances for religion.misc and  
alt.atheism

This should be a no-brainer considering atheism and religion are related in several 

aspects when people talk about them, especially on online forums. Do you notice any 

other interesting patterns? Go ahead and explore the data further! This brings us to the 

end of our discussion and implementation of our text classification system. Feel free 

to implement more models using other innovative feature extraction techniques or 

supervised learning algorithms and compare their performance.
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 Applications
Text classification and categorization are used in several real-world scenarios and 

applications. Some of them are as follows:

• News categorization

• Spam filtering

• Music or movie genre categorization

• Sentiment analysis

• Language detection

The possibilities with text data are indeed endless and you can apply classification 

to solve various problems and automate otherwise time-consuming operations and 

scenarios with a little bit of effort.

 Summary
Text classification is indeed a powerful tool and we have covered almost all aspects 

related to it in this chapter. We started off our journey with look at the definition and 

scope of text classification. Next, we defined automated text classification as a supervised 

learning problem and looked at the various types of text classification. We also briefly 

covered some machine learning concepts related to the various types of algorithms. 

A typical text classification system blueprint was also defined to describe the various 

modules and steps involved when building an end-to-end text classifier. Each module in 

the blueprint was then expanded upon.

Text preprocessing and normalization was touched upon in detail in the previous 

chapter and we built a normalization module especially for text classification. We saw a 

brief but detailed recap of various feature extraction and engineering techniques for text 

data from Chapter 4, including Bag of Words, TF-IDF, and advanced word embedding 

techniques. You should now be clear about not only the mathematical representations 

and concepts but also ways to implement them.
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Various supervised learning methods were discussed with focus on state-of-the-art 

classifiers like multinomial Naïve Bayes, logistic regression, support vector machines, 

and ensemble models like random forest and gradient boosting. We even took a glimpse 

of a neural network model! We also looked at ways to evaluate classification model 

performance and even implemented those metrics. Finally, we put everything we 

learned together into building a robust 20-class text classification system on real data 

and evaluated various models and analyzed model performance in detail. We wrapped 

up our discussion by looking at some areas where text classification is used frequently. 

We have just scratched the surface of text analytics and NLP and we look at more ways to 

analyze and derive insights from textual data in the future chapters.
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CHAPTER 6

Text Summarization 
and Topic Models
We have come quite a long way in our journey through the world of text analytics and 

natural language processing. You have seen how to process and annotate textual data 

for various applications. We also looked at state-of-the-art text representation methods 

with feature engineering. We also ventured into the world of machine learning and built 

our own multi-class text classification system by leveraging various feature extraction 

techniques and supervised machine learning algorithms. In this chapter, we tackle a 

slightly different problem in the world of text analytics—information summarization.

The world is rapidly evolving with regard to technology, commerce, business, and 

media. Gone are the days when we would wait for newspapers to come to our home 

so we could be updated about the various events around the world. With the advent of 

the Internet and social media, we have ushered in the so-called Information Age. Now 

we have various forms of social media that we consume to stay updated about daily 

events and stay connected with the world and our friends and family. Social media like 

Facebook and Twitter have created a completely different dimension to sharing and 

consuming information with very short messages or statuses. Humans tend to have short 

attention spans and this leads to us getting bored when reading large text documents 

and articles.

This brings us to text summarization, which is an extremely important concept 

in text analytics. It’s used by businesses as well as analytical firms to shorten and 

summarize huge documents so that they retain the key theme of the document. 

Usually we present this summarized information to consumers and clients so they can 

understand this information in a matter of seconds. This is analogous to an elevator 

pitch, where you need to provide a quick summary that describes a process, product, 

service, or business, ensuring that it retains the core important themes and values.  
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This originates from the idea that the pitch should take the time it usually takes to ride an 

elevator, which ranges from a few seconds to a couple of minutes.

Imagine that you have a whole corpus of text documents and are tasked with 

deriving meaningful insights from them. At the first glance, it might seem difficult 

because you do not even know what to do with these documents, let alone how to apply 

NLP or data science to them. Since it is more about pattern mining than predictive 

analytics, a good way to start is to use unsupervised learning methods specifically 

aimed at text summarization and information extraction. In general, there are several 

operations that can be executed on text documents, as follows:

• Key-phrase extraction: This focuses on extracting key influential 

phrases from the documents.

• Topic modeling: Extract various diverse concepts or topics present in 

the documents, retaining the major themes in these documents.

• Document summarization: Summarize entire text documents to 

provide a gist that retains the important parts of the whole corpus.

We cover essential concepts, techniques, and practical implementations of all the 

three major techniques.

In this chapter, we start with a detailed discussion of the various types of 

summarization and information-extraction techniques and cover some foundational 

concepts essential for understanding the practical hands-on examples later. We cover 

three major techniques, including key-phrase extraction, topic models, and automated 

document summarization. All the code examples showcased in this chapter are available 

on the book’s official GitHub repository, which you can access at https://github.com/

dipanjanS/text-analytics-with-python/tree/master/New-Second-Edition.

 Text Summarization and Information Extraction
Text summarization and information extraction deals with trying to extract key concepts 

and themes from a huge corpus of text, essentially reducing it in the process. Before we 

dive deeper into the concepts and techniques, we should first understand the need for 

text summarization. The concept of information overload is one of the prime reasons 

behind the demand for text summarization. Since print and verbal media came into 

prominence, there has been an abundance of books, articles, audio, and video. This 
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started around the 3rd or 4th Century BC, when people referred to the huge quantity of 

books as, “there was no end to the production of books” and this overload of information 

was often met with disapproval.

The Renaissance gave us the invention of the printing press by Gutenberg in around 

1440 AD and this led to a mass production of books, manuscripts, articles, and pamphlets. 

This caused information overload again, with scholars complaining about excess of 

information, which was becoming extremely difficult to consume, process, and manage.

With the advances in computers and technology, we ushered into the digital age in 

the 20th Century, which gifted us with the Internet. This opened up a whole window 

of possibilities, into producing and consuming information with social media, news 

websites, electronic mail, and instant messaging capabilities. This has led to an increase 

in information and even led to unwanted information in the form of spam, unwanted 

statuses, tweets, and even bots that post unwanted content across the web.

Now that we know the current state of information being produced and consumed, 

we can define information overload as the presence of excess data or information that 

leads to consumers having difficulty in processing that information and making well 

informed decisions. This overload occurs when the amount of information as input 

to the system starts exceeding the processing capability of the system. Humans have 

limited cognitive processing capabilities and are also wired in such a way that we cannot 

spend a long time in reading a single piece of information or data since the mind tends 

to wander every now and then. Thus, when we get loaded with information, it leads to a 

reduction in making qualitative decisions.

Businesses thrive on making well informed decisions and they usually have a huge 

amount of data and information. Getting insights from this information is no piece of 

cake and automating it is tough because you need to know what to do with the data. 

Executives rarely have time to listen to long talks or go through pages of information 

regarding important information. The goal of summarization and information extraction 

is to get an idea of the key important topics and themes and summarize huge documents 

of information into a few lines that can be read, understood, and interpreted. The end 

goal is to be able to make well informed decisions in shorter timeframes. We need 

efficient and scalable processes and techniques that can perform this on text data. The 

most popular techniques are as follows:

• Key-phrase extraction

• Topic modeling

• Automated document summarization
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The first two techniques involve extracting key information in the form of concepts, 

topics, and themes from documents, thus reducing them. Automated document 

summarization is all about summarizing large text documents into a few lines that 

explain the information the document is trying to convey. We cover each technique in 

detail in future sections, along with practical examples. First, we briefly talk about what 

each technique entails and their scope.

 Keyphrase Extraction
This is perhaps the most simple out of the three techniques. It involves the process of 

extracting keywords or phrases from a text document or corpus that capture the main 

concepts or themes from the document or corpus. This can be said to be a simplistic 

form of topic modeling. You might have seen keywords or phrases described in a 

research paper or even some product in an online store that describe the entity in a few 

words or phrases capturing the main idea or concept of the entity.

 Topic Modeling
This usually involves using statistical and mathematical modeling techniques to extract 

main topics, themes, or concepts from a corpus of documents. Note that we emphasize 

a corpus of documents because the more diverse set of documents you have, the more 

topics or concepts you can generate. This is unlike a single document, where you will not 

get too many topics or concepts if it talks about a singular concept. Topic models are also 

often known as probabilistic statistical models and they use specific statistical techniques 

including Singular Value Decomposition (SVD) and Latent Dirichlet Allocation (LDA) 

to discover connected latent semantic structures in text data to yield topics and 

concepts. They are used extensively in text analytics and across diverse domains like 

bioinformatics.

 Automated Document Summarization
This is the process of using a computer program or algorithm based on statistical and 

machine learning techniques to summarize a document or a corpus of documents in 

order to obtain a short summary that captures its essential concepts and themes. A wide 

variety of techniques for building automated document summarizers exist, including 
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various extraction and abstraction based techniques. The key concept behind all these 

algorithms is to find a representative subset of the original dataset so that the core 

essence of the dataset from the semantic and conceptual standpoints is contained in 

this subset. Document summarization usually involves extracting and constructing an 

executive summary from a single document, but the same algorithms can be extended 

to multiple documents. However, the idea is not to combine several diverse documents 

together because that would defeat the purpose of the algorithm. The same concept is 

applied to image and video summarization as well.

We now discuss some important foundational concepts around math and machine 

learning before moving to each technique in further detail.

 Important Concepts
There are several important mathematical and machine learning foundational concepts 

that we discuss in this section that will be useful later. Some of these will be familiar to 

you, but we will repeat them for the sake of completeness so that you can refresh your 

memory. We also cover some concepts from natural language processing in this section.

A document is an entity containing a whole body of text data with optional headers 

and other metadata information. A corpus usually consists of a collection of documents. 

These documents can be simple sentences or complete paragraphs of textual 

information. A tokenized corpus refers to a corpus where each document is tokenized or 

broken down into tokens, which are usually words.

Text wrangling or preprocessing is the process of cleaning, normalizing, and 

standardizing textual data with techniques like removing special symbols and 

characters, removing extraneous HTML tags, removing stopwords, correcting spellings, 

stemming, and lemmatization.

Feature engineering is a process where we extract meaningful feature or attributes 

from raw textual data and feed it into a statistical or machine learning algorithm. This 

process is also known as vectorization since the end transformation of this process is 

numerical vectors from raw text tokens. The reason is that conventional algorithms 

work on numerical vectors and cannot work directly on raw text data. There are various 

feature extraction methods, including Bag of Words based binary features, which tell 

us if a word or group of words exist in the document, Bag of Words based frequency 

features that tell us the frequency of a word or group of words in a document, and term 

frequency-inverse document frequency or TF-IDF weighted features, which take into 
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account the term frequency and inverse document frequency when weighing each term. 

You can look at Chapter 4 for more details on feature extraction.

A feature matrix usually refers to a mapping from a collection of documents to 

features where each row indicates a document and each column indicates a particular 

feature (usually a word or a set of words). We represent a collection of documents or 

sentences through feature matrices after feature extraction and we will often apply 

statistical and machine learning techniques on these matrices in our practical examples. 

A feature matrix can also be transposed where, instead of a conventional document-term 

matrix, we end up with a term-document matrix. We can also represent other features 

like document similarity, topic-terms, and topic-documents as feature matrices.

Singular Value Decomposition (SVD) is a technique from linear algebra that’s used 

quite frequently in summarization algorithms. SVD is the process of factorization of a 

matrix that is real or complex. Formally, we can define SVD as follows. Consider a matrix 

M which has dimensions of m × n, where m denotes the number of rows and n denotes 

the number of columns. Mathematically, the matrix M can be represented using SVD as 

a factorization such that

 M U S Vm n m m m n n n
T

´ ´ ´ ´=  

where we have the following decompositions:

• U is a m × m unitary matrix such that UTU = Im × m where I is the 

identity matrix. The columns of U indicate left singular vectors.

• S is a diagonal m × n matrix with positive real numbers on the 

diagonal of the matrix. This is also often also represented as a vector 

of m values which indicate the singular values.

• VT is a n × n unitary matrix such that VTV = In × n, where I is the identity 

matrix. The rows of V indicate right singular vectors.

This tells us that U and V are orthogonal. The singular values of S are particularly 

important in summarization algorithms. We use SVD particularly for low rank matrix 

approximation, where we approximate the original matrix M with a matrix M̂  such that 

this new matrix is a truncated version of the original matrix M with a rank k and can 

be represented by SVD as ˆ ˆM USVT= , where Ŝ  is a truncated version of the original S 

matrix and now consists of only the top k largest singular values and the other singular 

values are represented by zero. We use a nice implementation from SciPy to extract 
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the top k singular values and return the corresponding U, S, and V matrices. The code 

snippet we use is in the utils.py file and is depicted here:

from scipy.sparse.linalg import svds

def low_rank_svd(matrix, singular_count=2):

    u, s, vt = svds(matrix, k=singular_count)

    return u, s, vt

We use this implementation in topic modeling as well as document summarization 

in future sections. Figure 6-1 shows a nice depiction of this process, which yields k 

singular vectors from the original SVD decomposition and shows how we can determine 

the low rank matrix approximation.

Figure 6-1. Singular Value Decomposition with low rank matrix approximation

From Figure 6-1, you can clearly see that k singular values are retained in the low 

rank matrix approximation and how the original matrix M is decomposed into U, S, and 

VT using SVD.

• M is typically known as the term-document matrix and is usually 

obtained after feature engineering on the preprocessed text data, 

where each row of the matrix represents a term and each column 

represents a text document.
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• U is known as the term-topic matrix where each row of the matrix 

represents a term and each column represents a topic. It’s useful for 

getting the influential terms for each topic when we multiply this by 

the singular values.

• S is the matrix or array that consists of the list of singular values 

obtained after low-rank SVD, which is typically equal to the number 

of topics we decide prior to this operation.

• VT is the topic-document matrix, which if you transpose, you get 

the document-topic matrix, which is useful in knowing how much 

influence each topic has on each document.

We try to keep the math to a minimum in the rest of the chapter unless it is 

absolutely essential to understand how the algorithms work. But we encourage readers 

to dive deeper into these techniques for a better understanding of how they work behind 

the scenes.

 Keyphrase Extraction
This is one of the simplest yet most powerful techniques of extracting important 

information from unstructured text documents. Keyphrase extraction, also known as 

terminology extraction, is the process of extracting key terms or phrases from a body of 

unstructured text so that the core themes are captured. This technique falls under the 

broad umbrella of information retrieval and extraction. Keyphrase extraction is useful in 

many areas, some of which are mentioned here:

• Semantic web

• Query based search engines and crawlers

• Recommendation systems

• Tagging systems

• Document similarity

• Translation
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Keyphrase extraction is often the starting point for carrying out more complex tasks 

in text analytics or natural language processing and the output can act as features for 

more complex systems. There are various approaches for keyphrase extraction; we cover 

the following two major techniques:

• Collocations

• Weighted tag-based phrase extraction

An important point to remember is that we will be extracting phrases, which 

are usually a collection of words and can sometimes just be single words. If you are 

extracting keywords, that is also known as keyword extraction and it is a subset of 

keyphrase extraction.

 Collocations
The term collocation is borrowed from analyzing corpora and linguistics. A collocation 

can be defined as a sequence or group of words that tend to occur frequently and this 

frequency tends to be more than what could be termed a random or chance occurrence. 

Various types of collocations can be formed based on parts of speech like nouns, verbs, 

and so on. There are various ways to extract collocations and one of the best ways to do 

it is to use an n-gram grouping or segmentation approach. This is where we construct 

n-grams out of a corpus and then count the frequency of each n-gram and rank them 

based on their frequency of occurrence to get the most frequent n-gram collocations.

The idea is to have a corpus of documents (paragraphs or sentences), tokenize them 

to form sentences, flatten the list of sentences to form one large sentence or string over 

which we slide a window of size n based on the n-gram range, and compute n-grams 

across the string. Once they are computed, we count each n-gram based on its frequency 

of occurrence and then rank it. This yields the most frequent collocations on the basis 

of frequency. We implement this from scratch initially so that you can understand the 

algorithm better and then we use some of NLTK’s built-in capabilities to depict it.

Let’ start by loading some necessary dependencies and a corpus on which we will 

be computing collocations. We use the NLTK Gutenberg corpus’s book, Lewis Carroll’s 

Alice in Wonderland, as our corpus. We also normalize the corpus to standardize the 

text content using our handy text_normalizer module, which we built and used in the 

previous chapters.
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from nltk.corpus import gutenberg

import text_normalizer as tn

import nltk

from operator import itemgetter

# load corpus

alice = gutenberg.sents(fileids='carroll-alice.txt')

alice = [' '.join(ts) for ts in alice]

norm_alice = list(filter(None,

                         tn.normalize_corpus(alice, text_lemmatization=False)))

# print and compare first line

print(alice[0], '\n', norm_alice[0])

[ Alice ' s Adventures in Wonderland by Lewis Carroll 1865 ]

 alice adventures wonderland lewis carroll

Now we define a function to compute n-grams based on some input list of tokens 

and the parameter n, which determines the degree of the n-gram like a uni-gram, bi- 

gram, and so on. The following code snippet computes n-grams for an input sequence.

def compute_ngrams(sequence, n):

    return list(

            zip(*(sequence[index:]

                     for index in range(n)))

    )

This function basically takes in a sequence of tokens and computes a list of lists 

having sequences where each list contains all items from the previous list except the 

first item removed from the previous list. It constructs n such lists and then zips them 

all together to give us the necessary n-grams. We wrap the final result in a list since in 

Python 3; zip gives us a generator object and not a raw list. We can see the function in 

action on a sample sequence in the following snippet.

In [7]: compute_ngrams([1,2,3,4], 2)

Out[7]: [(1, 2), (2, 3), (3, 4)]

In [8]: compute_ngrams([1,2,3,4], 3)

Out[8]: [(1, 2, 3), (2, 3, 4)]
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The preceding output shows bi-grams and tri-grams for an input sequence. We 

now utilize this function and build upon it to generate the top n-grams based on their 

frequency of occurrence. For this, we need to define a function to flatten the corpus into 

one big string of text. The following function help us do this on a corpus of documents.

def flatten_corpus(corpus):

    return ' '.join([document.strip()

                     for document in corpus])

We can now build a function that will help us get the top n-grams from a corpus of text.

def get_top_ngrams(corpus, ngram_val=1, limit=5):

    corpus = flatten_corpus(corpus)

    tokens = nltk.word_tokenize(corpus)

    ngrams = compute_ngrams(tokens, ngram_val)

    ngrams_freq_dist = nltk.FreqDist(ngrams)

    sorted_ngrams_fd = sorted(ngrams_freq_dist.items(),

                              key=itemgetter(1), reverse=True)

    sorted_ngrams = sorted_ngrams_fd[0:limit]

    sorted_ngrams = [(' '.join(text), freq)

                     for text, freq in sorted_ngrams]

    return sorted_ngrams

We use NLTK’s FreqDist class to create a counter of all the n-grams based on their 

frequency and then we sort them based on their frequency and return the top n-grams 

based on the specified user limit. We now compute the top bi-grams and tri-grams on 

our corpus using the following code snippet.

# top 10 bigrams

In [11]: get_top_ngrams(corpus=norm_alice, ngram_val=2,

     ...:               limit=10)

Out[11]:

[('said alice', 123),

 ('mock turtle', 56),

 ('march hare', 31),

 ('said king', 29),
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 ('thought alice', 26),

 ('white rabbit', 22),

 ('said hatter', 22),

 ('said mock', 20),

 ('said caterpillar', 18),

 ('said gryphon', 18)]

# top 10 trigrams

In [12]: get_top_ngrams(corpus=norm_alice, ngram_val=3,

     ...:               limit=10)

Out[12]:

[('said mock turtle', 20),

 ('said march hare', 10),

 ('poor little thing', 6),

 ('little golden key', 5),

 ('certainly said alice', 5),

 ('white kid gloves', 5),

 ('march hare said', 5),

 ('mock turtle said', 5),

 ('know said alice', 4),

 ('might well say', 4)]

This output shows us sequences of two and three words generated by n-grams along 

with the number of times they occur throughout the corpus. We can see that most of the 

collocations point to people who are speaking something as “said <person>”. We also see 

the people who are popular characters in Alice in Wonderland, like the mock turtle, the 

king, the rabbit, the hatter, and Alice are depicted in the collocations.

We now look at NLTK’s collocation finders, which enable us to find collocations 

using various measures like raw frequencies, pointwise mutual information, and so on. 

Just to explain briefly, pointwise mutual information can be computed for two events or 

terms as the logarithm of the ratio of the probability of them occurring together by the 

product of their individual probabilities, assuming that they are independent of each 

other. Mathematically, we can represent it as follows:

 
pmi x y

p x y

p x p y
,

,( ) = ( )
( ) ( )

log
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This measure is symmetric. The following code snippet shows us how to compute 

these collocations using these measures.

# bigrams

from nltk.collocations import BigramCollocationFinder

from nltk.collocations import BigramAssocMeasures

finder = BigramCollocationFinder.from_documents([item.split()

                                                for item

                                                in norm_alice])

finder

<nltk.collocations.BigramCollocationFinder at 0x1c2c2c4f358>

# raw frequencies

In [14]: finder.nbest(bigram_measures.raw_freq, 10)

Out[14]:

[(u'said', u'alice'),

 (u'mock', u'turtle'),

 (u'march', u'hare'),

 (u'said', u'king'),

 (u'thought', u'alice'),

 (u'said', u'hatter'),

 (u'white', u'rabbit'),

 (u'said', u'mock'),

 (u'said', u'caterpillar'),

 (u'said', u'gryphon')]

# pointwise mutual information

In [15]: finder.nbest(bigram_measures.pmi, 10)

Out[15]:

[(u'abide', u'figures'),

 (u'acceptance', u'elegant'),

 (u'accounting', u'tastes'),

 (u'accustomed', u'usurpation'),

 (u'act', u'crawling'),

 (u'adjourn', u'immediate'),

 (u'adoption', u'energetic'),
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 (u'affair', u'trusts'),

 (u'agony', u'terror'),

 (u'alarmed', u'proposal')]

# trigrams

from nltk.collocations import TrigramCollocationFinder

from nltk.collocations import TrigramAssocMeasures

finder = TrigramCollocationFinder.from_documents([item.split()

                                                for item

                                                in norm_alice])

trigram_measures = TrigramAssocMeasures()

# raw frequencies

In [17]: finder.nbest(trigram_measures.raw_freq, 10)

Out[17]:

[(u'said', u'mock', u'turtle'),

 (u'said', u'march', u'hare'),

 (u'poor', u'little', u'thing'),

 (u'little', u'golden', u'key'),

 (u'march', u'hare', u'said'),

 (u'mock', u'turtle', u'said'),

 (u'white', u'kid', u'gloves'),

 (u'beau', u'ootiful', u'soo'),

 (u'certainly', u'said', u'alice'),

 (u'might', u'well', u'say')]

# pointwise mutual information

In [18]: finder.nbest(trigram_measures.pmi, 10)

Out[18]:

[(u'accustomed', u'usurpation', u'conquest'),

 (u'adjourn', u'immediate', u'adoption'),

 (u'adoption', u'energetic', u'remedies'),

 (u'ancient', u'modern', u'seaography'),

 (u'apple', u'roast', u'turkey'),

 (u'arithmetic', u'ambition', u'distraction'),

 (u'brother', u'latin', u'grammar'),

 (u'canvas', u'bag', u'tied'),
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 (u'cherry', u'tart', u'custard'),

 (u'circle', u'exact', u'shape')]

Now you know how to compute collocations for a corpus using an n-gram generative 

approach. We look at a better way of generating keyphrases based on parts of speech 

(PoS) tagging and term weighing in the next section.

 Weighted Tag-Based Phrase Extraction
We now look at a slightly different approach to extracting keyphrases. This method 

borrows concepts from a couple of papers, namely K. Barker and N. Cornachhia’s “Using 

Noun Phrase Heads to Extract Document Keyphrases” and Ian Witten et al.’s “KEA: 

Practical Automatic Keyphrase Extraction,” which you can refer to if you are interested in 

further details on their experimentations and approaches. We follow a two-step process 

in our algorithm, as follows:

 1. Extract all noun phrase chunks using shallow parsing.

 2. Compute TF-IDF weights for each chunk and return the top 

weighted phrases.

For the first step, we use a simple pattern based on parts of speech (POS) tags to 

extract noun phrase chunks. You will be familiar with this from Chapter 3, where we 

explored chunking and shallow parsing. Before discussing our algorithm, let’s load the 

corpus on which we will be testing our implementation. We use a sample description 

of elephants taken from Wikipedia, available in the elephants.txt file, which you can 

obtain from the GitHub repository for this book at https://github.com/dipanjanS/

text-analytics-with-python.

data = open('elephants.txt', 'r+').readlines()

sentences = nltk.sent_tokenize(data[0])

len(sentences)

29

# viewing the first three lines

sentences[:3]
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['Elephants are large mammals of the family Elephantidae and the order 

Proboscidea.', 'Three species are currently recognised: the African bush 

elephant (Loxodonta africana), the African forest elephant (L. cyclotis), 

and the Asian elephant (Elephas maximus).', 'Elephants are scattered 

throughout sub-Saharan Africa, South Asia, and Southeast Asia.']

Let’s now use our nifty text_normalizer module to do some very basic text 

preprocessing on our corpus.

norm_sentences = tn.normalize_corpus(sentences, text_lower_case=False,

                                     text_stemming=False, text_

lemmatization=False,

                                    stopword_removal=False)

norm_sentences[:3]

['Elephants are large mammals of the family Elephantidae and the order 

Proboscidea', 'Three species are currently recognised the African bush 

elephant Loxodonta africana the African forest elephant L cyclotis and 

the Asian elephant Elephas maximus', 'Elephants are scattered throughout 

subSaharan Africa South Asia and Southeast Asia']

Now that we have our corpus ready, we will use the pattern " NP: {<DT>? <JJ>* 

<NN.*>+}" to extract all possible noun phrases from our corpus of documents/sentences. 

You can always experiment with more sophisticated patterns, later incorporating verb, 

adjective, or even adverb phrases. However, we keep things simple and concise here 

to focus on the core logic. Once we have our pattern, we will define a function to parse 

and extract these phrases using the following snippet. We also load any other necessary 

dependencies at this point.

import itertools

stopwords = nltk.corpus.stopwords.words('english')

def get_chunks(sentences, grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',

               stopword_list=stopwords):

    all_chunks = []

    chunker = nltk.chunk.regexp.RegexpParser(grammar)
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    for sentence in sentences:

        tagged_sents = [nltk.pos_tag(nltk.word_tokenize(sentence))]

        chunks = [chunker.parse(tagged_sent)

                      for tagged_sent in tagged_sents]

        wtc_sents = [nltk.chunk.tree2conlltags(chunk)

                         for chunk in chunks]

        flattened_chunks = list(

                            itertools.chain.from_iterable(

                                wtc_sent for wtc_sent in wtc_sents)

                           )

        valid_chunks_tagged = [(status, [wtc for wtc in chunk])

                                   for status, chunk

                                        in itertools.groupby(flattened_chunks, 

lambda word_pos_chunk: word_pos_

                                        chunk[2] != 'O')]

        valid_chunks = [' '.join(word.lower()

                                for word, tag, chunk in wtc_group

                                    if word.lower() not in stopword_list)

                                         for status, wtc_group in valid_

chunks_tagged

                                            if status]

        all_chunks.append(valid_chunks)

    return all_chunks

In this function, we have a defined grammar pattern for chunking or extracting 

noun phrases. We define a chunker over the same pattern and, for each sentence in the 

document, we first annotate it with its POS tags and then build a shallow parse tree with 

noun phrases as the chunks and all other POS tag based words as chinks, which are not 

parts of any chunks. Once this is done, we use the tree2conlltags function to generate 

(w,t,c) triples, which are words, POS tags, and the IOB formatted chunk tags (discussed 

in Chapter 3). We remove all tags with a chunk tag of O, since they are basically words or 

terms that do not belong to any chunk. Finally, from these valid chunks, we combine the 
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chunked terms to generate phrases from each chunk group. We can see this function in 

action on our corpus in the following snippet.

chunks = get_chunks(norm_sentences)

chunks

[['elephants', 'large mammals', 'family elephantidae', 'order 

proboscidea'],

  [ 'species', 'african bush elephant loxodonta', 'african forest elephant l 

cyclotis', 'asian elephant elephas maximus'],

 ['elephants', 'subsaharan africa south asia', 'southeast asia'],

...,

...,

 ['incisors', 'tusks', 'weapons', 'tools', 'objects'],

 ['elephants', 'flaps', 'body temperature'],

 ['pillarlike legs', 'great weight'],

...,

...,

 ['threats', 'populations', 'ivory trade', 'animals', 'ivory tusks'],

 ['threats', 'elephants', 'habitat destruction', 'conflicts', 'local people'],

 ['elephants', 'animals', 'asia'],

 ['past', 'war today', 'display', 'zoos', 'entertainment', 'circuses'],

 ['elephants', 'art folklore religion literature', 'popular culture']]

This output shows us all the valid keyphrases per sentence of our document. You can 

already see since we targeted noun phrases, all phrases talk about noun based entities. 

We now build on top of our get_chunks() function by implementing the necessary logic 

for Step 2, where we will build a TF-IDF based model on our keyphrases using Gensim 

and then compute TF-IDF based weights for each keyphrase based on its occurrence in 

the corpus. Finally, we sort these keyphrases based on their TF-IDF weights and show 

the top N keyphrases, where top_n is specified by the user.
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from gensim import corpora, models

def get_tfidf_weighted_keyphrases(sentences,

                                  grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',

                                  top_n=10):

    valid_chunks = get_chunks(sentences, grammar=grammar)

    dictionary = corpora.Dictionary(valid_chunks)

    corpus = [dictionary.doc2bow(chunk) for chunk in valid_chunks]

    tfidf = models.TfidfModel(corpus)

    corpus_tfidf = tfidf[corpus]

    weighted_phrases = {dictionary.get(idx): value

                           for doc in corpus_tfidf

                               for idx, value in doc}

    weighted_phrases = sorted(weighted_phrases.items(),

                              key=itemgetter(1), reverse=True)

     weighted_phrases = [(term, round(wt, 3)) for term, wt in weighted_phrases]

    return weighted_phrases[:top_n]

We can now test this function on our toy corpus by using the following code snippet 

to generate the top 30 keyphrases.

# top 30 tf-idf weighted keyphrases

get_tfidf_weighted_keyphrases(sentences=norm_sentences, top_n=30)

[('water', 1.0), ('asia', 0.807), ('wild', 0.764), ('great weight', 0.707),

  ('pillarlike legs', 0.707), ('southeast asia', 0.693), ('subsaharan africa 

south asia', 0.693), ('body temperature', 0.693), ('flaps', 0.693), 

('fissionfusion society', 0.693), ('multiple family groups', 0.693), 

('art folklore religion literature', 0.693), ('popular culture', 0.693), 

('ears', 0.681), ('males', 0.653), ('males bulls', 0.653), ('family 

elephantidae', 0.607), ('large mammals', 0.607), ('years', 0.607), 

('environments', 0.577), ('impact', 0.577), ('keystone species', 0.577), 

('cetaceans', 0.577), ('elephant intelligence', 0.577), ('primates', 

0.577), ('dead individuals', 0.577), ('kind', 0.577), ('selfawareness', 

0.577), ('different habitats', 0.57), ('marshes', 0.57)]
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Interestingly, we see various types of elephants being depicted in the keyphrases 

like Asian and African elephants and typical attributes of elephants like “great weight”, 

“fission fusion society” and “pillar like legs”.

We can also leverage Gensim’s summarization module, which has a keywords 

function that extracts keywords from the text. This uses a variation of the TextRank 

algorithm, which we explore in the document summarization section.

from gensim.summarization import keywords

key_words = keywords(data[0], ratio=1.0, scores=True, lemmatize=True)

[(item, round(score, 3)) for item, score in key_words][:25]

[('african bush elephant', 0.261), ('including', 0.141), ('family', 0.137),

 ('cow', 0.124), ('forests', 0.108), ('female', 0.103), ('asia', 0.102),

 ('objects', 0.098), ('tigers', 0.098), ('sight', 0.098), ('ivory', 0.098),

 ('males', 0.088), ('folklore', 0.087), ('known', 0.087), ('religion', 0.087),

 ('larger ears', 0.085), ('water', 0.075), ('highly recognisable', 0.075),

 ('breathing lifting', 0.074), ('flaps', 0.073), ('africa', 0.072),

 ('gomphotheres', 0.072), ('animals tend', 0.071), ('success', 0.071),

 ('south', 0.07)]

Thus, you can see how keyphrase extraction can extract key important concepts 

from text documents and summarize them. Try these functions on other corpora to see 

interesting results!

 Topic Modeling
We have seen how keyphrases can be extracted using a couple of techniques. While 

these phrases point out key pivotal points from a document or corpus, this technique 

is simplistic and often does not accurately portray the various themes or concepts in 

a corpus, particularly when we have different distinguishing themes or concepts in a 

corpus of documents.
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Topic models have been designed specifically for the purpose of extracting 

various distinguishing concepts or topics from a large corpus that has various types of 

documents and each document talks about one or more concepts. These concepts can 

be anything from thoughts, opinions, facts, outlooks, statements, and so on. The main 

aim of topic modeling is to use mathematical and statistical techniques to discover 

hidden and latent semantic structures in a corpus.

Topic modeling involves extracting features from document terms and using 

mathematical structures and frameworks like matrix factorization and SVD to generate 

clusters or groups of terms that are distinguishable from each other and these cluster of 

words form topics or concepts. These concepts can be used to interpret the main themes 

of a corpus and make semantic connections among words that co-occur frequently in 

various documents. There are various frameworks and algorithms to build topic models. 

We cover the following three methods:

• Latent Semantic Indexing

• Latent Dirichlet Allocation

• Non-negative matrix factorization

The first two methods are quite popular and long-standing. The last technique, 

non- negative matrix factorization, is a recent but extremely effective technique and gives 

excellent results. We leverage Gensim and Scikit-Learn for our practical implementations 

and look at how to build our own topic model based on Latent Semantic Indexing.

We do things a bit differently in this new edition of the book in contrast to the previous 

edition. Instead of working on toy datasets, we work on a complex real-world dataset just 

like we have been doing in the other chapters. In the next few sections, we demonstrate 

how to perform topic modeling with the three methods mentioned previously. For 

demonstration, we leverage the two most popular frameworks—Gensim and Scikit- Learn. 

The intent here is to understand how to leverage these frameworks easily to build topic 

models and to understand some of the essential concepts behind the scenes.
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 Topic Modeling on Research Papers
We will do an interesting exercise here—build topic models on past research papers 

from the very popular NIPS conference (now known as the NeurIPS conference). The 

late professor Sam Roweis compiled an excellent collection of NIPS Conference Papers 

from Volume 1 – 12, which you can find at https://cs.nyu.edu/~roweis/data.html. 

An interesting fact is that he obtained this by massaging the OCR’d data from NIPS 

1-12, which was actually the pre-electronic submission era. Yann LeCun made the data 

available. There is an even more updated dataset available up to NIPS 17 at http://

ai.stanford.edu/~gal/data.html. However, that dataset is in the form of a MAT file, so 

you might need to do some additional preprocessing before working on it in Python.

 The Main Objective
Considering our discussion so far, our main objective is pretty simple. Given a whole 

bunch of conference research papers, can we identify some key themes or topics from 

these papers by leveraging unsupervised learning? We do not have the liberty of labeled 

categories telling us what the major themes of every research paper are. Besides that, we 

are dealing with text data extracted using OCR (optical character recognition). Hence, 

you can expect misspelled words, words with characters missing, and so on, which 

makes our problem even more challenging. The key objectives of our topic modeling 

exercise are to showcase the following:

• Topic modeling with Gensim and Scikit-Learn

• Implementing topic models, using LDA, LSI, and NMF

• How to leverage third-party modeling frameworks like MALLET for 

topic models

• Evaluating topic modeling performance

• Tuning topic models for optimal topics

• Interpreting topic modeling results

• Predicting topics for new research papers

The bottom line is that we can identify some major themes from NIPS research 

papers using topic modeling, interpret these topics, and even predict topics for new 

research papers!

Chapter 6  text Summarization and topiC modelS

https://cs.nyu.edu/~roweis/data.html
http://ai.stanford.edu/~gal/data.html
http://ai.stanford.edu/~gal/data.html


365

 Data Retrieval
We need to retrieve the dataset available on the web. You can even download it directly 

from the Jupyter notebook using the following command (or from the terminal by 

removing the exclamation mark at the beginning of the command).

!wget https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz

--2018-11-07 18:59:33--  https://cs.nyu.edu/~roweis/data/nips12raw_str602.tgz

Resolving cs.nyu.edu (cs.nyu.edu)... 128.122.49.30

Connecting to cs.nyu.edu (cs.nyu.edu)|128.122.49.30|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 12851423 (12M) [application/x-gzip]

Saving to: 'nips12raw_str602.tgz'

nips12raw_str602.tg 100%[===================>]  12.26M  1.75MB/s    in 7.4s

2018-11-07 18:59:41 (1.65 MB/s) - 'nips12raw_str602.tgz' saved 

[12851423/12851423]

Once the archive is downloaded, you can extract the contents from it automatically 

by using the following command directly from the notebook.

!tar -xzf nips12raw_str602.tgz

If you are using the Windows operating system, these commands might not work and 

you can simply obtain the research papers manually by going to the website at https://

cs.nyu.edu/~roweis/data/nips12raw_str602.tgz. Download the archive. Once it’s 

downloaded, you can use any archive extraction tool to extract the nipstxt folder. Once 

the contents are extracted, we can verify them by checking out the folder structure.

import os

import numpy as np

import pandas as pd

DATA_PATH = 'nipstxt/'

print(os.listdir(DATA_PATH))

['nips01', 'nips04', 'MATLAB_NOTES', 'nips10', 'nips02', 'idx', 'nips11', 

'nips03', 'nips07', 'README_yann', 'nips05', 'nips12', 'nips06', 'RAW_DATA_

NOTES', 'orig', 'nips00', 'nips08', 'nips09']
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 Load and View Dataset
We can now load all the research papers using the following code. Each paper is in its 

own text file, hence we need to use file-reading functions from Python.

folders = ["nips{0:02}".format(i) for i in range(0,13)]

# Read all texts into a list.

papers = []

for folder in folders:

    file_names = os.listdir(DATA_PATH + folder)

    for file_name in file_names:

        with open(DATA_PATH + folder + '/' + file_name, encoding='utf-8',

                  errors='ignore', mode='r+') as f:

            data = f.read()

        papers.append(data)

len(papers)

1740

There are a total of 1,740 research papers, which is not a small number! Let’s take a 

look at a fragment of text from one of the research papers to get an idea.

print(papers[0][:1000])

652

Scaling Properties of Coarse-Coded Symbol Memories

Ronald Rosenfeld

David S. Touretzky

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Coarse-coded symbol memories have appeared in several neural network

symbol processing models. In order to determine how these models would 

scale, one must first have some understanding of the mathematics of coarse-

coded representations. We define the general structure of coarse-coded 
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symbol memories and derive mathematical relationships among their essential 

parameters: memory t size, sylmbol-set size and capacitor. The computed 

capacity of one of the schemes agrees well with actual measurements of 

the coarse-coded working memory of DCPS, Touretzky and Hinton's distributed 

connectionist production system.

1 Introduction

A distributed representation is a memory scheme in which each entity 

(concept, symbol) is represented by a pattern of activity over many units 

[3]. If each unit partic

Look at that! It’s basically how a research paper looks in a PDF, which you often view 

in your browser. However, it looks like the OCR hasn’t worked perfectly and we have 

some missing characters here and there. This is expected, but also makes this task more 

challenging!

 Basic Text Wrangling
We perform some basic text wrangling or preprocessing before diving into topic 

modeling. We keep things simple here and perform tokenization, lemmatizing nouns, 

and removing stopwords and any terms having a single character.

%%time

import nltk

stop_words = nltk.corpus.stopwords.words('english')

wtk = nltk.tokenize.RegexpTokenizer(r'\w+')

wnl = nltk.stem.wordnet.WordNetLemmatizer()

def normalize_corpus(papers):

    norm_papers = []

    for paper in papers:

        paper = paper.lower()

        paper_tokens = [token.strip() for token in wtk.tokenize(paper)]

         paper_tokens = [wnl.lemmatize(token) for token in paper_tokens if 

not token.isnumeric()]

        paper_tokens = [token for token in paper_tokens if len(token) > 1]
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         paper_tokens = [token for token in paper_tokens if token not in 

stop_words]

        paper_tokens = list(filter(None, paper_tokens))

        if paper_tokens:

            norm_papers.append(paper_tokens)

    return norm_papers

norm_papers = normalize_corpus(papers)

print(len(norm_papers))

1740

CPU times: user 38.6 s, sys: 92 ms, total: 38.7 s

Wall time: 38.7 s

# viewing a processed paper

print(norm_papers[0][:50])

['scaling', 'property', 'coarse', 'coded', 'symbol', 'memory', 'ronald', 

'rosenfeld', 'david', 'touretzky', 'computer', 'science', 'department', 

'carnegie', 'mellon', 'university', 'pittsburgh', 'pennsylvania', 

'abstract', 'coarse', 'coded', 'symbol', 'memory', 'appeared', 'several', 

'neural', 'network', 'symbol', 'processing', 'model', 'order', 'determine', 

'model', 'would', 'scale', 'one', 'must', 'first', 'understanding', 

'mathematics', 'coarse', 'coded', 'representa', 'tions', 'define', 

'general', 'structure', 'coarse', 'coded', 'symbol']

We are now ready to start building topic models and will be showcasing methods in 

Gensim and Scikit-Learn, as mentioned earlier.

 Topic Models with Gensim
The key tagline of the Gensim framework is topic modeling for humans, which makes it 

pretty clear that this framework was built for topic modeling. We can do amazing things 

with this framework, including text similarity, semantic analytics, topic models, and text 

summarization. Besides this, Gensim offers a lot of capabilities and more flexibility than 

Scikit-Learn to build, evaluate, and tune topic models, which we will see very shortly. We 

build topic models using the following methods in this section.
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• Latent Semantic Indexing (LSI)

• Latent Dirichlet Allocation (LDA)

Without further ado, let’s get started by looking at ways to generate phrases with 

influential bi-grams and remove some terms that may not be useful before feature 

engineering.

 Text Representation with Feature Engineering
Before feature engineering and vectorization, we want to extract some useful bi-gram 

based phrases from our research papers and remove some unnecessary terms. We 

leverage the very useful gensim.models.Phrases class for this. This capability helps us 

automatically detect common phrases from a stream of sentences, which are typically 

multi-word expressions/word n-grams. This implementation draws inspiration 

from the famous paper by Mikolov, et al., “Distributed Representations of Words and 

Phrases and their Compositionality,” which you can check out at https://arxiv.org/

abs/1310.4546. We start by extracting and generating words and bi-grams as phrases for 

each tokenized research paper. We can build this phrase generation model easily with 

the following code and test it on a sample paper.

import gensim

bigram = gensim.models.Phrases(norm_papers, min_count=20, threshold=20, 

delimiter=b'_') # higher threshold fewer phrases.

bigram_model = gensim.models.phrases.Phraser(bigram)

# sample demonstration

print(bigram_model[norm_papers[0]][:50])

['scaling', 'property', 'coarse_coded', 'symbol', 'memory', 'ronald', 

'rosenfeld', 'david_touretzky', 'computer_science', 'department',  

'carnegie_mellon', 'university_pittsburgh', 'pennsylvania', 'abstract', 

'coarse_coded', 'symbol', 'memory', 'appeared', 'several', 'neural_ 

network', 'symbol', 'processing', 'model', 'order', 'determine', 'model', 

'would', 'scale', 'one', 'must', 'first', 'understanding', 'mathematics',  

'coarse_coded', 'representa_tions', 'define', 'general', 'structure', 

'coarse_coded', 'symbol', 'memory', 'derive', 'mathematical', 

'relationship', 'among', 'essential', 'parameter', 'memor', 'size', 'lmbol']
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We can clearly see that we have single words as well as bi-grams (two words 

separated by an underscore), which tells us that our model works. We leverage the min_

count parameter, which tells us that our model ignores all words and bi-grams with total 

collected count lower than 20 across the corpus (of the input paper as a list of tokenized 

sentences). We also use a threshold of 20, which tells us that the model accepts specific 

phrases based on this threshold value so that a phrase of words a followed by b is 

accepted if the score of the phrase is greater than the threshold of 20. This threshold is 

dependent on the scoring parameter, which helps us understand how these phrases are 

scored to understand their influence.

Typically the default scorer is used and it’s pretty straightforward to understand. 

You can check out further details in the documentation at https://radimrehurek.com/

gensim/models/phrases.html#gensim.models.phrases.original_scorer and in the 

previously mentioned research paper.

Let’s generate phrases for all our tokenized research papers and build a vocabulary 

that will help us obtain a unique term/phrase to number mapping (since machine or 

deep learning only works on numeric tensors).

norm_corpus_bigrams = [bigram_model[doc] for doc in norm_papers]

# Create a dictionary representation of the documents.

dictionary = gensim.corpora.Dictionary(norm_corpus_bigrams)

print('Sample word to number mappings:', list(dictionary.items())[:15])

print('Total Vocabulary Size:', len(dictionary))

Sample word to number mappings: [(0, '8a'), (1, 'abandon'), (2, 'able'), 

(3, 'abo'), (4, 'abstract'), (5, 'accommodate'), (6, 'accuracy'),  

(7, 'achieved'), (8, 'acknowledgment_thank'), (9, 'across'), (10, 'active'), 

(11, 'activity'), (12, 'actual'), (13, 'adjusted'), (14, 'adjusting')]

Total Vocabulary Size: 78892

Wow! Looks like we have a lot of unique phrases in our corpus of research papers, 

based on the preceding output. Several of these terms are not very useful since they are 

specific to a paper or even a paragraph in a research paper. Hence, it is time to prune 

our vocabulary and start removing terms. Leveraging document frequency is a great way 

to achieve this. By now, you probably realize that the document frequency of a term is 

basically the total number of times that term occurs across all the documents in a corpus.
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# Filter out words that occur less than 20 documents, or more than 50% of 

the documents.

dictionary.filter_extremes(no_below=20, no_above=0.6)

print('Total Vocabulary Size:', len(dictionary))

Total Vocabulary Size: 7756

We removed all terms that occur fewer than 20 times across all documents and all 

terms that occur in more than 60% of all the documents. We are interested in finding 

different themes and topics and not recurring themes. Hence, this suits our scenario 

perfectly. We can now perform feature engineering by leveraging a simple Bag of Words 

model.

# Transforming corpus into bag of words vectors

bow_corpus = [dictionary.doc2bow(text) for text in norm_corpus_bigrams]

print(bow_corpus[1][:50])

[(4, 1), (14, 2), (20, 1), (28, 1), (33, 1), (43, 1), (50, 1), (60, 2), 

(61, 1), (62, 2), (63, 1), (72, 1), (84, 1), ..., (286, 39), (296, 6), 

(306, 1), (307, 2), (316, 1)]

# viewing actual terms and their counts

print([(dictionary[idx] , freq) for idx, freq in bow_corpus[1][:50]])

[('achieved', 1), ('allow', 2), ('american_institute', 1), ('another', 1), 

('appeared', 1), ('argument', 1), ('assume', 1), ('become', 2),  

('becomes', 1), ('behavior', 2), ('behavioral', 1), ('bounded', 1), 

('cause', 1), ..., ('group', 39), ('hence', 6), ('implementation', 1), 

('implemented', 2), ('independent', 1)]

# total papers in the corpus

print('Total number of papers:', len(bow_corpus))

Total number of papers: 1740

Our documents are now processed and have a good enough representation with the 

Bag of Words model to begin modeling.
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 Latent Semantic Indexing
Our first technique is Latent Semantic Indexing (LSI), which was developed in the 1970s 

as a statistical technique to correlate semantically linked terms from corpora. LSI is not 

just used for text summarization, but also in information retrieval and search. LSI uses 

the very popular Singular Value Decomposition (SVD) technique, which we discussed in 

detail in the “Important Concepts” section. The main principle behind LSI is that similar 

terms tend to be used in the same context and hence tend to co-occur more. The term 

LSI comes from the fact that this technique has the ability to uncover latent hidden terms 

that correlate semantically to form topics.

We now implement an LSI by leveraging Gensim and extract topics from our corpus 

on NIPS research papers. It is quite simple to build this model, thanks to Gensim’s clean 

and concise API.

%%time

TOTAL_TOPICS = 10

lsi_bow = gensim.models.LsiModel(bow_corpus, id2word=dictionary,   

num_topics=TOTAL_TOPICS, onepass=True, chunksize=1740, power_iters=1000)

CPU times: user 54min 30s, sys: 3min 21s, total: 57min 51s

Wall time: 3min 51s

Once the model is built, we can view the major topics or themes in our corpus by 

using the following code. Remember we had explicitly set the number of topics to 10 in 

this case.

for topic_id, topic in lsi_bow.print_topics(num_topics=10, num_words=20):

    print('Topic #'+str(topic_id+1)+':')

    print(topic)

    print()

Topic #1:

0.215*"unit" + 0.212*"state" + 0.187*"training" + 0.177*"neuron" + 

0.162*"pattern" + 0.145*"image" + 0.140*"vector" + 0.125*"feature" 

+ 0.122*"cell" + 0.110*"layer" + 0.101*"task" + 0.097*"class" + 

0.091*"probability" + 0.089*"signal" + 0.087*"step" + 0.086*"response" 

+ 0.085*"representation" + 0.083*"noise" + 0.082*"rule" + 

0.081*"distribution"
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Topic #2:

-0.487*"neuron" + -0.396*"cell" + 0.257*"state" + -0.191*"response" + 

0.187*"training" + -0.170*"stimulus" + -0.117*"activity" + 0.109*"class" + 

-0.099*"spike" + -0.097*"pattern" + -0.096*"circuit" + -0.096*"synaptic" 

+ 0.095*"vector" + -0.090*"signal" + -0.090*"firing" + -0.088*"visual" + 

0.084*"classifier" + 0.083*"action" + 0.078*"word" + -0.078*"cortical"

Topic #3:

-0.627*"state" + 0.395*"image" + -0.219*"neuron" + 0.209*"feature" + 

-0.188*"action" + 0.137*"unit" + 0.131*"object" + -0.130*"control" + 

0.129*"training" + -0.109*"policy" + 0.103*"classifier" + 0.090*"class" 

+ -0.081*"step" + -0.081*"dynamic" + 0.080*"classification" + 

0.078*"layer" + 0.076*"recognition" + -0.074*"reinforcement_learning" + 

0.069*"representation" + 0.068*"pattern"

Topic #4:

-0.686*"unit" + 0.433*"image" + -0.182*"pattern" + -0.131*"layer" + 

-0.123*"hidden_unit" + -0.121*"net" + -0.114*"training" + 0.112*"feature" 

+ -0.109*"activation" + -0.107*"rule" + 0.097*"neuron" + -0.078*"word" 

+ 0.070*"pixel" + -0.070*"connection" + 0.067*"object" + 0.065*"state" 

+ 0.060*"distribution" + 0.059*"face" + -0.057*"architecture" + 

0.055*"estimate"

Topic #5:

-0.428*"image" + -0.348*"state" + 0.266*"neuron" + -0.264*"unit" + 

0.181*"training" + 0.174*"class" + -0.168*"object" + 0.167*"classifier" 

+ -0.147*"action" + -0.122*"visual" + 0.117*"vector" + 0.115*"node" 

+ 0.105*"distribution" + -0.103*"motion" + -0.099*"feature" + 

0.097*"classification" + -0.097*"control" + -0.095*"task" + -0.087*"cell" + 

-0.083*"representation"

Topic #6:

0.660*"cell" + -0.508*"neuron" + -0.213*"image" + -0.103*"chip" + 

-0.097*"unit" + 0.093*"response" + -0.090*"object" + 0.083*"rat" 

+ 0.076*"distribution" + -0.070*"circuit" + 0.069*"probability" + 

0.064*"stimulus" + -0.061*"memory" + -0.058*"analog" + -0.058*"activation" 

+ 0.055*"class" + -0.053*"bit" + -0.052*"net" + 0.051*"cortical" + 

0.050*"firing"
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Topic #7:

-0.353*"word" + 0.281*"unit" + -0.272*"training" + -0.257*"classifier" 

+ -0.177*"recognition" + 0.159*"distribution" + -0.152*"feature" + 

-0.144*"state" + -0.142*"pattern" + 0.141*"vector" + -0.128*"cell" + 

-0.128*"task" + 0.122*"approximation" + 0.121*"variable" + 0.110*"equation" 

+ -0.107*"classification" + 0.106*"noise" + -0.103*"class" + 0.101*"matrix" 

+ -0.098*"neuron"

Topic #8:

-0.303*"pattern" + 0.243*"signal" + 0.236*"control" + 0.202*"training" 

+ -0.181*"rule" + -0.178*"state" + 0.167*"noise" + -0.166*"class" 

+ 0.162*"word" + -0.155*"cell" + -0.154*"feature" + 0.147*"motion" 

+ 0.140*"task" + -0.127*"node" + -0.124*"neuron" + 0.116*"target" 

+ 0.114*"circuit" + -0.114*"probability" + -0.110*"classifier" + 

 -0.109*"image"

Topic #9:

-0.472*"node" + -0.254*"circuit" + 0.214*"word" + -0.201*"chip" + 

0.190*"neuron" + 0.172*"stimulus" + -0.160*"classifier" + -0.152*"current" + 

0.147*"feature" + -0.146*"voltage" + 0.145*"distribution" + -0.141*"control" 

+ -0.124*"rule" + -0.110*"layer" + -0.105*"analog" + -0.091*"tree" + 

0.084*"response" + 0.080*"state" + 0.079*"probability" + 0.079*"estimate"

Topic #10:

0.518*"word" + -0.254*"training" + 0.236*"vector" + -0.222*"task" + 

-0.194*"pattern" + -0.156*"classifier" + 0.149*"node" + 0.146*"recognition" 

+ -0.139*"control" + 0.138*"sequence" + -0.126*"rule" + 0.125*"circuit" 

+ 0.123*"cell" + -0.113*"action" + -0.105*"neuron" + 0.094*"hmm" + 

0.093*"character" + 0.088*"chip" + 0.088*"matrix" + 0.085*"structure"

Let’s take a moment to understand these results. A brief recap on the LSI model—

it is based on the principle that words that are used in the same contexts tend to have 

similar meanings. You can observe in this output that each topic is a combination 

of terms (which basically tend to convey an overall sense of the topic) and weights. 

Now the problem here is that we have both positive and negative weights. What does 

that mean?
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Based on existing research and my interpretations, considering we are reducing 

the dimensionality here to a 10-dimensional space based on the number of topics, the 

sign on each term indicates a sense of direction or orientation in the vector space for a 

particular topic. The higher the weight, the more important the contribution. So similar 

correlated terms have the same sign or direction. Hence, it is perfectly possible for a 

topic to have two different sub-themes based on the sign or orientation of terms. Let’s 

separate these terms and try to interpret the topics again.

for n in range(TOTAL_TOPICS):

    print('Topic #'+str(n+1)+':')

    print('='*50)

    d1 = []

    d2 = []

    for term, wt in lsi_bow.show_topic(n, topn=20):

        if wt >= 0:

            d1.append((term, round(wt, 3)))

        else:

            d2.append((term, round(wt, 3)))

    print('Direction 1:', d1)

    print('-'*50)

    print('Direction 2:', d2)

    print('-'*50)

    print()

Topic #1:

==================================================

Direction 1: [('unit', 0.215), ('state', 0.212), ('training', 0.187), 

('neuron', 0.177), ('pattern', 0.162), ('image', 0.145), ('vector', 0.14), 

('feature', 0.125), ('cell', 0.122), ('layer', 0.11), ('task', 0.101), 

('class', 0.097), ('probability', 0.091), ('signal', 0.089), ('step', 

0.087), ('response', 0.086), ('representation', 0.085), ('noise', 0.083), 

('rule', 0.082), ('distribution', 0.081)]

--------------------------------------------------

Direction 2: []

--------------------------------------------------
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Topic #2:

==================================================

Direction 1: [('state', 0.257), ('training', 0.187), ('class', 0.109), 

('vector', 0.095), ('classifier', 0.084), ('action', 0.083), ('word', 

0.078)]

--------------------------------------------------

Direction 2: [('neuron', -0.487), ('cell', -0.396), ('response', -0.191), 

('stimulus', -0.17), ('activity', -0.117), ('spike', -0.099), ('pattern', 

-0.097), ('circuit', -0.096), ('synaptic', -0.096), ('signal', -0.09), 

('firing', -0.09), ('visual', -0.088), ('cortical', -0.078)]

--------------------------------------------------

Topic #3:

==================================================

Direction 1: [('image', 0.395), ('feature', 0.209), ('unit', 0.137), 

('object', 0.131), ('training', 0.129), ('classifier', 0.103), ('class', 

0.09), ('classification', 0.08), ('layer', 0.078), ('recognition', 0.076), 

('representation', 0.069), ('pattern', 0.068)]

--------------------------------------------------

Direction 2: [('state', -0.627), ('neuron', -0.219), ('action', -0.188), 

('control', -0.13), ('policy', -0.109), ('step', -0.081), ('dynamic', 

-0.081), ('reinforcement_learning', -0.074)]

--------------------------------------------------

Topic #4:

==================================================

Direction 1: [('image', 0.433), ('feature', 0.112), ('neuron', 0.097), 

('pixel', 0.07), ('object', 0.067), ('state', 0.065), ('distribution', 

0.06), ('face', 0.059), ('estimate', 0.055)]

--------------------------------------------------

Direction 2: [('unit', -0.686), ('pattern', -0.182), ('layer', -0.131), 

('hidden_unit', -0.123), ('net', -0.121), ('training', -0.114), 

('activation', -0.109), ('rule', -0.107), ('word', -0.078), ('connection', 

-0.07), ('architecture', -0.057)]

--------------------------------------------------
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Topic #5:

==================================================

Direction 1: [('neuron', 0.266), ('training', 0.181), ('class', 0.174), 

('classifier', 0.167), ('vector', 0.117), ('node', 0.115), ('distribution', 

0.105), ('classification', 0.097)]

--------------------------------------------------

Direction 2: [('image', -0.428), ('state', -0.348), ('unit', -0.264), 

('object', -0.168), ('action', -0.147), ('visual', -0.122), ('motion', 

-0.103), ('feature', -0.099), ('control', -0.097), ('task', -0.095), 

('cell', -0.087), ('representation', -0.083)]

--------------------------------------------------

Topic #6:

==================================================

Direction 1: [('cell', 0.66), ('response', 0.093), ('rat', 0.083), 

('distribution', 0.076), ('probability', 0.069), ('stimulus', 0.064), 

('class', 0.055), ('cortical', 0.051), ('firing', 0.05)]

--------------------------------------------------

Direction 2: [('neuron', -0.508), ('image', -0.213), ('chip', -0.103), 

('unit', -0.097), ('object', -0.09), ('circuit', -0.07), ('memory', 

-0.061), ('analog', -0.058), ('activation', -0.058), ('bit', -0.053), 

('net', -0.052)]

--------------------------------------------------

Topic #7:

==================================================

Direction 1: [('unit', 0.281), ('distribution', 0.159), ('vector', 0.141), 

('approximation', 0.122), ('variable', 0.121), ('equation', 0.11), 

('noise', 0.106), ('matrix', 0.101)]

--------------------------------------------------

Direction 2: [('word', -0.353), ('training', -0.272), ('classifier', 

-0.257), ('recognition', -0.177), ('feature', -0.152), ('state', -0.144), 

('pattern', -0.142), ('cell', -0.128), ('task', -0.128), ('classification', 

-0.107), ('class', -0.103), ('neuron', -0.098)]

--------------------------------------------------

Chapter 6  text Summarization and topiC modelS



378

Topic #8:

==================================================

Direction 1: [('signal', 0.243), ('control', 0.236), ('training', 0.202), 

('noise', 0.167), ('word', 0.162), ('motion', 0.147), ('task', 0.14), 

('target', 0.116), ('circuit', 0.114)]

--------------------------------------------------

Direction 2: [('pattern', -0.303), ('rule', -0.181), ('state', -0.178), 

('class', -0.166), ('cell', -0.155), ('feature', -0.154), ('node', -0.127), 

('neuron', -0.124), ('probability', -0.114), ('classifier', -0.11), 

('image', -0.109)]

--------------------------------------------------

Topic #9:

==================================================

Direction 1: [('word', 0.214), ('neuron', 0.19), ('stimulus', 0.172), 

('feature', 0.147), ('distribution', 0.145), ('response', 0.084), ('state', 

0.08), ('probability', 0.079), ('estimate', 0.079)]

--------------------------------------------------

Direction 2: [('node', -0.472), ('circuit', -0.254), ('chip', -0.201), 

('classifier', -0.16), ('current', -0.152), ('voltage', -0.146), 

('control', -0.141), ('rule', -0.124), ('layer', -0.11), ('analog', 

-0.105), ('tree', -0.091)]

--------------------------------------------------

Topic #10:

==================================================

Direction 1: [('word', 0.518), ('vector', 0.236), ('node', 0.149), 

('recognition', 0.146), ('sequence', 0.138), ('circuit', 0.125), ('cell', 

0.123), ('hmm', 0.094), ('character', 0.093), ('chip', 0.088), ('matrix', 

0.088), ('structure', 0.085)]

--------------------------------------------------

Direction 2: [('training', -0.254), ('task', -0.222), ('pattern', -0.194), 

('classifier', -0.156), ('control', -0.139), ('rule', -0.126), ('action', 

-0.113), ('neuron', -0.105)]

--------------------------------------------------
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Does this make things better? Well, it’s definitely a lot better than the previous 

interpretation. Here we can see clear themes of modeling being applied in chips and 

electronic devices, classification and recognition models, neural models talking about 

the human brain components like cells, stimuli, neurons, cortical components, and 

even themes around reinforcement learning! We explore these in detail later in a more 

structured way.

Let’s try to get the three major matrices (U, S, and VT) from our topic model, which 

uses SVD (based on the foundational concepts mentioned earlier).

term_topic = lsi_bow.projection.u

singular_values = lsi_bow.projection.s

topic_document = (gensim.matutils.corpus2dense(lsi_bow[bow_corpus], 

len(singular_values)).T / singular_values).T

term_topic.shape, singular_values.shape, topic_document.shape

((7756, 10), (10,), (10, 1740))

Just like the preceding output shows, we have a term-topic matrix, singular values, and a 

topic-document matrix. We can transpose the topic-document matrix to form a document-

topic matrix and that would help us see the proportion of each topic per document (a larger 

proportion means the topic is more dominant in the document). See Figure 6-2.

document_topics = pd.DataFrame(np.round(topic_document.T, 3),

                                columns=['T'+str(i) for i in range(1, TOTAL_

TOPICS+1)])

document_topics.head(5)

Figure 6-2. Document-topic matrix from our LSI model
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Ignoring the sign, we can try to find out the most important topics for a few sample 

papers and see if they make sense.

document_numbers = [13, 250, 500]

for document_number in document_numbers:

    top_topics = list(document_topics.columns[np.argsort(-

                                               np.absolute(

                                           document_topics.iloc[document_

number].values))[:3]])

    print('Document #'+str(document_number)+':')

    print('Dominant Topics (top 3):', top_topics)

    print('Paper Summary:')

    print(papers[document_number][:500])

    print()

Document #13:

Dominant Topics (top 3): ['T6', 'T1', 'T2']

Paper Summary:

9

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent, 

symmetrically connected, neuromorphic network that, like the Boltzmann 

machine, settles in the presence of noise. These networks learn by 

modifying synaptic connection strengths on the basis of correlations 

seen loca

Document #250:

Dominant Topics (top 3): ['T3', 'T5', 'T8']

Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations
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Richard S. Zemel

Computer Science Dept.

University of Toronto

...

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T9', 'T8', 'T10']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

Computer Graphics 350-74

California Institute of Technology

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea. This automated method uses computer controlled mea-

surement and test equipment to choose chip paramet

If you look at the description of the terms in each of the selected topics in the 

preceding output, they make perfect sense.

• Paper #13 has a dominance of topics 6, 1, and 2, which pretty much 

talk about neurons, cells, brain’s cortex, stimulus, and so on (aspects 

around neuromorphic networks).

• Paper #250 has a dominance of topics 3, 5, and 8, which talk about 

object recognition, image classification, and visual representation 

with neural networks. This matches the paper’s theme, which is about 

object recognition.

• Paper #500 has a dominance of topics 9, 8, and 10, which talk about 

signals, voltage, chips, circuits, and so on. This is in line with the 

theme of the paper around parameter settings for analog circuits.

This shows us that the LSI model is quite effective, although a tad difficult to 

interpret based on the positive and negative weights, which often make things confusing.
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 Implementing LSI Topic Models from Scratch
Based on what we mentioned earlier, the heart of LSI models involves Singular Value 

Decomposition (SVD). Here, we try to implement an LSI topic model from scratch using 

low-rank SVD. The first step in SVD is to get the source matrix, which is typically a term- 

document matrix. We can obtain it from Gensim by converting the sparse Bag of Words 

representation into a dense matrix.

td_matrix = gensim.matutils.corpus2dense(corpus=bow_corpus,  

num_terms=len(dictionary))

print(td_matrix.shape)

td_matrix

(7756, 1740)

array([[1., 0., 1., ..., 0., 2., 1.],

       [1., 0., 1., ..., 1., 1., 0.],

       [1., 0., 0., ..., 0., 0., 0.],

       ...,

       [0., 0., 0., ..., 0., 0., 0.],

       [0., 0., 0., ..., 0., 0., 0.],

       [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)

Everything seems to be in order, so we can validate our vocabulary by using the 

following code just to make sure everything is correct.

vocabulary = np.array(list(dictionary.values()))

print('Total vocabulary size:', len(vocabulary))

vocabulary

Total vocabulary size: 7756

array(['able', 'abstract', 'accommodate', ..., 'support_vector',

       'mozer_jordan', 'kearns_solla'], dtype='<U28')

We now perform low-rank SVD on our term document matrix by leveraging the 

following code snippet.

from scipy.sparse.linalg import svds

u, s, vt = svds(td_matrix, k=TOTAL_TOPICS, maxiter=10000)

term_topic = u
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singular_values = s

topic_document = vt

term_topic.shape, singular_values.shape, topic_document.shape

((7756, 10), (10,), (10, 1740))

Getting the weights (direction and importance) for each term in each topic is also 

pretty straightforward. The following code helps us compute this.

tt_weights = term_topic.transpose() * singular_values[:, None]

tt_weights.shape

(10, 7756)

We can now easily look at our 10 topics and the top influential terms for them by 

using the following code.

top_terms = 20

topic_key_term_idxs = np.argsort(-np.absolute(tt_weights), axis=1)[:, :top_

terms]

topic_keyterm_weights = np.array([tt_weights[row, columns]

                              for row, columns in list(zip(np.arange(TOTAL_

TOPICS), topic_key_term_idxs))])

topic_keyterms = vocabulary[topic_key_term_idxs]

topic_keyterms_weights = list(zip(topic_keyterms, topic_keyterm_weights))

for n in range(TOTAL_TOPICS):

    print('Topic #'+str(n+1)+':')

    print('='*50)

    d1 = []

    d2 = []

    terms, weights = topic_keyterms_weights[n]

    term_weights = sorted([(t, w) for t, w in zip(terms, weights)],

                          key=lambda row: -abs(row[1]))

    for term, wt in term_weights:

        if wt >= 0:

            d1.append((term, round(wt, 3)))

        else:

            d2.append((term, round(wt, 3)))
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    print('Direction 1:', d1)

    print('-'*50)

    print('Direction 2:', d2)

    print('-'*50)

    print()

Topic #1:

==================================================

Direction 1: [('training', 92.618), ('task', 80.732), ('pattern', 70.619), 

('classifier', 56.989), ('control', 50.677), ('rule', 45.926), ('action', 

41.202), ('neuron', 38.193)]

--------------------------------------------------

Direction 2: [('word', -188.488), ('vector', -85.973), ('node', -54.376), 

('recognition', -53.232), ('sequence', -50.351), ('circuit', -45.394), 

('cell', -44.811), ('hmm', -34.086), ('character', -34.022), ('chip', 

-32.16), ('matrix', -32.093), ('structure', -30.993)]

--------------------------------------------------

Topic #2:

==================================================

Direction 1: [('word', 78.347), ('neuron', 69.793), ('stimulus', 63.234), 

('feature', 53.819), ('distribution', 53.119), ('response', 30.954), 

('state', 29.343), ('probability', 29.099), ('estimate', 28.908)]

--------------------------------------------------

Direction 2: [('node', -173.277), ('circuit', -93.0), ('chip', -73.593), 

('classifier', -58.717), ('current', -55.844), ('voltage', -53.489), 

('control', -51.708), ('rule', -45.293), ('layer', -40.265), ('analog', 

-38.344), ('tree', -33.483)]

--------------------------------------------------

Topic #3:

==================================================

Direction 1: [('pattern', 116.971), ('rule', 69.783), ('state', 68.605), 

('class', 64.259), ('cell', 59.979), ('feature', 59.606), ('node', 49.175), 

('neuron', 47.998), ('probability', 43.812), ('classifier', 42.612), 

('image', 42.061)]

--------------------------------------------------
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Direction 2: [('signal', -93.805), ('control', -91.041), ('training', 

-77.88), ('noise', -64.397), ('word', -62.392), ('motion', -56.699), 

('task', -53.883), ('target', -44.765), ('circuit', -44.129)]

--------------------------------------------------

Topic #4:

==================================================

Direction 1: [('unit', 117.727), ('distribution', 66.719), ('vector', 

58.881), ('approximation', 50.931), ('variable', 50.83), ('equation', 

46.229), ('noise', 44.247), ('matrix', 42.214)]

--------------------------------------------------

Direction 2: [('word', -147.792), ('training', -113.693), ('classifier', 

-107.386), ('recognition', -73.948), ('feature', -63.454), ('state', 

-60.126), ('pattern', -59.562), ('cell', -53.768), ('task', -53.693), 

('classification', -44.936), ('class', -43.161), ('neuron', -41.092)]

--------------------------------------------------

Topic #5:

==================================================

Direction 1: [('neuron', 220.116), ('image', 92.39), ('chip', 44.422), 

('unit', 41.922), ('object', 39.001), ('circuit', 30.444), ('memory', 

26.475), ('analog', 25.207), ('activation', 24.953), ('bit', 22.997), 

('net', 22.699)]

--------------------------------------------------

Direction 2: [('cell', -285.803), ('response', -40.216), ('rat', -35.975), 

('distribution', -33.085), ('probability', -29.79), ('stimulus', -27.789), 

('class', -24.02), ('cortical', -22.185), ('firing', -21.66)]

--------------------------------------------------

Topic #6:

==================================================

Direction 1: [('image', 209.793), ('state', 170.207), ('unit', 129.108), 

('object', 82.185), ('action', 72.136), ('visual', 59.502), ('motion', 

50.605), ('feature', 48.665), ('control', 47.427), ('task', 46.496), 

('cell', 42.366), ('representation', 40.564)]

--------------------------------------------------
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Direction 2: [('neuron', -130.053), ('training', -88.668), ('class', 

-85.213), ('classifier', -81.921), ('vector', -57.532), ('node', -56.341), 

('distribution', -51.622), ('classification', -47.645)]

--------------------------------------------------

Topic #7:

==================================================

Direction 1: [('image', 215.858), ('feature', 55.647), ('neuron', 48.494), 

('pixel', 35.095), ('object', 33.585), ('state', 32.544), ('distribution', 

29.977), ('face', 29.256), ('estimate', 27.555)]

--------------------------------------------------

Direction 2: [('unit', -341.829), ('pattern', -90.771), ('layer', 

-65.337), ('hidden_unit', -61.12), ('net', -60.035), ('training', 

-56.742),  ('activation', -54.268), ('rule', -53.377), ('word', -38.903), 

('connection', -34.618), ('architecture', -28.439)]

--------------------------------------------------

Topic #8:

==================================================

Direction 1: [('image', 229.287), ('feature', 121.397), ('unit', 79.44), 

('object', 76.204), ('training', 75.152), ('classifier', 59.872), ('class', 

52.527), ('classification', 46.696), ('layer', 45.149), ('recognition', 

44.192), ('representation', 40.179), ('pattern', 39.252)]

--------------------------------------------------

Direction 2: [('state', -364.388), ('neuron', -127.022), ('action', 

-109.245), ('control', -75.369), ('policy', -63.103), ('step', -47.226), 

('dynamic', -46.907), ('reinforcement_learning', -42.747)]

--------------------------------------------------

Topic #9:

==================================================

Direction 1: [('neuron', 306.151), ('cell', 249.243), ('response', 

119.758), ('stimulus', 106.762), ('activity', 73.499), ('spike', 62.039), 

('pattern', 60.957), ('circuit', 60.602), ('synaptic', 60.282), ('signal', 

56.665), ('firing', 56.597), ('visual', 55.571), ('cortical', 48.867)]

--------------------------------------------------

Chapter 6  text Summarization and topiC modelS



387

Direction 2: [('state', -161.465), ('training', -117.32), ('class', 

-68.732), ('vector', -59.558), ('classifier', -52.589), ('action', 

-52.113), ('word', -49.239)]

--------------------------------------------------

Topic #10:

==================================================

Direction 1: []

--------------------------------------------------

Direction 2: [('unit', -260.793), ('state', -258.146), ('training', 

-227.312), ('neuron', -215.681), ('pattern', -197.232), ('image', 

-175.735), ('vector', -170.154), ('feature', -151.547), ('cell', 

-148.138), ('layer', -133.593), ('task', -122.389), ('class', -117.849), 

('probability', -110.526), ('signal', -108.232), ('step', -105.202), 

('response', -104.465), ('representation', -103.255), ('noise', -100.573), 

('rule', -99.611), ('distribution', -98.973)]

--------------------------------------------------

Note that even if the topic numbers have shuffled around, they match the previous 

topic model’s output from Gensim very closely! You can also try extracting influential 

topics from sample papers using the following code.

document_topics = pd.DataFrame(np.round(topic_document.T, 3),

                                columns=['T'+str(i) for i in range(1, TOTAL_

TOPICS+1)])

document_numbers = [13, 250, 500]

for document_number in document_numbers:

    top_topics = list(document_topics.columns[np.argsort(-

                                                 np.absolute(

                                          document_topics.iloc[document_

number].values))[:3]])

    print('Document #'+str(document_number)+':')

    print('Dominant Topics (top 3):', top_topics)

    print('Paper Summary:')

    print(papers[document_number][:500])

    print()
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Document #13:

Dominant Topics (top 3): ['T5', 'T10', 'T9']

Paper Summary:

9

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent, 

symmetrically connected, neuromorphic network that, like the Boltzmann machine

Document #250:

Dominant Topics (top 3): ['T6', 'T8', 'T3']

Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations

Richard S. Zemel

Computer Science Dept.

University of Toronto

...

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T2', 'T3', 'T1']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

...

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea.
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We can clearly observe that even if the topic numbers have changed (since they 

were shuffled around based on our new model), the core themes pertaining to each 

topic closely match the results we obtained earlier. Clearly SVD is a very powerful 

mathematical operation and we will see more of this during document summarization!

 Latent Dirichlet Allocation
The Latent Dirichlet Allocation (LDA) technique is a generative probabilistic model in 

which each document is assumed to have a combination of topics similar to a probabilistic 

Latent Semantic Indexing model. In this case, the latent topics contain a Dirichlet 

prior over them. The math behind in this technique is pretty involved, so we will try to 

summarize it since going it specific details is out of the current scope. We recommend 

readers to go through this excellent talk at http://chdoig.github.io/pygotham-topic-

modeling/#/ by Christine Doig from which we will be borrowing some excellent pictorial 

representations. The plate notation for the LDA model is depicted in Figure 6-3.

You can find more details about the diagram in Figure 6-3 in the official Wikipedia 

article at https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation, which talks 

Figure 6-3. LDA plate notation (courtesy C. Doug. Introduction to Topic Modeling 
in Python)
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about the parameters in detail. Figure 6-3 gives us a good representation of how each of 

the parameters connects to the text documents and terms. It is assumed that we have M 

documents, N number of words in the documents, and K total number of topics to generate.

The black box in Figure 6-4 represents the core algorithm, which uses the previously 

mentioned parameters to extract K topics from the documents. The following steps give 

a very simplistic explanation of what happens in the algorithm for everyone’s benefit.

 1. Initialize the necessary parameters.

 2. For each document, randomly initialize each word to one of the K 

topics.

 3. Start an iterative process as follows and repeat it several times. For 

each document D, for each word W in document, and for each topic T:

• Compute P(T| D), which is proportion of words in D assigned to 

topic T.

• Compute P(W| T), which is proportion of assignments to topic T 

over all documents having the word W.

• Reassign word W with topic T with probability P(T| D) × P(W| T), 

considering all other words and their topic assignments.

Figure 6-4. End-to-end LDA framework (courtesy C. Doug. Introduction to Topic 
Modeling in Python)
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Once this runs several iterations, we should have topic mixtures for each document 

and then we can generate the constituents of each topic from the terms that point to 

that topic. Popularly, the method used here is known as Collapsed Gibbs Sampling. We 

use Gensim in the following implementation to build an LDA-based topic model on our 

research paper based corpus.

%%time

lda_model = gensim.models.LdaModel( corpus=bow_corpus, id2word=dictionary, 

chunksize=1740, alpha='auto', 

eta='auto', random_state=42, 

iterations=500, num_topics=TOTAL_TOPICS, 

passes=20, eval_every=None)

CPU times: user 5min 32s, sys: 10.7 s, total: 5min 43s

Wall time: 2min 31s

Viewing the topics in our trained topic model is quite easy and we can generate them 

with the following code.

for topic_id, topic in lda_model.print_topics(num_topics=10, num_words=20):

    print('Topic #'+str(topic_id+1)+':')

    print(topic)

    print()

Topic #1:

0.016*"training" + 0.012*"classifier" + 0.007*"pattern" + 

0.007*"classification" + 0.006*"class" + 0.006*"task" + 0.006*"vector" + 

0.005*"training_set" + 0.005*"feature" + 0.004*"control" + 0.004*"size" 

+ 0.003*"trained" + 0.003*"teacher" + 0.003*"rate" + 0.003*"student" 

+ 0.003*"average" + 0.003*"robot" + 0.003*"random" + 0.003*"rule" + 

0.003*"search"

Topic #2:

0.008*"vector" + 0.006*"equation" + 0.006*"matrix" + 0.006*"neuron" 

+ 0.005*"state" + 0.005*"dynamic" + 0.005*"solution" + 0.005*"unit" 

+ 0.004*"node" + 0.004*"pattern" + 0.004*"linear" + 0.004*"let" + 

0.003*"layer" + 0.003*"convergence" + 0.003*"rule" + 0.003*"size" + 

0.003*"theorem" + 0.003*"threshold" + 0.003*"memory" + 0.003*"theory"
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Topic #3:

0.017*"training" + 0.011*"word" + 0.008*"recognition" + 0.007*"trained" 

+ 0.006*"net" + 0.006*"unit" + 0.006*"feature" + 0.006*"speech" + 

0.006*"task" + 0.005*"architecture" + 0.005*"class" + 0.005*"character" + 

0.004*"layer" + 0.004*"classification" + 0.004*"context" + 0.004*"test" 

+ 0.004*"sequence" + 0.004*"hidden_unit" + 0.004*"experiment" + 

0.004*"vector"

Topic #4:

0.017*"motion" + 0.009*"rule" + 0.008*"direction" + 0.007*"stimulus" 

+ 0.006*"velocity" + 0.006*"task" + 0.006*"human" + 0.006*"unit" + 

0.005*"location" + 0.005*"target" + 0.005*"subject" + 0.005*"memory" + 

0.005*"prediction" + 0.005*"position" + 0.004*"concept" + 0.004*"field" + 

0.004*"response" + 0.004*"cue" + 0.004*"layer" + 0.004*"hand"

Topic #5:

0.008*"distribution" + 0.005*"estimate" + 0.005*"sample" + 0.005*"training" 

+ 0.005*"class" + 0.005*"probability" + 0.005*"approximation" + 

0.004*"variable" + 0.004*"gaussian" + 0.004*"linear" + 0.004*"vector" 

+ 0.004*"prior" + 0.004*"noise" + 0.004*"density" + 0.004*"prediction" 

+ 0.003*"kernel" + 0.003*"variance" + 0.003*"mixture" + 0.003*"bound" + 

0.003*"regression"

Topic #6:

0.037*"state" + 0.011*"action" + 0.008*"step" + 0.008*"control" + 

0.007*"policy" + 0.006*"sequence" + 0.006*"reinforcement_learning" + 

0.005*"probability" + 0.005*"optimal" + 0.004*"task" + 0.004*"transition" 

+ 0.004*"environment" + 0.003*"variable" + 0.003*"reward" + 

0.003*"stochastic" + 0.003*"goal" + 0.003*"machine" + 0.003*"current" + 

0.003*"controller" + 0.003*"agent"

Topic #7:

0.012*"circuit" + 0.011*"signal" + 0.011*"chip" + 0.009*"neuron" + 

0.008*"current" + 0.007*"voltage" + 0.006*"analog" + 0.006*"control" 

+ 0.005*"channel" + 0.004*"noise" + 0.004*"neural" + 0.004*"bit" + 

0.004*"implementation" + 0.004*"source" + 0.003*"design" + 0.003*"gain" + 

0.003*"processor" + 0.003*"synapse" + 0.003*"device" + 0.003*"array"
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Topic #8:

0.021*"neuron" + 0.019*"cell" + 0.009*"response" + 0.007*"activity" + 

0.007*"stimulus" + 0.007*"pattern" + 0.006*"spike" + 0.005*"synaptic" + 

0.004*"cortical" + 0.004*"neural" + 0.004*"signal" + 0.004*"firing" + 

0.004*"connection" + 0.004*"effect" + 0.004*"layer" + 0.004*"et_al" + 

0.004*"cortex" + 0.003*"visual" + 0.003*"simulation" + 0.003*"synapsis"

Topic #9:

0.032*"image" + 0.012*"object" + 0.012*"feature" + 0.006*"pixel" + 

0.006*"visual" + 0.005*"representation" + 0.005*"face" + 0.005*"vector" + 

0.004*"view" + 0.004*"recognition" + 0.004*"transformation" + 0.004*"local" 

+ 0.003*"map" + 0.003*"structure" + 0.003*"region" + 0.003*"filter" + 

0.003*"position" + 0.003*"distance" + 0.003*"part" + 0.003*"location"

Topic #10:

0.030*"unit" + 0.009*"pattern" + 0.007*"representation" + 0.007*"activation" 

+ 0.006*"hidden_unit" + 0.006*"node" + 0.006*"structure" + 0.006*"layer" + 

0.005*"activity" + 0.004*"connection" + 0.004*"task" + 0.004*"component" 

+ 0.004*"map" + 0.004*"rule" + 0.004*"architecture" + 0.004*"signal" + 

0.004*"level" + 0.003*"response" + 0.003*"connectionist" + 0.003*"training"

The topics are definitely easier to understand and interpret than the LSI model, since 

all the weights are the same sign and tell us the importance of each term in the topic. We 

can also view the overall mean coherence score of the model.

topics_coherences = lda_model.top_topics(bow_corpus, topn=20)

avg_coherence_score = np.mean([item[1] for item in topics_coherences])

print('Avg. Coherence Score:', avg_coherence_score)

Avg. Coherence Score: -1.0433305600965899

Topic coherence is a complex topic in its own and it can be used to measure the 

quality of topic models to some extent. Typically, a set of statements is said to be 

coherent if they support each other. Topic models are unsupervised learning based 

models that are trained on unstructured text data, making it difficult to measure the 

quality of outputs. An excellent resource on the topic coherence framework is the paper 

by Michael Röder et al., “Exploring the Space of Topic Coherence Measures,” which you 

can access at http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.

pdf. The same framework has been implemented in Python in the Gensim framework. 
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A detailed article is available at https://rare-technologies.com/what-is-topic- 

coherence by Devashish who implemented this neat capability in Gensim!

I use his same easy-to-understand analogy to explain the topic coherence 

framework briefly where consider we have a water source and water is distributed to 

different people. To measure the water quality, we have to rely on individual customer 

reviews. Now assume we have four main hubs for water distribution and we install 

some equipment at the four water pipes distributing water in each of the hubs. This 

equipment helps us measure the quality of water using quantitative metrics, saving us 

time from relying on subjective reviews. Now take this analogy and consider the water 

is basically the topics we obtain from a topic model and the topic coherence framework 

is the equipment we installed to get a quantitative evaluation of the topic quality. This 

coherence framework is a four-stage pipeline, as defined in the research paper we 

mentioned earlier, and is depicted in Figure 6-5.

The four main stages in the topic coherence framework pipeline depicted in 

Figure 6-5 are described as follows:

 1. Segmentation: This stage is akin to when our water is partitioned 

into several glasses assuming that the quality of water in each 

glass is different. Here, the words in a topic are placed into subsets 

and pairs of words are created.

 2. Probability calculation: The quantity of water in each glass is 

measured. The method of probability calculation or estimation 

defines the way that the probabilities are derived from the 

underlying data. The Boolean document estimates the probability of 

Figure 6-5. The unifying coherence framework for topic models
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a single word as the number of documents in which the word occurs 

by the total number of documents. Similarly, the joint probability 

of two words is estimated by the number of documents containing 

both words by the total number of documents. The Boolean sliding 

window determines word counts using a sliding window.

 3. Confirmation measure: The quality of water (based on a certain 

metric) in each glass is measured and a number is assigned to 

each glass with regard to its quantity. Considering topic models, 

a confirmation measure takes a pair of words or word subsets as 

well as the corresponding probabilities and computes how strong 

the conditioning word set supports the other word in the pair. 

Typically there are two types of measures—extrinsic and intrinsic.

• Direct or extrinsic measures: One of the most popular ones is 

the UCI measure. It uses the pointwise mutual information (PMI) 

as the pairwise scoring function. In the research paper, they came 

up with a direct metric Cp, which gave them the best performance 

(details mentioned in the paper).

• Indirect or intrinsic measures: Indirect confirmation measures 

claim to capture semantic support that direct measures would 

miss. One of the most popular measures is the UMass measure, 

which uses the following scoring function.
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which is smoothened by adding 1 to the document frequency in the 

numerator. The research paper claims to have found a new measure Cv, 

which is a combination of the indirect cosine measure and with the NPMI 

and the Boolean sliding window which gave the best results. This is also 

available in Gensim.
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 4. Aggregation: This is the equipment where these quality numbers 

are combined in a certain way (e.g., arithmetic mean) to come 

up with one quantitative metric. All confirmation measures for 

each subset word pairs per topic are aggregated to give a single 

coherence score. Just like we obtained -1.04 as the average 

coherence score in our previous output (the UMass measure).

This should give you enough context to evaluate and tune the topic models. Let’s 

now look at the output of our LDA topic model in an easier to understand format. One 

way is to visualize the topics as tuples of terms and weights.

topics_with_wts = [item[0] for item in topics_coherences]

print('LDA Topics with Weights')

print('='*50)

for idx, topic in enumerate(topics_with_wts):

    print('Topic #'+str(idx+1)+':')

    print([(term, round(wt, 3)) for wt, term in topic])

    print()

LDA Topics with Weights

==================================================

Topic #1:

[('training', 0.017), ('word', 0.011), ('recognition', 0.008), ('trained', 

0.007), ('net', 0.006), ('unit', 0.006), ('feature', 0.006), ('speech', 

0.006), ('task', 0.006), ('architecture', 0.005), ('class', 0.005), 

('character', 0.005), ('layer', 0.004), ('classification', 0.004), 

('context', 0.004), ('test', 0.004), ('sequence', 0.004), ('hidden_unit', 

0.004), ('experiment', 0.004), ('vector', 0.004)]

Topic #2:

[('unit', 0.03), ('pattern', 0.009), ('representation', 0.007), 

('activation', 0.007), ('hidden_unit', 0.006), ('node', 0.006), 

('structure', 0.006), ('layer', 0.006), ('activity', 0.005), ('connection', 

0.004), ('task', 0.004), ('component', 0.004), ('map', 0.004), ('rule', 

0.004), ('architecture', 0.004), ('signal', 0.004), ('level', 0.004), 

('response', 0.003), ('connectionist', 0.003), ('training', 0.003)]
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...,

...,

Topic #8:

[('state', 0.037), ('action', 0.011), ('step', 0.008), ('control', 0.008), 

('policy', 0.007), ('sequence', 0.006), ('reinforcement_learning', 0.006), 

('probability', 0.005), ('optimal', 0.005), ('task', 0.004), ('transition', 

0.004), ('environment', 0.004), ('variable', 0.003), ('reward', 0.003), 

('stochastic', 0.003), ('goal', 0.003), ('machine', 0.003), ('current', 

0.003), ('controller', 0.003), ('agent', 0.003)]

Topic #9:

[('motion', 0.017), ('rule', 0.009), ('direction', 0.008), ('stimulus', 

0.007), ('velocity', 0.006), ('task', 0.006), ('human', 0.006), ('unit', 

0.006), ('location', 0.005), ('target', 0.005), ('subject', 0.005), 

('memory', 0.005), ('prediction', 0.005), ('position', 0.005), ('concept', 

0.004), ('field', 0.004), ('response', 0.004), ('cue', 0.004), ('layer', 

0.004), ('hand', 0.004)]

Topic #10:

[('circuit', 0.012), ('signal', 0.011), ('chip', 0.011), ('neuron', 0.009), 

('current', 0.008), ('voltage', 0.007), ('analog', 0.006), ('control', 

0.006), ('channel', 0.005), ('noise', 0.004), ('neural', 0.004), ('bit', 

0.004), ('implementation', 0.004), ('source', 0.004), ('design', 0.003), 

('gain', 0.003), ('processor', 0.003), ('synapse', 0.003), ('device', 

0.003), ('array', 0.003)]

We can also view the topics as a list of terms without the weights when we want to 

understand the context or theme conveyed by each topic.

print('LDA Topics without Weights')

print('='*50)

for idx, topic in enumerate(topics_with_wts):

    print('Topic #'+str(idx+1)+':')

    print([term for wt, term in topic])

    print()
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LDA Topics without Weights

==================================================

Topic #1:

['training', 'word', 'recognition', 'trained', 'net', 'unit', 'feature', 

'speech', 'task', 'architecture', 'class', 'character', 'layer', 

'classification', 'context', 'test', 'sequence', 'hidden_unit', 

'experiment', 'vector']

Topic #2:

['unit', 'pattern', 'representation', 'activation', 'hidden_unit', 'node', 

'structure', 'layer', 'activity', 'connection', 'task', 'component', 'map', 

'rule', 'architecture', 'signal', 'level', 'response', 'connectionist', 

'training']

...,

...,

Topic #8:

['state', 'action', 'step', 'control', 'policy', 'sequence', 

'reinforcement_learning', 'probability', 'optimal', 'task', 'transition', 

'environment', 'variable', 'reward', 'stochastic', 'goal', 'machine', 

'current', 'controller', 'agent']

Topic #9:

['motion', 'rule', 'direction', 'stimulus', 'velocity', 'task', 'human', 

'unit', 'location', 'target', 'subject', 'memory', 'prediction', 

'position', 'concept', 'field', 'response', 'cue', 'layer', 'hand']

Topic #10:

['circuit', 'signal', 'chip', 'neuron', 'current', 'voltage', 'analog', 

'control', 'channel', 'noise', 'neural', 'bit', 'implementation', 'source', 

'design', 'gain', 'processor', 'synapse', 'device', 'array']

We can use perplexity and coherence scores as measures to evaluate the topic 

model. Typically, lower the perplexity, the better the model. Similarly, the lower the 

UMass score and the higher the Cv score in coherence, the better the model.
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cv_coherence_model_lda = gensim.models.CoherenceModel( model=lda_model, 

corpus=bow_corpus,

                                                 texts=norm_corpus_bigrams,

                                                     dictionary=dictionary,

                                                      coherence='c_v')

avg_coherence_cv = cv_coherence_model_lda.get_coherence()

umass_coherence_model_lda = gensim.models.CoherenceModel( model=lda_model,  

corpus=bow_corpus,

                                               texts=norm_corpus_bigrams,

                                                     dictionary=dictionary,

                                                        coherence='u_mass')

avg_coherence_umass = umass_coherence_model_lda.get_coherence()

perplexity = lda_model.log_perplexity(bow_corpus)

print('Avg. Coherence Score (Cv):', avg_coherence_cv)

print('Avg. Coherence Score (UMass):', avg_coherence_umass)

print('Model Perplexity:', perplexity)

Avg. Coherence Score (Cv): 0.47028476052247825

Avg. Coherence Score (UMass): -1.0433305600965896

Model Perplexity: -7.792233498252204

Not bad, but we have nothing to compare this against. Let’s try to build another LDA 

topic model based on a separate package called MALLET, which has Gensim wrappers to 

make it easy to use from Python!

 LDA Models with MALLET
The MALLET framework is a Java-based package for statistical natural language 

processing, document classification, clustering, topic modeling, information extraction, 

and other machine learning applications to text. MALLET stands for MAchine Learning 

for LanguagE Toolkit. It was developed by Andrew McCallum along with several people 

at the University of Massachusetts Amherst. The MALLET topic modeling toolkit 

contains efficient, sampling-based implementations of Latent Dirichlet Allocation, 

Pachinko Allocation, and Hierarchical LDA. To use MALLET’s capabilities, we need to 

download the framework.
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!wget http://mallet.cs.umass.edu/dist/mallet-2.0.8.zip

--2018-11-08 20:06:13--  http://mallet.cs.umass.edu/dist/mallet-2.0.8.zip

Resolving mallet.cs.umass.edu (mallet.cs.umass.edu)... 128.119.246.70

Connecting to mallet.cs.umass.edu (mallet.cs.umass.

edu)|128.119.246.70|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 16184794 (15M) [application/zip]

Saving to: 'mallet-2.0.8.zip'

mallet-2.0.8.zip    100%[===================>]  15.43M  1.35MB/s    in 12s

2018-11-08 20:06:25 (1.28 MB/s) - 'mallet-2.0.8.zip' saved 

[16184794/16184794]

Windows users can download the package directly from the browser using the same 

URL mentioned in the preceding code. Once it’s downloaded, we need to extract the 

contents from the archive.

!unzip -q mallet-2.0.8.zip

We are now ready to build our LDA model using MALLET. If you have multiple CPUs, 

Gensim can also use them for parallel processing and faster training.

MALLET_PATH = 'mallet-2.0.8/bin/mallet'

lda_mallet = gensim.models.wrappers.LdaMallet( mallet_path=MALLET_PATH, 

corpus=bow_corpus,

                                               num_topics=TOTAL_TOPICS, 

id2word=dictionary,

                                              iterations=500, workers=16)

We can now look at the generated topics by leveraging the following code snippet.

topics = [[(term, round(wt, 3))

               for term, wt in lda_mallet.show_topic(n, topn=20)]

                   for n in range(0, TOTAL_TOPICS)]

for idx, topic in enumerate(topics):

    print('Topic #'+str(idx+1)+':')

    print([term for term, wt in topic])

    print()
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Topic #1:

['neuron', 'cell', 'response', 'stimulus', 'activity', 'pattern', 'signal', 

'spike', 'effect', 'synaptic', 'frequency', 'neural', 'unit', 'connection', 

'layer', 'cortical', 'firing', 'et_al', 'brain', 'temporal']

Topic #2:

['prediction', 'control', 'trajectory', 'target', 'task', 'expert', 

'training', 'nonlinear', 'dynamic', 'linear', 'local', 'change', 

'adaptive', 'mapping', 'hand', 'movement', 'controller', 'position', 

'motor', 'architecture']

...,

...,

Topic #9:

['training', 'unit', 'pattern', 'hidden_unit', 'layer', 'net', 

'classifier', 'class', 'training_set', 'classification', 'trained', 'test', 

'task', 'back_propagation', 'hidden_layer', 'table', 'generalization', 

'feature', 'size', 'architecture']

Topic #10:

['word', 'recognition', 'speech', 'sequence', 'feature', 'context', 

'training', 'character', 'hmm', 'module', 'signal', 'letter', 'frame', 

'trained', 'experiment', 'classification', 'architecture', 'speaker', 

'window', 'class']

We can also evaluate our model using the perplexity and coherence metrics, as we 

did before.

cv_coherence_model_lda_mallet = gensim.models. CoherenceModel 

(model=lda_mallet,

                                              corpus=bow_corpus,

                                              texts=norm_corpus_bigrams,

                                              dictionary=dictionary,

                                              coherence='c_v')

avg_coherence_cv = cv_coherence_model_lda_mallet.get_coherence()
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umass_coherence_model_lda_mallet = gensim.models. CoherenceModel 

(model=lda_mallet,

                                              corpus=bow_corpus,

                                              texts=norm_corpus_bigrams,

                                              dictionary=dictionary,

                                              coherence='u_mass')

avg_coherence_umass = umass_coherence_model_lda_mallet.get_coherence()

# from STDOUT: <500> LL/token: -8.53533

perplexity = -8.53533

print('Avg. Coherence Score (Cv):', avg_coherence_cv)

print('Avg. Coherence Score (UMass):', avg_coherence_umass)

print('Model Perplexity:', perplexity)

Avg. Coherence Score (Cv): 0.5008326905758488

Avg. Coherence Score (UMass): -1.0635635291342118

Model Perplexity: -8.53533

You can clearly see that the model from MALLET is much better based on these 

metrics as compared to the default LDA model from Gensim. Can we find the optimal 

number of topics that maximizes the coherence? This is a tough problem, but we can try 

doing it iteratively.

 LDA Tuning: Finding the Optimal Number of Topics
Finding the optimal number of topics in a topic model is tough, given that it is like a 

model hyperparameter that you always have to set before training the model. We can 

use an iterative approach and build several models with differing numbers of topics and 

select the one that has the highest coherence score. To implement this method, we build 

the following function.

from tqdm import tqdm

def topic_model_coherence_generator(corpus, texts, dictionary,

                          start_topic_count=2, end_topic_count=10, step=1,

                                    cpus=1):
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    models = []

    coherence_scores = []

     for topic_nums in tqdm(range(start_topic_count, end_topic_count+1, step)):

         mallet_lda_model = gensim.models.wrappers. LdaMallet 

(mallet_path=MALLET_PATH,

                                              corpus=corpus,

                                              num_topics=topic_nums,

                                              id2word=dictionary,

                                              iterations=500, workers=cpus)

         cv_coherence_model_mallet_lda = gensim. models.CoherenceModel 

(model=mallet_lda_model,

                                                    corpus=corpus,

                                                    texts=texts,

                                                    dictionary=dictionary,

                                                    coherence='c_v')

        coherence_score = cv_coherence_model_mallet_lda.get_coherence()

        coherence_scores.append(coherence_score)

        models.append(mallet_lda_model)

    return models, coherence_scores

Let’s put this function into action now and build several topic models, with the 

number of topics ranging from 2 to 30.

lda_models, coherence_scores = topic_model_coherence_generator(corpus=bow_corpus,

                                                texts=norm_corpus_bigrams,

                                                dictionary=dictionary,

                                                 start_topic_count=2,

                                                end_topic_count=30, step=1,

                                                cpus=16)

100%|██████████| 29/29 [37:48<00:00, 92.53s/it]

Note that this step might take some time to train, depending on your infrastructure 

since we will be training several topic models. One way to inspect the output is to sort 

the results by the coherence score and look at the number of topics. See Figure 6-6.
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coherence_df = pd.DataFrame({'Number of Topics': range(2, 31, 1),

                        'Coherence Score': np.round(coherence_scores, 4)})

coherence_df.sort_values(by=['Coherence Score'], ascending=False).head(10)

Let’s plot a graph showing the number of topics per model and their corresponding 

coherence scores.

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight')

%matplotlib inline

x_ax = range(2, 31, 1)

y_ax = coherence_scores

plt.figure(figsize=(12, 6))

plt.plot(x_ax, y_ax, c='r')

plt.axhline(y=0.535, c='k', linestyle='--', linewidth=2)

plt.rcParams['figure.facecolor'] = 'white'

xl = plt.xlabel('Number of Topics')

yl = plt.ylabel('Coherence Score')

Figure 6-6. Sorting the topic models based on the coherence score
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From Figure 6-7, it looks like the score starts increasing rapidly when the number of 

topics is five and gradually starts plateauing at 19 or 20. We choose the optimal number 

of topics as 20, based on our intuition. We can retrieve the best model now:

best_model_idx = coherence_df[coherence_df['Number of Topics'] == 20].index[0]

best_lda_model = lda_models[best_model_idx]

best_lda_model.num_topics

20

Let’s view all the 20 topics generated by our selected best model, similar to our 

previous models.

topics = [[(term, round(wt, 3))

               for term, wt in best_lda_model.show_topic(n, topn=20)]

                   for n in range(0, best_lda_model.num_topics)]

for idx, topic in enumerate(topics):

    print('Topic #'+str(idx+1)+':')

    print([term for term, wt in topic])

    print()

Figure 6-7. Topic model tuning the number of topics vs. coherence score
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Topic #1:

['class', 'classification', 'classifier', 'training', 'pattern', 'feature', 

'kernel', 'machine', 'training_set', 'test', 'sample', 'vector', 

'database', 'error_rate', 'margin', 'experiment', 'support_vector', 

'nearest_neighbor', 'decision', 'size']

...,

Topic #8:

['distribution', 'probability', 'prior', 'gaussian', 'variable', 'mixture', 

'density', 'bayesian', 'estimate', 'approximation', 'log', 'likelihood', 

'sample', 'component', 'expert', 'em', 'posterior', 'probabilistic', 

'estimation', 'entropy']

Topic #9:

['visual', 'motion', 'cell', 'response', 'stimulus', 'direction', 'receptive_

field', 'map', 'spatial', 'orientation', 'unit', 'eye', 'field', 'activity', 

'location', 'velocity', 'center', 'contrast', 'cortical', 'pattern']

...,

Topic #13:

['image', 'object', 'feature', 'pixel', 'face', 'view', 'recognition', 

'representation', 'shape', 'scale', 'part', 'visual', 'region', 'position', 

'scene', 'surface', 'vision', 'frame', 'texture', 'location']

Topic #14:

['control', 'action', 'state', 'policy', 'environment', 'controller', 

'reinforcement_learning', 'task', 'optimal', 'robot', 'goal', 'step', 'reward', 

'td', 'agent', 'adaptive', 'cost', 'reinforcement', 'trial', 'exploration']

...,

Topic #16:

['circuit', 'chip', 'current', 'analog', 'voltage', 'implementation', 

'processor', 'bit', 'design', 'device', 'computation', 'parallel', 'digital', 

'operation', 'array', 'neural', 'synapse', 'element', 'hardware', 'transistor']

Chapter 6  text Summarization and topiC modelS



407

Topic #17:

['rule', 'representation', 'module', 'structure', 'human', 'movement', 

'motor', 'target', 'language', 'subject', 'connectionist', 'position', 'task', 

'context', 'trajectory', 'hand', 'role', 'symbol', 'learned', 'theory']

Topic #18:

['vector', 'map', 'distance', 'cluster', 'local', 'dimension', 

'clustering', 'mapping', 'dimensional', 'region', 'structure', 'center', 

'rbf', 'pca', 'basis_function', 'linear', 'representation', 'global', 

'principal_component', 'projection']

Topic #19:

['signal', 'filter', 'frequency', 'source', 'channel', 'noise', 'component', 

'response', 'temporal', 'sound', 'auditory', 'detection', 'phase', 'ica', 

'adaptation', 'amplitude', 'subject', 'eeg', 'change', 'correlation']

Topic #20:

['prediction', 'training', 'estimate', 'regression', 'test', 'noise', 

'selection', 'variance', 'training_set', 'sample', 'ensemble', 

'estimation', 'average', 'nonlinear', 'linear', 'estimator', 'cross_

validation', 'pruning', 'bias', 'risk']

A better way of visualizing the topics is to build a term-topic dataframe, as depicted 

in Figure 6-8.

topics_df = pd.DataFrame([[term for term, wt in topic]

                              for topic in topics],

                         columns = ['Term'+str(i) for i in range(1, 21)],

                          index=['Topic '+str(t) for t in range(1, best_lda_

model.num_topics+1)]).T

topics_df
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Another easy way to view the topics is to create a topic-term dataframe, whereby 

each topic is represented in a row with the terms of the topic being represented as a 

comma-separated string.

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame([', '.join([term for term, wt in topic])

                              for topic in topics],

                         columns = ['Terms per Topic'],

                          index=['Topic'+str(t) for t in range(1, best_lda_

model.num_topics+1)]

                         )

topics_df

Figure 6-8. Generated topics from our LDA topic model
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The dataframe depicted in Figure 6-9 gives us an easy way to visualize and 

understand the major themes in our corpus of research papers. Do you notice any 

interesting patterns? I observed some very interesting themes around neural networks, 

signal processing, dimension reduction, reinforcement learning, neural models in chips, 

and image and visual recognition!

 Interpreting Topic Model Results
Let’s look at some interesting ways of diving deeper and interpreting results from our topic 

model. An interesting point to remember is, given a corpus of documents (in the form of 

features, e.g., Bag of Words) and a trained topic model, you can predict the distribution of 

topics in each document (research paper in this case) with the following code.

tm_results = best_lda_model[bow_corpus]

Figure 6-9. Viewing all the topics of our LDA topic model
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We can now get the most dominant topic per research paper with some intelligent 

sorting and indexing using the following code.

corpus_topics = [sorted(topics, key=lambda record: -record[1])[0]

                     for topics in tm_results]

corpus_topics[:5]

[(16, 0.2115988756613756),

 (5, 0.29989652050187554),

 (9, 0.3307915758896151),

 (8, 0.5447463768115942),

 (9, 0.18093823158652983)]

This provides a plethora of options that can be leveraged to extract useful insights 

from our corpus of research papers. To enable this, we construct a master dataframe that 

will hold the base statistics, which we use soon to depict different useful insights.

corpus_topic_df = pd.DataFrame()

corpus_topic_df['Document'] = range(0, len(papers))

corpus_topic_df['Dominant Topic'] = [item[0]+1 for item in corpus_topics]

corpus_topic_df['Contribution %'] = [round(item[1]*100, 2) for item in 

corpus_topics]

corpus_topic_df['Topic Desc'] = [topics_df.iloc[t[0]]['Terms per Topic'] 

for t in corpus_topics]

corpus_topic_df['Paper'] = papers

Let’s now take a look at various ways we can transform these results and extract 

meaningful insights from our research papers and their topics.

 Dominant Topics Distribution Across Corpus

The first thing we can do is look at the overall distribution of each topic across the corpus 

of research papers. Mainly we want to determine the total number of papers and the 

total percentage of papers where each of the 20 topics was the most dominant.

pd.set_option('display.max_colwidth', 200)

topic_stats_df = corpus_topic_df.groupby('Dominant Topic').agg({

                                                'Dominant Topic': {

                                                    'Doc Count': np.size,
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                                                    '% Total Docs': np.size }

                                              })

topic_stats_df = topic_stats_df['Dominant Topic'].reset_index()

topic_stats_df['% Total Docs'] = topic_stats_df['% Total Docs']. 

apply(lambda row: round((row*100) / len(papers), 2))

topic_stats_df['Topic Desc'] = [topics_df.iloc[t]['Terms per Topic'] for t in 

range(len(topic_stats_df))]

topic_stats_df

Figure 6-10. Viewing the distribution of dominant topics
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The results in Figure 6-10 show us that most of the papers cover topics of 

probabilistic models and Bayesian modeling (Topic #8), followed by papers covering 

modeling and simulating how the brain works with neurons, cells, stimulus, and 

connections (Topic #10). Even Topic #14, covering reinforcement learning and robotics, 

has almost 6.32% representation of the total number of papers. This tells us it’s not a new 

thing and people have been researching it for decades!

 Dominant Topics in Specific Research Papers

Another interesting perspective is to select specific papers, view the most dominant topic 

in each of those papers, and see if that makes sense.

pd.set_option('display.max_colwidth', 200)

(corpus_topic_df[corpus_topic_df['Document']

                 .isin([681, 9, 392, 1622, 17,

                        906, 996, 503, 13, 733])])

Figure 6-11. Viewing the dominance of topics in research papers
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Based on the results in Figure 6-11, we can see that they make perfect sense! Papers 

on reinforcement learning, signal processing, gaussian mixture models, processor 

simulations, word recognitions, and many more have corresponding relevant topics as 

the most dominant topics. This tells us that our topic model is working well.

 Relevant Research Papers per Topic Based on Dominance

A better way of representation is to try to retrieve the corresponding research paper that 

has the highest representation for each of the 20 topics.

 corpus_topic_df.groupby('Dominant Topic').apply(lambda topic_set:

                                                  ( topic_set.sort_

values(by=['Contribution %'],

                                                   ascending=False).iloc[0]))
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We do not show all the topics in Figure 6-12 due to space constraints, but you get the 

idea and you can view the entire output in the Jupyter notebook. You can even open each 

of the research papers based on the index and read the full contents to see if it makes 

sense! Based on the paper titles and the corresponding topics depicted in Figure 6-12, 

they do make sense. It looks like our model has captured the relevant latent patterns and 

themes in our corpus.

Figure 6-12. Viewing each topic and corresponding paper with its maximum 
contribution

Chapter 6  text Summarization and topiC modelS



415

 Predicting Topics for New Research Papers
Even though topic models are unsupervised models, we can estimate or predict 

potential topics for new documents based on what it has learned previously on the 

so-called “training” corpus. For testing our model, I have manually downloaded some 

recent papers from the NIPS 16 conference proceedings. Testing our model on these 

papers is going to be an interesting exercise.

import glob

# papers manually downloaded from NIPS 16

# https://papers.nips.cc/book/advances-in-neural-information-processing- 

systems-29-2016

new_paper_files = glob.glob('nips16*.txt')

new_papers = []

for fn in new_paper_files:

    with open(fn, encoding='utf-8', errors='ignore', mode='r+') as f:

        data = f.read()

        new_papers.append(data)

print('Total New Papers:', len(new_papers))

Total New Papers: 4

You will find the papers downloaded in the corresponding folder for this chapter 

in the GitHub repository for this book at https://github.com/dipanjanS/text- 

analytics- with-python.

We need to build a text wrangling and feature engineering pipeline, which should 

match the same steps we followed when training our topic model.

def text_preprocessing_pipeline(documents, normalizer_fn, bigram_model):

    norm_docs = normalizer_fn(documents)

    norm_docs_bigrams = bigram_model[norm_docs]

    return norm_docs_bigrams

def bow_features_pipeline(tokenized_docs, dictionary):

    paper_bow_features = [dictionary.doc2bow(text)

                              for text in tokenized_docs]

    return paper_bow_features
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norm_new_papers = text_preprocessing_pipeline(documents=new_papers,

                                             normalizer_fn=normalize_corpus,

                                            bigram_model=bigram_model)

norm_bow_features = bow_features_pipeline(tokenized_docs=norm_new_papers,

                                         dictionary=dictionary)

We can now validate if the transformations worked with the following code.

print(norm_new_papers[0][:30])

['cooperative', 'graphical_model', 'josip', 'djolonga', 'dept_

computer', 'science', 'eth', 'zurich', 'josipd', 'inf', 'ethz', 'ch', 

'stefanie', 'jegelka', 'csail', 'mit', 'stefje', 'mit_edu', 'sebastian', 

'tschiatschek', 'dept_computer', 'science', 'eth', 'zurich', 'stschia', 

'inf', 'ethz', 'ch', 'andreas', 'krause']

print(norm_bow_features[0][:30])

[(0, 1), (1, 1), (6, 1), (17, 1), (18, 1), (19, 1), (25, 1), (31, 2), (36, 

2), (38, 1), (39, 17), (41, 3), (43, 1), (45, 1), (49, 2), (50, 4), (51, 

1), (52, 2), (54, 1), (60, 1), (65, 1), (66, 3), (68, 7), (71, 8), (76, 4), 

(77, 2), (87, 1), (88, 3), (105, 1), (106, 1)]

Let’s now build a generic function that can extract the top N topics from any research 

paper using our trained model.

def get_topic_predictions(topic_model, corpus, topn=3):

    topic_predictions = topic_model[corpus]

    best_topics = [[(topic, round(wt, 3))

                        for topic, wt in sorted(topic_predictions[i],

                                                 key=lambda row: -row[1])

[:topn]]

                            for i in range(len(topic_predictions))]

    return best_topics

# putting the function in action

topic_preds = get_topic_predictions(topic_model=best_lda_model,

                                    corpus=norm_bow_features, topn=2)

topic_preds

Chapter 6  text Summarization and topiC modelS



417

[[(7, 0.241), (4, 0.199)],

 [(13, 0.293), (4, 0.248)],

 [(12, 0.238), (9, 0.113)],

 [(2, 0.263), (12, 0.145)]]

We get the top two topics for each research paper because a paper or document  

can always be a mixture of multiple topics. Let’s view the results for each paper in an 

easy-to- understand format.

results_df = pd.DataFrame()

results_df['Papers'] = range(1, len(new_papers)+1)

results_df['Dominant Topics'] = [[topic_num+1 for topic_num, wt in item]

                                     for item in topic_preds]

res = results_df.set_index(['Papers'])['Dominant Topics'].apply(pd.Series).

stack().reset_index(level=1, drop=True)

results_df = pd.DataFrame({'Dominant Topics': res.values}, index=res.index)

results_df['Contribution %'] = [topic_wt for topic_list in

                                        [[round(wt*100, 2)

                                              for topic_num, wt in item]

                                                 for item in topic_preds]

                                    for topic_wt in topic_list]

results_df['Topic Desc'] = [topics_df.iloc[t-1]['Terms per Topic']

                                for t in results_df['Dominant Topics'].values]

results_df['Paper Desc'] = [new_papers[i-1][:200] for i in results_

df.index.values]

pd.set_option('display.max_colwidth', 300)

results_df
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Looking at the generated topics for the new, previously unseen papers in Figure 6-13, 

I would say our model has done an excellent job!

 Topic Models with Scikit-Learn
This section has been incorporated based on all the people who mentioned  

they use Scikit-Learn extensively and would love to use it for topic modeling too. The 

Scikit- Learn framework does offer a suite of techniques and methods for building topic 

models, although the flexibility in tuning or controlling these models is slightly limited 

as compared to Gensim. Nevertheless, we will build topic models using the following 

methods in this section:

• Latent Semantic Indexing (LSI)

• Latent Dirichlet Allocation (LDA)

• Non-negative Matrix Factorization (NMF)

Figure 6-13. Predicting topics for new papers with our LDA model
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We try to replicate the feature engineering process as much as possible based on 

what we did when we built topic models with Gensim. These models work on the same 

normalized and preprocessed corpus present in the norm_papers variable.

 Text Representation with Feature Engineering
We represent our text data in the form of a Bag of Words model with uni-grams and  

bi- grams, similar to our analyses in the previous section.

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(min_df=20, max_df=0.6, ngram_range=(1,2),

                     token_pattern=None, tokenizer=lambda doc: doc,

                     preprocessor=lambda doc: doc)

cv_features = cv.fit_transform(norm_papers)

cv_features.shape

(1740, 14408)

# validating vocabulary size

vocabulary = np.array(cv.get_feature_names())

print('Total Vocabulary Size:', len(vocabulary))

Total Vocabulary Size: 14408

While the vocabulary is double what we had when we built models using Gensim, we 

have still removed unnecessary terms with the document frequency filters.

 Latent Semantic Indexing
The first topic modeling technique we try is the LSI model based on SVD. Since we 

determined the optimal number of topics as 20 in the previous section, let’s use the 

name for the total topics we want to generate.

%%time

from sklearn.decomposition import TruncatedSVD

TOTAL_TOPICS = 20
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lsi_model = TruncatedSVD(n_components=TOTAL_TOPICS, n_iter=500, random_

state=42)

document_topics = lsi_model.fit_transform(cv_features)

CPU times: user 15min 25s, sys: 1min 3s, total: 16min 28s

Wall time: 1min 1s

topic_terms = lsi_model.components_

topic_terms.shape

(20, 14408)

We can now generate the topics by reusing some of the code we implemented 

previously to display the topics and terms.

top_terms = 20

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:, 

:top_terms]

topic_keyterm_weights = np.array([topic_terms[row, columns]

                              for row, columns in list(zip(np.arange(TOTAL_

TOPICS), topic_key_term_idxs))])

topic_keyterms = vocabulary[topic_key_term_idxs]

topic_keyterms_weights = list(zip(topic_keyterms, topic_keyterm_weights))

for n in range(TOTAL_TOPICS):

    print('Topic #'+str(n+1)+':')

    print('='*50)

    d1 = []

    d2 = []

    terms, weights = topic_keyterms_weights[n]

    term_weights = sorted([(t, w) for t, w in zip(terms, weights)],

                          key=lambda row: -abs(row[1]))

    for term, wt in term_weights:

        if wt >= 0:

            d1.append((term, round(wt, 3)))

        else:
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            d2.append((term, round(wt, 3)))

    print('Direction 1:', d1)

    print('-'*50)

    print('Direction 2:', d2)

    print('-'*50)

    print()

Topic #1:

==================================================

Direction 1: [('state', 0.221), ('neuron', 0.169), ('image', 0.138), 

('cell', 0.13), ('layer', 0.13), ('feature', 0.127), ('probability', 

0.121), ('hidden', 0.114), ('distribution', 0.105), ('rate', 0.098), 

('signal', 0.095), ('task', 0.093), ('class', 0.092), ('noise', 0.09), 

('net', 0.089), ('recognition', 0.089), ('representation', 0.088), 

('field', 0.082), ('rule', 0.082), ('step', 0.08)]

--------------------------------------------------

Direction 2: []

--------------------------------------------------

...,

Topic #3:

==================================================

Direction 1: [('state', 0.574), ('neuron', 0.212), ('action', 0.187), 

('policy', 0.149), ('control', 0.12), ('dynamic', 0.1), ('cell', 0.083), 

('reinforcement', 0.081), ('optimal', 0.075), ('reinforcement learning', 

0.068)]

--------------------------------------------------

Direction 2: [('image', -0.364), ('feature', -0.223), ('object', -0.144), 

('recognition', -0.143), ('classifier', -0.111), ('class', -0.106), ('layer', 

-0.092), ('classification', -0.085), ('face', -0.073), ('test', -0.069)]

--------------------------------------------------

Topic #4:

==================================================

Direction 1: [('image', 0.425), ('state', 0.326), ('object', 0.215), 

('feature', 0.159), ('action', 0.147), ('visual', 0.143), ('control', 
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0.126), ('task', 0.111), ('policy', 0.103), ('recognition', 0.103), 

('face', 0.092), ('representation', 0.086), ('motion', 0.086)]

--------------------------------------------------

Direction 2: [('neuron', -0.216), ('distribution', -0.166), ('class', 

-0.112), ('bound', -0.109), ('probability', -0.108), ('spike', -0.104), 

('variable', -0.087)]

--------------------------------------------------

...,

Topic #6:

==================================================

Direction 1: [('cell', 0.548), ('layer', 0.139), ('word', 0.124), 

('hidden', 0.111), ('classifier', 0.097), ('direction', 0.09), ('head', 

0.078), ('rule', 0.073), ('rat', 0.073), ('speech', 0.071)]

--------------------------------------------------

Direction 2: [('neuron', -0.416), ('image', -0.336), ('circuit', -0.126), 

('noise', -0.124), ('chip', -0.121), ('analog', -0.099), ('object', -0.09), 

('spike', -0.075), ('signal', -0.071), ('voltage', -0.069)]

--------------------------------------------------

...,

Topic #9:

==================================================

Direction 1: [('circuit', 0.244), ('control', 0.242), ('classifier', 

0.229), ('chip', 0.167), ('node', 0.137), ('current', 0.132), ('analog', 

0.13), ('voltage', 0.129), ('signal', 0.118), ('controller', 0.088)]

--------------------------------------------------

Direction 2: [('hidden', -0.27), ('neuron', -0.247), ('state', 

-0.175), ('distribution', -0.158), ('hidden unit', -0.143), ('layer', 

-0.125), ('object', -0.115), ('probability', -0.108), ('image', -0.1), 

('representation', -0.098)]

--------------------------------------------------

Topic #10:

==================================================
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Direction 1: [('circuit', 0.245), ('cell', 0.225), ('node', 0.211), 

('state', 0.183), ('image', 0.166), ('chip', 0.163), ('analog', 0.147), 

('layer', 0.144), ('net', 0.12), ('voltage', 0.115)]

--------------------------------------------------

Direction 2: [('task', -0.201), ('rule', -0.193), ('spike', -0.166), 

('feature', -0.165), ('control', -0.157), ('neuron', -0.144), ('rate', 

-0.134), ('stimulus', -0.116), ('classifier', -0.116), ('action', -0.112)]

--------------------------------------------------

...,

Topic #18:

==================================================

Direction 1: [('object', 0.419), ('signal', 0.26), ('layer', 0.258), 

('rule', 0.209), ('feature', 0.164), ('view', 0.162), ('net', 0.113), 

('noise', 0.112), ('bound', 0.105), ('speech', 0.1)]

--------------------------------------------------

Direction 2: [('memory', -0.18), ('task', -0.161), ('representation', 

-0.14), ('hidden', -0.137), ('image', -0.135), ('hidden unit', -0.121), 

('tree', -0.117), ('structure', -0.094), ('test', -0.093), ('word', -0.092)]

--------------------------------------------------

Topic #19:

==================================================

Direction 1: [('class', 0.287), ('memory', 0.275), ('classifier', 0.144), 

('response', 0.139), ('sequence', 0.112), ('component', 0.11), ('stimulus', 

0.101), ('region', 0.092), ('bound', 0.088)]

--------------------------------------------------

Direction 2: [('node', -0.292), ('feature', -0.244), ('field', -0.202), 

('rate', -0.152), ('word', -0.146), ('spike', -0.139), ('map', -0.132), 

('character', -0.127), ('policy', -0.108), ('tree', -0.092), ('noise', -0.088)]

--------------------------------------------------

Topic #20:

==================================================

Direction 1: [('map', 0.222), ('control', 0.2), ('region', 0.181), ('ii', 

0.145), ('feature', 0.132), ('image', 0.122), ('bound', 0.11), ('orientation', 

0.109), ('rule', 0.109), ('threshold', 0.094), ('class', 0.092)]
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--------------------------------------------------

Direction 2: [('object', -0.31), ('motion', -0.252), ('direction', -0.229), 

('memory', -0.223), ('classifier', -0.193), ('view', -0.136), ('matrix', 

-0.13), ('rate', -0.121), ('distance', -0.11)]

--------------------------------------------------

Of course, we don’t show all the topics in the preceding output due to space 

constraints, but you get the general idea and you can view all the topics in the notebook 

if needed. Similar to the previous section, we can also extract key topics for specific 

research papers.

dt_df = pd.DataFrame(np.round(document_topics, 3),

                     columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

document_numbers = [13, 250, 500]

for document_number in document_numbers:

    top_topics = list(dt_df.columns[np.argsort(-

                             np.absolute(dt_df.iloc[document_number].

values))[:3]])

    print('Document #'+str(document_number)+':')

    print('Dominant Topics (top 3):', top_topics)

    print('Paper Summary:')

    print(papers[document_number][:500])

    print()

Document #13:

Dominant Topics (top 3): ['T1', 'T6', 'T4']

Paper Summary:

Stochastic Learning Networks and their Electronic Implementation

Joshua Alspector*, Robert B. Allen, Victor Hut, and Srinagesh Satyanarayana

Bell Communications Research, Morristown, NJ 07960

ABSTRACT

We describe a family of learning algorithms that operate on a recurrent, 

symmetrically connected, neuromorphic network that, like the Boltzmann 

machine

Document #250:

Dominant Topics (top 3): ['T3', 'T18', 'T4']
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Paper Summary:

266 Zemel, Mozer and Hinton

TRAFFIC: Recognizing Objects Using

Hierarchical Reference Frame Transformations

Richard S. Zemel

ABSTRACT

We describe a model that can recognize two-dimensional shapes in

an unsegmented image, independent of their orie

Document #500:

Dominant Topics (top 3): ['T9', 'T1', 'T10']

Paper Summary:

Constrained Optimization Applied to the

Parameter Setting Problem for Analog Circuits

David Kirk, Kurt Fleischer, Lloyd Watts, Alan Bart

Abstract

We use constrained optimization to select operating parameters for two

circuits: a simple 3-transistor square root circuit, and an analog VLSI

artificial cochlea.

If you check out the terms in the topics we obtained in the preceding output, they 

actually make sense!

 Latent Dirichlet Allocation
Even Scikit-Learn has included an LDA-based topic model implementation in their 

library and the following snippet uses it to build an LDA topic model.

%%time

from sklearn.decomposition import LatentDirichletAllocation

lda_model = LatentDirichletAllocation(n_components =TOTAL_TOPICS,  

max_iter=500, max_doc_update_iter=50, learning_method='online',  

batch_size=1740, learning_offset=50., random_state=42, n_jobs=16)

document_topics = lda_model.fit_transform(cv_features)

CPU times: user 13min 14s, sys: 1min 41s, total: 14min 56s

Wall time: 55min 32s
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We can then obtain the topic-term matrix and build a dataframe from it to showcase 

the topics and terms in an easy-to-interpret format.

topic_terms = lda_model.components_

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:, 

:top_terms]

topic_keyterms = vocabulary[topic_key_term_idxs]

topics = [', '.join(topic) for topic in topic_keyterms]

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame(topics,

                         columns = ['Terms per Topic'],

                          index=['Topic'+str(t) for t in range(1, TOTAL_

TOPICS+1)])

topics_df

Based on the topics depicted in Figure 6-14, we can see some repetition in similar 

themes among the topics, which might be an indication that this model is not as good 

as our MALLET LDA model. We can now view the research papers having the maximum 

contribution of each of the 20 topics, similar to our analyses in the previous sections.

dt_df = pd.DataFrame(document_topics,

                     columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

Figure 6-14. Generated topics from our LDA model
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pd.options.display.float_format = '{:,.5f}'.format

pd.set_option('display.max_colwidth', 200)

max_contrib_topics = dt_df.max(axis=0)

dominant_topics = max_contrib_topics.index

contrib_perc = max_contrib_topics.values

document_numbers = [dt_df[dt_df[t] == max_contrib_topics.loc[t]].index[0]

                       for t in dominant_topics]

documents = [papers[i] for i in document_numbers]

results_df = pd.DataFrame( {'Dominant Topic': dominant_topics, 'Contribution 

%': contrib_perc,

                           'Paper Num': document_numbers, 'Topic': topics_

df['Terms per Topic'],

                          'Paper Name': documents})

results_df

Figure 6-15. Viewing each topic and corresponding paper with its maximum 
contribution
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Based on the output depicted in Figure 6-15, we can see that some topics have a very 

poor representation of almost 0% in the corpus and so we see the same paper (Paper 

#151) being selected as the more relevant paper for these topics. The topics with a good 

contribution (almost 100% dominance) showcase papers that are closely correlated 

with the theme conveyed by the corresponding topic, including reinforcement learning, 

Bayesian and Gaussian mixture models, neural models on VLSI, and transistors.

 Non-Negative Matrix Factorization
The last technique we look at is non-negative matrix factorization (NMF), which is 

another matrix decomposition technique similar to SVD but operates on non-negative 

matrices and works well for multivariate data. Given a non-negative matrix V, the 

objective of NMF is to find two non-negative matrix factors, W and H, such that when 

they are multiplied, they can approximately reconstruct V. Mathematically this is 

represented as follows:

 V WH»  

such that all three matrices are non-negative. To get to this approximation, we usually 

use a cost function like the Euclidean distance or L2 norm between two matrices or the 

Frobenius norm, which is a slight modification of the L2 norm. This can be represented 

as follows:

 
argmin

,W H
V WH

1

2
2

 -  

where we have our three non-negative matrices—V, W, and H—and this can be 

further simplified as follows:

 

1

2
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This implementation is available in the NMF class in the Scikit-Learn decomposition 

module, which we use in the section.

We can build an NMF based topic model using the following snippet on our toy 

corpus, which gives us the feature names and their weights just like in LDA.

%%time

from sklearn.decomposition import NMF
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nmf_model = NMF(n_components=TOTAL_TOPICS, solver='cd', max_iter=500,

                random_state=42, alpha=.1, l1_ratio=.85)

document_topics = nmf_model.fit_transform(cv_features)

CPU times: user 11min 39s, sys: 47.5 s, total: 12min 26s

Wall time: 46.7 s

Now that we have our model trained, we can look at the generated topics using the 

following code.

topic_terms = nmf_model.components_

topic_key_term_idxs = np.argsort(-np.absolute(topic_terms), axis=1)[:, 

:top_terms]

topic_keyterms = vocabulary[topic_key_term_idxs]

topics = [', '.join(topic) for topic in topic_keyterms]

pd.set_option('display.max_colwidth', -1)

topics_df = pd.DataFrame(topics,

                         columns = ['Terms per Topic'],

                          index=['Topic'+str(t) for t in range(1, TOTAL_

TOPICS+1)])

topics_df

Figure 6-16. Generated topics from our NMF model
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Based on the topics depicted in Figure 6-16, there are no major repetitions of topics 

and each topic talks about a clear and distinct theme. The results from the NMF topic 

model are definitely better than what we obtained from LDA in Scikit-Learn. We can 

determine the dominance of topics in each research paper but, in case of NMF these are 

determined by absolute scores and not percentages, as depicted in the following output. 

See Figure 6-17.

pd.options.display.float_format = '{:,.3f}'.format

dt_df = pd.DataFrame(document_topics,

                     columns=['T'+str(i) for i in range(1, TOTAL_TOPICS+1)])

dt_df.head(10)

Figure 6-17. Viewing topic dominance per document using the document-topic 
matrix

Leveraging the document-topic matrix, we can determine the most relevant paper 

for each topic based on the topic dominance scores by using the following code.

pd.options.display.float_format = '{:,.5f}'.format

pd.set_option('display.max_colwidth', 200)

max_score_topics = dt_df.max(axis=0)

dominant_topics = max_score_topics.index

term_score = max_score_topics.values

document_numbers = [dt_df[dt_df[t] == max_score_topics.loc[t]].index[0]

                       for t in dominant_topics]

documents = [papers[i] for i in document_numbers]
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results_df = pd.DataFrame( {'Dominant Topic': dominant_topics, 'Max Score': 

term_score,

                           'Paper Num': document_numbers, 'Topic': topics_

df['Terms per Topic'],

                          'Paper Name': documents})

results_df

The outputs depicted in Figure 6-18 clearly show that the NMF model is much better 

than the LDA model, with each topic being strongly correlated as the central theme of 

the research paper where it has maximum dominance. What we have observed is that 

non-negative matrix factorization works the best even with small corpora, with few 

documents compared to the other methods. But again, this depends on the type of data 

you are dealing with.

Figure 6-18. Viewing each topic and corresponding paper with its maximum 
contribution
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 Predicting Topics for New Research Papers
We now predict topics for the four research papers from the NIPS 16 conference, similar 

to what we did with the Gensim topic models. Start by loading the papers if you don’t 

have them loaded already.

import glob

# papers manually downloaded from NIPS 16

#  https://papers.nips.cc/book/advances-in-neural-information-processing- 

systems-29-2016

new_paper_files = glob.glob('nips16*.txt')

new_papers = []

for fn in new_paper_files:

    with open(fn, encoding='utf-8', errors='ignore', mode='r+') as f:

        data = f.read()

        new_papers.append(data)

print('Total New Papers:', len(new_papers))

Total New Papers: 4

The next step in the pipeline is to preprocess these documents and extract features 

using the same sequence of steps we followed when building the topic models.

norm_new_papers = normalize_corpus(new_papers)

cv_new_features = cv.transform(norm_new_papers)

cv_new_features.shape

(4, 14408)

We can now use our NMF topic model to predict the topics for these new research 

papers using the following code (we predict the top two topics for each paper).

topic_predictions = nmf_model.transform(cv_new_features)

best_topics = [[(topic, round(sc, 3))

                    for topic, sc in sorted(enumerate(topic_predictions[i]),

                                            key=lambda row: -row[1])[:2]]

                        for i in range(len(topic_predictions))]

best_topics
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[[(0, 1.312), (7, 0.966)],

 [(2, 4.121), (0, 0.864)],

 [(3, 2.154), (1, 1.335)],

 [(3, 3.074), (6, 2.19)]]

Remember that we don’t get proportion of dominance of each topic here, like 

with the LDA model, but we get absolute scores. Let’s view the results in an easy-to- 

understand format.

results_df = pd.DataFrame()

results_df['Papers'] = range(1, len(new_papers)+1)

results_df['Dominant Topics'] = [[topic_num+1 for topic_num, sc in item]

                                     for item in best_topics]

res = results_df.set_index(['Papers'])['Dominant Topics'].apply(pd.Series).

stack().reset_index(level=1, drop=True)

results_df = pd.DataFrame({'Dominant Topics': res.values}, index=res.index)

results_df['Topic Score'] = [topic_sc for topic_list in

                                        [[round(sc*100, 2)

                                              for topic_num, sc in item]

                                                 for item in best_topics]

                                    for topic_sc in topic_list]

results_df['Topic Desc'] = [topics_df.iloc[t-1]['Terms per Topic']

                           for t in results_df['Dominant Topics'].values]

results_df['Paper Desc'] = [new_papers[i-1][:200] for i in results_

df.index.values]

results_df
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Looking at the generated topics for the new research papers depicted in  

Figure 6-19, we can clearly conclude that they do make sense and our NMF model is 

working quite well!

 Visualizing Topic Models
We can also visualize our topic models in an interactive way in order to look at each topic 

and the theme conveyed by leveraging the pyLDAvis framework. Typically, dimension 

reduction techniques like MDS, PDA, and t-SNE are used to visualize the topics in a two- 

dimensional visual.

import pyLDAvis

import pyLDAvis.sklearn

import dill

import warnings

warnings.filterwarnings('ignore')

pyLDAvis.enable_notebook()

pyLDAvis.sklearn.prepare(nmf_model, cv_features, cv, mds='mmds')

Figure 6-19. Predicting topics for new papers with our NMF model
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The visualization in Figure 6-20 is interactive in the Jupyter notebook and you 

can play around with it by checking out each topic, distribution of words, and topic 

distributions. We hope this gives you enough perspective of topic models to get started 

with modeling your own corpora.

 Automated Document Summarization
We briefly talked about document summarization at the beginning of this chapter, when 

we mentioned extracting the gist from a large document or corpus so that it retains 

the core essence or meaning of the corpus. The idea of document summarization is a 

bit different from keyphrase extraction or topic modeling. In this case, the end result 

is still in the form of some document, but with a few sentences based on the length we 

might want the summary to be. This is similar to an abstract or an executive summary 

in a research paper. The main objective of automated document summarization is 

to perform this summarization without involving human input, except for running 

computer programs. Mathematical and statistical models help in building and 

automating the task of summarizing documents by observing their content and context.

Figure 6-20. Visualizing topics from our NMF Model
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There are two broad approaches to document summarization using automated 

techniques. They are described as follows:

• Extraction-based techniques: These methods use mathematical 

and statistical concepts like SVD to extract some key subset of the 

content from the original document such that this subset of content 

contains the core information and acts as the focal point of the entire 

document. This content can be words, phrases, or even sentences. 

The end result from this approach is a short executive summary of a 

couple of lines extracted from the original document. No new content 

is generated in this technique, hence the name extraction-based.

• Abstraction-based techniques: These methods are more complex 

and sophisticated. They leverage language semantics to create 

representations and use natural language generation (NLG) 

techniques where the machine uses knowledge bases and semantic 

representations to generate text on its own and create summaries 

just like a human would write them. Thanks to deep learning, we can 

implement these techniques easily but they require a lot of data and 

compute.

Much more research exists for extraction-based techniques since it is comparatively 

harder to build abstraction-based summarizers. Recently, substantial advances have 

been made in that area with regards to creating abstract summaries mimicking humans. 

Deep learning models, especially encoder-decoder architectures, have been very 

effective in summarizing text using abstractive methods. Implementing them is out of 

our current scope but we will be covering essentials of extractive text summarization 

with hands-on examples.

We use the description of a very popular role-playing game (RPG) Skyrim from 

Bethesda Softworks for summarization. The following is an excerpt from the document 

we will be summarizing (the full document is present in the Jupyter notebook for text 

summarization).

DOCUMENT = """

The Elder Scrolls V: Skyrim is an action role-playing video game developed 

by Bethesda Game Studios and published by Bethesda Softworks. It is the 

fifth main installment in The Elder Scrolls series, following The Elder 

Scrolls IV: Oblivion. The game's main story revolves around the player 

Chapter 6  text Summarization and topiC modelS



437

character's quest to defeat Alduin the World-Eater, a dragon who is 

prophesied to destroy the world. The game is set 200 years after the events 

of Oblivion and takes place in the fictional province of Skyrim. Over the 

course of the game, the player completes quests and develops the character 

by improving skills. The game continues the open-world tradition of

its predecessors by allowing the player to travel anywhere in the 

game world at any time, and to ignore or postpone the main storyline 

indefinitely. The team opted for a unique and more diverse open world than 

Oblivion's Imperial Province of Cyrodiil, which game director and executive 

producer Todd Howard considered less interesting by comparison. The game 

was released to critical acclaim, with reviewers particularly mentioning 

the character advancement and setting, and is considered to be one of the 

greatest video games of all time.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from 

either a first or third-person perspective. The player may freely roam 

over the land of Skyrim which is an open world environment consisting of 

wilderness expanses, dungeons, cities, towns, fortresses, and villages.

...

...

A regeneration period limits the player's use of shouts in gameplay.

Skyrim is set around 200 years after the events of The Elder Scrolls IV: 

Oblivion, although it is not a direct sequel. The game takes place in 

Skyrim, a province of the Empire on the continent of Tamriel, amid a civil 

war between two factions: the Stormcloaks, led by Ulfric Stormcloak, and 

the Imperial Legion, led by General Tullius. The player character is a 

Dragonborn, a mortal born with the soul and power of a dragon. Alduin, a 

large black dragon who returns to the land after being lost in time, serves 

as the game's primary antagonist. Alduin is the first dragon created by 

Akatosh, one of the series' gods, and is prophesied to destroy and consume 

the world.

"""
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We need to do some basic preprocessing on this document to remove extra newlines. 

We can do this using the following code.

import re

DOCUMENT = re.sub(r'\n|\r', ' ', DOCUMENT)

DOCUMENT = re.sub(r' +', ' ', DOCUMENT)

DOCUMENT = DOCUMENT.strip()

Let’s look at an implementation of document summarization by leveraging Gensim’s 

summarization module. It is pretty straightforward, as depicted in the following code.

from gensim.summarization import summarize

print(summarize(DOCUMENT, ratio=0.2, split=False))

The game's main story revolves around the player character's quest to 

defeat Alduin the World-Eater, a dragon who is prophesied to destroy the 

world.

Over the course of the game, the player completes quests and develops the 

character by improving skills.

The game continues the open-world tradition of its predecessors by allowing 

the player to travel anywhere in the game world at any time, and to ignore 

or postpone the main storyline indefinitely.

The player may freely roam over the land of Skyrim which is an open world 

environment consisting of wilderness expanses, dungeons, cities, towns, 

fortresses, and villages.

Each city and town in the game world has jobs that the player can engage 

in, such as farming.

Over the course of the game, players improve their character's skills which 

are numerical representations of their ability in certain areas.

Like other creatures, dragons are generated randomly in the world and will 

engage in combat with NPCs, creatures and the player.

We can also limit the summarization based on word count instead of proportions by 

using the following code.

print(summarize(DOCUMENT, word_count=75, split=False))
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The game's main story revolves around the player character's quest to defeat 

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

Over the course of the game, the player completes quests and develops the 

character by improving skills.

The player may freely roam over the land of Skyrim which is an open world 

environment consisting of wilderness expanses, dungeons, cities, towns, 

fortresses, and villages.

I’m sure even if you have never played Skyrim before or read that huge block of text 

talking about the game, this summary gives you a pretty good idea what the game is all 

about. This is the power of text summarization, where using a few influential sentences, 

we can summarize the core theme of an entire document.

This summarization implementation from Gensim is based on a variation of 

a popular algorithm called TextRank. Now that we have seen how interesting text 

summarization can be, let’s look at a couple of extraction-based summarization 

algorithms. We focus on the following two techniques:

• Latent Semantic Analysis

• TextRank

We first look at the concepts and math behind each technique, then implement them 

using Python, and finally test them on our toy document. Before we deep dive into the 

techniques, let’s prepare our document by parsing and normalizing it.

 Text Wrangling
We need to do some basic text wrangling or preprocessing on our document. Nothing 

too fancy, since the focus is on document summarization.

import nltk

import numpy as np

import re

stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

    # lower case and remove special characters\whitespaces

    doc = re.sub(r'[^a-zA-Z\s]', ", doc, re.I|re.A)
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    doc = doc.lower()

    doc = doc.strip()

    # tokenize document

    tokens = nltk.word_tokenize(doc)

    # filter stopwords out of document

    filtered_tokens = [token for token in tokens if token not in stop_words]

    # re-create document from filtered tokens

    doc = ' '.join(filtered_tokens)

    return doc

normalize_corpus = np.vectorize(normalize_document)

# get sentences in the document

sentences = nltk.sent_tokenize(DOCUMENT)

# normalize each sentence in the document

norm_sentences = normalize_corpus(sentences)

norm_sentences[:3]

array(['elder scrolls v skyrim action roleplaying video game developed 

bethesda game studios

         published bethesda softworks',

        'fifth main installment elder scrolls series following elder scrolls 

iv oblivion',

        'games main story revolves around player characters quest defeat 

alduin worldeater dragon

         prophesied destroy world'],

      dtype='<U183')

Our corpus is now preprocessed and normalized. Now we can leverage feature 

engineering to represent our text data in an efficient vectorized format.

 Text Representation with Feature Engineering
We will be vectorizing our normalized sentences using the TF-IDF feature engineering 

scheme. We keep things simple and don’t filter out any words based on document 

frequency. But feel free to try that out and maybe even leverage n-grams as features.
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from sklearn.feature_extraction.text import TfidfVectorizer

import pandas as pd

tv = TfidfVectorizer(min_df=0., max_df=1., use_idf=True)

dt_matrix = tv.fit_transform(norm_sentences)

dt_matrix = dt_matrix.toarray()

vocab = tv.get_feature_names()

td_matrix = dt_matrix.T

print(td_matrix.shape)

pd.DataFrame(np.round(td_matrix, 2), index=vocab).head(10)

The output in Figure 6-21 is our standard term-document matrix showing the TF- 

IDF weights of each term across the various documents. In our case, each document is 

a sentence from our original game description and is represented as a column. We can 

now start implementing document summarization with the two techniques mentioned 

earlier.

 Latent Semantic Analysis
Here, we summarize our game description by utilizing document sentences. The 

terms in each sentence of the document have been extracted to form the term- 

document matrix, which we observed in Figure 6-21. We apply low-rank Singular Value 

Figure 6-21. Visualizing topics from our NMF model
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Decomposition to this matrix. The core principle behind Latent Semantic Analysis (LSA) 

is that in any document, there exists a latent structure among terms that are related 

contextually and hence should also be correlated in the same singular space.

The approach we follow in our implementation is taken from the popular paper 

published in 2004 by J. Steinberger and K. Jezek entitled, “Using Latent Semantic 

Analysis in Text Summarization and Summary Evaluation,” which proposes some 

improvements over the excellent work done by Y. Gong, X. Liu, “Generic Text 

Summarization Using Relevance Measure and Latent Semantic Analysis,” which was 

published in 2001. We recommend you read these two papers if you are interested in 

gaining more in-depth knowledge about this technique.

The main idea in our implementation is to use SVD (recall M = USVT) so that U 

and V are the orthogonal matrices and S is the diagonal matrix, which can also be 

represented as a vector of the singular values. The original matrix can be represented as 

a term- document matrix where the rows are terms and each column is a document, i.e., 

a sentence from our document in this case. The values can be any type of weighting like 

Bag of Words model-based frequencies, TF-IDFs, or binary occurrences.

We use our low_rank_svd() function to create a low rank matrix approximation for 

M based on the number of concepts, k, which will be our number of singular values. The 

same k columns from matrix U will point to the term vectors for each of the k concepts 

and in case of matrix V, the k rows based on the top k singular values point to sentence 

vectors. Once we have U, S, and VT from the SVD for the top k singular values based on 

the number of concepts k, we perform the following computations. Remember that the 

input parameters we need are the number of concepts k and the number of sentences n 

that we want the final summary to contain.

 1. Get the sentence vectors from the matrix V (k rows).

 2. Get the top k singular values from S.

 3. Apply a threshold-based approach to remove singular values that 

are less than half of the largest singular value if any exist. This is 

a heuristic and you can play around with this value if you want. 

Mathematically, it’s S iff S Si i= <0
1

2
.

 4. Multiply each term sentence column from V squared with its 

corresponding singular value from S, also squared, to get sentence 

weights per topic.
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 5. Compute the sum of the sentence weights across the topics and 

take the square root of the final score to get the salience scores for 

each sentence in the document.

The salience score computations for each sentence can be mathematically 

represented as follows:

 
SS SV

i

k

i i
T=

=
å

1  

where SS denotes the saliency score for each sentence by taking the dot product between 

the singular values and the sentence vectors from VT. Once we have these scores, we sort 

them in descending order, pick the top n sentences corresponding to the highest scores, 

and combine them to form our final summary based on the order in which they were 

present in the original document.

Let’s implement our algorithm in Python. The first step is to select the number of 

sentences, n, that our summary will contain. Given we have around 35 sentences, we 

set our summary to contain eight sentences. The total number of topics or concepts, k, 

is set to three considering we have extracted the game description from the summary, 

gameplay, and plot sections from the original review in Wikipedia. Then we perform 

low-rank SVD.

num_sentences = 8

num_topics = 3

u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)

print(u.shape, s.shape, vt.shape)

term_topic_mat, singular_values, topic_document_mat = u, s, vt

(270, 3) (3,) (3, 35)

Next, we apply a threshold to set any of the existing singular values to 0, which is less 

than half of the largest singular value.

# remove singular values below threshold

sv_threshold = 0.5

min_sigma_value = max(singular_values) * sv_threshold

singular_values[singular_values < min_sigma_value] = 0
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We can now leverage the formula we described earlier to compute the sentence 

saliency scores for each sentence (document) in our game description.

salience_scores = np.sqrt(np.dot(np.square(singular_values),

                                 np.square(topic_document_mat)))

salience_scores

array([0.53291263, 0.61639562, 0.60427539, 0.52307109, 0.50141128,

       0.32352969, 0.1506046 , 0.25383436, 0.60567083, 0.35902104,

       0.22562997, 0.34608934, 0.15781555, 0.40522541, 0.24505982,

       0.19874104, 0.39317895, 0.45392878, 0.31638528, 0.47353378,

       0.18348908, 0.45731421, 0.13929749, 0.38932101, 0.36829067,

       0.57822992, 0.40853736, 0.26260062, 0.38904585, 0.32776714,

       0.67662776, 0.21866561, 0.34687796, 0.3234621 , 0.46107093])

Now it is just a matter of selecting the top sentences based on their saliency score 

and displaying the summary of our game description.

top_sentence_indices = (-salience_scores).argsort()[:num_sentences]

top_sentence_indices.sort()

print('\n'.join(np.array(sentences)[top_sentence_indices]))

The Elder Scrolls V: Skyrim is an action role-playing video game developed 

by Bethesda Game Studios and published by Bethesda Softworks.

It is the fifth main installment in The Elder Scrolls series, following The 

Elder Scrolls IV: Oblivion.

The game's main story revolves around the player character's quest to defeat 

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

The game is set 200 years after the events of Oblivion and takes place in 

the fictional province of Skyrim.

Over the course of the game, the player completes quests and develops the 

character by improving skills.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from 

either a first or third-person perspective.

Skyrim is the first entry in The Elder Scrolls to include dragons in the 

game's wilderness.

Skyrim is set around 200 years after the events of The Elder Scrolls IV: 

Oblivion, although it is not a direct sequel.
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Thus, you can see how a few matrix transformations give us a concise and excellent 

summarized document that covers the main aspects of our game description. This 

concludes our discussion of Latent Semantic Analysis. We move on to the next technique 

for extraction-based document summarization.

 TextRank
The TextRank summarization algorithm internally uses the popular PageRank 

algorithm, which is used by Google for ranking websites and pages. This is used by the 

Google search engine when providing relevant web pages based on search queries. To 

understand TextRank better, we need to understand some of the concepts surrounding 

PageRank. The core algorithm in PageRank is a graph-based scoring or ranking 

algorithm, where pages are scored or ranked based on their importance. Websites and 

pages contain further links embedded in them which link to more pages having more 

links and this continues across the Internet. This can be represented as a graph-based 

model where vertices indicate the web pages and edges indicate links among them. This 

can be used to form a voting or recommendation system such so when one vertex links 

to another one in the graph it is basically casting a vote. Vertex importance is decided 

not only on the number of votes or edges but also the importance of the vertices that are 

connected to it and their importance. This helps determine the score or rank of each 

vertex or page. This is evident in Figure 6-22.

Figure 6-22. PageRank scores for a simple network
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From Figure 6-22, we can see that vertex denoting Page C has a higher score than 

Page E even if it has fewer edges compared to Page E, because Page B is an important 

page connected to Page C. Thus, we can formally define PageRank as follows. Consider 

a directed graph represented as G = (V, E) such that V represents the set of vertices or 

pages and E represents the set of edges or links. E is a subset of V × V. Assuming we have 

a given page Vi for which we want to compute the PageRank, we can mathematically 

define it as follows:

 

PR V d d
PR V

Out V
i

j In V

j

ji

( ) = -( )+ ´
( )

Î ( )
å1

(  

where for the vertex/page Vi we have PR(Vi), which indicates the PageRank score. In(Vi) 

represents the set of pages that point to this vertex/page, Out(Vi) represents the set of 

pages that the vertex/page Vi points to, and d is the damping factor and usually has a 

value between 0 to 1 (ideally, it is set to 0.85).

Coming back to the TextRank algorithm, when summarizing a document, we will 

have sentences, keywords, or phrases as the vertices of the algorithm based on the type 

of summarization we are trying to do. We might have multiple links between these 

vertices. The modification that we make from the original PageRank algorithm is to have 

a weight coefficient (say wij) between the edge connecting two vertices Vi and Vj such 

that this weight indicates the strength of this connection between them. Thus we now 

formally define the new function for computing TextRank of vertices as follows:
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where TR indicates the weighted PageRank score for a vertex now defined as the 

TextRank for that vertex. Thus, we can formulate the algorithm and depict the main steps 

we will follow. They are defined as follows:

 1. Tokenize and extract sentences from the document to be 

summarized.

 2. Decide on the number of sentences, k, that we want in the final 

summary
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 3. Build a document-term feature matrix using weights like TF-IDF 

or Bag of Words.

 4. Compute a document similarity matrix by multiplying the matrix 

by its transpose.

 5. Use these documents (sentences in our case) as the vertices and 

the similarities between each pair of documents as the weight 

or score coefficient we talked about earlier and feed them to the 

PageRank algorithm.

 6. Get the score for each sentence.

 7. Rank the sentences based on score and return the top k sentences.

Since we already have our document-term feature matrix defined when we 

performed document summarization using LSA, we reuse that matrix, which is stored in 

the dt_matrix variable. The next step is to compute the document similarity matrix.

similarity_matrix = np.matmul(dt_matrix, dt_matrix.T)

print(similarity_matrix.shape)

np.round(similarity_matrix, 3)

(35, 35)

array([[1.   , 0.182, 0.   , ..., 0.   , 0.   , 0.   ],

       [0.182, 1.   , 0.05 , ..., 0.   , 0.   , 0.084],

       [0.   , 0.05 , 1.   , ..., 0.101, 0.165, 0.319],

       ...,

       [0.   , 0.   , 0.101, ..., 1.   , 0.066, 0.069],

       [0.   , 0.   , 0.165, ..., 0.066, 1.   , 0.123],

       [0.   , 0.084, 0.319, ..., 0.069, 0.123, 1.   ]])

Now we construct the connected graph among all the sentences from our toy 

document by using the document similarity scores and the documents themselves as 

the vertices. We use the networkx library to help us plot this graph. Remember that each 

document is a sentence in our case and will also be the vertices in the graph.

import networkx
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# build the similarity graph

similarity_graph = networkx.from_numpy_array(similarity_matrix)

similarity_graph

<networkx.classes.graph.Graph at 0x1baf8a352b0>

# view the similarity graph

import matplotlib.pyplot as plt

%matplotlib inline

plt.figure(figsize=(12, 6))

networkx.draw_networkx(similarity_graph, node_color='lime')

From Figure 6-23, we can see how the sentences of our toy document are now linked 

to each other based on document similarities. The graph shows how well connected 

some sentences are to others. We now compute the PageRank scores for all the sentences 

and build our summary using the top eight sentences.

# compute pagerank scores for all the sentences

scores = networkx.pagerank(similarity_graph)

ranked_sentences = sorted(((score, index) for index, score

                                            in scores.items()),

Figure 6-23. Similarity graph showing connections between sentences
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                          reverse=True)

ranked_sentences[:10]

[(0.03729704979721473, 2),

 (0.03490843547537587, 25),

 (0.03460086870923609, 4),

 (0.03240744530656926, 8),

 (0.03218748996523769, 28),

 (0.03183673426880143, 11),

 (0.031566658693076226, 26),

 (0.03150616293402057, 3),

 (0.031376143577383796, 5),

 (0.031123481531894214, 16)]

Once each sentence has been ranked (based on the sentence indices you can see in 

the preceding output), we sort them based on their score. We can then easily identify the 

top eight sentences to form our summary.

# get the top sentence indices for our summary

top_sentence_indices = [ranked_sentences[index][1]

                        for index in range(num_sentences)]

top_sentence_indices.sort()

# construct the document summary

print('\n'.join(np.array(sentences)[top_sentence_indices]))

The game's main story revolves around the player character's quest to defeat 

Alduin the World-Eater, a dragon who is prophesied to destroy the world.

The game is set 200 years after the events of Oblivion and takes place in 

the fictional province of Skyrim.

Over the course of the game, the player completes quests and develops the 

character by improving skills.

The Elder Scrolls V: Skyrim is an action role-playing game, playable from 

either a first or third-person perspective.

The game's main quest can be completed or ignored at the player's 

preference after the first stage of the quest is finished.
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Skyrim is the first entry in The Elder Scrolls to include dragons in the 

game's wilderness.

Like other creatures, dragons are generated randomly in the world and will 

engage in combat with NPCs, creatures and the player.

The player character can absorb the souls of dragons in order to use 

powerful spells called "dragon shouts" or "Thu'um".

We finally get our desired summary by using the TextRank algorithm. The content is 

also quite meaningful and you will see a lot of similarity with the Gensim output, which 

is based on a variation of the TextRank algorithm.

You can see from this output that we were successfully able to summarize our 

product description. This short summary depicts the core essence of the product 

description like the name of the game and its various features regarding its gameplay 

and plot. This concludes our discussion of automated text summarization. We 

encourage you to try these techniques on more documents and test it with various 

parameters. Consider parameters like more topics and different features, and maybe 

even explore deep learning based techniques for abstractive text summarization.

 Summary
In this chapter, we covered some interesting areas in natural language processing and 

text analytics with regard to information extraction, document summarization, and topic 

modeling. We started with an overview of the evolution of information being generated 

in the world and learned about concepts like information overload leading to the need 

for text summarization and information retrieval. We talked about the various ways we 

can extract key information from textual data and ways of summarizing large documents. 

We also covered important mathematical concepts like Singular Value Decomposition 

and low rank matrix approximation and utilized them in several of our algorithms.

We covered three approaches to reducing information overload, which included 

keyphrase extraction, topic models, and automated document summarization. 

Keyphrase extraction included methods like collocations and weighted tagged term 

based approaches for getting keyphrases or terms from corpora.

We built several topic modeling techniques including Latent Semantic Indexing, 

latent dirichlet allocation and the very recently implemented non-negative matrix 

factorization using Gensim and Scikit-Learn. We also tuned our topic models and 
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 showcased a method to find the optimal number of topics. Besides that, we looked at 

effective ways of interpreting and understanding topic modeling results. Finally, we 

looked at two extraction-based techniques for automated document summarization— 

Latent Semantic Analysis and TextRank. We implemented each method and observed 

results on real- world data to get a good idea of how these methods worked and how 

effective simple mathematical operations can be in generating actionable insights.
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CHAPTER 7

Text Similarity and 
Clustering
In the previous chapters, we covered several techniques to analyze text and 

extract interesting insights. We looked at supervised machine learning techniques, 

which are used to categorize text documents into several assumed categories. 

Unsupervised techniques like topic models and document summarization were also 

covered, which involved trying to retrieve key themes and information from large 

text documents and corpora.

In this chapter, we look at several interesting techniques and use cases that leverage 

unsupervised learning and information retrieval concepts. If you refresh your memory 

about Chapter 5, text categorization is indeed an interesting problem that has several 

applications, most notably in news articles categorization and e-mail classification. But 

one constraint in text classification is that we need a good amount of training data with 

manually labeled categories, since we use supervised learning algorithms to build our 

classification model. Building a labeled dataset is definitely not easy because you need 

a sizeable amount of training data. For this, we need to spend time and manual effort in 

labeling data, building the model, and then using it to classify new documents. Usually 

any enterprise might not have enough time to invest in this (even though the benefits 

can be ten-fold!). Can we instead make the machine do this task? Maybe to an extent! 

This chapter specifically looks at the content of text documents, analyzing their similarity 

using various measures, and clustering similar documents together.

Text data is unstructured and highly noisy. We get the benefits of well labeled 

training data and supervised learning when performing text classification. 

However, document clustering is an unsupervised learning process, whereby we 

are trying to segment and categorize documents into separate categories by making 

the machine learn about the various text documents, their features, similarities, and 

differences. This makes document clustering more challenging, albeit interesting.  
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Consider having a corpus of documents that talks about various different concepts 

and ideas. Humans are wired in such a way that we use our learning from the past 

and apply it to distinguish concepts. For example, the sentence "The fox is smarter 

than the dog" is more similar to "The dog is faster than the fox" as compared to 

"Python is an excellent programming language". We can easily spot and intuitively 

determine specific key phrases like Python, fox, dog, programming, and so on, which 

helps us determine which sentences or documents are more similar. But can we do 

this programmatically?

In this chapter, we focus on several concepts related to text similarity—distance 

metrics and unsupervised machine learning algorithms—to answer the following 

questions.

• How do we measure similarity between terms and documents?

• How can we use distance measures to find the most relevant 

documents?

• When is a distance measure a metric?

• How can we build a recommender system from text similarity?

• How do we group similar documents?

While we focus on trying to answer these questions, we also cover essential concepts 

and information needed to understand various techniques for solving these problems. 

We also use some practical examples to illustrate concepts related to text similarity, 

distance metrics, and document clustering. We depict these using some interesting case 

studies of building a movie recommender using document similarity and cluster similar 

movies together!

Many of these techniques can be combined with some of the techniques we learned 

previously and vice versa. For example, concepts of text representation with feature 

engineering and text similarity using distance metrics and features are also used to 

build document clusters. You can also use features from topic models to measure text 

similarity.

Besides this, clustering can give us a feel for the possible groups or categories that 

our data might consist of, based on similar patterns and attributes. This can then be 

plugged in to other systems like supervised classification systems. The possibilities 

are indeed endless! In this chapter, we first cover some important concepts related to 

distance measures, metrics, and unsupervised learning. Once the basics have been 
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covered, our objective is to understand and analyze term similarity, document similarity, 

recommendations, and finally document clustering. All the code examples showcased in 

this chapter are available on the book's official GitHub repository, which you can access 

at https://github.com/dipanjanS/text-analytics-with-python/tree/master/ 

New- Second- Edition.

 Essential Concepts
Our main objective in this chapter is to understand text similarity and clustering. 

Before moving on to the actual techniques and algorithms, this section discusses some 

important concepts related to information retrieval, document similarity measures, and 

machine learning. Even though some of these concepts might be familiar to you from the 

previous chapters, a brief refresher will be useful. Without further ado, let's get started.

 Information Retrieval (IR)
Information retrieval is defined as the process of retrieving relevant sources of 

information from a corpus or set of entities that hold information based on some 

demand. A demand can in the form of a query or search that users enter in a search 

engine. They then get relevant search items pertaining to their query. In fact, search 

engines are the most popular application of IR. The relevancy of documents with 

information compared to the demand can be measured in several ways. This includes 

looking for specific keywords from the search text or using similarity measures to see the 

similarity rank or score of the documents with respect to the entered query. This makes 

is quite different from string matching or matching regular expressions because more 

than often the words in a search string can have different order, context, and semantics 

in the collection of documents (entities), and these words can even have multiple 

different resolutions or possibilities based on synonyms, antonyms, and negation 

modifiers.

 Feature Engineering
Feature engineering or feature extraction is something that you know about quite well 

by now. We covered this in detail in Chapter 4. Methods like Bag of Words, TF-IDF, 

and word embedding models are typically used to represent documents in the form 
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of numeric vectors so that applying mathematical or machine learning techniques 

becomes much easier. You can use various document representations using these 

feature extraction techniques or even map each letter or a word to a corresponding 

unique numeric identifier.

 Similarity Measures
Similarity measures are used in text similarity analysis and clustering. Any 

similarity or distance measure measures the degree of closeness between two 

entities, which can be any text format like documents, sentences, or even terms. 

This measure of similarity can be useful in identifying similar entities and 

distinguishing clearly different entities from each other. Similarity measures 

are very effective and sometimes choosing the right measure can make a lot of 

difference in the performance of your final analytics system. Various scoring or 

ranking algorithms have also been invented based on these distance measures. 

There are two main factors that determine the degree of similarity between 

entities. They are as follows:

• Inherent properties or features of the entities

• Measure formula and properties

There are several distance measures that measure similarity and we will be covering 

several of them in future sections. However, an important point to remember is that 

all distance measures of similarity are not distance metrics of similarity. The excellent 

paper by A. Huang entitled "Similarity Measures for Text Document Clustering" talks 

about this in detail. Consider a distance measure d and two entities (let us consider 

them to be documents in our context), x and y. The distance between x and y is used to 

determine the degree of similarity between them. It can be represented as d(x, y) but the 

measure d is called a distance metric of similarity if and only if satisfies the following four 

conditions.

• The distance measured between any two entities, say x and y, must 

be always non-negative, i.e., d(x, y) ≥ 0.

• The distance between two entities should always be zero if and only if 

they are identical, i.e., d(x, y) ≥ 0 if f x = y.
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• This distance measure should always be symmetric, which means 

that the distance from x to y is always the same as the distance from y 

to x. Mathematically, this is represented as d(x, y) = d(y, x).

• This distance measure should satisfy the triangle inequality property, 

which can be mathematically represented d(x, z) ≤ d(x, y) + d(y, z).

This tells us important criteria and gives us a good framework that we can use to 

check if a distance measure can be used as a distance metric for measuring similarity. 

Going into more details would be currently out of the scope, but you might be interested 

in knowing that the very popular KL-divergence measure also known as Kullback-Leibler 

divergence is a distance measure that violates the third property, where this measure 

is asymmetric. Hence, it does not make sense to use this as a measure of similarity for 

text documents. Otherwise, it’s extremely useful in differentiating between various 

distributions and patterns.

 Unsupervised Machine Learning Algorithms
These refer to the family of machine learning algorithms that try to discover latent hidden 

structures and patterns in data from their various attributes and features. Besides this, 

several unsupervised learning algorithms are also used to reduce the feature space, which 

is often of a higher dimension to one with a lower dimension. The data on which these 

algorithms operate is essentially unlabeled data, so it does not have any predetermined 

category or class. We apply these algorithms with the intent of find patterns and 

distinguishing features that might help us in grouping various data points into groups 

or clusters. These algorithms are popularly known as clustering algorithms. Even topic 

models covered in the previous chapter belong to the unsupervised learning family of 

algorithms. This concludes our discussion on the important concepts and background 

information necessary for this chapter. We now move on to text normalization and feature 

extraction, where we introduce a few concepts specific to this chapter.

 Text Similarity
The main objective of text similarity is to analyze and measure how close two entities of 

text are to each other. These entities of text can be simple tokens or terms like words or 

whole documents, which may include sentences or paragraphs of text. There are various 
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ways to analyze text similarity and we can classify the intent of text similarity broadly into 

the following two areas.

• Lexical similarity: This involves observing the contents of the text 

documents with regards to its syntax, structure, and content and 

measuring their similarity based on these parameters.

• Semantic similarity: This involves determining the semantics, 

meaning, and context of the documents and then determining how 

close they are to each other. Dependency grammars and entity 

recognition are handy tools that can help in this. We covered word 

embedding methods in detail in Chapter 4, which help in capturing 

semantic information.

We cover lexical similarity in this chapter. Distance metrics are typically used to 

measure similarity scores between text entities and we mainly cover the following two 

broad areas of text similarity:

• Term similarity: Similarity between individual tokens or words

• Document similarity: Similarity between entire text documents

The idea is to implement several distance metrics and see how we can measure and 

analyze similarity among simple words. Then we look at how things change when we 

measure similarity among groups of individual words.

 Analyzing Term Similarity
We will start by analyzing term similarity, or similarity between individual word tokens, 

to be more precise. Even though this is not used a lot in practical applications, this 

can be an excellent starting point to understanding text similarity. Of course, several 

applications and use cases like autocompleters, spell check, and correctors use these 

techniques to correct misspelled terms. We saw a fair bit of that during our spell check 

implementation in Chapter 3! Here we take a few words and measure the similarity 

between then using different word representations as well as distance metrics. The word 

representations we use are as follows:

• Character vectorization

• Bag of characters vectorization
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For character vectorization, it is an extremely simple process of just mapping each 

character of the term to a corresponding unique number. We can do that using the 

function depicted in the following snippet.

import numpy as np

def vectorize_terms(terms):

    terms = [term.lower() for term in terms]

    terms = [np.array(list(term)) for term in terms]

    terms = [np.array([ord(char) for char in term])

                for term in terms]

    return terms

This function takes a list of words or terms and returns the corresponding character 

vectors for the words. To demonstrate this, we use a total of four example terms and 

compute the similarity among them shortly.

root = 'Believe'

term1 = 'beleive'

term2 = 'bargain'

term3 = 'Elephant'

terms = [root, term1, term2, term3]

terms

['Believe', 'beleive', 'bargain', 'Elephant']

Let's now perform character vectorization on each of these strings (list of character 

tokens) and view their representation in the form of a data frame.

# Character vectorization

term_vectors = vectorize_terms(terms)

# show vector representations

vec_df = pd.DataFrame(term_vectors, index=terms)

print(vec_df)
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            0    1    2    3    4    5    6      7

Believe    98  101  108  105  101  118  101    NaN

beleive    98  101  108  101  105  118  101    NaN

bargain    98   97  114  103   97  105  110    NaN

Elephant  101  108  101  112  104   97  110  116.0

Thus you can see how we can easily transform each text term into a corresponding 

numeric vector representation. Note that the NaN values indicate that those strings are 

one character shorter, as compared to the last string, which is one character longer. We 

now use several distance metrics to compute similarity between the root word and the 

other three words, as mentioned in the previous snippet. There are a lot of distance 

metrics out there that you can use to compute and measure similarities. We cover the 

following five metrics in this section.

• Hamming distance

• Manhattan distance

• Euclidean distance

• Levenshtein Edit distance

• Cosine distance and similarity

We look at the concepts for each distance metric and use the power of NumPy arrays 

to implement the necessary computations and mathematical formulae. Once we do that, 

we put them in action by measuring the similarity of our example terms. Before we do 

this, we set up some necessary variables by storing the root term, the other terms with 

which its similarity will be measured, and their various vector representations using the 

following snippet.

root_term = root

other_terms = [term1, term2, term3]

root_term_vec = vec_df[vec_df.index == root_term].dropna(axis=1).values[0]

other_term_vecs = [vec_df[vec_df.index == term].dropna(axis=1).values[0]

                      for term in other_terms]

We are now ready to start computing similarity metrics and will use these terms and 

their vector representations to measure similarities.
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 Hamming Distance
The Hamming distance is a very popular distance metric used frequently in information 

theory and communication systems. It is the distance measured between two strings 

under the assumption that they are of equal length. Formally it is defined as the number 

of positions that have different characters or symbols between two strings of equal 

length. Considering two terms u and v of length n, we can mathematically denote 

Hamming distance as follows:
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You can also normalize it if you want by dividing the number of mismatches by 

the total length of the terms. This gives the normalized hamming distance, which is 

represented as follows:
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Note that n denotes the length of the terms. The following function computes 

the Hamming distance between two terms and has the capability to compute the 

normalized distance.

def hamming_distance(u, v, norm=False):

    if u.shape != v.shape:

        raise ValueError('The vectors must have equal lengths.')

    return (u != v).sum() if not norm else (u != v).mean()

We can measure the Hamming distance between our root term and the other terms 

using the following code snippet.

# compute Hamming distance

for term, term_vector in zip(other_terms, other_term_vecs):

     print('Hamming distance between root: {} and term: {} is {}'.

format(root_term, term, hamming_distance(root_term_vec,term_vector, 

norm=False)))

Hamming distance between root: Believe and term: beleive is 2

Hamming distance between root: Believe and term: bargain is 6
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Traceback (most recent call last):

  File "<ipython-input-115-3391bd2c4b7e>", line 4, in <module>

    hamming_distance(root_vector, vector_term, norm=False))

ValueError: The vectors must have equal lengths.

# compute normalized Hamming distance

for term, term_vector in zip(other_terms, other_term_vecs):

     print('Normalized Hamming distance between root: {} and term: {}  

is {}'.format(root_term, term, round(hamming_distance(root_term_vec, 

term_vector, norm=True), 2)))

Normalized Hamming distance between root: Believe and term: beleive is 0.29

Normalized Hamming distance between root: Believe and term: bargain is 0.86

Traceback (most recent call last):

  File "<ipython-input-117-7dfc67d08c3f>", line 4, in <module>

    round(hamming_distance(root_vector, vector_term, norm=True), 2))

ValueError: The vectors must have equal lengths

You can see from the output that the terms “Believe” and “beleive” are most 

similar, with a Hamming distance of 2 or 0.29, compared to the term “bargain,” giving 

scores of 6 or 0.86 (the smaller the score more, the similar the terms). Likewise, the 

term “Elephant” throws an exception because its length is different than the root 

term (“Believe”). The Hamming distance can't be computed since the strings aren’t 

equal length.

 Manhattan Distance
The Manhattan distance metric is similar to the Hamming distance conceptually where, 

instead of counting the number of mismatches, we subtract the difference between each 

pair of characters at each position of the two strings. Formally, the Manhattan distance 

is also known as city block distance, L1 norm, or taxicab metric, and it is defined as the 

distance between two points in a grid based on strictly horizontal or vertical paths. This 

is instead of the diagonal distance conventionally calculated by the Euclidean distance 

metric. Mathematically it can be denoted as follows:
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where u and v are the two terms of length n. The same assumption of the two terms 

having equal length from the Hamming distance holds good here. We can also compute 

the normalized Manhattan distance by dividing the sum of the absolute differences by 

the term length. This can be denoted by
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where n is the length of each of the terms u and v. The following function helps us 

implement the Manhattan distance with the capability to also compute the normalized 

Manhattan distance.

def manhattan_distance(u, v, norm=False):

    if u.shape != v.shape:

        raise ValueError('The vectors must have equal lengths.')

    return abs(u - v).sum() if not norm else abs(u - v).mean()

We will now compute the Manhattan distance between our root term and the other 

terms using the function depicted in the following code snippet.

# compute Manhattan distance

for term, term_vector in zip(other_terms, other_term_vecs):

     print('Manhattan distance between root: {} and term: {} is {}'.

format(root_term, term,manhattan_distance(root_term_vec, term_vector, 

norm=False)))

Manhattan distance between root: Believe and term: beleive is 8

Manhattan distance between root: Believe and term: bargain is 38

Traceback (most recent call last):

  File "<ipython-input-120-b228f24ad6a2>", line 4, in <module>

    manhattan_distance(root_vector, vector_term, norm=False))

ValueError: The vectors must have equal lengths.

# compute normalized Manhattan distance

for term, term_vector in zip(other_terms, other_term_vecs):

     print('Normalized Manhattan distance between root: {} and term: {} is 

{}'.format(root_term, term, round(manhattan_distance(root_term_vec, 

term_vector, norm=True), 2)))
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Normalized Manhattan distance between root: Believe and term: beleive is 1.14

Normalized Manhattan distance between root: Believe and term: bargain is 5.43

Traceback (most recent call last):

  File "<ipython-input-122-d13a48d56a22>", line 4, in <module>

     round(manhattan_distance(root_vector, vector_term, norm=True),2))

ValueError: The vectors must have equal lengths.

From these results, you can see that as expected, “Believe” and “beleive” are most 

similar, with a score of 8 or 1.14, as compared to “bargain,” which gives a score of 38 or 

5.43. The term “Elephant” yields an error because it has a different length compared to 

the base term.

 Euclidean Distance
We briefly mentioned the Euclidean distance when comparing it to the Manhattan 

distance in the earlier section. Formally, the Euclidean distance is also known as the 

Euclidean norm, L2 norm, or L2 distance. It’s defined as the shortest straight-line 

distance between two points. Mathematically, this can be denoted as follows:
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where the two points u and v are vectorized text terms in our scenario with a length of n. 

The following function helps us compute the Euclidean distance between two terms.

def euclidean_distance(u, v):

    if u.shape != v.shape:

        raise ValueError('The vectors must have equal lengths.')

    distance = np.sqrt(np.sum(np.square(u - v)))

    return distance

We can now compare the Euclidean distance among our terms by using this 

function, as depicted in the following code snippet.
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# compute Euclidean distance

for term, term_vector in zip(other_terms, other_term_vecs):

     print('Euclidean distance between root: {} and term: {} is {}'.format(root_

term, term, round(euclidean_distance(root_term_vec, term_vector), 2)))

Euclidean distance between root: Believe and term: beleive is 5.66

Euclidean distance between root: Believe and term: bargain is 17.94

Traceback (most recent call last):

  File "<ipython-input-132-90a4dbe8ce60>", line 4, in <module>

    round(euclidean_distance(root_vector, vector_term),2))

ValueError: The vectors must have equal lengths.

From these outputs, you can see that the terms “Believe” and “beleive” are the 

most similar, with a score of 5.66, compared to “bargain” with a score of 17.94. Again, 

the “Elephant” string throws a ValueError because it is a different length. So far, all the 

distance metrics we used work on strings of the same length and fail when they are not of 

equal length. So how do we deal with this problem? We now look at a couple of distance 

metrics that measure similarity even with strings of unequal length.

 Levenshtein Edit Distance
The Levenshtein Edit distance, often known as just the Levenshtein distance, belongs to 

the family of edit distance based metrics and is used to measure the distance between 

two sequence of strings based on their differences, similar to the concept behind 

the Hamming distance. The Levenshtein Edit distance between two terms can be 

defined as the minimum number of edits needed in the form of additions, deletions, 

or substitutions to change or convert one term to the other. These substitutions are 

character-based substitutions, where a single character can be edited in a single 

operation. As mentioned, the length of the two terms need not be equal. Mathematically, 

we can represent the Levenshtein Edit distance between two terms as ldu, v(|u|, |v|), 

where u and v are our two terms and |u| and |v| are their lengths. This distance can be 

represented by the following formula:
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where i and j are basically indices for the terms u and v. The third equation in the 

minimum includes a cost function denoted by Cu vi j¹ and it has the following conditions:
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This denotes the indicator function, which depicts the cost associated with two 

characters being matched for the two terms (the equation represents the match or 

mismatch operation). The first equation in the minimum determines the deletion 

operation and the second equation determines the insertion operation.

The function ldu, v(i, j) thus covers all the three operations of insertion, deletion, 

and addition. It also denotes the Levenshtein distance, as measured between the first i 
characters for the term u and the first j characters of the term v. There are also several 

interesting boundary conditions with regards to the Levenshtein Edit distance. They are 

as follows:

• The minimum value that the edit distance can take between two 

terms is the difference in length of the two terms

• The maximum value of the edit distance between two terms can be 

the length of the term that’s larger

• If the two terms are equal, the edit distance is zero

• The Hamming distance between two terms is an upper bound for 

the Levenshtein Edit distance if and only if the two terms have equal 

lengths

• This being a distance metric, it also satisfies the triangle inequality 

property, which we discussed earlier when we talked about distance 

metrics

There are various ways of implementing Levenshtein distance computations for 

terms. Here we start with an example of two of our terms. Considering the root term 

“believe” and another term, “beleive” (we ignore case in our computations), the edit 

distance would be 2 because we would need the following two operations.

• beleive → beliive (substitution of e to i)

• beliive → believe (substitution of i to e)
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To implement this, we build a matrix that computes the Levenshtein distance 

between all the characters of both terms by comparing each character of the first 

term with the characters of the second term. For computation, we follow a dynamic 

programming approach, in order to get the edit distance between the two terms based 

on the last computed value. For the two terms, the Levenshtein Edit distance matrix that 

our algorithm should generate is depicted in Figure 7-1.

You can see from the Figure 7-1 that the edit distances are computed for each pair 

of characters in the terms and the final edit distance value (which is highlighted in the 

figure) gives us the actual edit distance between the two terms. This algorithm is also 

known as the Wagner-Fischer algorithm and is available in the paper by R. Wagner and 

M. Fischer entitled, "The String-to-String Correction Problem," which you can refer to 

if you are interested in the details. The pseudocode is depicted in the following snippet, 

courtesy of the paper.

function levenshtein_distance(char u[1..m], char v[1..n]):

     # for all i and j, d[i,j] will hold the Levenshtein distance between 

the first i characters of u and the first j characters of v, note that 

d has (m+1)*(n+1) values

    int d[0..m, 0..n]

    # set each element in d to zero

    d[0..m, 0..n] := 0

     # source prefixes can be transformed into empty string by dropping all 

characters

Figure 7-1. Levenshtein Edit distance matrix between terms
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    for i from 1 to m:

       d[i, 0] := i

     # target prefixes can be reached from empty source prefix by inserting 

every character

    for j from 1 to n:

        d[0, j] := j

    # build the edit distance matrix

    for j from 1 to n:

        for i from 1 to m:

            if s[i] = t[j]:

                substitutionCost := 0

            else:

                substitutionCost := 1

                d[i, j] := minimum(d[i-1, j] + 1,                # deletion

                                   d[i, j-1] + 1,                 # insertion

                                   d[i-1, j-1] + substitutionCost)  # substitution

    # the final value of the matrix is the edit distance between the terms

    return d[m, n]

You can see from the function definition pseudocode, how we have captured the 

necessary formulae we used earlier to define the Levenshtein Edit distance. We will now 

implement this pseudocode in Python. The algorithm uses O(mn) space, since it stores 

the entire distance matrix, but it is enough to just store the previous and current row of 

distances to get to the final result. We will do the same in our code, but we will also store 

the results in a matrix so that we can visualize them in the end. The following function 

implements the Levenshtein Edit distance.

import copy

import pandas as pd

def levenshtein_edit_distance(u, v):

    # convert to lower case

    u = u.lower()

    v = v.lower()

    # base cases

    if u == v: return 0
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    elif len(u) == 0: return len(v)

    elif len(v) == 0: return len(u)

    # initialize edit distance matrix

    edit_matrix = []

    # initialize two distance matrices

    du = [0] * (len(v) + 1)

    dv = [0] * (len(v) + 1)

    # du: the previous row of edit distances

    for i in range(len(du)):

        du[i] = i

    # dv : the current row of edit distances

    for i in range(len(u)):

        dv[0] = i + 1

        # compute cost as per algorithm

        for j in range(len(v)):

            cost = 0 if u[i] == v[j] else 1

            dv[j + 1] = min(dv[j] + 1, du[j + 1] + 1, du[j] + cost)

        # assign dv to du for next iteration

        for j in range(len(du)):

            du[j] = dv[j]

        # copy dv to the edit matrix

        edit_matrix.append(copy.copy(dv))

    # compute the final edit distance and edit matrix

    distance = dv[len(v)]

    edit_matrix = np.array(edit_matrix)

    edit_matrix = edit_matrix.T

    edit_matrix = edit_matrix[1:,]

    edit_matrix = pd.DataFrame(data=edit_matrix,

                               index=list(v),

                               columns=list(u))

    return distance, edit_matrix

This function returns both the final Levenshtein Edit distance and the complete edit 

matrix between the two terms, u and v, which are taken as input. Remember we need 

to pass the terms directly in their raw string format and not their vector representations. 

Also we do not consider case of strings here and convert them to lowercase. The following 

Chapter 7  text Similarity and CluStering



470

snippet computes the Levenshtein Edit distance between our example terms using the 

previous function.

for term in other_terms:

    edit_d, edit_m = levenshtein_edit_distance(root_term, term)

     print('Computing distance between root: {} and term: {}'.format 

(root_term, term))

    print('Levenshtein edit distance is {}'.format(edit_d))

    print('The complete edit distance matrix is depicted below')

    print(edit_m)

    print('-'*30)

Computing distance between root: Believe and term: beleive

Levenshtein edit distance is 2

The complete edit distance matrix is depicted below

   b  e  l  i  e  v  e

b  0  1  2  3  4  5  6

e  1  0  1  2  3  4  5

l  2  1  0  1  2  3  4

e  3  2  1  1  1  2  3

i  4  3  2  1  2  2  3

v  5  4  3  2  2  2  3

e  6  5  4  3  2  3  2

------------------------------

Computing distance between root: Believe and term: bargain

Levenshtein edit distance is 6

The complete edit distance matrix is depicted below

   b  e  l  i  e  v  e

b  0  1  2  3  4  5  6

a  1  1  2  3  4  5  6

r  2  2  2  3  4  5  6

g  3  3  3  3  4  5  6

a  4  4  4  4  4  5  6

i  5  5  5  4  5  5  6

n  6  6  6  5  5  6  6

------------------------------
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Computing distance between root: Believe and term: Elephant

Levenshtein edit distance is 7

The complete edit distance matrix is depicted below

   b  e  l  i  e  v  e

e  1  1  2  3  4  5  6

l  2  2  1  2  3  4  5

e  3  2  2  2  2  3  4

p  4  3  3  3  3  3  4

h  5  4  4  4  4  4  4

a  6  5  5  5  5  5  5

n  7  6  6  6  6  6  6

t  8  7  7  7  7  7  7

------------------------------

You can see from this output that “Believe” and “beleive” are closest to each 

other with an edit distance of 2, and the distances between “Believe,” “bargain,” and 

“Elephant” are 6, indicating a total of six edit operations are needed. The edit distance 

matrices provide a more detailed insight into how the algorithm computes the distances 

per iteration.

 Cosine Distance and Similarity
The Cosine distance is a metric that can be derived from the Cosine similarity and 

vice versa. Considering we have two terms represented in their vectorized forms (bag 

of character vectors that we shall depict shortly, whereby the order of the characters 

doesn’t matter). Cosine similarity gives us the measure of the cosine of the angle 

between them when they are represented as non-zero positive vectors in an inner 

product space. Thus, term vectors that have a similar orientation will have scores closer 

to 1 (cos0∘), indicating the vectors are very close to each other in the same direction 

(near to zero degree angle between them). Term vectors with a similarity score close to 0 

(cos90∘) indicate unrelated terms with a near orthogonal angle between then.  

Term vectors with a similarity score close to -1 (cos180∘) indicate terms that are completely 

oppositely oriented. Figure 7-2 illustrates this more clearly, where u and v are our term 

vectors in the vector space.
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Thus, you can see from the position of the vectors that the plots show more 

clearly how the vectors are close or far apart and the cosine of the angle between 

them gives us the Cosine similarity metric. Now we can formally define Cosine 

similarity as the dot product of the two term vectors, u and v, divided by the product 

of their L2 norms. Mathematically, we can represent the dot product between two 

vectors as follows:

 u v u v· cos= ( )   q  

where θ is the angle between u and v and ∥u∥ represents the L2 norm for vector u and 

∥v∥ is the L2 norm for vector v. Thus, we can derive the Cosine similarity from the 

formula as follows:
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where cs(u, v) is the Cosine similarity score between u and v. Here ui and vi are the 

various features of the two vectors and the total number of these features or components 

is n. In our case, we use the bag of characters vectorization to build these term vectors 

and n is the number of unique characters across the terms under analysis.

Bag of characters vectorization is very similar to the bag of words model except here 

we compute the frequency of each character in the word. Sequence or word orders are 

not taken into account here. The following function helps compute this.

Figure 7-2. Cosine similarity representations for term vectors
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from scipy.stats import itemfreq

def boc_term_vectors(word_list):

    word_list = [word.lower() for word in word_list]

    unique_chars = np.unique(

                        np.hstack([list(word)

                        for word in word_list]))

    word_list_term_counts = [{char: count

                                  for char, count in np.stack(

                                   np.unique(list(word), return_

counts=True), axis=1)}

                                  for word in word_list]

    boc_vectors = [np.array([int(word_term_counts.get(char, 0))

                            for char in unique_chars])

                   for word_term_counts in word_list_term_counts]

    return list(unique_chars), boc_vectors

In this function, we take a list of words or terms and extract the unique characters 

from it. This becomes our feature list, just like we do with a bag of words. Instead of 

characters, unique words will be our features. Once we have this list of unique_chars we 

get the count for each character in each word and build our bag of characters vectors. 

The following code leverages the previous function to build the bag of character vectors 

for our sample terms.

# Bag of characters vectorization

import pandas as pd

feature_names, feature_vectors = boc_term_vectors(terms)

boc_df = pd.DataFrame(feature_vectors, columns=feature_names, index=terms)

print(boc_df)

          a  b  e  g  h  i  l  n  p  r  t  v

Believe   0  1  3  0  0  1  1  0  0  0  0  1

beleive   0  1  3  0  0  1  1  0  0  0  0  1

bargain   2  1  0  1  0  1  0  1  0  1  0  0

Elephant  1  0  2  0  1  0  1  1  1  0  1  0
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Just like we expected, each vector is basically an unordered bag of characters 

depicting the frequency of each character in the corresponding word. Let's store these in 

specific variables before we compute cosine distances.

root_term_boc = boc_df[vec_df.index == root_term].values[0]

other_term_bocs = [boc_df[vec_df.index == term].values[0]

                      for term in other_terms]

An important point to note here is that the Cosine similarity score usually ranges 

from -1 to +1, but if we use the bag of characters based character frequencies for terms 

or bag of words based word frequencies for documents, the score will range from 0 to 

1. This is because the frequency vectors can never be negative and hence the angle 

between the two vectors cannot exceed 90∘. The Cosine distance is complementary to 

the similarity score and can be computed by the formula:

 

cd u v cs u v
u v

u v

u v

u

i

n

i i

i

n

i

, ,( ) = - ( ) = - ( ) = -
×

= - =

=

å
å

1 1 1 1 1

1

2
cos q

  

ii

n

iv=å 1

2
 

where cd(u, v) denotes the Cosine distance between the term vectors u and v. The 

following function implements computation of Cosine distance based on the formulae.

def cosine_distance(u, v):

    distance = 1.0 - (np.dot(u, v) /

                         (np.sqrt(sum(np.square(u))) * np.sqrt(sum(np.square(v))))

                     )

    return distance

We now test the similarity between our example terms using their bag of character 

representations we created earlier and available in the boc_root_vector and the  

boc_vector_terms variables:

for term, boc_term in zip(other_terms, other_term_bocs):

     print('Analyzing similarity between root: {} and term: {}'.format 

(root_term, term))

    distance = round(cosine_distance(root_term_boc, boc_term), 2)

    similarity = round(1 - distance, 2)

    print('Cosine distance  is {}'.format(distance))

    print('Cosine similarity  is {}'.format(similarity))

    print('-'*40)
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Analyzing similarity between root: Believe and term: beleive

Cosine distance  is -0.0

Cosine similarity  is 1.0

----------------------------------------

Analyzing similarity between root: Believe and term: bargain

Cosine distance  is 0.82

Cosine similarity  is 0.18

----------------------------------------

Analyzing similarity between root: Believe and term: Elephant

Cosine distance  is 0.39

Cosine similarity  is 0.61

----------------------------------------

These vector representations do not take the order of characters into account 

and hence the similarity between the terms "Believe" and "beleive" is 1.0 or a perfect 

100%. You can see how this can be used in combination with a semantic dictionary like 

WordNet to provide correct spelling suggestions. It does this by suggesting semantically 

and syntactically correct words from a vocabulary when users misspell a word by 

measuring the similarity between the words.

You can even try out different features here instead of single character frequencies, like 

taking two characters at a time and computing their frequencies to build the term vectors. 

This will take into account some of the sequences that characters maintain in various 

terms. Try out different possibilities and compare the results! This distance measure works 

really well when measuring similarity between large documents or sentences and we will 

see that in the following section when we discuss document similarity.

 Analyzing Document Similarity
We analyzed similarity between terms using various similarity and distance metrics in 

the previous sections. We also saw how vectorization was useful so that mathematical 

computations become much easier, especially when computing distances between 

vectors. In this section, we try to analyze similarities between documents. By now, you 

must already know that a document is defined as a body of text, which can comprise 

sentences or paragraphs of text. For analyzing document similarity, we will be doing 

some basic text preprocessing, vectorizing documents using the TF-IDF scheme, similar 
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to what we did previously when we classified text documents or summarized entire 

documents. Once we have the vector representations of the various documents, we can 

compute similarity between the documents using some standard distance or similarity 

metrics. The metrics we cover in this section are as follows:

• Cosine similarity

• Okapi BM25 ranking

Just like usual, we cover the concepts behind each metric, look at the mathematical 

representations and definitions, and then implement them using Python. To make things 

interesting, we actually showcase these with a real-world example of trying to build a 

movie recommender system! Consider this a mini-simulation of what happens when you 

search for or watch a movie online and similar movies are recommended to you based 

on the movie description and content. In the real world, you obviously will have more 

parameters and features like ratings, genre, user preference history, and so on, but the 

recommender we build will actually showcase how document similarity can help build 

simple but amazing recommenders.

 Building a Movie Recommender
Recommender systems are one of the popular and most adopted applications of 

machine learning. They are typically used to recommend entities to users. These 

entities can be anything like products, movies, services, and so on. Popular examples of 

recommendations include:

• Amazon suggesting products on its website

• Amazon Prime, Netflix, and Hotstar recommending movies/shows

• YouTube recommending videos to watch

Recommender systems can typically be implemented in three ways:

• Simple rule-based recommenders: Based on specific global metrics 

and thresholds like movie popularity, global ratings, etc.

• Content-based recommenders: Based on providing similar entities 

based on a specific entity of interest. Content metadata can be used 

here, such as movie description, genre, cast, director, and so on.
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• Collaborative filtering recommenders: We don't need metadata but 

we try to predict recommendations and ratings based on past ratings 

of different users and specific items.

We build a movie recommendation system whereby, based on data/metadata 

pertaining to different movies, we try to recommend similar movies of interest. See 

Figure 7-3.

Since our focus in not on recommendation engines but on NLP, we leverage the text-

based metadata for each movie to try to recommend similar movies based on specific 

movies of interest. This falls under content-based recommenders. We follow a step-by-

step approach to building this recommender system with document similarity.

 Load and View Dataset
We will be using the very popular TMDB 5,000 movies dataset for this experiment, which 

you can find on Kaggle at https://www.kaggle.com/tmdb/tmdb-movie-metadata/

home. But we will also be providing a nice compressed version of the same dataset in our 

official GitHub repository, which you can obtain from https://github.com/dipanjanS/

text-analytics-with-python. Let's load and view this dataset now. See Figure 7-4.

import pandas as pd

df = pd.read_csv('tmdb_5000_movies.csv.gz', compression='gzip')

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4803 entries, 0 to 4802

Figure 7-3. Typical movie or TV show recommendations
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Data columns (total 20 columns):

budget                  4803 non-null int64

genres                  4803 non-null object

homepage                1712 non-null object

id                      4803 non-null int64

keywords                4803 non-null object

original_language       4803 non-null object

original_title          4803 non-null object

overview                4800 non-null object

popularity              4803 non-null float64

production_companies    4803 non-null object

production_countries    4803 non-null object

release_date            4802 non-null object

revenue                 4803 non-null int64

runtime                 4801 non-null float64

spoken_languages        4803 non-null object

status                  4803 non-null object

tagline                 3959 non-null object

title                   4803 non-null object

vote_average            4803 non-null float64

vote_count              4803 non-null int64

dtypes: float64(3), int64(4), object(13)

memory usage: 750.5+ KB

df.head()
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Obviously for our simple content-based document similarity movie recommender, we 

do not need all these fields for our analysis (although they might be useful if you want to 

build a more sophisticated system). We will also combine the text content from the movie 

tagline and overview columns into a new column called description. See Figure 7-5.

df = df[['title', 'tagline', 'overview', 'genres', 'popularity']]

df.tagline.fillna(", inplace=True)

df['description'] = df['tagline'].map(str) + ' ' + df['overview']

df.dropna(inplace=True)

df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 4800 entries, 0 to 4802

Data columns (total 6 columns):

title          4800 non-null object

tagline        4800 non-null object

overview       4800 non-null object

genres         4800 non-null object

popularity     4800 non-null float64

description    4800 non-null object

Figure 7-4. The TMDB 5,000 movies dataset
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dtypes: float64(1), object(5)

memory usage: 262.5+ KB

df.head()

Now, we will build our own movie recommender system. The major components 

going into its pipeline are as follows:

• Text preprocessing

• Feature engineering

• Document similarity computation

• Find top similar movies based on a sample movie

• Build a movie recommender

Recommendations are all about understanding the underlying features that make 

us favor one choice over the other. Similarity between items (in this case, movies) is one 

way to understand why we choose one movie over another. There are different ways to 

calculate similarity between two items. One of the most widely used measures is Cosine 

similarity, which we used earlier and we will be using again shortly.

 Text Preprocessing
We will do some basic text preprocessing on our movie descriptions before we build our 

features. Nothing too fancy, since the intent here is to focus on document similarity and 

not on text processing.

import nltk

import re

import numpy as np

Figure 7-5. The TMDB 5,000 movies dataset with relevant attributes
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stop_words = nltk.corpus.stopwords.words('english')

def normalize_document(doc):

    # lower case and remove special characters\whitespaces

    doc = re.sub(r'[^a-zA-Z0-9\s]', ", doc, re.I|re.A)

    doc = doc.lower()

    doc = doc.strip()

    # tokenize document

    tokens = nltk.word_tokenize(doc)

    # filter stopwords out of document

    filtered_tokens = [token for token in tokens if token not in stop_words]

    # re-create document from filtered tokens

    doc = ' '.join(filtered_tokens)

    return doc

normalize_corpus = np.vectorize(normalize_document)

norm_corpus = normalize_corpus(list(df['description']))

len(norm_corpus)

4800

Let's move on to text representation, which can be done by leveraging some feature 

engineering scheme like TF-IDF.

 Extract TF-IDF Features
We talked about the TF-IDF representation scheme in extensive detail in Chapter 4. Here, 

we leverage it to vectorize our preprocessed movie descriptions, thereby converting them 

into numeric vectors.

from sklearn.feature_extraction.text import TfidfVectorizer

tf = TfidfVectorizer(ngram_range=(1, 2), min_df=2)

tfidf_matrix = tf.fit_transform(norm_corpus)

tfidf_matrix.shape

(4800, 20667)
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We take uni-gram and bi-grams as our features and remove terms that occur only in 

one document across the whole corpus. Now that we have our documents normalized 

and vectorized with tf-idf-based vector representations, we look at how to compute 

document similarity with cosine similarity.

 Cosine Similarity for Pairwise Document Similarity
We have seen the concepts with regard to computing Cosine similarity and implemented 

them for term similarity. Here, we reuse the same concepts to compute the Cosine 

similarity scores for documents instead of terms. The document vectors will be the bag 

of words model-based vectors with TF-IDF values instead of term frequencies. Thus, we 

should end up getting an N x N matrix where N is equal to the number of movies, which 

is 4,800. See Figure 7-6.

from sklearn.metrics.pairwise import cosine_similarity

doc_sim = cosine_similarity(tfidf_matrix)

doc_sim_df = pd.DataFrame(doc_sim)

doc_sim_df.head()

Figure 7-6. Pairwise document cosine similarity

Now, we build a workflow to determine the most similar and recommended movies 

for a sample movie before building our movie recommender system. Before we do this, 

let's build a list of all movie titles in our dataset.

movies_list = df['title'].values

movies_list, movies_list.shape

(array(['Avatar', "Pirates of the Caribbean: At World's End", 'Spectre',

        ..., 'Signed, Sealed, Delivered', 'Shanghai Calling',

        'My Date with Drew'], dtype=object), (4800,))
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We can typically index into our pairwise similarity matrix to get document 

similarities for the recommendations.

 Find Top Similar Movies for a Sample Movie
Let's take Minions, one of the most popular movies, and try to find the most similar 

movies to recommend. The following are the major steps that will be helpful to us later 

to build a generic function.

 Find Movie ID

Since we have a list of movies, finding the position index of the movie in our dataset is 

pretty straightforward.

movie_idx = np.where(movies_list == 'Minions')[0][0]

movie_idx

546

 Get Movie Similarities

We will now use this positional index to obtain the vector of pairwise movie similarities 

for all movies with the movie Minions having an index 546.

movie_similarities = doc_sim_df.iloc[movie_idx].values

movie_similarities

array([0.0104544 , 0.01072835, 0.        , ..., 0.00690954, 0.        ,

       0.        ])

 Get Top Five Similar Movie IDs

It is now time to get the top five movies that are the most similar to the movie Minions. 

Remember that we are not interested in showing the similarity values, but in getting the 

movie indices.

similar_movie_idxs = np.argsort(-movie_similarities)[1:6]

similar_movie_idxs

array([506, 614, 241, 813, 154], dtype=int64)
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 Get Top Five Similar Movies

We can easily obtain the top five similar movies to Minions since we already have the 

movie index positions.

similar_movies = movies_list[similar_movie_idxs]

similar_movies

array(['Despicable Me 2', 'Despicable Me',

       'Teenage Mutant Ninja Turtles: Out of the Shadows', 'Superman',

       'Rise of the Guardians'], dtype=object)

Not bad! The top two movies are definitely very similar to Minions and are in fact all 

a part of the Despicable Me franchise.

 Build a Movie Recommender
It's time now to put together everything we have learned and build our movie 

recommender. We will build a movie recommender function to recommend movies. 

This function will require the movie title, movie title list, and document similarity matrix 

dataframe as inputs to the function.

def movie_recommender(movie_title, movies=movies_list, doc_sims=doc_sim_df):

    # find movie id

    movie_idx = np.where(movies == movie_title)[0][0]

    # get movie similarities

    movie_similarities = doc_sims.iloc[movie_idx].values

    # get top 5 similar movie IDs

    similar_movie_idxs = np.argsort(-movie_similarities)[1:6]

    # get top 5 movies

    similar_movies = movies[similar_movie_idxs]

    # return the top 5 movies

    return similar_movies
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 Get a List of Popular Movies
We can sort our movies dataset based on popularity score and select some of the most 

popular movies. We can then view their recommendations for some interesting results! 

See Figure 7-7.

pop_movies = df.sort_values(by='popularity', ascending=False)

pop_movies.head()

I selected the following movies based on their popularity score and how interesting 

they might be. Feel free to substitute them with your own movies.

popular_movies =  ['Minions', 'Interstellar', 'Deadpool', 'Jurassic World', 

'Pirates of the Caribbean: The Curse of the Black Pearl', 

'Dawn of the Planet of the Apes', 'The Hunger Games: 

Mockingjay - Part 1', 'Terminator Genisys', 'Captain 

America: Civil War', 'The Dark Knight', 'The Martian', 

'Batman v Superman: Dawn of Justice', 'Pulp Fiction', 'The 

Godfather', 'The Shawshank Redemption', 'The Lord of the 

Rings: The Fellowship of the Ring', 'Harry Potter and the 

Chamber of Secrets', 'Star Wars', 'The Hobbit: The Battle 

of the Five Armies', 'Iron Man']

Let's get the top five recommended movies for each of these movies using our movie 

recommender function now.

for movie in popular_movies:

    print('Movie:', movie)

     print('Top 5 recommended Movies:', movie_recommender(movie_

title=movie))

    print()

Figure 7-7. Popular movies
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Movie: Minions

Top 5 recommended Movies: ['Despicable Me 2' 'Despicable Me'

 'Teenage Mutant Ninja Turtles: Out of the Shadows' 'Superman'

 'Rise of the Guardians']

...

...

Movie: Jurassic World

Top 5 recommended Movies: ['Jurassic Park' 'The Lost World: Jurassic Park' 

'The Nut Job'

 "National Lampoon's Vacation" 'Vacation']

Movie: Pirates of the Caribbean: The Curse of the Black Pearl

Top 5 recommended Movies: ["Pirates of the Caribbean: Dead Man's Chest" 

'The Pirate'

 'Pirates of the Caribbean: On Stranger Tides'

 'The Pirates! In an Adventure with Scientists!' 'Joyful Noise']

...

...

Movie: Captain America: Civil War

Top 5 recommended Movies: ['Captain America: The Winter Soldier' 'This 

Means War'

 'Avengers: Age of Ultron' 'Iron Man 2' 'Escape from Tomorrow']

Movie: The Dark Knight

Top 5 recommended Movies: ['The Dark Knight Rises' 'Batman Forever' 'Batman 

Returns'

 'Batman: The Dark Knight Returns, Part 2' 'Slow Burn']

Movie: The Martian

Top 5 recommended Movies: ['The Last Days on Mars' 'Swept Away' 'Alive' 

'All Is Lost' 'Red Planet']

...

...
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Movie: The Lord of the Rings: The Fellowship of the Ring

Top 5 recommended Movies: ['The Lord of the Rings: The Two Towers'

 'The Hobbit: The Desolation of Smaug'

 'The Lord of the Rings: The Return of the King'

 "What's the Worst That Could Happen?" 'The Hobbit: An Unexpected Journey']

Movie: Harry Potter and the Chamber of Secrets

Top 5 recommended Movies: ['Harry Potter and the Prisoner of Azkaban'

 'Harry Potter and the Goblet of Fire'

 'Harry Potter and the Order of the Phoenix'

 'Harry Potter and the Half-Blood Prince'

 "Harry Potter and the Philosopher's Stone"]

Movie: Star Wars

Top 5 recommended Movies: ['The Empire Strikes Back' 'Return of the Jedi' 

'Shrek the Third'

 'The Ice Pirates' 'The Tale of Despereaux']

Movie: The Hobbit: The Battle of the Five Armies

Top 5 recommended Movies: ['The Hobbit: The Desolation of Smaug' 'The 

Hobbit: An Unexpected Journey'

 "Dragon Nest: Warriors' Dawn"

 'A Funny Thing Happened on the Way to the Forum' 'X-Men: Apocalypse']

Movie: Iron Man

Top 5 recommended Movies: ['Iron Man 2' 'Avengers: Age of Ultron' 'Hostage' 

'Iron Man 3'

 'Baahubali: The Beginning']

Based on the results, you can clearly see our simple document similarity based 

recommender is performing really well! We recommend using Scikit-Learn's cosine_

similarity() utility function, which is quite useful. You can also use Gensim's 

similarities module or the cossim() function directly, available in the gensim.

matutils module.

Chapter 7  text Similarity and CluStering



488

 Okapi BM25 Ranking for Pairwise Document Similarity
There are several techniques that are quite popular in information retrieval and search 

engines, including PageRank and Okapi BM25. The term BM stands for best matching. 

This technique is also known just as BM25, but for the sake of completeness, we refer to 

it as Okapi BM25, because while the concepts behind the BM25 function were originally 

theoretical, the City University in London built the Okapi Information Retrieval system 

in the 1980-90s, which implemented this technique to retrieve documents on actual real-

world data.

This technique can also be called a framework or model based on probabilistic 

relevancy and was developed by several people in the 1970-80s, including computer 

scientists S. Robertson and K. Jones. There are several functions that rank documents 

based on different factors and BM25 is one of them. Its newer variant is BM25F and some 

other variants include BM15 and BM25+.

The Okapi BM25 technique can be formally defined as a document ranking 

and retrieval function based on a bag of words-based model for retrieving relevant 

documents based on a user input query. This query can be a document containing a 

sentence or collection of sentences or it can even be a couple of words. Okapi BM25 is 

actually not just a single function but is a framework consisting of a whole collection of 

scoring functions that are combined.

Consider we have a query document QD such that QD = (q1, q2,  … , qn) containing n 

terms or keywords and we have a corpus document CD in the corpus of documents from 

which we want to get the most relevant documents to the query document based on 

similarity scores. Assuming we have these, we can mathematically define the BM25 score 

between these two documents as follows:
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where the function bm25(CD, QD) computes the BM25 rank or score of the document 

CD, based on the query document QD. The function idf(qi) gives us the inverse 

document frequency (idf) of the term qi in the corpus, which contains CD and from 

which we want to retrieve the relevant documents. If you remember, we computed idfs 
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in Chapter 4 when we implemented the tf-idf feature extractor. Just to refresh your 

memory, it can represented by

 
idf t

C

df t
( ) = +

+ ( )
1

1
log

 

where idf(t) represents the idf for the term t, C represents the count of the total number 

of documents in our corpus, and df(t) represents the number of documents in which the 

term t is present. There are various other methods of implementing idf, but we will be 

using this one.

On a side note, the end outcome from the different implementations is very similar. 

The function f(qi, CD) gives us the frequency of the term qi in the corpus document CD. 

The expression |CD| indicates the total length of the document CD, which is measured by 

the number of words and the term avgdl represents the average document length of the 

corpus from which we will be retrieving documents. Besides there, you will also observe 

there are two free parameters—k1 is usually in the range of [1.2, 2.0] and b is usually taken 

as 0.75. We will be taking the value of k1 to be 2.5 in our implementation and b to be 0.85, 

based on the popular implementation of the BM25 algorithm in the Gensim framework.

There are several steps that we must go through to successfully implement and 

compute BM25 scores for documents:

 1. Calculate frequencies of terms in documents and in corpus.

 2. Compute the inverse document frequencies of terms.

 3. Get bag of words-based features for corpus documents and query 

documents.

 4. Build a function to compute the BM25 score of a given document 

in relation to a specific document from the corpus.

 5. Build a function that leverages the function from Step 4, which 

computes and returns BM25 scores of a given document in 

relation to every other document in the corpus (like a vector of 

similarities for each document).

 6. Build a function that returns pairwise BM25 similarity scores 

(weights) for all the documents in the corpus (leverages the 

function from Step 5).
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The code we implement here has actually been adopted from the Gensim framework 

and we definitely recommend it if you are interested in leveraging BM25 similarity. We 

show the internals of the similarity framework so you can correlate it with the earlier 

defined concepts. The following class helps implement all the components from Steps 1 

through 5 in our defined workflow.

"""

Data:

-----

.. data:: PARAM_K1 - Free smoothing parameter for BM25.

.. data:: PARAM_B - Free smoothing parameter for BM25.

.. data:: EPSILON - Constant used for negative idf of document in corpus.

"""

import math

from six import iteritems

from six.moves import xrange

PARAM_K1 = 2.5

PARAM_B = 0.85

EPSILON = 0.2

class BM25(object):

    """Implementation of Best Matching 25 ranking function.

    Attributes

    ----------

    corpus_size : int

        Size of corpus (number of documents).

    avgdl : float

        Average length of document in `corpus`.

    corpus : list of list of str

        Corpus of documents.

    f : list of dicts of int

        Dictionary with terms frequencies for each document in `corpus`.

        Words used as keys and frequencies as values.

    df : dict

        Dictionary with terms frequencies for whole `corpus`.

        Words used as keys and frequencies as values.
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    idf : dict

        Dictionary with inversed terms frequencies for whole `corpus`.

        Words used as keys and frequencies as values.

    doc_len : list of int

        List of document lengths.

    """

    def __init__(self, corpus):

        """

        Parameters

        ----------

        corpus : list of list of str

            Given corpus.

        """

        self.corpus_size = len(corpus)

        self.avgdl = sum(float(len(x)) for x in corpus) / self.corpus_size

        self.corpus = corpus

        self.f = []

        self.df = {}

        self.idf = {}

        self.doc_len = []

        self.initialize()

    def initialize(self):

        """Calculates frequencies of terms in documents and in corpus.

           Also computes inverse document frequencies."""

        for document in self.corpus:

            frequencies = {}

            self.doc_len.append(len(document))

            for word in document:

                if word not in frequencies:

                    frequencies[word] = 0

                frequencies[word] += 1

            self.f.append(frequencies)
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            for word, freq in iteritems(frequencies):

                if word not in self.df:

                    self.df[word] = 0

                self.df[word] += 1

        for word, freq in iteritems(self.df):

             self.idf[word] = math.log(self.corpus_size - freq + 0.5) - 

math.log(freq + 0.5)

    def get_score(self, document, index, average_idf):

         """Computes BM25 score of given `document` in relation to item of 

corpus

           selected by `index`.

        Parameters

        ----------

        document : list of str

            Document to be scored.

        index : int

            Index of document in corpus selected to score with `document`.

        average_idf : float

            Average idf in corpus.

        Returns

        -------

        float

            BM25 score.

        """

        score = 0

        for word in document:

            if word not in self.f[index]:

                continue

             idf = self.idf[word] if self.idf[word] >= 0 else EPSILON * 

average_idf

            score += (idf * self.f[index][word] * (PARAM_K1 + 1)

                       / (self.f[index][word] + PARAM_K1 * (1 - PARAM_B + 

PARAM_B * self.doc_len[index] / self.avgdl)))

        return score
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    def get_scores(self, document, average_idf):

         """Computes and returns BM25 scores of given `document` in 

relation to every item in corpus.

        Parameters

        ----------

        document : list of str

            Document to be scored.

        average_idf : float

            Average idf in corpus.

        Returns

        -------

        list of float

            BM25 scores.

        """

        scores = []

        for index in xrange(self.corpus_size):

            score = self.get_score(document, index, average_idf)

            scores.append(score)

        return scores

We can now implement the function from Step 6 in our workflow to compute 

pairwise document BM25 similarity scores, which is exactly what we need!

def get_bm25_weights(corpus):

    """Returns BM25 scores (weights) of documents in corpus.

       Each document has to be weighted with every document in given corpus.

    Parameters

    ----------

    corpus : list of list of str

        Corpus of documents.

    Returns

    -------

    list of list of float

        BM25 scores.
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    Examples

    --------

    >>> from gensim.summarization.bm25 import get_bm25_weights

    >>> corpus = [

    ...     ["black", "cat", "white", "cat"],

    ...     ["cat", "outer", "space"],

    ...     ["wag", "dog"]

    ... ]

    >>> result = get_bm25_weights(corpus)

    """

    bm25 = BM25(corpus)

    average_idf = sum(float(val) for val in bm25.idf.values()) / len(bm25.idf)

    weights = []

    for doc in corpus:

        scores = bm25.get_scores(doc, average_idf)

        weights.append(scores)

    return weights

To use this function based on the documentation, we need to tokenize our corpus 

first, as depicted in the following code.

norm_corpus_tokens = np.array([nltk.word_tokenize(doc) for doc in norm_

corpus])

norm_corpus_tokens[:3]

array([list( [ 'enter', 'world', 'pandora', '22nd', 'century', 'paraplegic', 

'marine', 'dispatched', 'moon', 'pandora', 'unique', 

'mission', 'becomes', 'torn', 'following', 'orders', 

'protecting', 'alien', 'civilization']),

       list( [ 'end', 'world', 'adventure', 'begins', 'captain', 'barbossa', 

'long', 'believed', 'dead', 'come', 'back', 'life', 'headed', 

'edge', 'earth', 'turner', 'elizabeth', 'swann', 'nothing', 

'quite', 'seems']),
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       list( ['plan', 'one', 'escapes', 'cryptic', 'message', 'bonds', 

'past', 'sends', 'trail', 'uncover', 'sinister', 

'organization', 'battles', 'political', 'forces', 'keep', 

'secret', 'service', 'alive', 'bond', 'peels', 'back', 

'layers', 'deceit', 'reveal', 'terrible', 'truth', 'behind', 

'spectre'])], dtype=object)

We can now use our previously defined get_bm25_weights(…) function to build 

the pairwise document similarity matrix. Remember that this takes a fair bit of time to 

compute, depending on the corpus size. See Figure 7-8.

%%time

wts = get_bm25_weights(norm_corpus_tokens)

Wall time: 2min 28s

# viewing our pairwise similarity matrix

bm25_wts_df = pd.DataFrame(wts)

bm25_wts_df.head()

We can now use our movie recommender function to get the top five movie 

recommendations for the popular movies we selected earlier.

for movie in popular_movies:

    print('Movie:', movie)

    print('Top 5 recommended Movies:', movie_recommender(movie_title=movie,

    doc_sims=bm25_wts_df))

    print()

Figure 7-8. Our pairwise BM25 document similarity matrix
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Movie: Minions

Top 5 recommended Movies: ['Despicable Me 2' 'Despicable Me'

 'Teenage Mutant Ninja Turtles: Out of the Shadows' 'Intolerance'

 'Superman']

Movie: Interstellar

Top 5 recommended Movies: ['Space Pirate Captain Harlock' 'Prometheus' 

'Starship Troopers' 'Gattaca'

 'Space Cowboys']

...

...

Movie: The Lord of the Rings: The Fellowship of the Ring

Top 5 recommended Movies: ['The Lord of the Rings: The Two Towers'

 'The Lord of the Rings: The Return of the King'

 'The Hobbit: The Desolation of Smaug' 'The Hobbit: An Unexpected Journey'

 "What's the Worst That Could Happen?"]

Movie: Harry Potter and the Chamber of Secrets

Top 5 recommended Movies: ['Harry Potter and the Goblet of Fire'

 'Harry Potter and the Prisoner of Azkaban'

 'Harry Potter and the Half-Blood Prince'

 'Harry Potter and the Order of the Phoenix'

 "Harry Potter and the Philosopher's Stone"]

Movie: Star Wars

Top 5 recommended Movies: ['The Empire Strikes Back' 'Return of the Jedi' 

'Shanghai Noon'

 'The Ice Pirates' 'The Tale of Despereaux']

Movie: The Hobbit: The Battle of the Five Armies

Top 5 recommended Movies: ['The Hobbit: The Desolation of Smaug' 'The 

Hobbit: An Unexpected Journey'

 "Dragon Nest: Warriors' Dawn" 'Harry Potter and the Order of the Phoenix'

 '300: Rise of an Empire']
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Movie: Iron Man

Top 5 recommended Movies: ['Iron Man 2' 'Avengers: Age of Ultron' 'Iron Man 3' 

'Batman Begins'

 'Street Fighter']

We recommend using Gensim's bm25 module under the gensim.summarization 

module. If you are interested, you should definitely give it a try.

Try loading a bigger corpus of documents and testing these functions on some 

sample query strings and documents. In fact, information retrieval frameworks like Solr 

and ElasticSearch are built on top of Lucene, which use these types of ranking algorithms 

to return relevant documents from an index of stored documents. You can build your 

own search engine using them! Interested readers can check out this link https://www.

elastic.co/blog/found-bm-vs-lucene-default-similarity by elastic.co, which 

is the company behind the popular ElasticSearch product. The performance of BM25 is 

much better than the default similarity ranking implementation of Lucene.

 Document Clustering
Document clustering or cluster analysis is an interesting area in natural language 

processing and text analytics that applies unsupervised machine learning concepts and 

techniques. The main premise of document clustering is similar to that of document 

categorization, whereby you start with a whole corpus of documents and you are 

tasked with segregating them into various groups based on some distinctive properties, 

attributes, and features of the documents. Document classification needs labeled 

training data to build a model and then categorize documents. Document clustering 

uses unsupervised machine learning algorithms to group the documents into various 

clusters. The properties of these clusters are such that documents inside one cluster are 

more similar and related to each other as compared to documents belonging to other 

clusters. Figure 7-9, courtesy of Scikit-Learn, visualizes an example of clustering data 

points into three clusters based on its features.
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This cluster analysis depicts three clusters among the data points, which are 

visualized using the different colors. An important point to remember here is that 

clustering is an unsupervised learning technique and, from Figure 7-9, it is pretty clear 

that there will always be some overlap among the clusters since there exists no such 

definition of a perfect cluster. All the techniques are based on math, heuristics, and some 

inherent attributes related to generating clusters. They are never a 100% perfect. Hence, 

there exist several techniques or methods in finding clusters. Some of the more popular 

clustering algorithms are briefly described as follows:

• Hierarchical clustering models: These clustering models are also 

known as connectivity-based clustering methods and they are based 

on the concept that similar objects will be closer in the vector space 

and unrelated objects will be farther away. Clusters are formed 

by connecting objects based on their distance and they can be 

visualized using a dendrogram. The output of these models is a 

complete exhaustive hierarchy of clusters. They are subdivided into 

agglomerative and divisive clustering models.

Figure 7-9. Sample cluster analysis results (Courtesy: Scikit-Learn)
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• Partition-based or centroid-based clustering models: These 

models build clusters in such a way that each cluster has a central 

representative member that represents each cluster and has the features 

that distinguish that particular cluster from the rest. There are various 

algorithms in this, such as k-means, k-mediods, and so on where we 

need to set the number of clusters (k) in advance. Distance metrics, like 

squares of distances from each data point to the centroid, need to be 

minimized. The disadvantage of these models is that you need to specify 

the k number of clusters in advance, which may lead to local minima 

and you might not get a true clustered representation of your data.

• Distribution-based clustering models: These models use concepts 

from probability distributions when clustering data points. The 

idea is that objects with similar distributions can be clustered into 

the same group or cluster. Gaussian Mixture Models (GMM) use 

algorithms like the Expectation-Maximization algorithm for building 

these clusters. Feature and attribute correlations and dependencies 

can be captured using these models also, but it is prone to overfitting.

• Density-based clustering models: These clustering models generate 

clusters from data points, which are grouped together at areas of 

high density compared to the rest of the data points, which may 

occur randomly across the vector space in sparsely populated areas. 

These sparse areas are treated as noise and are used as border points 

to separate clusters. Two popular algorithms in this area include 

DBSCAN and OPTICS.

There are also several other newer clustering models, like BIRCH and 

CLARANS. Entire books and journals have been written just on clustering alone, as it is 

a really interesting topic with a lot of value. Covering every method would be impossible 

for us in the current scope, hence, we will cover a total of three clustering algorithms and 

illustrate them with real-world data for better understanding:

• K-means clustering

• Affinity propagation

• Ward's Agglomerative Hierarchical clustering
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We cover each algorithm’s theoretical concepts as we have done previously with 

other methods. We also apply each clustering algorithm to real-world data pertaining 

to movies and their descriptions from the TMDB movie dataset we used in the previous 

section.

 Clustering Movies
We will be clustering a total of 4,800 movies, which we previously cleaned and 

preprocessed. It’s available as the dataframe df and the preprocessed corpus is available 

as the variable norm_corpus. The main idea is to cluster these movies into groups using 

their descriptions as raw input. We will extract features from these description like TF-

IDF or document similarity and use unsupervised learning algorithms on them to cluster 

them. The movie titles we will be showing in the output are just for representation and 

will be useful when we want to see the movies in each cluster. The data to be fed to the 

clustering algorithms are the features extracted from the movie descriptions, just to 

make things clearer.

 Feature Engineering
Before we can jump into each of the clustering methods, we will follow the same 

process of text preprocessing and feature engineering as before. We have already done 

preprocessing during the document similarity analysis in the previous section, hence 

we will be using the same norm_corpus variable containing our preprocessed movie 

descriptions. We will now extract bag of words-based features similar to what we did 

during the document similarity computations, but with some modifications.

import nltk

from sklearn.feature_extraction.text import CountVectorizer

stop_words = nltk.corpus.stopwords.words('english')

stop_words = stop_words + ['one', 'two', 'get']

cv = CountVectorizer(ngram_range=(1, 2), min_df=10, max_df=0.8, stop_

words=stop_words)

cv_matrix = cv.fit_transform(norm_corpus)

cv_matrix.shape

(4800, 3012)
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Based on the code and output depicted in the preceding snippet, we keep text 

tokens in our normalized text and extract bag of words count based features for 

unigrams and bigrams such that each feature occurs in at least 10 documents and 

at most 80% of the documents using the terms min_df and max_df. We can see that 

we have a total of 4,800 rows for the 4,800 movies and a total of 3,012 features for 

each movie. Now that we have our features and documents ready, we can start the 

clustering analysis.

 K-Means Clustering
The k-means clustering algorithm is a centroid-based clustering model that tries to 

cluster data into groups or clusters of equal variance. The criteria or measure that this 

algorithm tries to minimize is inertia, also known as within-cluster sum-of-squares. 

Perhaps the one main disadvantage of this algorithm is that the number of clusters (k) 

needs to be specified in advance, as it is with all centroid-based clustering models. This 

algorithm is perhaps the most popular clustering algorithm, due to its ease of use as well 

as it being scalable with large amounts of data.

We can now formally define the k-means clustering algorithm along with its 

mathematical notations. Say we have a dataset X with N data points or samples and 

we want to group them into K clusters, where K is a user-specified parameter. The 

k-means clustering algorithm will segregate the N data points into K disjoint separate 

clusters, Ck, and each of these clusters can be described by the means of the cluster 

samples. These means become the cluster centroids μk such that these centroids are 

not bound by the condition that they have to be actual data points from the N samples 

in X. The algorithm chooses these centroids and builds the clusters in such a way that 

the inertia or within-cluster sums of squares are minimized. Mathematically this can 

be represented as follows:

min
i

K

x C
n i

n i

x
= Î
å å -

1

2
 m

with regards to clusters Ci and centroids μi such that i ∈ {1, 2,  … , k}. This optimization is 

an NP hard problem for all you algorithm enthusiasts out there. Lloyd's algorithm is a 

solution to this problem. It’s an iterative procedure consisting of the following steps.

 1. Choose initial k centroids μk by taking k random samples from the 

dataset X.
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 2. Update clusters by assigning each data point or sample to its nearest 

centroid point. Mathematically we can represent this as follows:

Ck = {xn : ‖xn − μk‖ ≤ all ‖xn − μl‖}

where Ck denotes the clusters.

 3. Recalculate and update clusters based on the new cluster data 

points for each cluster obtained from Step 2. Mathematically this 

can be represented as follows:

mk
k x C

nC
x

n k

=
Î
å1

where μk denotes the centroids.

These steps are repeated in an iterative fashion until the outputs of Step 2 and 3 

no longer change. One caveat of this method is that even though the optimization 

is guaranteed to converge, it might lead to a local minimum. Hence, in reality, this 

algorithm is run multiple times with several epochs and iterations and the results might 

be averaged from them if needed.

The convergence and occurrence of local minimum are highly dependent on the 

initialization of the initial centroids in Step 1. One way is to make multiple iterations with 

multiple random initializations and take the average. Another way would be to use the 

kmeans++ scheme, as implemented in Scikit-Learn, which initializes the initial centroids 

to be far apart from each other and has proven to be effective. We now use k-means 

clustering to cluster the movie data.

from sklearn.cluster import KMeans

NUM_CLUSTERS = 6

km = KMeans(n_clusters=NUM_CLUSTERS, max_iter=10000, n_init=50, random_

state=42).fit(cv_matrix)

km

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=10000,

       n_clusters=6, n_init=50, n_jobs=None, precompute_distances='auto',

       random_state=42, tol=0.0001, verbose=0)

df['kmeans_cluster'] = km.labels_
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This snippet uses our implemented k-means function to cluster the movies based 

on the bag of words features from the movie descriptions. We assign the cluster 

label for each movie from the outcome of this cluster analysis by storing it in the df 

dataframe in the kmeans_cluster column. You can see that we have taken k to be 6 in 

our analysis. We can now view the total number of movies for each of the six clusters 

using the following snippet.

# viewing distribution of movies across the clusters

from collections import Counter

Counter(km.labels_)

Counter({2: 429, 1: 2832, 3: 539, 5: 238, 4: 706, 0: 56})

You can see that there are six cluster labels, as expected, 0 to 5, and each has some 

movies belonging to the cluster. It looks like we have a good distribution of movies 

in each cluster. We will now do some deeper analysis of our clustering results by 

showcasing important features that were responsible for the movies being clustered 

together. We will also look at some of the most popular movies from each cluster!

movie_clusters = (df[['title', 'kmeans_cluster', 'popularity']]

                  .sort_values(by=['kmeans_cluster', 'popularity'],

                               ascending=False)

                  .groupby('kmeans_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

feature_names = cv.get_feature_names()

topn_features = 15

ordered_centroids = km.cluster_centers_.argsort()[:, ::-1]

# get key features for each cluster

# get movies belonging to each cluster

for cluster_num in range(NUM_CLUSTERS):

    key_features = [feature_names[index]

                         for index in ordered_centroids[cluster_num, :topn_

features]]

    movies = movie_clusters[movie_clusters['kmeans_cluster'] ==

    cluster_num]['title'].values.tolist()

    print('CLUSTER #'+str(cluster_num+1))
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    print('Key Features:', key_features)

    print('Popular Movies:', movies)

    print('-'*80)

CLUSTER #1

Key Features: ['film', 'movie', 'story', 'first', 'love', 'making', 

'director', 'new', 'time', 'feature', 'made', 'young', '3d', 'american', 

'america']

Popular Movies: ['Contact', 'Snatch', 'The Pianist', 'Boyhood', 'Tropic 

Thunder', 'Movie 43', 'Night of the Living Dead', 'Almost Famous', 'My 

Week with Marilyn', 'Jackass 3D', 'Inside Job', 'Grindhouse', 'The Young 

Victoria', 'Disaster Movie', 'Jersey Boys', 'Seed of Chucky', 'Bowling for 

Columbine', 'Walking With Dinosaurs', 'Me and You and Everyone We Know', 

'Urban Legends: Final Cut']

---------------------------------------------------------------------------

CLUSTER #2

Key Features: ['young', 'man', 'story', 'love', 'family', 'find', 'must', 

'time', 'back', 'friends', 'way', 'years', 'help', 'father', 'take']

Popular Movies: ['Interstellar', 'Guardians of the Galaxy', 'Pirates of the 

Caribbean: The Curse of the Black Pearl', 'Dawn of the Planet of the Apes', 

'The Hunger Games: Mockingjay - Part 1', 'Big Hero 6', 'Whiplash', 'The 

Martian', 'Frozen', "Pirates of the Caribbean: Dead Man's Chest", 'Gone 

Girl', 'X-Men: Apocalypse', 'Rise of the Planet of the Apes', 'The Lord 

of the Rings: The Fellowship of the Ring', 'Pirates of the Caribbean: On 

Stranger Tides', "One Flew Over the Cuckoo's Nest", 'Star Wars', 'Brave', 

'The Lord of the Rings: The Return of the King', 'Pulp Fiction']

---------------------------------------------------------------------------

CLUSTER #3

Key Features: ['world', 'young', 'find', 'story', 'man', 'new', 'must', 

'save', 'way', 'time', 'life', 'evil', 'love', 'family', 'finds']

Popular Movies: ['Minions', 'Jurassic World', 'Captain America: Civil War', 

'Avatar', 'The Avengers', "Pirates of the Caribbean: At World's End", 

'The Maze Runner', 'Tomorrowland', 'Ant-Man', 'Spirited Away', 'Chappie', 

'Monsters, Inc.', 'The Matrix', 'Man of Steel', 'Skyfall', 'The Adventures 

of Tintin', 'Nightcrawler', 'Allegiant', 'V for Vendetta', 'Penguins of 

Madagascar']

---------------------------------------------------------------------------
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CLUSTER #4

Key Features: ['new', 'york', 'new york', 'city', 'young', 'family', 

'love', 'man', 'york city', 'find', 'friends', 'years', 'home', 'must', 

'story']

Popular Movies: ['Terminator Genisys', 'Fight Club', 'Teenage Mutant Ninja 

Turtles', 'Pixels', 'Despicable Me 2', 'Avengers: Age of Ultron', 'Night at 

the Museum: Secret of the Tomb', 'Batman Begins', 'The Dark Knight Rises', 

'The Lord of the Rings: The Two Towers', 'The Godfather: Part II', 'How to 

Train Your Dragon 2', '12 Years a Slave', 'The Wolf of Wall Street', 'Men 

in Black II', "Pan's Labyrinth", 'The Bourne Legacy', 'The Amazing Spider-

Man 2', 'The Devil Wears Prada', 'Non-Stop']

---------------------------------------------------------------------------

CLUSTER #5

Key Features: ['life', 'love', 'man', 'family', 'story', 'young', 'new', 

'back', 'years', 'finds', 'hes', 'time', 'find', 'way', 'father']

Popular Movies: ['Deadpool', 'Mad Max: Fury Road', 'Inception', 'The 

Godfather', 'Forrest Gump', 'The Shawshank Redemption', 'Harry Potter and 

the Chamber of Secrets', 'Inside Out', 'Twilight', 'Maleficent', "Harry 

Potter and the Philosopher's Stone", 'Bruce Almighty', 'The Hobbit: An 

Unexpected Journey', 'The Twilight Saga: Eclipse', 'Titanic', 'Fifty Shades 

of Grey', 'Blade Runner', 'Psycho', 'Up', 'The Lion King']

---------------------------------------------------------------------------

CLUSTER #6

Key Features: ['war', 'world', 'world war', 'ii', 'war ii', 'story', 

'young', 'man', 'love', 'army', 'find', 'american', 'battle', 'first', 

'must']

Popular Movies: ['The Dark Knight', 'Batman v Superman: Dawn of Justice', 

'The Imitation Game', 'Fury', 'The Hunger Games: Mockingjay - Part 

2', 'X-Men: Days of Future Past', 'Transformers: Age of Extinction', 

"Schindler's List", 'The Good, the Bad and the Ugly', 'American Sniper', 

'Thor', 'Shutter Island', 'Underworld', 'Indiana Jones and the Kingdom 

of the Crystal Skull', 'Captain America: The First Avenger', 'The Matrix 

Revolutions', 'Inglourious Basterds', '300: Rise of an Empire', 'The Matrix 

Reloaded', 'Oblivion']

---------------------------------------------------------------------------
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This output depicts the key features for each cluster and the movies in each cluster. 

Each cluster is depicted by the main themes, which define that cluster by its top features. 

You can see popular movies being clustered together based on some key common 

features. Can you notice any interesting patterns?

We can also use other feature schemes, like pairwise document similarity, to group 

similar movies in clusters. The following code helps achieve this.

from sklearn.metrics.pairwise import cosine_similarity

cosine_sim_features = cosine_similarity(cv_matrix)

km = KMeans(n_clusters=NUM_CLUSTERS, max_iter=10000, n_init=50, random_

state=42).fit(cosine_sim_features)

Counter(km.labels_)

Counter({4: 427, 3: 724, 1: 1913, 2: 504, 0: 879, 5: 353})

df['kmeans_cluster'] = km.labels_

movie_clusters = (df[['title', 'kmeans_cluster', 'popularity']]

                  .sort_values(by=['kmeans_cluster', 'popularity'],

                               ascending=False)

                  .groupby('kmeans_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

# get movies belonging to each cluster

for cluster_num in range(NUM_CLUSTERS):

     movies = movie_clusters[movie_clusters['kmeans_cluster'] == cluster_

num]['title'].values.tolist()

    print('CLUSTER #'+str(cluster_num+1))

    print('Popular Movies:', movies)

    print('-'*80)

CLUSTER #1

Popular Movies: ['Pirates of the Caribbean: The Curse of the Black Pearl', 

'Whiplash', 'The Martian', 'Frozen', 'Gone Girl', 'The Lord of the Rings: 

The Fellowship of the Ring', 'Pirates of the Caribbean: On Stranger Tides', 

'Pulp Fiction', 'The Fifth Element', 'Quantum of Solace', 'Furious 7', 
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'Cinderella', 'Man of Steel', 'Gladiator', 'Aladdin', 'The Amazing Spider-

Man', 'Prisoners', 'The Good, the Bad and the Ugly', 'American Sniper', 

'Finding Nemo']

---------------------------------------------------------------------------

CLUSTER #2

Popular Movies: ['Interstellar', 'Guardians of the Galaxy', 'Dawn of the 

Planet of the Apes', 'The Hunger Games: Mockingjay - Part 1', 'Big Hero 6', 

'The Dark Knight', "Pirates of the Caribbean: Dead Man's Chest", 'X-Men: 

Apocalypse', 'Rise of the Planet of the Apes', "One Flew Over the Cuckoo's 

Nest", 'The Hunger Games: Mockingjay - Part 2', 'Star Wars', 'Brave', 'The 

Lord of the Rings: The Return of the King', 'The Hobbit: The Battle of the 

Five Armies', 'Iron Man', 'X-Men: Days of Future Past', 'Transformers: Age 

of Extinction', 'Spider-Man 3', 'Lucy']

---------------------------------------------------------------------------

CLUSTER #3

Popular Movies: ['Terminator Genisys', 'Fight Club', 'Teenage Mutant Ninja 

Turtles', 'Pixels', 'Despicable Me 2', 'Avengers: Age of Ultron', 'Night at 

the Museum: Secret of the Tomb', 'Batman Begins', 'The Dark Knight Rises', 

'The Lord of the Rings: The Two Towers', 'The Godfather: Part II', 'How to 

Train Your Dragon 2', '12 Years a Slave', 'The Wolf of Wall Street', 'Men 

in Black II', "Pan's Labyrinth", 'The Bourne Legacy', 'The Amazing Spider-

Man 2', 'The Devil Wears Prada', 'Non-Stop']

---------------------------------------------------------------------------

CLUSTER #4

Popular Movies: ['Deadpool', 'Mad Max: Fury Road', 'Inception', 'The 

Godfather', "Pirates of the Caribbean: At World's End", 'Forrest Gump', 

'The Shawshank Redemption', 'Harry Potter and the Chamber of Secrets', 

'Inside Out', 'Twilight', 'Maleficent', "Harry Potter and the Philosopher's 

Stone", 'Bruce Almighty', 'The Hobbit: An Unexpected Journey', 'The 

Twilight Saga: Eclipse', 'Fifty Shades of Grey', 'Blade Runner', 'Psycho', 

'Up', 'The Lion King']

---------------------------------------------------------------------------
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CLUSTER #5

Popular Movies: ['Minions', 'Jurassic World', 'Captain America: Civil War', 

'Batman v Superman: Dawn of Justice', 'Avatar', 'The Avengers', 'Fury', 

'The Maze Runner', 'Tomorrowland', 'Ant-Man', 'Spirited Away', 'Chappie', 

'Monsters, Inc.', "Schindler's List", 'The Matrix', 'Skyfall', 'The 

Adventures of Tintin', 'Nightcrawler', 'Thor', 'Allegiant']

---------------------------------------------------------------------------

CLUSTER #6

Popular Movies: ['The Imitation Game', 'Titanic', 'The Pursuit of 

Happyness', 'The Prestige', 'The Grand Budapest Hotel', 'The Fault in Our 

Stars', 'Catch Me If You Can', 'Cloud Atlas', 'The Conjuring 2', 'Apollo 

13', 'Aliens', 'The Usual Suspects', 'GoodFellas', 'The Princess and the 

Frog', 'The Theory of Everything', "The Huntsman: Winter's War", 'Mary 

Poppins', 'The Lego Movie', 'Starship Troopers', 'The Big Short']

---------------------------------------------------------------------------

Obviously, we used pairwise document similarity as features, hence we do not have 

specific term-based features that we can depict for each cluster as before. However, we 

can still see each cluster of similar movies in the preceding output.

 Affinity Propagation
The k-means algorithm, while very popular, has the drawback of the user having to 

define the number of clusters. What if the number of clusters changes? There are some 

ways of checking the cluster quality and determining the value of the optimum k might 

be. Interested readers can check out the Elbow method and the Silhouette coefficient, 

which are popular methods of determining the optimum k.

Here, we talk about an algorithm that tried to build clusters based on inherent 

properties of the data without any assumptions about the number of clusters. The 

Affinity Propagation (AP) algorithm is based on the concept of "message passing" among 

the various data points to be clustered and there is no assumption about the number of 

possible clusters.

AP creates these clusters from the data points by passing messages between 

pairs of data points until convergence is achieved. The entire dataset is then 

represented by a small number of exemplars, which act as representatives for samples. 
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These exemplars are analogous to the centroids that you obtain from k-means or 

k-medoids. The messages sent between pairs represent how suitable one of the 

points might be, in being the exemplar or representative of the other data point. 

This keeps getting updated in every iteration until convergence is achieved with the 

final exemplars being the representatives of each cluster. Remember one drawback 

of this method is that it is computationally intensive. Messages are passed between 

each pair of data points across the entire dataset and can take substantial time to 

converge for large datasets.

We can now define the steps involved in the AP algorithm (courtesy of 

Scikit-Learn). Consider that we have a dataset X with n data points, such that 

X = {x1, x2,  … , xn}, and we let sim(x, y) be the similarity function, which quantifies the 

similarity between two points x and y. In our implementation, we use the Cosine 

similarity again for this. The AP algorithm iteratively proceeds by executing two 

message-passing steps as follows.

 1. Responsibility updates are sent around and can be 

mathematically represented as
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where the responsibility matrix is R and r(i, k) is a measure that 

quantifies how well xk can serve as being the representative or 

exemplar for xi in comparison to the other candidates.

 2. Availability updates are then sent around that can be 

mathematically represented as
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for i ≠ k and availability for i = k is represented as
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where the availability matrix is A and a(i, k) represents how appropriate it 

would be for xi to pick xk as its exemplar considering all the other points 

preference to pick xk as an exemplar.
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These two steps keep occurring for each iteration until convergence is achieved. One 

of the main disadvantages of this algorithm is the fact that you might end up with too 

many clusters. We will showcase only the top ten largest clusters here:

from sklearn.cluster import AffinityPropagation

ap = AffinityPropagation(max_iter=1000)

ap.fit(cosine_sim_features)

res = Counter(ap.labels_)

res.most_common(10)

[(183, 1355), (182, 93), (159, 80), (54, 74), (81, 57),

 (16, 51), (26, 47), (24, 45), (48, 43), (89, 42)]

Let's now try to showcase the top popular movies for each of the ten clusters (we do 

not consider the clusters with a smaller number of movies here).

df['affprop_cluster'] = ap.labels_

filtered_clusters = [item[0] for item in res.most_common(8)]

filtered_df = df[df['affprop_cluster'].isin(filtered_clusters)]

movie_clusters = (filtered_df[['title', 'affprop_cluster', 'popularity']]

                  .sort_values(by=['affprop_cluster', 'popularity'],

                               ascending=False)

                  .groupby('affprop_cluster').head(20))

movie_clusters = movie_clusters.copy(deep=True)

# get key features for each cluster

# get movies belonging to each cluster

for cluster_num in range(len(filtered_clusters)):

     movies = movie_clusters[movie_clusters['affprop_cluster'] == filtered_

clusters[cluster_num]]['title'].values.tolist()

    print('CLUSTER #'+str(filtered_clusters[cluster_num]))

    print('Popular Movies:', movies)

    print('-'*80)

CLUSTER #183

Popular Movies: ['Interstellar', 'Dawn of the Planet of the Apes', 'Big 

Hero 6', 'The Dark Knight', "Pirates of the Caribbean: Dead Man's Chest", 

'The Hunger Games: Mockingjay - Part 2', 'Star Wars', 'Brave', 'The Lord 

of the Rings: The Return of the King', 'The Hobbit: The Battle of the Five 
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Armies', 'Iron Man', 'Transformers: Age of Extinction', 'Lucy', 'Mission: 

Impossible - Rogue Nation', 'Maze Runner: The Scorch Trials', 'Spectre', 

'The Green Mile', 'Terminator 2: Judgment Day', 'Exodus: Gods and Kings', 

'Harry Potter and the Goblet of Fire']

---------------------------------------------------------------------------

CLUSTER #182

Popular Movies: ['Inception', 'Harry Potter and the Chamber of Secrets', 

'The Hobbit: An Unexpected Journey', 'Django Unchained', 'American Beauty', 

'Snowpiercer', 'Trainspotting', 'First Blood', 'The Bourne Supremacy', 'Yes 

Man', 'The Secret Life of Walter Mitty', 'RED', 'Casino', 'The Passion of 

the Christ', 'Annie', 'Fantasia', 'Vicky Cristina Barcelona', 'The Butler', 

'The Secret Life of Pets', 'Edge of Darkness']

---------------------------------------------------------------------------

CLUSTER #159

Popular Movies: ['Gone Girl', 'Pulp Fiction', 'Gladiator', 'Saving Private 

Ryan', 'The Game', 'Jack Reacher', 'The Fugitive', 'The Purge: Election 

Year', 'The Thing', 'The Rock', '3:10 to Yuma', 'Wild Card', 'Blackhat', 

'Knight and Day', 'Equilibrium', 'Black Hawk Down', 'Immortals', '1408', 

'The Call', 'Up in the Air']

---------------------------------------------------------------------------

CLUSTER #54

Popular Movies: ['Despicable Me 2', 'The Lord of the Rings: The Two 

Towers', 'The Bourne Legacy', 'Horrible Bosses 2', 'Sherlock Holmes: A 

Game of Shadows', "Ocean's Twelve", 'Raiders of the Lost Ark', 'Star Trek 

Beyond', 'Fantastic 4: Rise of the Silver Surfer', 'Sherlock Holmes', 'Dead 

Poets Society', 'Batman & Robin', 'Madagascar: Escape 2 Africa', 'Paul 

Blart: Mall Cop 2', 'Kick-Ass 2', 'Anchorman 2: The Legend Continues', 'The 

Pacifier', "The Devil's Advocate", 'Tremors', 'Wild Hogs']

---------------------------------------------------------------------------

CLUSTER #81

Popular Movies: ['Whiplash', 'Sicario', 'Jack Ryan: Shadow Recruit', 'The 

Untouchables', 'Young Frankenstein', 'Point Break', '8 Mile', 'The Final 

Destination', 'Savages', 'Scooby-Doo', 'The Artist', 'The Last King of 

Scotland', 'Sinister 2', 'Another Earth', 'The Darkest Hour', 'Wall Street: 

Money Never Sleeps', 'The Score', 'Doubt', 'Revolutionary Road', 'Crimson Tide']

---------------------------------------------------------------------------
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CLUSTER #16

Popular Movies: ['The Shawshank Redemption', 'Inside Out', 'Batman Begins', 

'Psycho', 'Cars', 'Ice Age: Dawn of the Dinosaurs', 'The Chronicles of 

Narnia: Prince Caspian', 'Kung Fu Panda 2', 'The Witch', 'Madagascar', 

'Wild', 'Shame', 'Scream 2', '16 Blocks', 'Last Action Hero', 'Garden 

State', '25th Hour', 'The House Bunny', 'The Jacket', 'Any Given Sunday']

---------------------------------------------------------------------------

CLUSTER #26

Popular Movies: ['Minions', 'Avatar', 'Penguins of Madagascar', 'Iron 

Man 3', 'London Has Fallen', 'The Great Gatsby', 'Transcendence', 'The 

5th Wave', 'Zombieland', 'Hotel Transylvania', 'Ghost Rider: Spirit of 

Vengeance', 'Warm Bodies', 'Paul', 'The Road', 'Alexander', 'This Is the 

End', "Bridget Jones's Diary", 'G.I. Joe: The Rise of Cobra', 'Hairspray', 

'Step Up Revolution']

---------------------------------------------------------------------------

CLUSTER #24

Popular Movies: ['Spider-Man', 'Chronicle', '21 Jump Street', '22 Jump 

Street', 'Project X', 'Kick-Ass', 'Grown Ups', 'American Wedding', 'Kiss 

Kiss Bang Bang', 'I Know What You Did Last Summer', 'Here Comes the Boom', 

'Dazed and Confused', 'Not Another Teen Movie', 'WarGames', 'Fast Times at 

Ridgemont High', 'American Graffiti', 'The Gallows', 'Dumb and Dumberer: 

When Harry Met Lloyd', 'Bring It On', 'The New Guy']

---------------------------------------------------------------------------

An important point to note here is that a few keywords from the exemplars or 

centroids for each cluster may not always depict the true theme of that cluster. A good 

idea is to build topic models on each cluster and see what kind of topics you can extract 

from each cluster that would make a better representation of each cluster (another 

example where you can see how to connect various text analytics techniques).

 Ward's Agglomerative Hierarchical Clustering
The Hierarchical clustering family of algorithms is a bit different from the other 

clustering models discussed earlier. Hierarchical clustering tries to build a nested 

hierarchy of clusters by merging or splitting them in succession. There are two main 

strategies for Hierarchical clustering:
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• Agglomerative: These algorithms follow a bottom-up approach. All 

data points initially belong to their own individual cluster and then 

from this bottom layer, we start merging clusters, thereby building a 

hierarchy of clusters as we go up.

• Divisive: These algorithms follow a top-down approach. All the 

data points initially belong to a single huge cluster and then we 

start recursively dividing them up as we gradually move down. This 

produces a hierarchy of clusters going from the top down.

Merges and splits usually happen using a greedy algorithm and the end result of the 

hierarchy of clusters can be visualized as a tree structure, called a dendrogram. Figure 7-10 

shows how a dendrogram is constructed using Agglomerative Hierarchical clustering.

Figure 7-10. Agglomerative Hierarchical clustering representation

Figure 7-10 clearly highlights how six separate data points start off as six clusters 

and then we slowly start grouping them in each step, following a bottom-up approach. 

We use an Agglomerative Hierarchical clustering algorithm in this section. In the 
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Agglomerative clustering, for deciding which clusters we should combine when starting 

from the individual data point clusters, we need two things:

• A distance metric to measure the similarity or dissimilarity degree 

between data points. We will be using the cosine distance/similarity 

in our implementation

• A linkage criterion, which determines the metric to be used for the 

merging strategy of clusters. We will be using Ward's method here.

The Ward's linkage criterion minimizes the sum of squared differences within all the 

clusters and is a variance minimizing approach. This is also known as Ward's minimum 

variance method and was initially presented by J. Ward. The idea is to minimize the 

variances within each cluster using an objective function like the L2 norm distance 

between two points. We can start by computing the initial cluster distances between 

each pair of points using this formula:

 
d d C C C Cij i j i j= { }( ) = -,  

2

 

where initially Ci indicates cluster i with one document and at each iteration. We find 

the pairs of clusters that lead to the least increase in variance for that cluster once 

merged. A weighted squared Euclidean distance, or L2 norm, as depicted in the previous 

formula, would suffice for this algorithm. We use Cosine similarity to compute the 

cosine distances between each pair of movies for our dataset. The following function 

implements Ward's Agglomerative Hierarchical clustering:

from scipy.cluster.hierarchy import ward, dendrogram

from sklearn.metrics.pairwise import cosine_similarity

def ward_hierarchical_clustering(feature_matrix):

    cosine_distance = 1 - cosine_similarity(feature_matrix)

    linkage_matrix = ward(cosine_distance)

    return linkage_matrix

To view the results of the Hierarchical clustering, we need to plot a dendrogram 

using the linkage matrix. Hence, we implement the following function to build and plot a 

dendrogram from the Hierarchical clustering linkage matrix.
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def plot_hierarchical_clusters(linkage_matrix, movie_data, p=100,  

figure_size=(8,12)):

    # set size

    fig, ax = plt.subplots(figsize=figure_size)

    movie_titles = movie_data['title'].values.tolist()

    # plot dendrogram

    R = dendrogram(linkage_matrix, orientation="left", labels=movie_titles,

                    truncate_mode='lastp',

                    p=p,

                    no_plot=True)

     temp = {R["leaves"][ii]: movie_titles[ii] for ii in range(len(R["leaves"]))}

    def llf(xx):

        return "{}".format(temp[xx])

    ax = dendrogram(

            linkage_matrix,

            truncate_mode='lastp',

            orientation="left",

            p=p,

            leaf_label_func=llf,

            leaf_font_size=10.,

            )

    plt.tick_params(axis= 'x',

                    which='both',

                    bottom='off',

                    top='off',

                    labelbottom='off')

    plt.tight_layout()

    plt.savefig('movie_hierachical_clusters.png', dpi=200)

We are now ready to perform hierarchical clustering on our movie data! The 

following code snippet shows Ward's clustering in action.

linkage_matrix = ward_hierarchical_clustering(cv_matrix)

plot_hierarchical_clusters(linkage_matrix,

                           p=100,

                           movie_data=df,

                           figure_size=(12, 14))
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Figure 7-11. Ward's clustering dendrogram on our movies
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The dendrogram in Figure 7-11 shows us the clustering analysis results. The colors 

indicate there are three main clusters, which are further subdivided into more granular 

clusters, thereby maintaining a hierarchy. If you have trouble reading the small fonts or 

can’t see the colors, you can view the same figure in the file named movie_hierachical_

clusters.png available with the code files in this chapter. We only show the last 100 

movies in the dendrogram due to the lack of space for visualization.

 Summary
We covered a lot of content in this chapter, including several topics in the 

challenging but very interesting unsupervised machine learning domain. You now 

know how text similarity can be computed and various kinds of distance measures 

and metrics. We also looked at important concepts related to distance metrics and 

measures and properties that make a measure into a metric. We also looked at 

concepts related to unsupervised machine learning and how we can incorporate 

such techniques in document clustering.

Various ways of measuring term and document similarity were also covered and we 

also implemented several of these techniques by successfully converting mathematical 

equations into code using the power of Python and several open source libraries. We 

touched upon document clustering in detail, looking at the various concepts and types 

of clustering models.

Finally we took a real-world example of clustering the top-100 greatest movies of 

all time using IMDB movie synopses data and used different clustering models like 

k-means, affinity propagation, and Ward's hierarchical clustering to build, analyze, and 

visualize clusters. This should be enough for you to get started analyzing document 

similarity and clustering. You can even start combining various techniques from the 

chapters covered so far. (Hint: Topic models with clustering, building classifiers by 

combining supervised and unsupervised learning, and augmenting recommendation 

systems using document clusters to just name a few!)
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CHAPTER 8

Semantic Analysis
Natural language understanding has gained significant importance in the last decade 

with the advent of machine learning and further advances like deep learning and 

artificial intelligence. Computers, or machines in general, can be programmed to 

learn specific things or perform specific operations. However, the key limitation is 

their inability to perceive, understand, and comprehend things like humans do. With 

the resurgence in popularity of neural networks and advances made in computer 

architecture, we now have deep learning and artificial intelligence evolving at a rapid 

pace and we have been engineering machines into learning, perceiving, understanding, 

and performing actions on their own. You may have seen or heard several of these efforts 

in the form of self-driving cars, computers beating experienced players in their own 

games like Chess and Go, and more recently chatbots. So far, we have looked at various 

computational, language processing, and machine learning techniques to classify, 

cluster, and summarize text. We also developed certain methods and programs to 

analyze and understand text syntax and structure. This chapter deals with methods that 

try to answer the question, “Can we analyze and understand the meaning and sentiment 

behind a body of text?”

Natural language processing has a wide variety of applications. People try to use 

natural language understanding to infer the meaning and context behind text and to 

solve various problems. We discussed several of these applications briefly in Chapter 1.  

To refresh your memory, the following applications require extensive understanding 

from the semantic perspective.

• Question answering systems

• Contextual recognition

• Speech recognition (for some applications)
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Text semantics specifically deals with understanding the meaning of text or 

language. Words, when combined into sentences, have some lexical relations and 

contextual relations. This leads to various types of relationships and hierarchies. 

Semantics sits at the heart of all this in that it tries to analyze and understand these 

relationships and infer meaning from them. We explore various types of semantic 

relationships in natural language and look at some NLP-based techniques for inferring 

and extracting meaningful semantic information from text. Semantics is purely 

concerned with context and meaning and the textual structure holds little significance 

here. However, sometimes the syntax or arrangement of words helps us infer the context 

of words and helps us differentiate things like “lead” as a metal from “lead” as in the lead 

of a movie!

In this chapter, we cover several aspects of semantic analysis. We start by exploring 

WordNet, which is a lexical database, and introduce a new concept called synsets. We 

also explore various semantic relationships and representations in natural language. 

We cover techniques like word sense disambiguation and named entity recognition 

(NER), wherein you will even build your own NER from scratch! Let’s get started. All the 

code examples showcased in this chapter are available on the book’s official GitHub 

repository, which you can access at https://github.com/dipanjanS/text-analytics- 

with-python/tree/master/New-Second-Edition.

 Semantic Analysis
We have seen how terms or words are grouped into phrases, which further form clauses 

and finally sentences. Chapter 3 showed us various structural components in natural 

language, including parts of speech, chunking, and grammar. All these concepts 

fall under the syntactic and structural analysis of text data. While we do explore 

relationships of words, phrases, and clauses, these are purely based on their position, 

syntax, and structure. Semantic analysis is more about understanding the actual context 

and meaning behind words in text and how they relate to other words and convey some 

information as a whole.

As mentioned in Chapter 1, semantics is the study of meaning. Linguistic semantics 

is a complete branch under linguistics that deals with studying of meaning in natural 

language. This includes exploring relationships between words, phrases, and symbols. 
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Besides this, there are also various ways to represent semantics associated with 

statements and propositions. We broadly cover the following topics under semantic 

analysis:

• Exploring WordNet and synsets

• Analyzing lexical semantic relations

• Word sense disambiguation

• Named entity recognition

• Analyzing semantic representations

The main objective of these topics is to give you a clear understanding of the 

methodologies that you can leverage for semantic analysis as well as understand how to 

use them. You can refresh your memory by revisiting the “Language Semantics” section 

in Chapter 1. We will be revisiting several concepts from there again in this chapter with 

real-world examples. Without any further delay, let’s get started!

 Exploring WordNet
WordNet is a huge lexical database for the English language. This database is a part of 

Princeton University and you can get more detailed information at https://wordnet.

princeton.edu/, which is the official website for WordNet. It was originally created in 

1985, in the Princeton University’s Cognitive Science Laboratory under the direction 

of Professor G.A. Miller. This lexical database consists of nouns, adjectives, verbs, and 

adverbs. Related lexical terms are grouped into sets based on common concepts. These 

sets are known as cognitive synonym sets or synsets and each expresses a unique, 

distinct concept.

At a high level, WordNet can be compared to a thesaurus or a dictionary that 

provides words and their synonyms, but on a lower level, it is much more than that. 

Synsets and their corresponding terms have detailed relationships and hierarchies 

based on their semantic meaning. WordNet is used extensively as a lexical database, 

in text analytics, natural language processing, and artificial intelligence based 

applications.

The WordNet database consists of over 155,000 words and they are represented 

in across 117,000 synsets and contain over 206,000 word-sense pairs. The database is 

roughly 12MB and can be accessed through various interfaces and APIs. The official 

Chapter 8  SemantiC analySiS

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/


522

website has a web application interface for accessing various details related to words, 

synsets, and concepts. You can access it at http://wordnetweb.princeton.edu/perl/

webwn or download it from https://wordnet.princeton.edu/wordnet/download/, 

which contained various packages, files, and tools related to WordNet. We will be 

accessing WordNet programmatically using the interface provided by the NLTK package. 

We start by exploring synsets and then various semantic relationships using synsets.

 Understanding Synsets
We start exploring WordNet by looking at synsets, since they are perhaps one of the most 

important structures and they tie everything together. In general, based on concepts 

from NLP and information retrieval, synsets are defined as a collection of data entities 

that are considered semantically similar. This doesn’t mean that they will be exactly 

the same, but they will be centered on similar context and concepts. Specifically in 

the context of WordNet, synsets are defined as a set or collection of synonyms that are 

interchangeable and revolve around a specific concept. Synsets not only consist of 

simple words but also collocations. Polysemous word forms (words that sound and look 

the same but have different but relatable meanings) are assigned to different synsets 

based on their meaning. Synsets are connected to other synsets using semantic relations, 

which we explore in a future section. Typically each synset has the term, a definition 

explaining the meaning of the term, some optional examples, and related lemmas 

(collection of synonyms) to the term. Some terms may have multiple synsets associated 

with them, where each synset has a particular context.

Let’s look at a real example by using NLTK’s WordNet interface to explore synsets 

associated with the word, “fruit”. We can do this using the following code snippet.

from nltk.corpus import wordnet as wn

import pandas as pd

term = 'fruit'

synsets = wn.synsets(term)

# display total synsets

print 'Total Synsets:', len(synsets)

Total Synsets: 5
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We can see that there are a total of five synsets associated with the word “fruit”. What 

can these synsets indicate? We can dig deeper into each synset and its components using 

the following code snippet (see Figure 8-1).

pd.options.display.max_colwidth = 200

fruit_df = pd.DataFrame([{'Synset': synset,

                         'Part of Speech': synset.lexname(),

                         'Definition': synset.definition(),

                         'Lemmas': synset.lemma_names(),

                         'Examples': synset.examples()}

                             for synset in synsets])

fruit_df = fruit_df[['Synset', 'Part of Speech', 'Definition', 'Lemmas', 

'Examples']]

fruit_df

The output shows us details pertaining to each synset associated with the word 

“fruit” and the definitions give us the sense of each synset and the lemma associated 

with it. The part of speech for each synset is also mentioned, which includes nouns 

and verbs. Some examples in the output depict how the term is used in actual 

sentences. Now that we understand synsets better, let’s start exploring various semantic 

relationships.

 Analyzing Lexical Semantic Relationships
Text semantics itself indicates the study of meaning and context. Synsets give a nice 

abstraction over various terms and provide useful information like definition, examples, 

parts of speech, and lemmas. But can we explore semantic relationships among entities 

using synsets? The answer is definitely yes. We cover many of the concepts related 

Figure 8-1. Exploring WordNet synsets
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to semantic relations that we covered in detail in the “Lexical Semantic Relations” 

subsection under the “Language Semantics” section in Chapter 1. It would be useful 

for you to skim through that section to understand each of the concepts better when 

we illustrate them with real-world examples here. We use NLTK’s WordNet resource 

here, but you can also use the same WordNet resource from the pattern package, as it 

includes a similar interface to NLTK.

 Entailments

The term entailment usually refers to some event or action that logically involves or is 

associated with some other action or event that has taken place or will take place. Ideally 

this applies very well to verbs indicating some specific action. The following snippet 

shows how to get entailments.

# entailments

for action in ['walk', 'eat', 'digest']:

    action_syn = wn.synsets(action, pos='v')[0]

    print(action_syn, '-- entails -->', action_syn.entailments())

Synset('walk.v.01') -- entails --> [Synset('step.v.01')]

Synset('eat.v.01') -- entails --> [Synset('chew.v.01'), 

Synset('swallow.v.01')]

Synset('digest.v.01') -- entails --> [Synset('consume.v.02')]

You can see how related synsets depict the concept of entailment in this output. 

Related actions are depicted in entailment, where actions like walking involve or entail 

stepping and eating entails chewing and swallowing.

 Homonyms and Homographs

On a high level, homonyms refer to words having the same written form or pronunciation 

but with different meanings. They are a superset of homographs, which are words with 

the same spelling but with different pronunciation or meanings. The following code 

snippet shows us how we can get homonyms/homographs.

for synset in wn.synsets('bank'):

    print(synset.name(),'-',synset.definition())
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bank.n.01 - sloping land (especially the slope beside a body of water)

depository_financial_institution.n.01 - a financial institution that 

accepts deposits and channels the money into lending activities

bank.n.03 - a long ridge or pile

bank.n.04 - an arrangement of similar objects in a row or in tiers

...

...

deposit.v.02 - put into a bank account

bank.v.07 - cover with ashes so to control the rate of burning

trust.v.01 - have confidence or faith in

This output shows a part of the result obtained for the various homographs for the 

word “bank”. You can see that there are various different meanings associated with the 

word “bank,” which is the core idea behind homographs.

 Synonyms and Antonyms

Synonyms are words with similar meanings and antonyms are words with opposite 

or contrasting meanings, as you might know already. The following snippet depicts 

synonyms and antonyms.

term = 'large'

synsets = wn.synsets(term)

adj_large = synsets[1]

adj_large = adj_large.lemmas()[0]

adj_large_synonym = adj_large.synset()

adj_large_antonym = adj_large.antonyms()[0].synset()

print('Synonym:', adj_large_synonym.name())

print('Definition:', adj_large_synonym.definition())

print('Antonym:', adj_large_antonym.name())

print('Definition:', adj_large_antonym.definition())

print()

Synonym: large.a.01

Definition: above average in size or number or quantity or magnitude or extent

Antonym: small.a.01

Definition: limited or below average in number or quantity or magnitude or extent
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term = 'rich'

synsets = wn.synsets(term)[:3]

for synset in synsets:

    rich = synset.lemmas()[0]

    rich_synonym = rich.synset()

    rich_antonym = rich.antonyms()[0].synset()

    print('Synonym:', rich_synonym.name())

    print('Definition:', rich_synonym.definition())

    print('Antonym:', rich_antonym.name())

    print('Definition:', rich_antonym.definition())

    print()

Synonym: rich_people.n.01

Definition: people who have possessions and wealth (considered as a group)

Antonym: poor_people.n.01

Definition: people without possessions or wealth (considered as a group)

Synonym: rich.a.01

Definition: possessing material wealth

Antonym: poor.a.02

Definition: having little money or few possessions

Synonym: rich.a.02

Definition: having an abundant supply of desirable qualities or substances 

(especially natural resources)

Antonym: poor.a.04

Definition: lacking in specific resources, qualities or substances

These outputs show sample synonyms and antonyms for the word “large” and the 

word “rich”. Additionally, we explore several synsets associated with the term or concept 

“rich,” which give us distinct synonyms and their corresponding antonyms.

 Hyponyms and Hypernyms

Synsets represent terms with unique semantics and concepts and they are related to 

each other based on some similarity. Several of these synsets also represent abstract and 

generic concepts, besides concrete entities. Usually they are interlinked in the form of a 
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hierarchical structure representing “is-a” relationships. Hyponyms and hypernyms help 

us explore related concepts by navigating through this hierarchy. To be more specific, 

hyponyms refer to entities or concepts that are a subclass of a higher order concept and 

have very specific sense or context compared to their superclass. The following snippet 

shows the hyponyms for the word “tree”.

term = 'tree'

synsets = wn.synsets(term)

tree = synsets[0]

print('Name:', tree.name())

print('Definition:', tree.definition())

Name: tree.n.01

Definition: a tall perennial woody plant having a main trunk and branches 

forming a distinct elevated crown; includes both gymnosperms and 

angiosperms

hyponyms = tree.hyponyms()

print('Total Hyponyms:', len(hyponyms))

print('Sample Hyponyms')

for hyponym in hyponyms[:10]:

    print(hyponym.name(), '-', hyponym.definition())

    print()

Total Hyponyms: 180

Sample Hyponyms

aalii.n.01 - a small Hawaiian tree with hard dark wood

acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia

african_walnut.n.01 - tropical African timber tree with wood that resembles 

mahogany

albizzia.n.01 - any of numerous trees of the genus Albizia

alder.n.02 - north temperate shrubs or trees having toothed leaves and 

conelike fruit; bark is used in tanning and dyeing and the wood is rot- 

resistant
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angelim.n.01 - any of several tropical American trees of the genus Andira

angiospermous_tree.n.01 - any tree having seeds and ovules contained in the 

ovary

anise_tree.n.01 - any of several evergreen shrubs and small trees of the 

genus Illicium

arbor.n.01 - tree (as opposed to shrub)

aroeira_blanca.n.01 - small resinous tree or shrub of Brazil

This output tells us that there are a total of 180 hyponyms for the word “tree” and we 

see some of the sample hyponyms and their definitions. We can see that each hyponym 

is a specific type of tree, as expected. Hyponyms are entities or concepts that act as 

superclasses to hyponyms and have a more generic sense or context. The following 

snippet shows the immediate superclass hyponym for “tree”.

hypernyms = tree.hypernyms()

print(hypernyms)

[Synset('woody_plant.n.01')]

You can even navigate up the entire entity/concept hierarchy and depict all the 

hyponyms or parent classes for “tree” by using the following code snippet.

# get total hierarchy pathways for 'tree'

hypernym_paths = tree.hypernym_paths()

print('Total Hypernym paths:', len(hypernym_paths))

Total Hypernym paths: 1

# print the entire hypernym hierarchy

print('Hypernym Hierarchy')

print(' -> '.join(synset.name() for synset in hypernym_paths[0]))

Hypernym Hierarchy

entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_

thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_

plant.n.01 -> tree.n.01
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From this output, you can see that entity is the most generic concept in which “tree” 

is present and the complete hypernym hierarchy showing the corresponding hypernym 

or superclass at each level is shown. As you navigate further down, you get more specific 

concepts/entities, and if you go in the reverse direction, you will get more generic 

concepts/entities.

 Holonyms and Meronyms

Holonyms contain a specific entity of interest. Basically, they are defined as the 

relationship between entity that denotes the whole and a term denoting a specific part of 

the whole. The following snippet shows holonyms for “tree”.

member_holonyms = tree.member_holonyms()

print('Total Member Holonyms:', len(member_holonyms))

print('Member Holonyms for [tree]:-')

for holonym in member_holonyms:

    print(holonym.name(), '-', holonym.definition())

    print()

Total Member Holonyms: 1

Member Holonyms for [tree]:-

forest.n.01 - the trees and other plants in a large densely wooded area

From the output, we can see that “forest” is a holonym for “tree,” which is semantically 

correct. This makes sense because a forest is a collection of trees. Meronyms are semantic 

relationships that relate a term or entity as a part or constituent of another term or entity. 

The following snippet depicts different types of meronyms for the word tree.

part_meronyms = tree.part_meronyms()

print('Total Part Meronyms:', len(part_meronyms))

print('Part Meronyms for [tree]:-')

for meronym in part_meronyms:

    print(meronym.name(), '-', meronym.definition())

    print()

Total Part Meronyms: 5

Part Meronyms for [tree]:-

burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree

crown.n.07 - the upper branches and leaves of a tree or other plant
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limb.n.02 - any of the main branches arising from the trunk or a bough of a tree

stump.n.01 - the base part of a tree that remains standing after the tree 

has been felled

trunk.n.01 - the main stem of a tree; usually covered with bark; the bole 

is usually the part that is commercially useful for lumber

# substance based meronyms for tree

substance_meronyms = tree.substance_meronyms()

print('Total Substance Meronyms:', len(substance_meronyms))

print('Substance Meronyms for [tree]:-')

for meronym in substance_meronyms:

    print(meronym.name(), '-', meronym.definition())

    print()

Total Substance Meronyms: 2

Substance Meronyms for [tree]:-

heartwood.n.01 - the older inactive central wood of a tree or woody plant; 

usually darker and denser than the surrounding sapwood

sapwood.n.01 - newly formed outer wood lying between the cambium and the 

heartwood of a tree or woody plant; usually light colored; active in water 

conduction

This output depicts meronyms that include various constituents of trees, like 

“stump” and “trunk” and various derived substances from trees, like “heartwood” and 

“sapwood”.

 Semantic Relationships and Similarity

In the previous sections, we looked at various concepts related to lexical semantic 

relationships. We will now look at ways to connect similar entities based on their 

semantic relationships and measure semantic similarity between them. Semantic 

similarity is different from the conventional similarity metrics we discussed in Chapter 6.  

We will use some sample synsets related to living entities, as depicted in the following 

snippet, for our analysis.

tree = wn.synset('tree.n.01')

lion = wn.synset('lion.n.01')

Chapter 8  SemantiC analySiS



531

tiger = wn.synset('tiger.n.02')

cat = wn.synset('cat.n.01')

dog = wn.synset('dog.n.01')

# create entities and extract names and definitions

entities = [tree, lion, tiger, cat, dog]

entity_names = [entity.name().split('.')[0] for entity in entities]

entity_definitions = [entity.definition() for entity in entities]

# print entities and their definitions

for entity, definition in zip(entity_names, entity_definitions):

    print(entity, '-', definition)

    print()

tree - a tall perennial woody plant having a main trunk and branches 

forming a distinct elevated crown; includes both gymnosperms and 

angiosperms

lion - large gregarious predatory feline of Africa and India having a tawny 

coat with a shaggy mane in the male

tiger - large feline of forests in most of Asia having a tawny coat with 

black stripes; endangered

cat - feline mammal usually having thick soft fur and no ability to roar: 

domestic cats; wildcats

dog - a member of the genus Canis (probably descended from the common wolf) 

that has been domesticated by man since prehistoric times; occurs in many 

breeds

Now that we know our entities a bit better, we will try to correlate these entities based 

on common hypernyms. For each pair of entities, we will try to find the lowest common 

hypernym in the relationship hierarchy tree. Correlated entities are expected to have 

very specific hypernyms and unrelated entities should have very abstract or generic 

hypernyms. The following code snippet depicts this.
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common_hypernyms = []

for entity in entities:

    # get pairwise lowest common hypernyms

    common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0] 

                                          .name().split('.')[0]

                           for compared_entity in entities])

# build pairwise lower common hypernym matrix

common_hypernym_frame = pd.DataFrame(common_hypernyms,

                                     index=entity_names,

                                     columns=entity_names)

common_hypernym_frame

Ignoring the main diagonal of the matrix, for each pair of entities, we can see their 

lowest common hypernym that depicts the nature of relationship between them (see 

Figure 8-2). Trees are unrelated to the other animals except both being living organisms. 

Hence, we get the “organism” relationship among them. Cats are related to lions and 

tigers with respect to them being feline creatures and we can see the same in the output. 

Tigers and lions are connected to each other with the “big cat” relationship. Finally, we 

can see that dogs have the relationship of “carnivore” with the other animals since they 

all typically eat meat.

We can also measure the semantic similarity between these entities using various 

semantic concepts. We will use path similarity, which returns a value between [0, 1] 

based on the shortest path that connects two terms based on their hypernym/hyponym 

based taxonomy. The following snippet shows how to generate this similarity matrix (see 

Figure 8-3).

Figure 8-2. Pairwise common hypernym matrix
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similarities = []

for entity in entities:

    # get pairwise similarities

    similarities.append([round(entity.path_similarity(compared_entity), 2)

                         for compared_entity in entities])

# build pairwise similarity matrix

similarity_frame = pd.DataFrame(similarities, index=entity_names,

                                columns=entity_names)

similarity_frame

From the output in Figure 8-3, as expected, lion and tiger are the most similar with a 

value of 0.33, followed by their semantic similarity with cat, having a value of 0.25. Tree 

has the lowest semantic similarity values when compared to the other animals. This 

concludes our discussion of analyzing lexical semantic relations. We encourage you 

explore more concepts with different examples by leveraging WordNet.

 Word Sense Disambiguation
In the previous section, we looked at homographs and homonyms, which are basically 

words that look or sound similar but have very different meanings. This meaning is 

contextual based on how the word has been used and depends on the word semantics, 

also called word sense. Identifying the correct sense or semantics of a word based 

on its usage is called word sense disambiguation, with the assumption that the word 

Figure 8-3. Pairwise similarity matrix
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has multiple meanings based on its context. This is a very popular problem in NLP 

and is used in various applications, like improving relevance of search engine results, 

coherence, and so on.

There are various ways to solve this problem, including lexical and dictionary based 

methods and supervised and unsupervised machine learning methods. Covering 

everything would be out of the current scope, hence we will be depicting word sense 

disambiguation using the Lesk algorithm, which is a classic algorithm invented by M. E. 

Lesk in 1986. The basic principle behind this algorithm is to leverage dictionary or 

vocabulary definitions for a word we want to disambiguate in a body of text and compare 

the words in these definitions with a section of text surrounding our word of interest. 

We will be using the WordNet definitions for words instead of a dictionary. The main 

objective is to return the synset with the maximum number of overlapping words or 

terms between the context sentence and the different definitions from each synset for 

the word we target for disambiguation. The following snippet leverages NLTK to depict 

how to use word sense disambiguation for various examples.

from nltk.wsd import lesk

from nltk import word_tokenize

# sample text and word to disambiguate

samples = [('The fruits on that plant have ripened', 'n'),

            ('He finally reaped the fruit of his hard work as he won the 

race', 'n')]

# perform word sense disambiguation

word = 'fruit'

for sentence, pos_tag in samples:

    word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)

    print('Sentence:', sentence)

    print('Word synset:', word_syn)

    print('Corresponding definition:', word_syn.definition())

    print()

Sentence: The fruits on that plant have ripened

Word synset: Synset('fruit.n.01')

Corresponding definition: the ripened reproductive body of a seed plant
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Sentence: He finally reaped the fruit of his hard work as he won the race

Word synset: Synset('fruit.n.03')

Corresponding definition: the consequence of some effort or action

# sample text and word to disambiguate

samples = [('Lead is a very soft, malleable metal', 'n'),

           ('John is the actor who plays the lead in that movie', 'n'),

           ('This road leads to nowhere', 'v')]

word = 'lead'

# perform word sense disambiguation

for sentence, pos_tag in samples:

    word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)

    print('Sentence:', sentence)

    print('Word synset:', word_syn)

    print('Corresponding defition:', word_syn.definition())

    print()

Sentence: Lead is a very soft, malleable metal

Word synset: Synset('lead.n.02')

Corresponding definition: a soft heavy toxic malleable metallic element; 

bluish white when freshly cut but tarnishes readily to dull grey

Sentence: John is the actor who plays the lead in that movie

Word synset: Synset('star.n.04')

Corresponding definition: an actor who plays a principal role

Sentence: This road leads to nowhere

Word synset: Synset('run.v.23')

Corresponding definition: cause something to pass or lead somewhere

We try to disambiguate two words—“fruit” and “lead”—in various text documents in 

these examples. You can see how we use the Lesk algorithm to get the correct word sense 

for the word we are disambiguating, based on its usage and context in each document. 

This tells you how “fruit” can mean both an entity that’s consumed as well as some 

consequence which one faces on applying efforts. We also see how “lead” can mean the 

soft metal, causing something/someone to go somewhere, or even an actor who plays 

the main role in a play or movie!
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 Named Entity Recognition
In any text document, there are particular terms that represent entities that are more 

informative and have a unique context compared to the rest of the text. These entities 

are known as named entities, and they more specifically represent real-world objects 

like people, places, organizations, and so on, which are usually denoted by proper 

names. We can find these by looking at the noun phrases in text documents. Named 

entity recognition, also called entity chunking/extraction, is a popular technique used in 

information extraction to identify and segment named entities and classify or categorize 

them under various predefined classes. SpaCy has some excellent capabilities for named 

entity recognition and you can find details on the general tagging scheme they use on 

their website at https://spacy.io/api/annotation#named-entities. We present the 

main named entity tags in the table depicted in Figure 8-4.

Figure 8-4. Common named entities
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SpaCy offers a fast NER tagger based on a number of techniques. The exact algorithm 

hasn’t been talked about in much detail, but the documentation marks it as “The exact 

algorithm is a pastiche of well-known methods, and is not currently described in any 

single publication”. Let’s try doing named entity recognition (NER) on a sample corpus 

now. For this, we define a sample news document as follows.

text = """Three more countries have joined an "international grand 

committee" of parliaments, adding to calls for Facebook’s boss, Mark 

Zuckerberg, to give evidence on misinformation to the coalition. Brazil, 

Latvia and Singapore bring the total to eight different parliaments across 

the world, with plans to send representatives to London on 27 November 

with the intention of hearing from Zuckerberg. Since the Cambridge 

Analytica scandal broke, the Facebook chief has only appeared in front of 

two legislatures: the American Senate and House of Representatives, and 

the European parliament. Facebook has consistently rebuffed attempts from 

others, including the UK and Canadian parliaments, to hear from Zuckerberg.

He added that an article in the New York Times on Thursday, in which the 

paper alleged a pattern of behaviour from Facebook to "delay, deny and 

deflect" negative news stories, "raises further questions about how recent 

data breaches were allegedly dealt with within Facebook." 

"""

Getting the named entities is pretty easy now, thanks to spaCy. We do some basic 

text processing and obtained the NER tags using spaCy as follows.

import spacy

import re

text = re.sub(r'\n', ", text) # remove extra newlines

nlp = spacy.load('en')

text_nlp = nlp(text)

# print named entities in article

ner_tagged = [(word.text, word.ent_type_) for word in text_nlp]

print(ner_tagged)
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[('Three', 'CARDINAL'), ('more', ''), ('countries', ''), ('have', ''), 

('joined', ''), ('an', ''), ('''', ''), ('international', ''), ('grand', ''),  

('committee', ''), ('"', ''), ('of', ''), ('parliaments', ''), (',', ''), 

('adding', ''), ('to', ''), ('calls', ''), ('for', ''), ('Facebook', 'ORG'),  

("s', ''), ('boss', ''), (',', ''), ('Mark', 'PERSON'), ('Zuckerberg', 'PERSON'),  

(',', ''), ('to', ''), ('give', ''), ('evidence', ''), ('on', ''), 

('misinformation', ''), ('to', ''), ('the', ''), ('coalition', ''), ('.', ''),  

('Brazil', 'GPE'), (',', ''), ('Latvia', 'GPE'), ('and', ''), ('Singapore', 'GPE'),  

('bring', ''), ('the', ''), ('total', ''), ('to', ''), ('eight', 'CARDINAL'),  

('different', ''), ('parliaments', ''), ('across', ''), ('the', ''), 

('world', ''), (',', ''), ('with', ''), ('plans', ''), ('to', ''),  

('send', ''), ('representatives', ''), ('to', ''), ('London', 'GPE'), 

('on', ''), ('27', 'DATE'), ('November', 'DATE'), ('with', ''),  

('the', ''), ('intention', ''), ('of', ''), ('hearing', ''), ('from', ''),  

('Zuckerberg', 'PERSON'), ('.', ''), ('Since', ''), ('the', ''), 

('Cambridge', 'GPE'), ('Analytica', ''), ('scandal', ''), ('broke', ''), 

(',', ''), ('the', ''), ('Facebook', 'ORG'), ('chief', ''), ('has', ''),  

('only', ''), ('appeared', ''), ('in', ''), ('front', ''), ('of', ''), 

('two', 'CARDINAL'), ('legislatures', ''), (':', ''), ('the', ''), 

('American', 'NORP'), ('Senate', 'ORG'), ('and', ''), ('House', 'ORG'), 

('of', 'ORG'), ('Representatives', 'ORG'), (',', ''), ('and', ''),  

('the', ''), ('European', 'NORP'), ('parliament', ''), ('.', ''), 

('Facebook', 'ORG'), ('has', ''), ('consistently', ''), ('rebuffed', ''), 

('attempts', ''), ('from', ''), ('others', ''), (',', ''), ('including', ''),  

('the', ''), ('UK', 'GPE'), ('and', ''), ('Canadian', 'NORP'), 

('parliaments', ''), (',', ''), ('to', ''), ('hear', ''), ('from', ''), 

('Zuckerberg', 'PERSON'), ('.', ''), ('He', ''), ('added', ''), ('that', ''),  

('an', ''), ('article', ''), ('in', ''), ('the', 'ORG'), ('New', 'ORG'), 

('York', 'ORG'), ('Times', 'ORG'), ('on', ''), ('Thursday', 'DATE'), (',', ''),  

('in', ''), ('which', ''), ('the', ''), ('paper', ''), ('alleged', ''), 

('a', ''), ('pattern', ''), ('of', ''), ('behaviour', ''), ('from', ''), 

('Facebook', 'ORG'), ('to', ''), ('''', ''), ('delay', ''), (',', ''), 

('deny', ''), ('and', ''), ('deflect', ''), ('"', ''), ('negative', ''), 

('news', ''), ('stories', ''), (',', ''), ('''', ''), ('raises', ''), 

('further', ''), ('questions', ''), ('about', ''), ('how', ''), ('recent', ''),  
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('data', ''), ('breaches', ''), ('were', ''), ('allegedly', ''), ('dealt', ''),  

('with', ''), ('within', ''), ('Facebook', 'ORG'), ('.', ''), ('"', '')]

You can clearly see several entities being identified in the text tokens in the 

preceding output. SpaCy also provides with a nice framework to view this in a visual 

manner as follows.

from spacy import displacy

# visualize named entities

displacy.render(text_nlp, style='ent', jupyter=True)

Figure 8-5. Named entities tagged by spaCy

We can see all the major named entities tagged in the nice visualization depicted 

in Figure 8-5. Most of them make perfect sense, while some are slightly wrong. We can 

also programmatically extract the named entities, which is often more useful using the 

following code.

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in ner_tagged:

    if tag:

        temp_entity_name = ' '.join([temp_entity_name, term]).strip()

        temp_named_entity = (temp_entity_name, tag)
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    else:

        if temp_named_entity:

            named_entities.append(temp_named_entity)

            temp_entity_name = "

            temp_named_entity = None

print(named_entities)

[('Three', 'CARDINAL'), ('Facebook', 'ORG'), ('Mark Zuckerberg', 'PERSON'), 

('Brazil', 'GPE'), ('Latvia', 'GPE'), ('Singapore', 'GPE'), ('eight', 'CARDINAL'),  

('London', 'GPE'), ('27 November', 'DATE'), ('Zuckerberg', 'PERSON'), 

('Cambridge', 'GPE'), ('Facebook', 'ORG'), ('two', 'CARDINAL'),  

('American Senate', 'ORG'), ('House of Representatives', 'ORG'), 

('European', 'NORP'), ('Facebook', 'ORG'), ('UK', 'GPE'), ('Canadian', 'NORP'),  

('Zuckerberg', 'PERSON'), ('the New York Times', 'ORG'), ('Thursday', 

'DATE'), ('Facebook', 'ORG'), ('Facebook', 'ORG')]

# viewing the top entity types

from collections import Counter

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORG', 8), ('GPE', 6), ('CARDINAL', 3), ('PERSON', 3), ('DATE', 2), 

('NORP', 2)]

This gives us a good idea of how to leverage spaCy for named entity recognition. 

Let’s try to leverage the base Stanford NLP NER tagger now, using the relevant JAR files 

and the corresponding NLTK wrapper. Stanford’s Named Entity Recognizer is based 

on an implementation of linear chain Conditional Random Field (CRF) sequence 

models. Prerequisites obviously include downloading the official Stanford NER Tagger 

JAR dependencies, which you can obtain at http://nlp.stanford.edu/software/

stanford-ner-2014-08-27.zip. Or you can download the latest version from https://

nlp.stanford.edu/software/CRF-NER.shtml#Download. Once it is downloaded, load it 

in NLTK as follows.

import os

from nltk.tag import StanfordNERTagger

JAVA_PATH = r'C:\Program Files\Java\jre1.8.0_192\bin\java.exe'

os.environ['JAVAHOME'] = JAVA_PATH
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STANFORD_CLASSIFIER_PATH = 'E:/stanford/stanford-ner-2014-08-27/

classifiers/english.all.3class.distsim.crf.ser.gz'

STANFORD_NER_JAR_PATH = 'E:/stanford/stanford-ner-2014-08-27/stanford-ner.jar'

sn = StanfordNERTagger(STANFORD_CLASSIFIER_PATH,

                       path_to_jar=STANFORD_NER_JAR_PATH)

Now we can perform NER tagging and extract the relevant entities using the 

following code snippet.

text_enc = text.encode('ascii', errors='ignore').decode('utf-8')

ner_tagged = sn.tag(text_enc.split())

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in ner_tagged:

    if tag != 'O':

        temp_entity_name = ' '.join([temp_entity_name, term]).strip()

        temp_named_entity = (temp_entity_name, tag)

    else:

        if temp_named_entity:

            named_entities.append(temp_named_entity)

            temp_entity_name = "

            temp_named_entity = None

print(named_entities)

[('Facebook', 'ORGANIZATION'), ('Latvia', 'LOCATION'), ('Singapore', 

'LOCATION'), ('London', 'LOCATION'), ('Cambridge Analytica', 

'ORGANIZATION'), ('Facebook', 'ORGANIZATION'), ('Senate', 'ORGANIZATION'), 

('Facebook', 'ORGANIZATION'), ('UK', 'LOCATION'), ('New York Times', 

'ORGANIZATION'), ('Facebook', 'ORGANIZATION')]

# get most frequent entities

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORGANIZATION', 7), ('LOCATION', 4)]
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There is one limitation, however. This model is only trained on instances of PERSON, 

ORGANIZATION, and LOCATION types, which is kind of limiting compared to spaCy. 

Luckily, a newer version of Stanford Core NLP is available and the newer APIs in NLTK 

recommend using it. However, to use Stanford’s Core NLP from NLTK in Python, we 

need to download and start a Core NLP server locally. Why do we need this? NLTK is 

slowly deprecating the old Stanford parsers in favor of the more active Stanford Core 

NLP project. It might even get removed after NLTK version 3.4, so best to stay updated. 

You can find out further details in this GitHub issue for NLTK at https://github.com/

nltk/nltk/issues/1839.

We will start by downloading Stanford’s Core NLP suite from https://stanfordnlp.

github.io/CoreNLP/. After you download and extract the directory, go there and start 

the Core NLP server using the following command from the terminal.

E:\> java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer 

-preload tokenize,ssplit,pos,lemma,ner,parse,depparse -status_port 9000 

-port 9000 -timeout 15000

If it runs successfully, you should see the following messages on the terminal when it 

starts up.

E:\stanford\stanford-corenlp-full-2018-02-27>java -mx4g -cp "*" edu.

stanford.nlp.pipeline.StanfordCoreNLPServer -preload tokenize,ssplit,pos,le

mma,ner,parse,depparse -status_port 9000 -port 9000 -timeout 15000

[main] INFO CoreNLP - --- StanfordCoreNLPServer#main() called ---

...

...

[main] INFO edu.stanford.nlp.pipeline.TokensRegexNERAnnotator - 

TokensRegexNERAnnotator ner.fine.regexner: Read 580641 unique entries 

out of 581790 from edu/stanford/nlp/models/kbp/regexner_caseless.tab, 0 

TokensRegex patterns.

...

...

[main] INFO CoreNLP - Starting server...

[main] INFO CoreNLP - StanfordCoreNLPServer listening at 

/0:0:0:0:0:0:0:0:9000

If you’re interested, you can head over to http://localhost:9000 and play around 

with their intuitive user interface, as depicted in Figure 8-6.
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You can visualize text annotations and tags interactively using the user interface 

depicted in Figure 8-6. We will now use it in Python through NLTK as follows.

from nltk.parse import CoreNLPParser

import nltk

# NER Tagging

ner_tagger = CoreNLPParser(url='http://localhost:9000', tagtype='ner')

tags = list(ner_tagger.raw_tag_sents(nltk.sent_tokenize(text)))

tags = [sublist[0] for sublist in tags]

tags = [word_tag for sublist in tags for word_tag in sublist]

# Extract Named Entities

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in tags:

    if tag != 'O':

        temp_entity_name = ' '.join([temp_entity_name, term]).strip()

        temp_named_entity = (temp_entity_name, tag)

Figure 8-6. Exploring Stanford Core NLP
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    else:

        if temp_named_entity:

            named_entities.append(temp_named_entity)

            temp_entity_name = "

            temp_named_entity = None

print(named_entities)

[('Three', 'NUMBER'), ('Facebook', 'ORGANIZATION'), ('boss', 

'TITLE'), ('Mark Zuckerberg', 'PERSON'), ('Brazil', 'COUNTRY'), 

('Latvia', 'COUNTRY'), ('Singapore', 'COUNTRY'), ('eight', 'NUMBER'), 

('London', 'CITY'), ('27 November', 'DATE'), ('Zuckerberg', 'PERSON'), 

('Cambridge Analytica', 'ORGANIZATION'), ('Facebook', 'ORGANIZATION'), 

('two', 'NUMBER'), ('American Senate', 'ORGANIZATION'), ('House of 

Representatives', 'ORGANIZATION'), ('European', 'NATIONALITY'), 

('Facebook', 'ORGANIZATION'), ('UK', 'COUNTRY'), ('Canadian', 

'NATIONALITY'), ('Zuckerberg', 'PERSON'), ('New York Times', 

'ORGANIZATION'), ('Thursday', 'DATE'), ('Facebook', 'ORGANIZATION'), 

('Facebook', 'ORGANIZATION')]

# Find out top named entity types

c = Counter([item[1] for item in named_entities])

c.most_common()

[('ORGANIZATION', 9), ('COUNTRY', 4), ('NUMBER', 3), ('PERSON', 3),

 ('DATE', 2), ('NATIONALITY', 2), ('TITLE', 1), ('CITY', 1)]

Thus you can see that Core NLP has many more tag types compared to the previous 

version. In fact, it recognizes named entities (PERSON, LOCATION, ORGANIZATION, and 

MISC), numerical entities (MONEY, NUMBER, ORDINAL, and PERCENT), and temporal entities 

(DATE, TIME, DURATION, and SET). There are 12 classes in all.

 Building an NER Tagger from Scratch
There are various off-the-shelf solutions that offer capabilities to perform named entity 

extraction (some of which we discussed in the previous sections). Yet there are times 

when the requirements are beyond the capabilities of off-the-shelf classifiers. In this 

section, we go through an exercise to build our own NER using conditional random 

fields. We use a popular framework called sklearn_crfsuite to develop our NER.
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The key point to remember here is that NER is a sequence modeling problem at its 

core. It is more related to the classification suite of problems, wherein we need a labeled 

dataset to train a classifier. Without any training data, there is no NER model! There are 

various labeled datasets for NER class of problems. We utilize a preprocessed version 

of the GMB (Groningen Meaning Bank) corpus for this tutorial. The preprocessed 

version is available at https://www.kaggle.com/abhinavwalia95/entity-annotated- 

corpus. However, we also provide it in our GitHub repository at https://github.com/

dipanjanS/text-analytics-with-python for ease of use. Loading the dataset, we can 

check the major fields as follows.

import pandas as pd

df = pd.read_csv('ner_dataset.csv.gz', compression='gzip', 

encoding='ISO-8859-1')

df = df.fillna(method='ffill')

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1048575 entries, 0 to 1048574

Data columns (total 4 columns):

Sentence #    1048575 non-null object

Word          1048575 non-null object

POS           1048575 non-null object

Tag           1048575 non-null object

dtypes: object(4)

memory usage: 32.0+ MB

We can also take a look at the actual dataset by using the following code. See 

Figure 8-7.

df.T

Figure 8-7. The GMB NER dataset
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To get a deeper understanding of the data we are dealing with and the total number 

of annotated tags, we can use the following code.

df['Sentence #'].nunique(), df.Word.nunique(), df.POS.nunique(), df.Tag.

nunique()

(47959, 35178, 42, 17)

This tells us that we have 47,959 sentences that contain 35,178 unique words. These 

sentences have a total of 42 unique POS tags and 17 unique NER tags. We can check out 

the unique NER tag distribution in our corpus as follows.

df.Tag.value_counts()

O        887908

B-geo     37644

B-tim     20333

B-org     20143

I-per     17251

B-per     16990

I-org     16784

B-gpe     15870

I-geo      7414

I-tim      6528

B-art       402

B-eve       308

I-art       297

I-eve       253

B-nat       201

I-gpe       198

I-nat        51

Name: Tag, dtype: int64
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The preceding output shows the unbalanced distribution of different tags in the 

dataset. The GMB dataset utilizes IOB tagging (Inside, Outside Beginning). IOB is a 

common tagging format for tagging tokens, which we discussed in Chapter 3. To refresh 

your memory:

• I- prefix before a tag indicates that the tag is inside a chunk.

• B- prefix before a tag indicates that the tag is the beginning of a 

chunk.

• O- tag indicates that a token belongs to no chunk (outside).

The NER tags in this dataset can be explained using the following notation, which is 

similar to the NER tags you have seen so far.

• geo = Geographical entity

• org = Organization

• per = Person

• gpe = Geopolitical entity

• tim = Time indicator

• art = Artifact

• eve = Event

• nat = Natural phenomenon

Anything outside these classes is called other, denoted as O. Now, as mentioned 

earlier, NER belongs to the sequence modeling class of problems. There are different 

algorithms to tackle sequence modeling, and CRF (Conditional Random Fields) is 

one such example. CRFs are proven to perform extremely well on NER and related 

domains. In this tutorial, we will attempt to develop our own NER based on CRFs. 

Discussion CRFs in detail are beyond the scope given this is not a hardcore machine 

learning book. To whet your appetite though, a CRF is an undirected graphical model 

whose nodes can be divided into exactly two disjoint sets X and Y, the observed 

and output variables, respectively; the conditional distribution p(Y | X) is then 

modeled. We recommend interested readers check out the following literature on 

CRFs to gain a deep dive:  https://repository.upenn.edu/cgi/viewcontent.

cgi?article=1162&context=cis_papers.
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Feature engineering is critical for building any machine learning or statistical model 

because without features, there is no learning. Similarly, the CRF model trains sequences 

of input features to learn transitions from one state (label) to another. To enable such an 

algorithm, we need to define features, which take into account different transitions. We 

will develop a function called word2features(), where we will transform each word into 

a feature dictionary depicting the following attributes or features:

• Lowercase version of the word

• Suffix containing the last three characters

• Suffix containing the last two characters

• Flags to determine uppercase, title case, numeric data, and POS tags

We also attach attributes related to previous and next words or tags to determine 

beginning of sentence (BOS) or end of sentence (EOS). These are features based on best 

practices and you can add your own features with experimentation. Always remember 

that feature engineering is an art as well as a science.

def word2features(sent, i):

    word = sent[i][0]

    postag = sent[i][1]

    features = {

        'bias': 1.0,

        'word.lower()': word.lower(),

        'word[-3:]': word[-3:],

        'word[-2:]': word[-2:],

        'word.isupper()': word.isupper(),

        'word.istitle()': word.istitle(),

        'word.isdigit()': word.isdigit(),

        'postag': postag,

        'postag[:2]': postag[:2],

    }

    if i > 0:

        word1 = sent[i-1][0]

        postag1 = sent[i-1][1]
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        features.update({

            '-1:word.lower()': word1.lower(),

            '-1:word.istitle()': word1.istitle(),

            '-1:word.isupper()': word1.isupper(),

            '-1:postag': postag1,

            '-1:postag[:2]': postag1[:2],

        })

    else:

        features['BOS'] = True

    if i < len(sent)-1:

        word1 = sent[i+1][0]

        postag1 = sent[i+1][1]

        features.update({

            '+1:word.lower()': word1.lower(),

            '+1:word.istitle()': word1.istitle(),

            '+1:word.isupper()': word1.isupper(),

            '+1:postag': postag1,

            '+1:postag[:2]': postag1[:2],

        })

    else:

        features['EOS'] = True

    return features

# convert input sentence into features

def sent2features(sent):

    return [word2features(sent, i) for i in range(len(sent))]

# get corresponding outcome NER tag label for input sentence

def sent2labels(sent):

    return [label for token, postag, label in sent]

Let’s now define a function to extract our word token, POS tag, and NER tag triplets 

from sentences. We will be applying this to all our input sentences.
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agg_func = lambda s: [(w, p, t) for w, p, t in zip(s['Word'].values.tolist(),

                                                  s['POS'].values.tolist(),

                                                  s['Tag'].values.tolist())]

grouped_df = df.groupby('Sentence #').apply(agg_func)

We can now view a sample annotated sentence from our dataset with the following 

code.

sentences = [s for s in grouped_df]

sentences[0]

('of', 'IN', 'O'), ('demonstrators', 'NNS', 'O'), ('have', 'VBP', 'O'), 

('marched', 'VBN', 'O'), ('through', 'IN', 'O'), ('London', 'NNP', 'B-geo'), 

('to', 'TO', 'O'), ('protest', 'VB', 'O'), ('the', 'DT', 'O'),  

('war', 'NN', 'O'), ('in', 'IN', 'O'), ('Iraq', 'NNP', 'B-geo'), ('and', 'CC', 'O'), 

('demand', 'VB', 'O'),('the', 'DT', 'O'), ('withdrawal', 'NN', 'O'),  

('of', 'IN', 'O'), ('British', 'JJ', 'B-gpe'), ('troops', 'NNS', 'O'), 

('from', 'IN', 'O'), ('that', 'DT', 'O'), ('country', 'NN', 'O'), ('.', '.', 'O')]

The preceding output shows a standard tokenized sentence with POS and NER 

tags. Let’s look at how each annotated tokenized sentence can be used for our feature 

engineering with the function we defined earlier.

sent2features(sentences[0][5:7])

[{'bias': 1.0, 'word.lower()': 'through', 'word[-3:]': 'ugh', 'word[-2:]': 'gh',

  'word.isupper()': False, 'word.istitle()': False, 'word.isdigit()': False,

  'postag': 'IN', 'postag[:2]': 'IN', 'BOS': True, '+1:word.lower()': 'london',

  '+1:word.istitle()': True, '+1:word.isupper()': False, '+1:postag': 'NNP',

  '+1:postag[:2]': 'NN'},

 {'bias': 1.0,  'word.lower()': 'london', 'word[-3:]': 'don', 'word[-2:]': 'on',

  'word.isupper()': False, 'word.istitle()': True, 'word.isdigit()': False,

  'postag': 'NNP', 'postag[:2]': 'NN', '-1:word.lower()': 'through',

  '-1:word.istitle()': False, '-1:word.isupper()': False, '-1:postag': 'IN',

  '-1:postag[:2]': 'IN', 'EOS': True}]

sent2labels(sentences[0][5:7])

['O', 'B-geo']
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The preceding output shows features on two sample word tokens and their 

corresponding NER tag labels. Let’s now prepare our train and test datasets by feature 

engineering on the input sentences and getting the corresponding NER tag labels to 

predict.

from sklearn.model_selection import train_test_split

import numpy as np

X = np.array([sent2features(s) for s in sentences])

y = np.array([sent2labels(s) for s in sentences])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, 

random_state=42)

X_train.shape, X_test.shape

((35969,), (11990,))

It is now time to start training our model. For this, we use sklearn-crfsuite like 

we mentioned before. The sklearn-crfsuite framework is a thin CRFsuite (python- 

crfsuite) wrapper that provides a Scikit-Learn compatible sklearn_crfsuite.CRF 

estimator. Thus, you can use Scikit-Learn model selection utilities (cross-validation and 

hyperparameter optimization) with it and save/load CRF models using joblib. You can 

install the library using the pip install sklearn_crfsuite command.

We will now train the model using the default configurations mentioned in the 

sklearn-crfsuite API docs, which you can access at https://sklearn-crfsuite.

readthedocs.io/en/latest/api.html. The intent here is NER tagging, so we will not 

focus too much on tuning our model. Some key hyperparameters and model arguments 

are mentioned here:

• algorithm: The training algorithm. We use L-BFGS for gradient 

descent for optimization and getting model parameters

• c1: Coefficient for Lasso (L1) regularization

• c2: Coefficient for Ridge (L2) regularization

• all_possible_transitions: Specify whether CRFsuite generates 

transition features that do not occur in the training data
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import sklearn_crfsuite

crf = sklearn_crfsuite.CRF(algorithm='lbfgs',

                           c1=0.1,

                           c2=0.1,

                           max_iterations=100,

                           all_possible_transitions=True,

                           verbose=True)

crf.fit(X_train, y_train)

loading training data to CRFsuite: 100%|██| 35969/35969 [00:15<00:00, 

2384.94it/s]

type: CRF1d

Number of features: 133629

Seconds required: 3.486

L-BFGS optimization

c1: 0.100000

c2: 0.100000

num_memories: 6

max_iterations: 100

epsilon: 0.000010

stop: 10

delta: 0.000010

linesearch: MoreThuente

linesearch.max_iterations: 20

Iter 1   time=4.01  loss=1264028.26 active=132637 feature_norm=1.00

Iter 2   time=3.99  loss=994059.01 active=131294 feature_norm=4.42

...

...

Iter 99  time=2.07  loss=32324.92 active=58249 feature_norm=219.98

Iter 100 time=2.09  loss=32316.67 active=58226 feature_norm=220.04

L-BFGS terminated with the maximum number of iterations

Total seconds required for training: 228.530

Storing the model

Number of active features: 58226 (133629)
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Number of active attributes: 29279 (90250)

Number of active labels: 17 (17)

You can now save this model using the following code, which leverages the joblib 

framework.

from sklearn.externals import joblib

joblib.dump(crf, 'ner_model.pkl')

If this model is taking too long to train, you can load the pretrained model provided 

in our GitHub repository at https://github.com/dipanjanS/text-analytics-with- 

python using the following code.

crf = joblib.load('ner_model.pkl')

Let’s evaluate our model performance for NER tagging on the test data now! The 

following code shows a sample prediction and the actual labels. Looks like we are 

doing well!

y_pred = crf.predict(X_test)

print(y_pred[0])

['O', 'O', 'O', 'O', 'B-per', 'I-per', 'O', 'B-org', 'O', 'O', 'B-gpe', 

'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 

'O', 'O', 'O']

print(y_test[0])

['O', 'O', 'O', 'O', 'B-per', 'I-per', 'O', 'B-org', 'O', 'O', 'B-gpe', 

'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 

'O', 'O', 'O']

The following code helps us evaluate our model performance on the entire test 

dataset and get key classification model performance metrics.

from sklearn_crfsuite import metrics as crf_metrics

labels = list(crf.classes_)

labels.remove('O')

print(crf_metrics.flat_classification_report(y_test, y_pred, 

labels=labels))
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                precision    recall  f1-score   support

       B-org       0.81      0.73      0.77      5116

       B-per       0.85      0.84      0.84      4239

       I-per       0.85      0.90      0.88      4273

       B-geo       0.86      0.91      0.89      9403

       I-geo       0.81      0.80      0.81      1826

       B-tim       0.93      0.89      0.91      5095

       I-org       0.82      0.79      0.80      4195

       B-gpe       0.97      0.94      0.96      3961

       I-tim       0.84      0.81      0.82      1604

       B-nat       0.50      0.24      0.32        55

       B-eve       0.51      0.33      0.40        80

       B-art       0.36      0.14      0.20       102

       I-art       0.24      0.07      0.10        90

       I-eve       0.45      0.19      0.27        74

       I-gpe       0.86      0.53      0.66        36

       I-nat       0.57      0.22      0.32        18

   micro avg       0.86      0.85      0.86     40167

   macro avg       0.70      0.58      0.62     40167

weighted avg       0.86      0.85      0.85     40167

We have intentionally left out the Others tag to understand the performance of 

the model on the remaining tags, which are of key interest. The evaluation statistics 

showcase a model that seems to have learned the transitions quite well, giving us an 

overall F1-score of 85%! We can achieve even better results by fine tuning the feature 

engineering step along with hyper-parameter tuning.

 Building an End-to-End NER Tagger with Our 
Trained NER Model
There is no fun (or value!) if we cannot use our model to tag new sentences in the future, 

assuming we would want to put this model in production. Let’s try to build an end-to- 

end workflow to perform NER tagging on our sample document. Just to refresh your 

memory, our sample document is as follows.
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import re

text = """Three more countries have joined an "international grand 

committee" of parliaments, adding to calls forFacebook’s boss, Mark 

Zuckerberg, to give evidence on misinformation to the coalition. Brazil, 

Latvia and Singapore bring the total to eight different parliaments across 

the world, with plans to send representatives to London on 27 November 

with the intention of hearing from Zuckerberg. Since the Cambridge 

Analytica scandal broke, the Facebook chief has only appeared in front of 

two legislatures: the American Senate and House of Representatives, and 

the European parliament. Facebook has consistently rebuffed attempts from 

others, including the UK and Canadian parliaments, to hear from Zuckerberg. 

He added that an article in the New York Times on Thursday, in which the 

paper alleged a pattern of behaviour from Facebook to "delay, deny and 

deflect" negative news stories, "raises further questions about how recent 

data breaches were allegedly dealt with within Facebook."

"""

text = re.sub(r'\n', ", text)

The first step in the pipeline is to tokenize our text and perform POS tagging, as 

depicted in the following code.

import nltk

text_tokens = nltk.word_tokenize(text)

text_pos = nltk.pos_tag(text_tokens)

text_pos[:10]

[('Three', 'CD'), ('more', 'JJR'), ('countries', 'NNS'), ('have', 'VBP'), 

('joined', 'VBN'), ('an', 'DT'), ('"', 'NNP'), ('international', 'JJ'), 

('grand', 'JJ'), ('committee', 'NN')]

The next step is to extract features from the POS tagged text document, which we can 

do using our previously defined function.

features = [sent2features(text_pos)]

features[0][0]
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{'bias': 1.0, 'word.lower()': 'three', 'word[-3:]': 'ree', 'word[-2:]': 'ee',

  'word.isupper()': False, 'word.istitle()': True, 'word.isdigit()': False,

  'postag': 'CD', 'postag[:2]': 'CD', 'BOS': True, '+1:word.lower()': 'more',

  '+1:word.istitle()': False, '+1:word.isupper()': False, '+1:postag': 'JJR',

 '+1:postag[:2]': 'JJ'}

It is now time to use the CRF model we just trained to predict the features we 

engineered from our sample document.

labels = crf.predict(features)

doc_labels = labels[0]

doc_labels[10:20]

['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-art', 'I-art']

The final step involves combining the actual text tokens with their corresponding 

NER tags and retrieving relevant named entities from the NER tags. See Figure 8-8.

text_ner = [(token, tag) for token, tag in zip(text_tokens, doc_labels)]

print(text_ner)

[('Three', 'O'), ('more', 'O'), ('countries', 'O'), ..., ('Facebook', 

'B-art'), ("', 'I-art'), ('s', 'O'), ('boss', 'O'), (',', 'O'), ('Mark', 

'B-per'), ('Zuckerberg', 'I-per'), (',', 'O'), ('to', 'O'), ('give', 'O'), 

('evidence', 'O'), ('on', 'O'), ('misinformation', 'O'), ('to', 'O'), 

('the', 'O'), ('coalition', 'O'), ('.', 'O'), ('Brazil', 'B-geo'), ...]

# extract and display all named entities

named_entities = []

temp_entity_name = "

temp_named_entity = None

for term, tag in text_ner:

    if tag != 'O':

        temp_entity_name = ' '.join([temp_entity_name, term]).strip()

        temp_named_entity = (temp_entity_name, tag)

    else:

        if temp_named_entity:

            named_entities.append(temp_named_entity)
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            temp_entity_name = "

            temp_named_entity = None

import pandas as pd

pd.DataFrame(named_entities, columns=['Entity', 'Tag'])

Figure 8-8. Named entities from our NER model

Congratulations! You have built your own NER tagger from scratch and it is 

performing quite well. This should enable you to build more sophisticated NER taggers, 

maybe in your own specialized domains.
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 Analyzing Semantic Representations
We usually communicate in the form of messages, either in spoken form or written 

form, with other people or interfaces. These messages are typically a collection of 

words, phrases, and sentences. They have their own semantics and context. So far we 

talked about semantics and relations between various lexical units. But how do we 

represent the meaning of semantics conveyed by a message or messages? How do 

humans understand what someone is telling them? How do we believe in statements 

and propositions and evaluate outcomes and what action to take? It is easy because 

the brain helps us in logic and reasoning, but computationally can we do the same? 

The answer is yes we can. Frameworks like propositional logic and first order logic help 

us in the representation of semantics. We discussed this in detail in Chapter 1, in the 

subsection “Representation of Semantics” under the “Language Semantics” section. 

We encourage you to go through that section once more to refresh your memory. In 

the following sections, we look at ways to represent propositional and first order logic 

to prove or disprove propositions, statements, and predicates using practical examples 

and code.

 Propositional Logic
We already explained that propositional logic is the study of propositions, statements, 

and sentences. A proposition is usually declarative, having a binary value of either 

true or false. There are also various logical operators like conjunction, disjunction, 

implication, and equivalence and we also study the effects of applying these operators 

to multiple propositions to understand their behavior and outcome. Let’s consider our 

example from Chapter 1 with regards to two propositions P and Q, such that they can be 

represented as follows.

P: He is hungry

Q: He will eat a sandwich

We will now try to build truth tables for operations on these propositions using NLTK 

based on the various logical operators discussed in Chapter 1 (refer to the “Propositional 

Logic” section for more details) and then derive outcomes computationally.

import nltk

import pandas as pd

import os
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# assign symbols and propositions

symbol_P = 'P'

symbol_Q = 'Q'

proposition_P = 'He is hungry'

propositon_Q = 'He will eat a sandwich'

# assign various truth values to the propositions

p_statuses = [False, False, True, True]

q_statuses = [False, True, False, True]

# assign the various expressions combining the logical operators

conjunction = '(P & Q)'

disjunction = '(P | Q)'

implication = '(P -> Q)'

equivalence = '(P <-> Q)'

expressions = [conjunction, disjunction, implication, equivalence]

expressions

['(P & Q)', '(P | Q)', '(P -> Q)', '(P <-> Q)']

# evaluate each expression using propositional logic

results = []

for status_p, status_q in zip(p_statuses, q_statuses):

    dom = set([])

    val = nltk.Valuation([(symbol_P, status_p),

                          (symbol_Q, status_q)])

    assignments = nltk.Assignment(dom)

    model = nltk.Model(dom, val)

    row = [status_p, status_q]

    for expression in expressions:

      # evaluate each expression based on proposition truth values

        result = model.evaluate(expression, assignments)

        row.append(result)

    results.append(row)

# build the result table

columns = [symbol_P, symbol_Q, conjunction,
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           disjunction, implication, equivalence]

result_frame = pd.DataFrame(results, columns=columns)

# display results

print('P:', proposition_P)

print('Q:', propositon_Q)

print()

print('Expression Outcomes:-')

print(result_frame)

P: He is hungry

Q: He will eat a sandwich

Expression Outcomes:-

       P      Q (P & Q) (P | Q) (P -> Q) (P <-> Q)

0  False  False   False   False     True      True

1  False   True   False    True     True     False

2   True  False   False    True    False     False

3   True   True    True    True     True      True

This output depicts the various truth values of the two propositions. When we 

combine them with various logical operators, you will find that the results match what 

we manually evaluated in Chapter 1. For example, P & Q indicates that “he is hungry 

and he will eat a sandwich” is true only when both of the individual propositions are 

true. We use NLTK’s Valuation class to create a dictionary of the propositions and their 

various outcome states. We use the Model class to evaluate each expression, where the 

evaluate() function internally calls the recursive function satisfy(), which helps to 

evaluate the outcome of each expression with the propositions based on the assigned 

truth values.

 First Order Logic
Propositional logic (PL) has several limitations, like the inability to represent facts or 

complex relationships and inferences. PL also has limited expressive power because, 

for each new proposition, we need a unique symbolic representation and it becomes 

very difficult to generalize facts. This is where first order logic (FOL) works really well 

with features like functions, quantifiers, relations, connectives, and symbols. It provides 

a more rich and powerful representation for semantic information. The “First Order 
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Logic” subsection under “Representation of Semantics” in Chapter 1 provides detailed 

information about how first order logic works.

In this section, we build several FOL representations similar to what we did manually 

in Chapter 1 using mathematical representations. Here, we build them in our code using 

similar syntax and leverage NLTK and some theorem provers to prove the outcomes of 

various expressions based on predefined conditions and relationships, similar to what 

we did for PL.

The key takeaway for you from this section should be getting to know how 

to represent FOL representations in Python and how to perform first order logic 

inferences using proofs based on some goal and predefined rules and events. There 

are several theorem provers that you can use to evaluate expressions and proving 

theorems. The NLTK package has three provers, namely Prover9, TableauProver, and 

ResolutionProver. The first one is free and available for download at https://www.

cs.unm.edu/~mccune/prover9/download/. You can extract the contents in a location of 

your choice. We use both ResolutionProver and Prover9 in our examples. The following 

snippet helps set up the necessary dependencies for FOL expressions and evaluations.

import nltk

import os

# for reading FOL expressions

read_expr = nltk.sem.Expression.fromstring

# initialize theorem provers (you can choose any)

os.environ['PROVER9'] = r'E:/prover9/bin'

prover = nltk.Prover9()

# I use the following one for our examples

prover = nltk.ResolutionProver()

Now that we have our dependencies ready, let’s evaluate a few FOL expressions. 

Consider a simple expression that says “If an entity jumps over another entity, the 

reverse cannot happen”. Assuming the entities to be x and y, we can represent this is 

FOL as ∀x ∀y (jumps_over(x, y) → ¬jumps_over(y, x)), which signifies that for all 

x and y, if x jumps over y, it implies that y cannot jump over x. Consider now that we 

have two entities—fox and dog—and the fox jumps over the dog. This event can be 

represented by jumps_over(fox, dog). Our objective is to evaluate the outcome of 
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jumps_over(dog, fox) considering this expression and the event that occurred. The 

following snippet shows how we can do this.

# set the rule expression

rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))')

# set the event occurred

event = read_expr('jumps_over(fox, dog)')

# set the outcome we want to evaluate -- the goal

test_outcome = read_expr('jumps_over(dog, fox)')

# get the result

prover.prove(goal=test_outcome,

             assumptions=[event, rule],

             verbose=True)

[1] {-jumps_over(dog,fox)}                    A

[2] {jumps_over(fox,dog)}                     A

[3] {-jumps_over(z4,z3), -jumps_over(z3,z4)}  A

[4] {-jumps_over(dog,fox)}                    (2, 3)

Out[9]: False

This output depicts the final result for our goal test_outcome is false, i.e., the dog 

cannot jump over the fox if the fox has already jumped over the dog. This is based on 

our rule expression and the events that are assigned to the assumptions parameter in the 

prover. The sequence of steps that lead to the result is also shown in the output.

Let’s now consider another FOL expression rule: ∀x studies(x, exam) → pass(x, 

exam). This tells us that for all instances of x, if x studies for the exam, he/she will pass 

the exam. Let’s represent this rule and consider two students—John and Pierre—and 

assume that John does not study for the exam, but Pierre does. Can we then determine 

whether they will pass the exam based on the expression rule? The following snippet 

shows the result.

# set the rule expression

rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')

# set the events and outcomes we want to determine

event1 = read_expr('-studies(John, exam)')

Chapter 8  SemantiC analySiS



563

test_outcome1 = read_expr('pass(John, exam)')

# get results

prover.prove(goal=test_outcome1,

             assumptions=[event1, rule],

             verbose=True)

[1] {-pass(John,exam)}                  A

[2] {-studies(John,exam)}               A

[3] {-studies(z6,exam), pass(z6,exam)}  A

[4] {-studies(John,exam)}               (1, 3)

Out[10]: False

# set the events and outcomes we want to determine

event2 = read_expr('studies(Pierre, exam)')

test_outcome2 = read_expr('pass(Pierre, exam)')

# get results

prover.prove(goal=test_outcome2,

             assumptions=[event2, rule],

             verbose=True)

[1] {-pass(Pierre,exam)}                A

[2] {studies(Pierre,exam)}              A

[3] {-studies(z8,exam), pass(z8,exam)}  A

[4] {-studies(Pierre,exam)}             (1, 3)

[5] {pass(Pierre,exam)}                 (2, 3)

[6] {}                                  (1, 5)

Out[11]: True

Thus, you can see from these evaluations that Pierre does pass the exam because he 

studied for the exam. However, John who doesn’t pass the exam since he did not study 

for it. Let’s consider a more complex example with several entities that perform several 

actions, as follows.

• There are two dogs, Rover (r) and Alex (a)

• There is one cat, Garfield (g)
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• There is one fox, Felix (f)

• Two animals—Alex (a) and Felix (f)—run, as denoted by the runs() function

• Two animals—Rover (r) and Garfield (g)—sleep, as denoted by the 

sleeps() function

• Two animals—Felix (f) and Alex (a)—can jump over the other two, as 

denoted by the jumps_over() function

Taking all these assumptions, the following snippet builds a FOL-based model with 

the domain and assignment values based on the entities and functions. Once we build 

this model, we evaluate various FOL-based expressions to determine their outcomes 

and prove the theorems, like we did earlier.

# define symbols (entities\functions) and their values

rules = """

    rover => r

    felix => f

    garfield => g

    alex => a

    dog => {r, a}

    cat => {g}

    fox => {f}

    runs => {a, f}

    sleeps => {r, g}

    jumps_over => {(f, g), (a, g), (f, r), (a, r)}

    """

val = nltk.Valuation.fromstring(rules)

# view the valuation object of symbols and their assigned values (dictionary)

Val

{'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps': 

set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog': 

set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a', 'r'),  

('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'}

# define domain and build FOL based model

dom = {'r', 'f', 'g', 'a'}
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m = nltk.Model(dom, val)

# evaluate various expressions

m.evaluate('jumps_over(felix, rover) & dog(rover) & runs(rover)', None)

False

m.evaluate('jumps_over(felix, rover) & dog(rover) & -runs(rover)', None)

True

m.evaluate('jumps_over(alex, garfield) & dog(alex) & cat(garfield) & 

sleeps(garfield)', None)

True

# assign rover to x and felix to y in the domain

g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])

# evaluate more expressions based on above assigned symbols

m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)

True

m.evaluate('exists y. (fox(y) & runs(y))', g)

True

This snippet depicts the evaluation of expressions based on the valuation of different 

symbols, based on the rules and domain. We create FOL-based expressions and see 

their outcomes based on the predefined assumptions. For example, the first expression 

returns false because Rover never runs() and the second and third expressions are 

true because they satisfy all the conditions, like Felix and Alex can jump over Rover or 

Garfield, Rover is a dog, which does not run, and Garfield is a cat.

The second set of expressions is evaluated based on assigning Felix and Rover to 

specific symbols in our domain (dom) and passing that variable (g) when evaluating the 

expressions. We can even satisfy open formulae or expressions using the satisfiers() 

function, as depicted here:

# who are the animals who run?

formula = read_expr('runs(x)')

m.satisfiers(formula, 'x', g)
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{'a', 'f'}

# animals who run and are also a fox?

formula = read_expr('runs(x) & fox(x)')

m.satisfiers(formula, 'x', g)

{'f'}

These outputs are self-explanatory, wherein we evaluate open ended questions 

like which animals run? Which animals can run and are also foxes? We get the relevant 

symbols in our outputs, which we can map back to the actual animal names (Hint: a: 

alex, f: felix). We encourage you to experiment with more propositions and FOL 

expressions by building your own assumptions, domain, and rules.

 Summary
In this chapter, we covered a variety of topics focused on semantic analysis of textual 

data. We revisited several of our concepts from Chapter 1 with regards to language 

semantics. We looked at the WordNet corpus in detail and explored the concept of 

synsets with practical examples. We also analyzed various lexical semantic relations from 

Chapter 1 using synsets and real-world examples. We looked at relationships including 

entailments, homonyms and homographs, synonyms and antonyms, hyponyms and 

hypernyms, and holonyms and meronyms.

Semantic relations and similarity computation techniques were also discussed in 

detail, with examples that leveraged common hypernyms among various synsets. Some 

popular techniques widely used in semantic and information extraction were also 

discussed, which included word sense disambiguation and named entity recognition. 

We looked at state-of-the-art pretrained NER models from spaCy and NLTK, including 

leveraging Stanford Core NLP NER models. We also learned how to build our own NER 

tagging model from scratch! Besides semantic relations, we also revisited concepts 

related to semantic representations, namely propositional logic and first order logic. We 

leveraged the use of theorem provers and evaluated propositions and logical expressions 

computationally. The next chapter focuses on one of the most popular applications in 

NLP, sentiment analysis. Stay tuned!
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CHAPTER 9

Sentiment Analysis
In this chapter, we cover one of the most interesting and widely used aspects pertaining 

to natural language processing (NLP), text analytics, and machine learning. The 

problem at hand is sentiment analysis or opinion mining, where we want to analyze 

some textual documents and predict their sentiment or opinion based on the content of 

these documents. Sentiment analysis is perhaps one of the most popular applications of 

natural language processing and text analytics, with a vast number of websites, books, 

and tutorials on this subject. Sentiment analysis seems to work best on subjective text, 

where people express opinions, feelings, and their mood. From a real-world industry 

standpoint, sentiment analysis is widely used to analyze corporate surveys, feedback 

surveys, social media data, and reviews for movies, places, commodities, and many 

more. The idea is to analyze the reactions of people about a specific entity and take 

insightful actions based on their sentiments.

A text corpus consists of multiple text documents and each document can be 

as simple as a single sentence to as complex as a complete document with multiple 

paragraphs. Textual data, in spite of being highly unstructured, can be classified into two 

major types of documents. Factual documents typically depict some form of statements 

or facts with no specific feelings or emotion attached to them. These are also known as 

objective documents. Subjective documents, on the other hand, express feelings, mood, 

emotions, and opinions.

Sentiment analysis is also popularly known as opinion analysis or opinion mining. 

The key idea is to use techniques from text analytics, NLP, machine learning, and 

linguistics to extract important information or data points from unstructured text. This 

in turn can help us derive qualitative outputs like the overall sentiment being on a 

positive, neutral, or negative scale and quantitative outputs like the sentiment polarity, 

subjectivity, and objectivity proportions. Sentiment polarity is typically a numeric 

score assigned to the positive and negative aspects of a text document and is based on 
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subjective parameters like specific words and phrases expressing feelings and emotion. 

Neutral sentiments typically have a 0 polarity, since it does not express any specific 

sentiment, positive sentiments have polarity > 0, and negative sentiments are < 0. Of 

course, you can always change these thresholds based on the type of text you are dealing 

with. There are no hard constraints on this.

In this chapter, we focus on analyzing a large corpus of movie reviews and deriving 

sentiment from them. We cover a wide variety of techniques for analyzing sentiment, 

including the following:

• Unsupervised lexicon-based models

• Traditional supervised machine learning models

• Newer supervised deep learning models

• Advanced supervised deep learning models

Besides looking at various approaches and models, we also briefly recap important 

aspects in the machine learning pipeline around text preprocessing and normalization. 

Besides this, we also perform an in-depth analysis of our predictive models, including 

model interpretation and topic models.

The key idea here is to understand how we tackle a problem like sentiment analysis 

on unstructured text, learn various techniques and models, and understand how to 

interpret the results. This will enable you to use these methodologies in the future on 

your own datasets. All the code examples showcased in this chapter are available on the 

book’s official GitHub repository at https://github.com/dipanjanS/text-analytics- 

with-python/tree/master/New-Second-Edition. Let’s get started!

 Problem Statement
The main objective in this chapter is to predict the sentiment of a number of movie 

reviews obtained from the Internet Movie Database (IMDB). This dataset contains 

50,000 movie reviews that have been labeled with positive and negative sentiment 

class labels based on the review content. There are additional movie reviews that are 

unlabeled. The dataset can be obtained from http://ai.stanford.edu/~amaas/

data/sentiment/, courtesy of Stanford University and Andrew L. Maas, Raymond 

E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. This dataset 

was also used in their famous paper, “Learning Word Vectors for Sentiment Analysis,” 
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from proceedings of the 49th Annual Meeting of the Association for Computational 

Linguistics (ACL 2011). They have datasets in the form of raw text as well as already 

processed Bag of Words formats.

We use the raw labeled movie reviews for our analyses in this chapter. Hence our 

task is to predict the sentiment of 15,000 labeled movie reviews and use the remaining 

35,000 reviews to train our supervised models. We will still predict sentiments for 15,000 

reviews in the case of unsupervised models to maintain consistency and enable ease of 

comparison.

 Setting Up Dependencies
We will be using several Python libraries and frameworks specific to text analytics, 

NLP, and machine learning. While most of them are mentioned in each section, you 

need to make sure you have Pandas, NumPy, SciPy, and Scikit-Learn installed, which 

are used for data processing and machine learning. Deep learning frameworks used in 

this chapter include Keras with the TensorFlow backend. NLP libraries we use include 

spaCy, NLTK, and Gensim. We also use our custom developed text preprocessing 

and normalization module from Chapter 3, which you can find in the files named 

contractions.py and text_normalizer.py. Utilities related to supervised model fitting, 

prediction, and evaluation are present in model_evaluation_utils.py, so make sure 

you place these modules in the same directory and the other Python files and Jupyter 

notebooks for this chapter.

 Getting the Data
The dataset will be available along with the code files for this chapter in the GitHub 

repository for this book at https://github.com/dipanjanS/text-analytics-with- 

python under the file called movie_reviews.csv. It contains 50,000 labeled IMDB 

movie reviews. This should be present in the corresponding notebooks folder for this 

chapter under the directory for the Second Edition of the book. You can also download 

the data from http://ai.stanford.edu/~amaas/data/sentiment/ if needed. Once 

you have the CSV file, you can easily load it in Python using the read_csv(...) utility 

function from Pandas.
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 Text Preprocessing and Normalization
One of the key steps before diving into the process of feature engineering and modeling 

involves cleaning, preprocessing, and normalizing text to bring text components like 

phrases and words to a standard format. We talked about this several times because 

it is one of the most crucial stages for any NLP pipeline. Preprocessing enables 

standardization across a document corpus, which helps build meaningful features and 

reduce noise that can be introduced due to many factors, such as irrelevant symbols, 

special characters, XML and HTML tags, and so on. Our text_normalizer module built 

in Chapter 3 contains all the necessary utilities for our text normalization needs. You can 

also refer to a sample Jupyter notebook named Text Normalization Demo.ipynb for a 

more interactive experience. Just to refresh your memory, the main components in our 

text normalization pipeline are described in this section.

• Cleaning text: Our text often contains unnecessary content like 

HTML tags, which do not add much value when analyzing sentiment. 

Hence, we need to make sure we remove them before extracting 

features. The BeautifulSoup library does an excellent job in providing 

necessary functions for this. Our strip_html_tags(...) function 

cleans and strips out HTML code.

• Removing accented characters: In our dataset, we are dealing 

with reviews in the English language so we need to make sure that 

accented characters are converted and standardized into ASCII 

characters. A simple example is converting é to e. Our remove_

accented_chars(...) function helps us in this respect.

• Expanding contractions: In the English language, contractions are 

shortened versions of words. These shortened versions of existing 

words or phrases are created by removing specific letters and 

sounds. More often than not, vowels are removed from the words. 

Examples include do not to don’t and I would to I’d. Contractions 

pose a problem in text normalization because we have to deal with 

special characters like the apostrophe and we also have to convert 

each contraction to its expanded, original form. Our expand_

contractions(...) function uses regular expressions and various 

contractions mapped in our contractions.py module to expand all 

contractions in our text corpus.

Chapter 9  Sentiment analySiS



571

• Removing special characters: Another important task in text 

cleaning and normalization is to remove special characters and 

symbols that add to the noise in unstructured text. Simple regexes 

can be used to achieve this. Our remove_special_characters(...) 

function removes special characters. In our code, we have retained 

numbers but you can also remove numbers if you do not want them 

in your normalized corpus.

• Stemming and lemmatization: Word stems are usually the base 

form of possible words, which can be created by attaching affixes, like 

prefixes and suffixes, to the stem to create new words. This is known 

as inflection. The reverse process of obtaining the base form of a word 

is known as stemming. A simple example is WATCHES, WATCHING, 

and WATCHED, which have the word root stem WATCH. The NLTK 

package offers a wide range of stemmers, like the PorterStemmer 

and LancasterStemmer. Lemmatization is very similar to stemming, 

where we remove word affixes to get to the base form of a word. 

However, the base form is known as the root word not the root stem. 

The difference being that the root word is always a lexicographically 

correct word (present in the dictionary) but the root stem may not 

correct. We use lemmatization only in our normalization pipeline 

to retain lexicographically correct words. The lemmatize_text(...) 

function helps us in this regard.

• Removing stopwords: Words that have little or no significance, 

especially when constructing meaningful features from text, are 

known as stopwords. These are usually words that end up having the 

maximum frequency if you do a simple term or word frequency in a 

document corpus. Words like “a,” “an,” “the,” and so on are stopwords. 

There is no universal stopword list, but we use a standard English 

language stopwords list from NLTK. You can also add your own 

domain specific stopwords if needed. The remove_stopwords(...) 

function removes stopwords and retains words having the most 

significance and context in a corpus.
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We use these components and tie them together in the following function called 

normalize_corpus(...), which can be used to take a document corpus as input 

and return the same corpus with cleaned and normalized text documents. Refer to 

Chapter 3 to do a more detailed recap around text preprocessing. Now that we have our 

normalization module ready, we can start modeling and analyzing our corpus.

 Unsupervised Lexicon-Based Models
We talked about unsupervised learning methods in the past, which refer to specific 

modeling methods that can be applied directly to data features without the presence of 

labeled data. One of the major challenges in any organization is getting labeled datasets 

due the lack of time as well as resources to do this tedious task. Unsupervised methods 

are very useful in this scenario and we look at some of these methods in this section. 

Even though we have labeled data, this section should give you a good idea of how 

lexicon based models work and you can apply them to your own datasets when you do 

not have labeled data.

Unsupervised sentiment analysis models use well curated knowledgebases, 

ontologies, lexicons, and databases, which have detailed information pertaining to 

subjective words, phrases including sentiment, mood, polarity, objectivity, subjectivity, 

and so on. A lexicon model typically uses a lexicon, also known as a dictionary or 

vocabulary of words specifically aligned to sentiment analysis. These lexicons contain 

a list of words associated with positive and negative sentiment, polarity (magnitude of 

negative or positive score), parts of speech (POS) tags, subjectivity classifiers (strong, 

weak, neutral), mood, modality, and so on. You can use these lexicons and compute 

the sentiment of a text document by matching the presence of specific words from 

the lexicon and then looking at other factors like presence of negation parameters, 

surrounding words, overall context, phrases, and aggregate overall sentiment polarity 

scores to decide the final sentiment score. There are several popular lexicon models 

used for sentiment analysis. Some of them are as follows:

• Bing Liu’s lexicon

• MPQA subjectivity lexicon

• Pattern lexicon

• TextBlob lexicon

• AFINN lexicon
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• SentiWordNet lexicon

• VADER lexicon

This is not an exhaustive list of lexicon models but these are definitely among the 

most popular ones available today. We cover the last three lexicon models in more detail 

with hands-on code and examples using our movie review dataset. We use the last 15,000 

reviews and predict their sentiment to see how well our model performs based on model 

evaluation metrics like accuracy, precision, recall, and F1-score (which we covered in detail 

in Chapter 5). Since we have labeled data, it will be easy for us to see how well our sentiment 

values for these movie reviews match our lexicon-model based predicted sentiment 

values. You can refer to the Jupyter notebook titled Sentiment Analysis - Unsupervised 

Lexical.ipynb for an interactive experience. Before we start our analysis, let’s load the 

necessary dependencies and configuration settings using the following snippet.

In [1]: import pandas as pd

   ...: import numpy as np

   ...: import text_normalizer as tn

   ...: import model_evaluation_utils as meu

   ...:

   ...: np.set_printoptions(precision=2, linewidth=80)

Now, we can load our IMDB review dataset and subset out the last 15,000 reviews for our 

analysis. We don’t need to normalize them since most of the frameworks we will be using 

handle this internally, but for some we might use some basic preprocessing steps as needed.

In [2]: dataset = pd.read_csv('movie_reviews.csv.bz2',

                               compression='bz2')

   ...:

   ...: reviews = np.array(dataset['review'])

   ...: sentiments = np.array(dataset['sentiment'])

   ...:

   ...: # extract data for model evaluation

   ...: test_reviews = reviews[35000:]

   ...: test_sentiments = sentiments[35000:]

   ...: sample_review_ids = [7626, 3533, 13010]

We also extract some sample reviews so that we can run our models on them and 

interpret their results in detail.
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 Bing Liu's Lexicon
This lexicon contains over 6,800 words, which have been divided into two files named 

positive-words.txt, containing around 2,000 words/phrases, and negative-words.

txt, which contains over 4,800 words/phrases. The lexicon has been developed and 

curated by Bing Liu over several years and has also been explained in detail in his 

original paper by Nitin Jindal and Bing Liu, entitled “Identifying Comparative Sentences 

in Text Documents,” from the proceedings of the 29th Annual International ACM SIGIR, 

Seattle 2006. If you want to use this lexicon, you can get it from https://www.cs.uic.

edu/~liub/FBS/sentiment-analysis.html#lexicon, which includes a link to download 

it as an archive (RAR format).

 MPQA Subjectivity Lexicon
The term MPQA stands for Multi-Perspective Question Answering and it contains a 

diverse set of resources pertaining to opinion corpora, subjectivity lexicon, subjectivity 

sense annotations, argument lexicon, debate corpora, opinion finder, and many more. 

This is developed and maintained by the University of Pittsburgh and their official website 

at http://mpqa.cs.pitt.edu/ contains all the necessary information. The subjectivity 

lexicon is a part of their opinion finder framework and contains subjectivity clues and 

contextual polarity. Details about this can be found in the paper by Theresa Wilson, Janyce 

Wiebe, and Paul Hoffmann, entitled “Recognizing Contextual Polarity in Phrase-Level 

Sentiment Analysis” from the proceedings of HLT-EMNLP-2005. You can download the 

subjectivity lexicon from their official website at http://mpqa.cs.pitt.edu/lexicons/

subj_lexicon/. It contains subjectivity clues present in the dataset named subjclueslen1-

HLTEMNLP05.tff. The following snippet shows some sample lines from the lexicon.

type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n 

priorpolarity=negative

type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y 

priorpolarity=negative

...

...

type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n 

priorpolarity=positive

type=strongsubj len=1 word1=zest pos1=noun stemmed1=n 

priorpolarity=positive
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Each line consists of a specific word and its associated polarity, POS tag information, 

length (right now only words of length 1 are present), subjective context, and stem 

information.

 Pattern Lexicon
The pattern package is a complete natural language processing framework available 

in Python and can be used for text processing, sentiment analysis, and more. This has 

been developed by CLiPS (Computational Linguistics and Psycholinguistics), a research 

center associated with the Linguistics Department of the Faculty of Arts of the University 

of Antwerp. The pattern uses its own sentiment module, which internally uses a lexicon 

that you can access from their official GitHub repository at https://github.com/

clips/pattern/blob/master/pattern/text/en/en-sentiment.xml. It this contains the 

complete subjectivity-based lexicon database. Each line in the lexicon typically looks like 

the following sample.

<word form="absurd" wordnet_id="a-02570643" pos="JJ" sense="incongruous" 

polarity="-0.5" subjectivity="1.0" intensity="1.0" confidence="0.9" />

Thus you get important metadata information like WordNet corpus identifiers, 

polarity scores, word sense, POS tags, intensity, subjectivity scores, and so on. These 

can in turn be used to compute sentiment over a text document based on polarity and 

subjectivity. Unfortunately, the pattern has still not been ported officially for Python 

3.x and it works on Python 2.7.x. However, you can load up this lexicon and do your 

own modeling as needed. Even better, the popular framework TextBlob uses this for 

sentiment analysis and is available in Python 3!

 TextBlob Lexicon
As mentioned, the pattern package has a nice module for sentiment analysis but is 

sadly only available for Python 2.7.x. However, our focus is on building applications on 

Python 3.x, so we can use TextBlob out of the box! The lexicon that TextBlob uses is the 

same one as pattern and is available in their source code on GitHub (https://github.

com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml). Some sample 

examples are shown from the lexicon as follows.
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<word form="abhorrent" wordnet_id="a-1625063" pos="JJ" sense="offensive 

to the mind" polarity="-0.7" subjectivity="0.8" intensity="1.0" 

reliability="0.9" />

<word form="able" cornetto_synset_id="n_a-534450" wordnet_id="a-01017439" 

pos="JJ" sense="having a strong healthy body" polarity="0.5" 

subjectivity="1.0" intensity="1.0" confidence="0.9" />

Typically, specific adjectives have a polarity score (negative/positive, -1.0 to +1.0) 

and a subjectivity score (objective/subjective, +0.0 to +1.0). The reliability score specifies 

if an adjective was hand-tagged (1.0) or inferred (0.7). Words are tagged per sense, e.g., 

ridiculous (pitiful) = negative, ridiculous (humorous) = positive. The Cornetto id (lexical 

unit id) and Cornetto synset id refer to the Cornetto lexical database for Dutch. The 

WordNet id refers to the WordNet3 lexical database for English. The part-of-speech 

tags (POS) use the Penn Treebank convention. Let’s look at how we can use TextBlob for 

sentiment analysis.

for review, sentiment in zip(test_reviews[sample_review_ids], test_

sentiments[sample_review_ids]):

    print('REVIEW:', review)

    print('Actual Sentiment:', sentiment)

     print('Predicted Sentiment polarity:', textblob.TextBlob(review).

sentiment.polarity)

    print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay - 

no sense at all... SKIP IT!

Actual Sentiment: negative

Predicted Sentiment polarity: -0.3625

------------------------------------------------------------

REVIEW: I don't care if some people voted this movie to be bad. If you want 

the Truth this is a Very Good Movie! It has every thing a movie should 

have. You really should Get this one.

Actual Sentiment: positive

Predicted Sentiment polarity: 0.16666666666666674

------------------------------------------------------------
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REVIEW: Worst horror film ever but funniest film ever rolled in one you 

have got to see this film it is so cheap it is unbelievable but you have to 

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

Predicted Sentiment polarity: -0.037239583333333326

------------------------------------------------------------

You can check the sentiment of some specific movie reviews and the sentiment 

polarity score as predicted by TextBlob. Typically, a positive score denotes positive 

sentiment and a negative score denotes negative sentiment. You can use a specific 

custom threshold to determine what should be positive or negative. We use a custom 

threshold of 0.1 based on multiple experiments. The following code computes the 

sentiment on the entire test data. See Figure 9-1.

sentiment_polarity =  [textblob.TextBlob(review).sentiment.polarity for 

review in test_reviews]

predicted_sentiments = ['positive' if score >= 0.1 else 'negative'

                                 for score in sentiment_polarity]

meu.display_model_performance_metrics(true_labels=test_sentiments,

                                     predicted_labels=predicted_sentiments,

                                     classes=['positive', 'negative'])

Figure 9-1. Model performance metrics for pattern lexicon based model

We get an overall F1-score and accuracy of 77%, which is good considering it’s an 

unsupervised model! Looking at the confusion matrix, we can clearly see that we have an 

equal number of reviews almost being misclassified as positive and negative, which gives 

consistent results with regard to precision and recall for each class.

Chapter 9  Sentiment analySiS



578

 AFINN Lexicon
The AFINN lexicon is perhaps one of the simplest and most popular lexicons and can be 

used extensively for sentiment analysis. Developed and curated by Finn Årup Nielsen, 

you can find more details on this lexicon in the paper by Finn Årup Nielsen, entitled “A 

New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs,” from the 

proceedings of the ESWC2011 workshop. The current version of the lexicon is  AFINN- en- 165.

txt and it contains over 3,300 words with a polarity score associated with each word.

You can find this lexicon at the author’s official GitHub repository along with 

previous versions of this lexicon including AFINN-111 at https://github.com/

fnielsen/afinn/blob/master/afinn/data/. The author has also created a nice wrapper 

library on top of this in Python called afinn, which we will be using for our analysis 

needs. You can import the library and instantiate an object using the following code.

In [3]: from afinn import Afinn

   ...:

   ...: afn = Afinn(emoticons=True)

We can now use this object and compute the polarity of our chosen four sample 

reviews using the following snippet.

In [4]: for review, sentiment in zip(test_reviews[sample_review_ids], test_

sentiments[sample_review_ids]):

   ...:     print('REVIEW:', review)

   ...:     print('Actual Sentiment:', sentiment)

   ...:     print('Predicted Sentiment polarity:', afn.score(review))

   ...:     print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay - 

no sense at all... SKIP IT!

Actual Sentiment: negative

Predicted Sentiment polarity: -7.0

------------------------------------------------------------

REVIEW: I don't care if some people voted this movie to be bad. If you want 

the Truth this is a Very Good Movie! It has every thing a movie should 

have. You really should Get this one.

Actual Sentiment: positive

Predicted Sentiment polarity: 3.0
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------------------------------------------------------------

REVIEW: Worst horror film ever but funniest film ever rolled in one you 

have got to see this film it is so cheap it is unbelievable but you have to 

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

Predicted Sentiment polarity: -3.0

------------------------------------------------------------

We can compare the actual sentiment label for each review and check out the 

predicted sentiment polarity score. A negative polarity typically denotes negative 

sentiment. To predict sentiment on our complete test dataset of 15,000 reviews (I used 

the raw text documents because AFINN takes into account other aspects like emoticons 

and exclamations), we can now use the following snippet. I used a threshold of >= 1.0 to 

determine if the overall sentiment is positive. You can choose your own threshold based 

on analyzing your own corpora.

In [5]: sentiment_polarity = [afn.score(review) for review in test_reviews]

    ...: predicted_sentiments = ['positive' if score >= 1.0 else 'negative' 

for score in sentiment_polarity]

Now that we have our predicted sentiment labels, we can evaluate our model 

performance based on standard performance metrics using our utility function. See 

Figure 9-2.

In [6]: meu.display_model_performance_metrics(true_labels=test_sentiments,

predicted_labels=predicted_sentiments, classes=['positive', 'negative'])

Figure 9-2. Model performance metrics for AFINN lexicon based model
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We get an overall F1-score of 71%, which is quite decent considering it’s an 

unsupervised model. Looking at the confusion matrix, we can clearly see that quite a 

number of negative sentiment-based reviews have been misclassified as positive (3,189) 

and this leads to the lower recall of 57% for the negative sentiment class. Performance for 

the positive class is better with regard to recall or hit-rate, where we correctly predicted 

6,376 out of 7,510 positive reviews, but the precision is 67% because of the many wrong 

positive predictions made in case of the negative sentiment reviews.

 SentiWordNet Lexicon
The WordNet corpus is one of the most popular corpora for the English language and is 

used extensively in natural language processing and semantic analysis. WordNet gave us 

the concept of synsets or synonym sets. The SentiWordNet lexicon is based on WordNet 

synsets and can be used for sentiment analysis and opinion mining. The SentiWordNet 

lexicon typically assigns three sentiment scores for each WordNet synset. These include 

a positive polarity score, a negative polarity score, and an objectivity score. Further 

details are available on the official website at http://sentiwordnet.isti.cnr.it, 

including research papers and download links for the lexicon. We use the NLTK library, 

which provides a Pythonic interface into SentiWordNet. Consider we have the adjective 

“awesome”. We can get the sentiment scores associated with the synset for this word 

using the following snippet.

In [8]: from nltk.corpus import sentiwordnet as swn

   ...:

   ...: awesome = list(swn.senti_synsets('awesome', 'a'))[0]

   ...: print('Positive Polarity Score:', awesome.pos_score())

   ...: print('Negative Polarity Score:', awesome.neg_score())

   ...: print('Objective Score:', awesome.obj_score())

Positive Polarity Score: 0.875

Negative Polarity Score: 0.125

Objective Score: 0.0

Let’s now build a generic function to extract and aggregate sentiment scores for a 

complete textual document based on matched synsets in that document.
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def analyze_sentiment_sentiwordnet_lexicon(review, verbose=False):

    # tokenize and POS tag text tokens

    tagged_text = [(token.text, token.tag_) for token in tn.nlp(review)]

    pos_score = neg_score = token_count = obj_score = 0

    # get wordnet synsets based on POS tags

    # get sentiment scores if synsets are found

    for word, tag in tagged_text:

        ss_set = None

        if 'NN' in tag and list(swn.senti_synsets(word, 'n')):

            ss_set = list(swn.senti_synsets(word, 'n'))[0]

        elif 'VB' in tag and list(swn.senti_synsets(word, 'v')):

            ss_set = list(swn.senti_synsets(word, 'v'))[0]

        elif 'JJ' in tag and list(swn.senti_synsets(word, 'a')):

            ss_set = list(swn.senti_synsets(word, 'a'))[0]

        elif 'RB' in tag and list(swn.senti_synsets(word, 'r')):

            ss_set = list(swn.senti_synsets(word, 'r'))[0]

        # if senti-synset is found

        if ss_set:

            # add scores for all found synsets

            pos_score += ss_set.pos_score()

            neg_score += ss_set.neg_score()

            obj_score += ss_set.obj_score()

            token_count += 1

    # aggregate final scores

    final_score = pos_score - neg_score

    norm_final_score = round(float(final_score) / token_count, 2)

    final_sentiment = 'positive' if norm_final_score >= 0 else 'negative'

    if verbose:

        norm_obj_score = round(float(obj_score) / token_count, 2)

        norm_pos_score = round(float(pos_score) / token_count, 2)

        norm_neg_score = round(float(neg_score) / token_count, 2)

        # to display results in a nice table

Chapter 9  Sentiment analySiS



582

        sentiment_frame = pd.DataFrame([ [final_sentiment, norm_obj_score, 

norm_pos_score, norm_neg_score, 

norm_final_score]],

                                       columns=pd.MultiIndex (levels=[ 

['SENTIMENT STATS:'],

                                       ['Predicted Sentiment', 'Objectivity',

                                        'Positive', 'Negative', 'Overall']],

                                       labels=[[0,0,0,0,0],[0,1,2,3,4]]))

        print(sentiment_frame)

    return final_sentiment

Our function takes in a movie review, tags each word with its corresponding POS tag, 

extracts the sentiment scores for any matched synset token based on its POS tag, and 

finally aggregates the scores. This process will be clearer when we run it on our sample 

documents.

In [10]: for review, sentiment in zip(test_reviews[sample_review_ids], 

test_sentiments[sample_review_ids]):

    ...:     print('REVIEW:', review)

    ...:     print('Actual Sentiment:', sentiment)

    ...:      pred = analyze_sentiment_sentiwordnet_lexicon(review, 

verbose=True)

    ...:     print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay - 

no sense at all... SKIP IT!

Actual Sentiment: negative

     SENTIMENT STATS:

  Predicted Sentiment Objectivity Positive Negative Overall

0            negative        0.76     0.09     0.15   -0.06

------------------------------------------------------------

REVIEW: I don't care if some people voted this movie to be bad. If you want 

the Truth this is a Very Good Movie! It has every thing a movie should 

have. You really should Get this one.

Actual Sentiment: positive

     SENTIMENT STATS:
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  Predicted Sentiment Objectivity Positive Negative Overall

0            positive        0.76      0.19     0.06    0.13

------------------------------------------------------------

REVIEW: Worst horror film ever but funniest film ever rolled in one you 

have got to see this film it is so cheap it is unbelievable but you have to 

see it really!!!! P.s watch the carrot

Actual Sentiment: positive

     SENTIMENT STATS:

  Predicted Sentiment Objectivity Positive Negative Overall

0            positive         0.8     0.12     0.07    0.05

------------------------------------------------------------

We can clearly see the predicted sentiment along with sentiment polarity scores and 

an objectivity score for each sample movie review depicted in formatted dataframes. 

Let’s use this model to predict the sentiment of all our test reviews and evaluate its 

performance. A threshold of >=0 has been used for the overall sentiment polarity to be 

classified as positive (whereas < 0 is a negative sentiment). See Figure 9-3.

In [11]:  norm_test_reviews = tn.normalize_corpus(test_reviews)

    ...:  predicted_sentiments = [analyze_sentiment_sentiwordnet_

lexicon(review, verbose=False) for review in norm_test_reviews]

    ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

         predicted_labels=predicted_sentiments,

    ...: classes=['positive', 'negative'])

Figure 9-3. Model performance metrics for SentiWordNet lexicon based model

We get an overall F1-score of 60%, which is definitely a step down from our previous 

models. We can see a large number of negative reviews being misclassified as positive. 

Maybe playing around with the thresholds here might help!
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 VADER Lexicon
The VADER lexicon, developed by C.J. Hutto, is based on a rule-based sentiment analysis 

framework, specifically tuned to analyze sentiments in social media. VADER stands for 

Valence Aware Dictionary and sEntiment Reasoner. Details about this framework can 

be read in the original paper by Hutto, C.J., and Gilbert, E.E. (2014), entitled “VADER: 

A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,” from 

the proceedings of the Eighth International Conference on Weblogs and Social Media 

(ICWSM-14). You can use the library based on NLTK’s interface under the nltk.

sentiment.vader module.

You can also download the actual lexicon or install the framework from https://

github.com/cjhutto/vaderSentiment, which also contains detailed information about 

VADER. This lexicon, present in the file titled vader_lexicon.txt, contains necessary 

sentiment scores associated with words, emoticons, and slangs (like wtf, lol, nah, and 

so on). There were a total of over 9,000 lexical features from which over 7,500 curated 

lexical features were finally selected in the lexicon with proper validated valence scores. 

Each feature was rated on a scale from "[-4] Extremely Negative" to "[4] Extremely 

Positive", with allowance for "[0] Neutral (or Neither, N/A)".

The process of selecting lexical features was done by keeping all features that had 

a non-zero mean rating and whose standard deviation was less than 2.5, which was 

determined by the aggregate of ten independent raters. We depict a sample from the 

VADER lexicon as follows:

:(    -1.9   1.13578     [-2, -3, -2, 0, -1, -1, -2, -3, -1, -4]

:)    2.0    1.18322     [2, 2, 1, 1, 1, 1, 4, 3, 4, 1]

...

terrorizing  -3.0  1.0         [-3, -1, -4, -4, -4, -3, -2, -3, -2, -4]

thankful     2.7   0.78102     [4, 2, 2, 3, 2, 4, 3, 3, 2, 2]

Each line in the preceding lexicon sample depicts a unique term, which can either 

be an emoticon or a word. The first token indicates the word/emoticon, the second 

token indicates the mean sentiment polarity score, the third token indicates the standard 

deviation, and the final token indicates a list of scores given by 10 independent scorers. 

Now let’s use VADER to analyze our movie reviews! We build our own modeling function 

as follows.
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from nltk.sentiment.vader import SentimentIntensityAnalyzer

def analyze_sentiment_vader_lexicon(review,

                                    threshold=0.1,

                                    verbose=False):

    # preprocess text

    review = tn.strip_html_tags(review)

    review = tn.remove_accented_chars(review)

    review = tn.expand_contractions(review)

    # analyze the sentiment for review

    analyzer = SentimentIntensityAnalyzer()

    scores = analyzer.polarity_scores(review)

    # get aggregate scores and final sentiment

    agg_score = scores['compound']

    final_sentiment = 'positive' if agg_score >= threshold\

                                   else 'negative'

    if verbose:

        # display detailed sentiment statistics

        positive = str(round(scores['pos'], 2)*100)+'%'

        final = round(agg_score, 2)

        negative = str(round(scores['neg'], 2)*100)+'%'

        neutral = str(round(scores['neu'], 2)*100)+'%'

        sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,

                                       negative, neutral]],

                                        columns=pd.MultiIndex(levels= 

              [['SENTIMENT STATS:'], 

['Predicted Sentiment', 'Polarity Score', 

 'Positive', 'Negative', 'Neutral']],

                                       labels=[[0,0,0,0,0],[0,1,2,3,4]]))

        print(sentiment_frame)

    return final_sentiment
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In our modeling function, we do some basic preprocessing but keep the 

punctuations and emoticons intact. Besides this, we use VADER to get the sentiment 

polarity and proportion of the review text with regard to positive, neutral, and negative 

sentiment. We also predict the final sentiment based on a user-input threshold for the 

aggregated sentiment polarity. Typically, VADER recommends using positive sentiment 

for aggregated polarity >= 0.5, neutral between [-0.5, 0.5], and negative for polarity < -0.5.  

We use a threshold of >= 0.4 for positive and < 0.4 for negative in our corpus. The 

following is the analysis on our sample reviews.

In [13]: for review, sentiment in zip(test_reviews[sample_review_ids], 

test_sentiments[sample_review_ids]):

    ...:     print('REVIEW:', review)

    ...:     print('Actual Sentiment:', sentiment)

    ...:      pred = analyze_sentiment_vader_lexicon(review, threshold=0.4, 

verbose=True)

    ...:     print('-'*60)

REVIEW: no comment - stupid movie, acting average or worse... screenplay - 

no sense at all... SKIP IT!

Actual Sentiment: negative

     SENTIMENT STATS:

  Predicted Sentiment Polarity Score Positive Negative Neutral

0            negative           -0.8     0.0%    40.0%   60.0%

------------------------------------------------------------

REVIEW: I don't care if some people voted this movie to be bad. If you want 

the Truth this is a Very Good Movie! It has every thing a movie should 

have. You really should Get this one.

Actual Sentiment: positive

     SENTIMENT STATS:

  Predicted Sentiment Polarity Score Positive             Negative Neutral

0            negative          -0.16    16.0%  14.0%   69.0%

------------------------------------------------------------

REVIEW: Worst horror film ever but funniest film ever rolled in one you 

have got to see this film it is so cheap it is unbelievable but you have to 

see it really!!!! P.s watch the carrot
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Actual Sentiment: positive

     SENTIMENT STATS:

  Predicted Sentiment Polarity Score Positive Negative Neutral

0            positive           0.49    11.0%    11.0%   77.0%

------------------------------------------------------------

We can see the detailed statistics pertaining to the sentiment and polarity for each 

sample movie review. Let’s try our model on the complete test movie review corpus and 

evaluate the model performance.

In [14]: predicted_sentiments = [analyze_sentiment_vader_lexicon(review, 

threshold=0.4, verbose=False) for review in test_reviews]

    ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

         predicted_labels=predicted_sentiments,

    ...: classes=['positive', 'negative'])

Figure 9-4 shows an overall F1-score and model accuracy of 71%, which is quite 

similar to the AFINN-based model. The AFINN-based model wins out on the average 

precision by only 1%; otherwise, both models have a similar performance.

 Classifying Sentiment with Supervised Learning
Another way to build a model to understand the text content and predict the sentiment 

of the text-based reviews is to use supervised machine learning. To be more specific, 

we use classification models for solving this problem. We covered the concepts relevant 

to supervised learning and classification in Chapter 1 under the section “Supervised 

Learning”. With regard to details on building and evaluating classification models, you 

Figure 9-4. Model performance metrics for VADER lexicon based model
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can head over to Chapter 5 and refresh your memory if needed. We build an automated 

sentiment text classification system in subsequent sections. The major steps to achieve 

this are as follows:

 1. Prepare train and test datasets (optionally a validation dataset).

 2. Preprocess and normalize text documents.

 3. Feature engineering.

 4. Model training.

 5. Model prediction and evaluation.

These are the major steps for building our system. The last optional step is to deploy 

the model in your server or on the cloud. Figure 9-5 shows a detailed workflow for building 

a standard text classification system with supervised learning (classification) models.

In our scenario, documents indicate the movie reviews and classes indicate 

the review sentiments, which can either be positive or negative, making it a binary 

classification problem. We will build models using traditional machine learning 

Figure 9-5. Blueprint for building an automated text classification system
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methods and the newer deep learning in the subsequent sections. You can refer to 

the the Jupyter notebook titled Sentiment Analysis - Supervised.ipynb for an 

interactive experience. Let’s load the necessary dependencies and settings before 

getting started.

In [1]: import pandas as pd

   ...: import numpy as np

   ...: import text_normalizer as tn

   ...: import model_evaluation_utils as meu

   ...: import nltk

   ...: np.set_printoptions(precision=2, linewidth=80)

We can now load our IMDB movie reviews dataset, use the first 35,000 reviews for 

training models, and save the remaining 15,000 reviews as the test dataset to evaluate 

model performance. Besides this, we also use our normalization module to normalize 

our review datasets (Steps 1 and 2 in our workflow).

In [2]: dataset = pd.read_csv('movie_reviews.csv.bz2',

                               compression='bz2')

   ...:

   ...: # take a peek at the data

   ...: print(dataset.head())

   ...: reviews = np.array(dataset['review'])

   ...: sentiments = np.array(dataset['sentiment'])

   ...:

   ...: # build train and test datasets

   ...: train_reviews = reviews[:35000]

   ...: train_sentiments = sentiments[:35000]

   ...: test_reviews = reviews[35000:]

   ...: test_sentiments = sentiments[35000:]

   ...:

   ...: # normalize datasets

   ...: stop_words = nltk.corpus.stopwords.words('english')

   ...: stop_words.remove('no')

   ...: stop_words.remove('but')

   ...: stop_words.remove('not')

   ...:
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   ...: norm_train_reviews = tn.normalize_corpus(train_reviews)

   ...: norm_test_reviews = tn.normalize_corpus(test_reviews)

                                              review sentiment

0  One of the other reviewers has mentioned that ...  positive

1  A wonderful little production. <br /><br />The...  positive

2  I thought this was a wonderful way to spend ti...  positive

3  Basically there's a family where a little boy ...  negative

4  Petter Mattei's "Love in the Time of Money" is...  positive

Our datasets are now prepared and normalized so we can proceed from Step 3 in our 

text classification workflow to build our classification system.

 Traditional Supervised Machine Learning Models
We use traditional classification models in this section to classify the sentiment of our 

movie reviews. Our feature engineering techniques (Step 3) will be based on the Bag of 

Words model and the TF-IDF model, which were discussed extensively in the section 

titled “Feature Engineering on Text Data” in Chapter 4. The following snippet helps us 

engineer features using both these models on our train and test datasets.

In [3]: from sklearn.feature_extraction.text import CountVectorizer, 

TfidfVectorizer

   ...:

   ...: # build BOW features on train reviews

   ...:  cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_

range=(1,2))

   ...: cv_train_features = cv.fit_transform(norm_train_reviews)

   ...: # build TFIDF features on train reviews

   ...:  tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0, ngram_

range=(1,2), sublinear_tf=True)

   ...: tv_train_features = tv.fit_transform(norm_train_reviews)

   ...:

   ...: # transform test reviews into features

   ...: cv_test_features = cv.transform(norm_test_reviews)

   ...: tv_test_features = tv.transform(norm_test_reviews)

   ...:
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   ...: print('BOW model:> Train features shape:', cv_train_features.shape,

              ' Test features shape:', cv_test_features.shape)

   ...:  print('TFIDF model:> Train features shape:', tv_train_features.

shape, ' Test features shape:', tv_test_features.shape)

BOW model:> Train features shape: (35000, 2090724)  Test features shape: 

(15000, 2090724)

TFIDF model:> Train features shape: (35000, 2090724)  Test features shape: 

(15000, 2090724)

We take into account word as well as bi-grams for our feature sets. We can now use 

some traditional supervised machine learning algorithms, which work very well on text 

classification. We recommend using logistic regression, support vector machines, and 

multinomial Naïve Bayes models when you work on your own datasets in the future. 

In this chapter, we built models using logistic regression as well as SVM. The following 

snippet helps in initializing these classification model estimators.

In [4]: from sklearn.linear_model import SGDClassifier, LogisticRegression

   ...:

   ...: lr = LogisticRegression(penalty='l2', max_iter=100, C=1)

   ...: svm = SGDClassifier(loss='hinge', max_iter=100)

Without going into too many theoretical complexities, the logistic regression model 

is a supervised linear machine learning model used for classification regardless of its 

name. In this model, we try to predict the probability that a given movie review will 

belong to one of the discrete classes (binary classes in our scenario). The function used 

by the model for learning is represented here:

 
P y positive X XT=( ) = ( )| s q  

 
P y negative X XT( |= = - ( )) 1 s q  

Where the model tries to predict the sentiment class using the feature vector X and 

s z
e z( ) =

+ -

1

1
, which is popularly known as the sigmoid function or logistic function. 

The main objective of this model is to search for an optimal value of θ such that the 
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probability of the positive sentiment class is maximum when the feature vector X is for 

a positive movie review and small when it is for a negative movie review. The logistic 

function helps model the probability to describe the final prediction class. The optimal 

value of θ can be obtained by minimizing an appropriate cost/loss function using 

standard methods like gradient descent. Logistic regression is also popularly known as 

the MaxEnt (maximum entropy) classifier.

We now use our utility function train_predict_model(...) from our model_

evaluation_utils module to build a logistic regression model on our training features 

and evaluate the model performance on our test features (Steps 4 and 5).

In [5]: # Logistic Regression model on BOW features

   ...: lr_bow_predictions = meu.train_predict_model(classifier=lr,

   ...: train_features=cv_train_features, train_labels=train_sentiments,

   ...: test_features=cv_test_features, test_labels=test_sentiments)

   ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

   ...: predicted_labels=lr_bow_predictions,

   ...: classes=['positive', 'negative'])

We get an overall F1-score and model accuracy of 90.5%, as depicted in Figure 9-6, 

which is excellent! We can now build a logistic regression model similarly on our TF-IDF 

features using the following snippet.

In [6]: # Logistic Regression model on TF-IDF features

   ...: lr_tfidf_predictions = meu.train_predict_model(classifier=lr,

   ...: train_features=tv_train_features, train_labels=train_sentiments,

   ...: test_features=tv_test_features, test_labels=test_sentiments)

   ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

   ...: predicted_labels=lr_tfidf_predictions,

   ...: classes=['positive', 'negative'])

Figure 9-6. Model performance metrics for logistic regression on Bag of Words 
features

Chapter 9  Sentiment analySiS



593

We get an overall F1-score and model accuracy of 89%, as depicted in Figure 9-7, 

which is great but our previous model is slightly better. You can similarly use the support 

vector machine model estimator object svm, which we created earlier, and use the same 

snippet to train and predict using an SVM model. We obtained a maximum accuracy 

and F1-score of 90% with the SVM model (refer to the Jupyter notebook for step-by-step 

code snippets). Thus you can see how effective and accurate these supervised machine 

learning classification algorithms are in building a text sentiment classifier.

 Newer Supervised Deep Learning Models
Deep learning has revolutionized the machine learning landscape over the last decade. 

In this section, we build some deep neural networks and train them on some advanced 

text features based on word embeddings to build a text sentiment classification system, 

similar to what we did in the previous section. Let’s load the following necessary 

dependencies before we start our analysis.

In [7]: import gensim

   ...: import keras

   ...: from keras.models import Sequential

   ...: from keras.layers import Dropout, Activation, Dense

   ...: from keras.layers.normalization import BatchNormalization

   ...: from sklearn.preprocessing import LabelEncoder

Using TensorFlow backend.

So far, our models in Scikit-Learn directly accepted the sentiment class labels as 

positive and negative and internally performed these operations. However, for our 

deep learning models, we need to encode them explicitly. The following snippet helps us 

tokenize our movie reviews and convert the text-based sentiment class labels into one-

hot encoded vectors (forms a part of Step 2).

Figure 9-7. Model performance metrics for logistic regression on TF-IDF 
features
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In [8]: le = LabelEncoder()

   ...: num_classes=2

   ...: # tokenize train reviews & encode train labels

   ...: tokenized_train = [tn.tokenizer.tokenize(text)

   ...:                    for text in norm_train_reviews]

   ...: y_tr = le.fit_transform(train_sentiments)

   ...: y_train = keras.utils.to_categorical(y_tr, num_classes)

   ...: # tokenize test reviews & encode test labels

   ...: tokenized_test = [tn.tokenizer.tokenize(text)

   ...:                    for text in norm_test_reviews]

   ...: y_ts = le.fit_transform(test_sentiments)

   ...: y_test = keras.utils.to_categorical(y_ts, num_classes)

   ...:

   ...: # print class label encoding map and encoded labels

   ...:  print('Sentiment class label map:', dict(zip(le.classes_, 

le.transform(le.classes_))))

   ...: print('Sample test label transformation:\n'+'-'*35,

   ...:        '\nActual Labels:', test_sentiments[:3], '\nEncoded Labels:', 

y_ts[:3],'\nOne hot encoded Labels:\n', y_test[:3])

Sentiment class label map: {'positive': 1, 'negative': 0}

Sample test label transformation:

-----------------------------------

Actual Labels: ['negative' 'positive' 'negative']

Encoded Labels: [0 1 0]

One hot encoded Labels:

 [[ 1.  0.]

  [ 0.  1.]

  [ 1.  0.]]

Thus, we can see from the preceding outputs how our sentiment class labels have 

been encoded into numeric representations, which in turn have been converted into 

one-hot encoded vectors. The feature engineering techniques we use in this section (Step 3) 

are slightly more advanced word vectorization techniques and are based on the concept 

of word embeddings. We use the Word2Vec and GloVe models to generate embeddings. 
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The Word2Vec model was built by Google and we covered this in detail in Chapter 4 

under the section “Word Embeddings”. We set the size parameter to 500 in this scenario, 

representing the feature vector size to be 512 for each word.

In [9]: # build word2vec model

   ...: w2v_num_features = 512

   ...:  w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_

features, window=150, min_count=10, sample=1e-3)

We use the document word vector averaging scheme on this model from Chapter 4 to 

represent each movie review as an averaged vector of all the word vector representations 

for the different words in the review. The following function helps us compute averaged 

word vector representations for any corpus of text documents.

def averaged_word2vec_vectorizer(corpus, model, num_features):

    vocabulary = set(model.wv.index2word)

    def average_word_vectors(words, model, vocabulary, num_features):

        feature_vector = np.zeros((num_features,), dtype="float64")

        nwords = 0.

        for word in words:

            if word in vocabulary:

                nwords = nwords + 1.

                feature_vector = np.add(feature_vector, model[word])

        if nwords:

            feature_vector = np.divide(feature_vector, nwords)

        return feature_vector

     features =  [average_word_vectors(tokenized_sentence, model, vocabulary, 

num_features) for tokenized_sentence in corpus]

    return np.array(features)

We can now use this function to generate averaged word vector representations on 

our two movie review datasets.

In [10]: # generate averaged word vector features from word2vec model

    ...:  avg_wv_train_features = averaged_word2vec_vectorizer(corpus= 

tokenized_train, model=w2v_model, num_features= w2v_num_features)

    ...:  avg_wv_test_features = averaged_word2vec_vectorizer(corpus= 

tokenized_test, model=w2v_model, num_features= w2v_num_features)
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The GloVe model, which stands for Global Vectors, is an unsupervised model 

for obtaining word vector representations. Created at Stanford University, this 

model is trained on various corpora like Wikipedia, Common Crawl, and Twitter 

and corresponding pretrained word vectors are available and can be used for our 

analysis needs. Interested readers can refer to the original paper by Jeffrey Pennington, 

Richard Socher, and Christopher D. Manning, entitled “GloVe: Global Vectors for Word 

Representation” for more details. The spaCy library provided 300-dimensional word 

vectors trained on the Common Crawl corpus using the GloVe model. They provide a 

simple standard interface to get feature vectors of size 300 for each word as well as the 

averaged feature vector of a complete text document. The following snippet leverages 

spaCy to get the GloVe embeddings for our two datasets.

In [11]: # feature engineering with GloVe model

    ...: train_nlp = [tn.nlp_vec(item) for item in norm_train_reviews]

    ...: train_glove_features = np.array([item.vector for item in train_nlp])

    ...:

    ...: test_nlp = [tn.nlp_vec(item) for item in norm_test_reviews]

    ...: test_glove_features = np.array([item.vector for item in test_nlp])

You can check the feature vector dimensions for our datasets based on each of these 

models using the following code.

In [12]:  print('Word2Vec model:> Train features shape:', avg_wv_train_

features.shape, ' Test features shape:', avg_wv_test_features.shape)

    ...:  print('GloVe model:> Train features shape:', train_glove_features.

shape, ' Test features shape:', test_glove_features.shape)

Word2Vec model:> Train features shape: (35000, 512)  Test features shape: 

(15000, 512)

GloVe model:> Train features shape: (35000, 300)  Test features shape: 

(15000, 300)

We can see from the preceding output that, as expected, the Word2Vec model 

features are of size 500 and the GloVe features are of size 300.

We can now proceed to Step 4 of our classification system workflow, where we build 

and train a deep neural network on these features. We use a fully-connected four layer 

deep neural network (multi-layer perceptron or deep ANN) for our model. We do not 

count the input layer in any deep architecture, hence our model will consist of three 
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hidden layers of 512 neurons or units and one output layer with two units, which will 

be used to predict a positive or negative sentiment based on the input layer features. 

Figure 9-8 depicts our deep neural network model for sentiment classification.

Figure 9-8. Fully connected deep neural network model for sentiment 
classification

We call this a fully connected deep neural network (DNN) because neurons or units 

in each pair of adjacent layers are fully pairwise connected. These networks are also 

known as deep artificial neural networks (ANNs) or multi-layer perceptrons (MLPs) 

since they have more than one hidden layer. The following function leverages Keras on 

top of TensorFlow to build the desired DNN model.

def construct_deepnn_architecture(num_input_features):

    dnn_model = Sequential()

     dnn_model.add(Dense(512, input_shape=(num_input_features,), kernel_

initializer='glorot_uniform'))

    dnn_model.add(BatchNormalization())

    dnn_model.add(Activation('relu'))

    dnn_model.add(Dropout(0.2))

    dnn_model.add(Dense(512, kernel_initializer='glorot_uniform'))

    dnn_model.add(BatchNormalization())

    dnn_model.add(Activation('relu'))

    dnn_model.add(Dropout(0.2))
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    dnn_model.add(Dense(512, kernel_initializer='glorot_uniform'))

    dnn_model.add(BatchNormalization())

    dnn_model.add(Activation('relu'))

    dnn_model.add(Dropout(0.2))

    dnn_model.add(Dense(2))

    dnn_model.add(Activation('softmax'))

    dnn_model.compile(loss='categorical_crossentropy', optimizer='adam',

                      metrics=['accuracy'])

    return dnn_model

From the preceding function, you can see that we accept a num_input_features 

parameter, which decides the number of units needed in the input layer (512 for 

Word2Vec and 300 for GloVe features). We build a Sequential model, which helps us in 

linearly stacking our hidden and output layers.

We use 512 units for all our hidden layers and the activation function relu indicates 

a rectified linear unit. This function is typically defined as relu(x) =  max (0, x) where 

x is typically the input to a neuron. This is popularly known as the ramp function in 

electronics and electrical engineering. This function is preferred now as compared to 

the previously popular sigmoid function because it tries to solve the vanishing gradient 

problem. This problem occurs when x > 0 and as x increases, the gradient from sigmoids 

becomes very small (almost vanishing), but relu prevents this from happening. Besides 

this, it also helps in faster convergence of gradient descent.

Note that we also use a novel technique called batch normalization. Batch 

normalization is a technique for improving the performance and stability of neural 

networks. The key idea is to normalize the inputs of each layer in such a way that they 

have a mean output activation of 0 and standard deviation of 1. Remember that it is 

called batch normalization because during training, we normalize the activations of 

the previous layer for each batch, i.e., we apply a transformation such that we try to 

maintain the mean activation close to 0 and the standard deviation close to 1. This helps 

in regularization to some extent. Batch normalization tries to keep the distribution fed to 

a neural unit constant. This helps to keep gradients in proper bounds, which otherwise 

can lead to vanishing gradients, especially when using activation functions like sigmoid.
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We also use regularization in the network in the form of Dropout layers. By adding 

a dropout rate of 0.2, it randomly sets 20% of the input feature units to 0 at each update 

during training the model. This form of regularization helps prevent overfitting the 

model.

The final output layer consists of two units with a softmax activation function.  

The softmax function is basically a generalization of the logistic function we saw earlier, 

which can be used to represent a probability distribution over n possible class outcomes. 

In our case, n = 2 where the class can either be positive or negative and the softmax 

probabilities will help us determine the same. The binary softmax classifier is also 

interchangeably known as the binary logistic regression function.

The compile(...) method is used to configure the learning or training process of the 

DNN model before we train it. This involves providing a cost or loss function in the loss 

parameter. This will be the goal or objective that the model will try to minimize. There 

are various loss functions based on the type of problem you want to solve, for example 

the mean squared error for regression and categorical cross-entropy for classification. 

Check out https://keras.io/losses/ for a list of possible loss functions. We will be 

using categorical_crossentropy which helps us minimize the error or loss from the 

softmax output. We need an optimizer for converging our model and minimizing the 

loss or error function. The gradient descent or stochastic gradient descent is a popular 

optimizer.

We use the adam optimizer which only requires first order gradients and very little 

memory. Adam also uses momentum where each update is based not only on the 

gradient computation of the current point, but also includes a fraction of the previous 

update. This helps in faster convergence. Interested readers can refer to the original 

paper from https://arxiv.org/pdf/1412.6980v8.pdf for further details on the adam 

optimizer. Finally, the metrics parameter specifies model performance metrics, which 

are used to evaluate the model when training (but not used to modify the training 

loss itself). Let’s now build a DNN model based on our Word2Vec input feature 

representations for our training reviews.

In [13]: w2v_dnn = construct_deepnn_architecture(num_input_features=w2v_

num_features)
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You can also visualize the DNN model architecture with the help of Keras, by using 

the following code. See Figure 9-9.

In [14]: from IPython.display import SVG

    ...: from keras.utils.vis_utils import model_to_dot

    ...:

    ...:  SVG(model_to_dot(w2v_dnn, show_shapes=True, show_layer_

names=False, rankdir='TB').create(prog='dot', format='svg'))

We now train our model on our training reviews dataset of Word2Vec features 

represented by avg_wv_train_features (Step 4). We use the fit(...) function from 

Keras for the training process. There are some parameters that you should be aware 

of. The epoch parameter indicates one complete forward and backward pass of all the 

training examples. The batch_size parameter indicates the total number of samples 

propagated through the DNN model at a time for one backward and forward pass for 

training the model and updating the gradient. Thus if you have 1,000 observations and 

your batch size is 100, each epoch will consist of 10 iterations, where 100 observations 

will be passed through the network at a time and the weights on the hidden layer units 

will be updated.

We also specify a validation_split of 0.1 to extract 10% of the training data and 

use it as a validation dataset for evaluating the performance at each epoch. The shuffle 

parameter shuffles the samples in each epoch when training the model.

In [18]: batch_size = 100

    ...:  w2v_dnn.fit(avg_wv_train_features, y_train, epochs=10, batch_

size=batch_size, shuffle=True, validation_split=0.1, verbose=1)

Train on 31500 samples, validate on 3500 samples

Epoch 1/10  31500/31500 - loss: 0.3378 - acc: 0.8598 - val_loss: 0.3114 - val_acc: 0.8714

Figure 9-9. Visualizing the DNN model architecture using Keras
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Epoch 2/10 31500/31500 - loss: 0.2877 - acc: 0.8808 - val_loss: 0.2968 - val_acc: 0.8806

Epoch 3/10 31500/31500 - loss: 0.2766 - acc: 0.8854 - val_loss: 0.3043 - val_acc: 0.8726

Epoch 4/10 31500/31500 - loss: 0.2702 - acc: 0.8888 - val_loss: 0.2964 - val_acc: 0.8786

...

...

Epoch 9/10 31500/31500 - loss: 0.2456 - acc: 0.8964 - val_loss: 0.3180 - val_acc: 0.8680

Epoch 10/10 31500/31500 - loss: 0.2385 - acc: 0.9014 - val_loss: 0.3126 - val_acc: 0.8717

The preceding snippet tells us that we have trained our DNN model on the training 

data for 10 epochs with 100 as the batch size. We get a validation accuracy of close to 

88%, which is quite good. It’s time now to put our model to the real test! Let’s evaluate 

our model performance on the test review Word2Vec features (Step 5).

In [19]: y_pred = w2v_dnn.predict_classes(avg_wv_test_features)

    ...: predictions = le.inverse_transform(y_pred)

    ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

    ...: predicted_labels=predictions, classes=['positive', 'negative'])

Figure 9-10. Model performance metrics for deep neural networks on Word2Vec 
features

The results in Figure 9-10 show us that we have obtained a model accuracy and 

F1-score of 88%, which is great! You can use a similar workflow and build and train 

a DNN model for our GloVe based features and evaluate the model performance. 

The following snippet depicts the workflow for Steps 4 and 5 of our text classification 

system blueprint.

Chapter 9  Sentiment analySiS



602

# build DNN model

glove_dnn = construct_deepnn_architecture(num_input_features=300)

# train DNN model on GloVe training features

batch_size = 100

glove_dnn.fit(train_glove_features, y_train, epochs=5, batch_size=batch_size,

              shuffle=True, validation_split=0.1, verbose=1)

# get predictions on test reviews

y_pred = glove_dnn.predict_classes(test_glove_features)

predictions = le.inverse_transform(y_pred)

# Evaluate model performance

meu.display_model_performance_metrics(true_labels=test_sentiments, 

predicted_labels=predictions, classes=['positive', 'negative'])

We obtained an overall model accuracy and F1-score of 86% with the GloVe features, 

which is still good but not better than what we obtained using our Word2Vec features. 

You can refer to the Sentiment Analysis - Supervised.ipynb Jupyter notebook to 

see the step-by-step output obtained for this code. This concludes our discussion on 

building text sentiment classification systems leveraging newer deep learning models 

and methodologies. Onwards to learning about advanced deep learning models!

 Advanced Supervised Deep Learning Models
We used fully connected deep neural network and word embeddings in the previous 

section. Another new and interesting approach to supervised deep learning is the use 

of recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) 

which also considers the sequence of data (words, events and so on). These are more 

advanced models than your regular fully connected deep networks and usually take 

more time to train. We leverage Keras on top of TensorFlow and try to build a LSTM-

based classification model and use word embeddings as our features. You can refer to 

the Jupyter notebook titled Sentiment Analysis - Advanced Deep Learning.ipynb for 

an interactive experience.
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We work on our normalized and preprocessed train and test review datasets, norm_

train_reviews and norm_test_reviews, which we created in our previous analyses. 

Assuming you have them loaded, we will first tokenize these datasets such that each text 

review is decomposed into its corresponding tokens (workflow Step 2).

In [1]: tokenized_train =  [tn.tokenizer.tokenize(text) for text in norm_

train_reviews]

   ...:  tokenized_test =  [tn.tokenizer.tokenize(text) for text in norm_

test_reviews]

For feature engineering (Step 3), we create word embeddings. However, we will 

create them using Keras instead of using prebuilt ones like Word2Vec or GloVe. Word 

embeddings tend to vectorize text documents into fixed sized vectors such that these 

vectors try to capture contextual and semantic information.

To generate embeddings, we use the Embedding layer from Keras, which requires 

documents to be represented as tokenized and numeric vectors. We already have 

tokenized text vectors in our tokenized_train and tokenized_text variables. 

However, we would need to convert them into numeric representations. Besides this, 

we would also need the vectors to be of uniform size even though the tokenized text 

reviews will be of variable length due to the difference in number of tokens in each 

review. For this, one strategy is to take the length of the longest review (with maximum 

number of tokens/words) and set it as the vector size. Let’s call this max_len. Reviews 

of shorter length can be padded with a PAD term in the beginning to increase their 

length to max_len.

We would need to create a word to index vocabulary mapping for representing 

each tokenized text review in a numeric form. Note you also need to create a numeric 

mapping for the padding term, which we will call PAD_INDEX, and assign it the numeric 

index of 0. For unknown terms, in case they are encountered later in the test dataset or 

newer, previously unseen reviews, we would need to assign them to some index too. 

This is because we will vectorize, engineer, and build models only on the training data. 

Hence, if a new term should come up (which was originally not a part of the model 

training), we will consider it as an out of vocabulary (OOV) term and assign it to a 

constant index (we name this term NOT_FOUND_INDEX and assign it the index of  

vocab_size+1).
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The following snippet helps us create this vocabulary from our tokenized_train 

corpus of training text reviews.

In [2]: from collections import Counter

   ...:

   ...: # build word to index vocabulary

   ...:  token_counter = Counter([token for review in tokenized_train for 

token in review])

   ...: vocab_map = {item[0]: index+1

                     for index, item in enumerate(dict(token_counter).items())}

   ...: max_index = np.max(list(vocab_map.values()))

   ...: vocab_map['PAD_INDEX'] = 0

   ...: vocab_map['NOT_FOUND_INDEX'] = max_index+1

   ...: vocab_size = len(vocab_map)

   ...: # view vocabulary size and part of the vocabulary map

   ...: print('Vocabulary Size:', vocab_size)

   ...:  print('Sample slice of vocabulary map:', dict(list(vocab_map.

items())[10:20]))

Vocabulary Size: 82358

Sample slice of vocabulary map: {'martyrdom': 6, 'palmira': 7, 'servility': 8,  

'gardening': 9, 'melodramatically': 73505, 'renfro': 41282, 'carlin': 41283,  

'overtly': 41284, 'rend': 47891, 'anticlimactic': 51}

In this case, we used all the terms in our vocabulary. You can easily filter and use 

more relevant terms here (based on their frequency) by using the most_common(count) 

function from Counter and taking the first count terms from the list of unique terms in 

the training corpus. We now encode the tokenized text reviews based on the vocab_map. 

Besides this, we also encode the text sentiment class labels into numeric representations.

In [3]: from keras.preprocessing import sequence

   ...: from sklearn.preprocessing import LabelEncoder

   ...:

   ...: # get max length of train corpus and initialize label encoder

   ...: le = LabelEncoder()

   ...: num_classes=2 # positive -> 1, negative -> 0

   ...: max_len = np.max([len(review) for review in tokenized_train])

   ...:
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   ...: ## Train reviews data corpus

   ...: # Convert tokenized text reviews to numeric vectors

   ...: train_X = [[vocab_map[token] for token in tokenized_review]

                       for tokenized_review in tokenized_train]

   ...: train_X = sequence.pad_sequences(train_X, maxlen=max_len) # pad

   ...: ## Train prediction class labels

   ...:  # Convert text sentiment labels (negative\positive) to binary 

encodings (0/1)

   ...: train_y = le.fit_transform(train_sentiments)

   ...:

   ...: ## Test reviews data corpus

   ...: # Convert tokenized text reviews to numeric vectors

   ...:  test_X = [[vocab_map[token] if vocab_map.get(token) else vocab_

map['NOT_FOUND_INDEX']

   ...:            for token in tokenized_review]

   ...:               for tokenized_review in tokenized_test]

   ...: test_X = sequence.pad_sequences(test_X, maxlen=max_len)

   ...: ## Test prediction class labels

   ...:  # Convert text sentiment labels (negative\positive) to binary 

encodings (0/1)

   ...: test_y = le.transform(test_sentiments)

   ...:

   ...: # view vector shapes

   ...: print('Max length of train review vectors:', max_len)

   ...: print('Train review vectors shape:', train_X.shape,

               ' Test review vectors shape:', test_X.shape)

Max length of train review vectors: 1442

Train review vectors shape: (35000, 1442)  Test review vectors shape: 

(15000, 1442)

From the preceding code snippet and the output, it is clear that we encoded each 

text review into a numeric sequence vector such that the size of each review vector is 

1,442, which is basically the maximum length of reviews from the training dataset. We 

pad shorter reviews and truncate extra tokens from longer reviews such that the shape 
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of each review is constant, as depicted in the output. We can now proceed to Step 3 and 

a part of Step 4 of the classification workflow by introducing the Embedding layer and 

coupling it with the deep network architecture based on LSTMs.

from keras.models import Sequential

from keras.layers import Dense, Embedding, Dropout, SpatialDropout1D

from keras.layers import LSTM

EMBEDDING_DIM = 128 # dimension for dense embeddings for each token

LSTM_DIM = 64 # total LSTM units

model = Sequential()

model.add(Embedding(input_dim=vocab_size, output_dim=EMBEDDING_DIM, input_

length=max_len))

model.add(SpatialDropout1D(0.2))

model.add(LSTM(LSTM_DIM, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adam",

              metrics=["accuracy"])

The Embedding layer helps us generate the word embeddings from scratch. This layer 

is also initialized with some weights and is updated based on our optimizer, similar to 

weights on the neuron units in other layers when the network tries to minimize the loss 

in each epoch. Thus, the embedding layer tries to optimize its weights such that we get 

the best word embeddings that will generate minimum error in the model and capture 

semantic similarity and relationships among words. How do we get the embeddings? 

Let’s say we have a review with three terms ['movie', 'was', 'good'] and a vocab_map 

consisting of word to index mappings for 82,358 words. The word embeddings are 

generated somewhat similar to what’s shown in Figure 9-11.
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Based on our model architecture, the Embedding layer takes in three parameters:

• input_dim, which is equal to the vocabulary size (vocab_size) of 

82,358

• output_dim, which is 128, representing the dimension of dense 

embedding (depicted by rows in the embedding layer in Figure 9-11)

• input_len, which specifies the length of the input sequences (movie 

review sequence vectors), which is 1,442

In the example depicted in Figure 9-11, since we have one review, the dimension 

is (1, 3). This review is converted into a numeric sequence (2, 57, 121) based on the 

VOCAB_MAP. Then the specific columns representing the indices in the review sequence 

are selected from the embedding layer (vectors at column indices 2, 57, and 121) to 

generate the final word embeddings. This gives us an embedding vector of dimension 

(1, 128, 3) also represented as (1, 3, 128) when each row is represented based on each 

sequence word embedding vector. Many deep learning frameworks like Keras represent 

the embedding dimensions as (m, n) where m represents all the unique terms in our 

vocabulary (82,358) and n represents the output_dim, which is 128 in this case. Consider 

a transposed version of the layer depicted in Figure 9-11 and you are good to go!

Figure 9-11. Understanding how word embeddings are generated
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If you have the encoded review terms sequence vector represented in one-hot 

encoded format (3, 82358) and do a matrix multiplication with the embedding layer 

represented as (82358, 128), where each row represents the embedding for a word in the 

vocabulary, you will directly obtain the word embeddings for the review sequence vector 

as (3, 128). The weights in the embedding layer are updated and optimized in each 

epoch based on the input data when propagated through the whole network, like we 

mentioned earlier such that overall loss and error is minimized to get maximum model 

performance.

These dense word embeddings are then passed to the LSTM layer having 64 units. 

We introduced the LSTM architecture briefly in Chapter 1. LSTMs try to overcome 

the shortcomings of RNN models, especially with regard to handling long-term 

dependencies and problems that occur when the weight matrix associated with the 

units (neurons) become too small (leading to vanishing gradient) or too large (leading to 

exploding gradient). These architectures are more complex than regular deep networks 

and going into detailed internals and math concepts are out of the current scope, but we 

will try to cover the essentials here without making it math heavy.

Readers interested in researching the internals of LSTMs can check out the original 

paper which inspired it all, by Hochreiter, S., and Schmidhuber, J. entitled, “Long 

Short-Term Memory,” from Neural Computation, 9(8), 1735-1780. We depict the basic 

architecture of RNNs and compare it to LSTMs in Figure 9-12.
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The RNN units usually have a chain of repeating modules (this happens when we 

unroll the loop) so that the module has a simple structure of maybe one layer with the 

tanh activation. LSTMs are also a special type of RNN, with a similar structure, but the 

LSTM unit has four neural network layers instead of just one. The detailed architecture 

of the LSTM cell is shown in Figure 9-13.

Figure 9-12. Basic structure of RNN and LSTM units (Source: Christopher Olah's 
blog: colah.github.io)
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The notation t indicates one time step, C depicts the cell states, and h indicates the 

hidden states. The gates i f o andCt, , ,
Ú

 help remove or add information to the cell state. 

The gates i, f, and o represent the input, output, and forget gates, respectively. Each of 

them is modulated by the sigmoid layer, which outputs numbers from 0 to 1 controlling 

how much of the output from these gates should pass. This protects and controls the cell 

state. The detailed workflow of how information flows through the LSTM cell is depicted 

in Figure 9-14 in four steps.

 1. The first step talks about the forget gate layer f which helps us 

decide what information we should throw away from the cell 

state. This is done by looking at the previous hidden state ht − 1 and 

current inputs xt as depicted in the equation. The sigmoid layer 

helps control how much of this should be kept or forgotten.

 2. The second step depicts the input gate layer i which helps decide 

what information will be stored in the current cell state. The 

sigmoid layer in the input gate helps decide which values will be 

updated based on ht − 1 & xt. The tanh layer helps create a vector 

of the new candidate values Ct

Ú

, based on ht − 1 & xt, which can 

be added to the current cell state. Thus the tanh layer creates the 

values and the input gate with sigmoid layer helps choose which 

values should be updated.

Figure 9-13. Detailed architecture of an LSTM cell (Source: Christopher Olah's 
blog: colah.github.io)
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 3. The third step involves updating the old cell state Ct − 1 to the new 

cell state Ct by leveraging what we obtained in the first two steps. 

We multiply the old cell state by the forget gate (ft × Ct − 1) and then 

add the new candidate values scaled by the input gate to sigmoid 

layer i Ct t´æ
è
ç

ö
ø
÷

Ú

.

 4. The fourth and final step helps us decide what the final output 

should be, which is basically a filtered version of our cell state.  

The output gate with the sigmoid layer o helps us select which 

parts of the cell state will pass to the final output. This is multiplied 

with the cell state values when passed through the tanh layer to 

give us the final hidden state values h o Ct t t= ´ æ
è
ç

ö
ø
÷

Ú

tanh .

These steps are depicted in Figure 9-14 with necessary annotations and equations. 

I want to thank our good friend Christopher Olah for providing us with detailed 

information as well as the images for depicting the internal workings of LSTM 

networks. We recommend checking out Christopher’s blog at http://colah.github.

io/posts/2015-08-Understanding-LSTMs for more details. A shout out also goes to 

Edwin Chen, for explaining RNNs and LSTMs in an easy-to-understand format. We 

also recommend referring to Edwin’s blog at http://blog.echen.me/2017/05/30/

exploring-lstms for information on the workings of RNNs and LSTMs.
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The final layer in our deep network is the Dense layer with 1 unit and the sigmoid 

activation function. We basically use the binary_crossentropy function with the adam 

optimizer, since this is a binary classification problem and the model will ultimately 

predict a 0 or a 1, which we can decode back to a negative or positive sentiment 

prediction with our label encoder.

You can also use the categorical_crossentropy loss function here, but you would 

need to then use a Dense layer with two units instead with a softmax function. Now 

that our model is compiled and ready, we can head on to Step 4 of our classification 

workflow—training the model. We use a similar strategy from our previous deep network 

models, where we train our model on the training data with five epochs, batch size of 100 

reviews, and a 10% validation split of training data to measure validation accuracy.

Figure 9-14. Walkthrough of data flow in an LSTM cell (Source: Christopher 
Olah's blog: colah.github.io)
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In [4]: batch_size = 100

   ...: model.fit(train_X, train_y, epochs=5, batch_size=batch_size,

   ...: shuffle=True, validation_split=0.1, verbose=1)

Train on 31500 samples, validate on 3500 samples

Epoch 1/5 31500/31500 - 2491s - loss: 0.4081 - acc: 0.8184 - val_loss: 

0.3006 - val_acc: 0.8751

Epoch 2/5 31500/31500 - 2489s - loss: 0.2253 - acc: 0.9158 - val_loss: 

0.3209 - val_acc: 0.8780

Epoch 3/5 31500/31500 - 2656s - loss: 0.1431 - acc: 0.9493 - val_loss: 

0.3483 - val_acc: 0.8671

Epoch 4/5 31500/31500 - 2604s - loss: 0.1023 - acc: 0.9658 - val_loss: 

0.3803 - val_acc: 0.8729

Epoch 5/5 31500/31500 - 2701s - loss: 0.0694 - acc: 0.9761 - val_loss: 

0.4430 - val_acc: 0.8706

Training LSTMs on CPU is notoriously slow and, as you can see, my model took 

approximately 3.6 hours to train just five epochs on an i5 3rd Gen Intel CPU with 8GB of 

memory. Of course, a cloud-based environment like Google Cloud Platform or AWS on 

GPU took me approximately less than an hour to train the same model. So I recommend 

you to choose a GPU-based deep learning environment, especially when working with 

RNNs or LSTM-based network architectures. Based on the preceding output, we can see 

that with just five epochs, we have decent validation accuracy. Time to put our model to 

the test! Let’s see how well it predicts the sentiment for our test reviews and use the same 

model evaluation framework we used in our previous models (Step 5).

In [5]: # predict sentiments on test data

   ...: pred_test = model.predict_classes(test_X)

   ...: predictions = le.inverse_transform(pred_test.flatten())

   ...: # evaluate model performance

   ...: meu.display_model_performance_metrics(true_labels=test_sentiments,

   ...:                     predicted_labels=predictions, 

classes=['positive', 'negative'])
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The results depicted in Figure 9-15 show us that we obtained a model accuracy and 

F1-score of 88%, which is quite good! With more quality data, you can expect to get even 

better results. Try experimenting with different architectures and see if you get better 

results!

 Analyzing Sentiment Causation
We built both supervised and unsupervised models to predict the sentiment of movie 

reviews based on the review text content. While feature engineering and modeling is 

definitely the need of the hour, you also need to know how to analyze and interpret the 

root cause behind how model predictions work. In this section, we analyze sentiment 

causation. The idea is to find the root cause or key factors causing positive or negative 

sentiment. The first area of focus is model interpretation, where we try to understand, 

interpret, and explain the mechanics behind predictions made by our classification 

models. The second area of focus is to apply topic modeling and extract key topics from 

positive and negative sentiment reviews.

 Interpreting Predictive Models
One of the challenges with machine learning models is the transition from a pilot or 

proof-of-concept phase to the production phase. Business and key stakeholders often 

perceive machine learning models as complex black boxes and pose the question, 

why should I trust your model? Explaining the complex mathematical or theoretical 

concepts doesn’t serve the purpose. Is there some way that we can explain these models 

in an easy-to-interpret manner? This topic in fact has gained extensive attention very 

recently in 2016. Refer to the original research paper by M.T. Ribeiro, S. Singh, and 

Figure 9-15. Model performance metrics for LSTM-based deep learning model on 
word embeddings
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C. Guestrin titled "Why Should I Trust You?: Explaining the Predictions of Any Classifier,” 

from https://arxiv.org/pdf/1602.04938.pdf to understand more about model 

interpretation and the LIME framework.

There are various ways to interpret the predictions made by our predictive sentiment 

classification models. We want to understand why a positive review was correctly 

predicted as having a positive sentiment or a negative review as having a negative 

sentiment. Besides this, no model is a 100% accurate, so we also want to understand 

the reason for misclassifications or wrong predictions. The code used in this section is 

available in the the Jupyter notebook named Sentiment Causal Analysis - Model 

Interpretation.ipynb for an interactive experience.

Let’s first build a basic text classification pipeline for the model that worked best for 

us so far. This is the logistic regression model based on the Bag of Words feature model. 

We leverage the pipeline module from Scikit-Learn to build this machine learning 

pipeline using the following code.

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import make_pipeline

# build BOW features on train reviews

cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_

range=(1,2))

cv_train_features = cv.fit_transform(norm_train_reviews)

# build Logistic Regression model

lr = LogisticRegression()

lr.fit(cv_train_features, train_sentiments)

# Build Text Classification Pipeline

lr_pipeline = make_pipeline(cv, lr)

# save the list of prediction classes (positive, negative)

classes = list(lr_pipeline.classes_)

We build our model based on norm_train_reviews, which contains the normalized 

training reviews that we used in all our earlier analyses. Now that we have our 

classification pipeline ready, you can deploy the model by using pickle or joblib to 

save the classifier and feature objects, similar to what we discussed in the “Model 
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Deployment” section in Chapter 5. Assuming our pipeline is in production, how do 

we use it for new movie reviews? Let’s try to predict the sentiment for two new sample 

reviews (which were not used in training the model).

# normalize sample movie reviews

new_corpus = ['The Lord of the Rings is an Excellent movie!',

               'I didn\'t like the recent movie on TV. It was NOT good and a 

waste of time!']

norm_new_corpus = tn.normalize_corpus(new_corpus, stopwords=stop_words)

norm_new_corpus

['lord rings excellent movie', 'not like recent movie tv not good waste time']

# predict movie review sentiment

lr_pipeline.predict(norm_new_corpus)

array(['positive', 'negative'], dtype=object)

Our classification pipeline predicts the sentiment of both reviews correctly! Also 

closely observe the second sentence—it can handle negation, which is a desired quality. 

This is a good start, but how do we interpret the model predictions? One way is to use 

the model prediction class probabilities as a measure of confidence. You can use the 

following code to get the prediction probabilities for our sample reviews.

In [4]: pd.DataFrame(lr_pipeline.predict_proba(norm_new_corpus), 

columns=classes)

Out[4]:

   negative  positive

0  0.217474  0.782526

1  0.912649  0.087351

Thus, we can say that the first movie review has a prediction confidence or 

probability of 78% to have positive sentiment as compared to the second movie review 

with a 91% probability to have negative sentiment.

Let’s now kick it up a notch. Instead of playing around with toy examples, we run 

the same analysis on actual reviews from the test_reviews dataset (we use norm_test_

reviews, which has the normalized text reviews). Besides prediction probabilities, we 

use the skater framework for easy interpretation of the model decisions. You need to 
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load the following dependencies from the skater package first. We also define a helper 

function, which takes in a document index, a corpus, its response predictions, and an 

explainer object and helps with the model interpretation analysis.

from skater.core.local_interpretation.lime.lime_text import 

LimeTextExplainer

explainer = LimeTextExplainer(class_names=classes)

# helper function for model interpretation

def interpret_classification_model_prediction(doc_index, norm_corpus, 

corpus, prediction_labels, explainer_obj):

    # display model prediction and actual sentiments

    print("Test document index: {index}\nActual sentiment: {actual}

                                       \nPredicted sentiment: {predicted}"

      .format(index=doc_index, actual=prediction_labels[doc_index],

              predicted=lr_pipeline.predict([norm_corpus[doc_index]])))

    # display actual review content

    print("\nReview:", corpus[doc_index])

    # display prediction probabilities

    print("\nModel Prediction Probabilities:")

     for probs in zip(classes, lr_pipeline.predict_proba([norm_corpus[doc_

index]])[0]):

        print(probs)

    # display model prediction interpretation

    exp = explainer.explain_instance(norm_corpus[doc_index],

                                      lr_pipeline.predict_proba, num_

features=10, labels=[1])

    exp.show_in_notebook()

The preceding snippet leverages skater to explain our text classifier to analyze its 

decision making process in an easy-to-interpret form. Even though the model might be a 

complex one from a global perspective, it is easier to explain and approximate the model 

behavior on local instances. This is done by learning the model around the vicinity of 

the data point of interest X by sampling instances around X and assigning weights based 

on their proximity to X. Thus, these locally learned linear models help explain complex 

models in an easier way with class probabilities and contribution of top features to the 

class probabilities, which aid in the decision making process.

Chapter 9  Sentiment analySiS



618

Let’s take a movie review from our test dataset where both the actual and predicted 

sentiment is negative and analyze it with the helper function we created in the preceding 

snippet.

In [6]: doc_index = 100

   ...:  interpret_classification_model_prediction(doc_index=doc_index, 

corpus=norm_test_reviews, corpus=test_reviews, prediction_

labels=test_sentiments, explainer_obj=explainer)

Test document index: 100

Actual sentiment: negative

Predicted sentiment: ['negative']

Review: Worst movie, (with the best reviews given it) I've ever seen. Over 

the top dialog, acting, and direction. more slasher flick than thriller.

With all the great reviews this movie got I'm appalled that it turned out 

so silly. shame on you martin scorsese

Model Prediction Probabilities:

('negative', 0.827942236512913)

('positive', 0.17205776348708696)

Figure 9-16. Model interpretation for our classification model's correct prediction 
for a negative review
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The results depicted in Figure 9-16 show us the class prediction probabilities and 

the top 10 features that contributed the maximum to the prediction decision-making 

process. These key features are also highlighted in the normalized movie review text. 

Our model performs quite well in this scenario and we can see the key features that 

contributed to the negative sentiment of this review including bad, silly, dialog, and 

shame, which make sense. Besides this, the word “great” contributed the maximum to 

the positive probability of 0.17 and in fact if we had removed this word from our review 

text, the positive probability would have dropped significantly.

The following code runs a similar analysis on a test movie review with both actual 

and predicted sentiment of the positive value.

In [7]: doc_index = 2000

   ...:  interpret_classification_model_prediction(doc_index=doc_index, 

corpus=norm_test_reviews, corpus=test_reviews,prediction_labels=

                                   test_sentiments, explainer_obj=explainer)

Test document index: 2000

Actual sentiment: positive

Predicted sentiment: ['positive']

Review: I really liked the Movie "JOE." It has really become a cult 

classic among certain age groups.<br /><br />The Producer of this movie is 

a personal friend of mine. He is my Stepsons Father-In-Law. He lives in 

Manhattan's West side, and has a Bungalow. in Southampton, Long Island. His 

son-in-law live next door to his Bungalow.<br /><br />Presently, he does 

not do any Producing, But dabbles in a business with HBO movies.<br /> 

<br />As a person, Mr. Gil is a real gentleman and I wish he would have 

continued in the production business of move making.

Model Prediction Probabilities:

('negative', 0.014587305153566432)

('positive', 0.9854126948464336)
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The results depicted in Figure 9-17 show us the top features responsible for the 

model making a decision of predicting this review as positive. Based on the content, the 

reviewer really liked this movie and it was a real cult classic among certain age groups. 

In our final analysis, we look at the model interpretation of an example where the model 

makes a wrong prediction.

In [8]: doc_index = 347

   ...:  interpret_classification_model_prediction(doc_index=doc_index, 

corpus=norm_test_reviews, corpus=test_reviews, prediction_labels= 

test_sentiments, explainer_obj=explainer)

Test document index: 347

Actual sentiment: negative

Predicted sentiment: ['positive']

Review: When I first saw this film in cinema 11 years ago, I loved it. 

I still think the directing and cinematography are excellent, as is 

the music. But it's really the script that has over the time started to 

bother me more and more. I find Emma Thompson's writing self-absorbed 

and unfaithful to the original book; she has reduced Marianne to a side-

character, a second fiddle to her much too old, much too severe Elinor - 

she in the movie is given many sort of 'focus moments', and often they 

appear to be there just to show off Thompson herself.<br /><br />I do 

Figure 9-17. Model interpretation for our classification model's correct prediction 
for a positive review

Chapter 9  Sentiment analySiS



621

understand her cutting off several characters from the book, but leaving 

out the one scene where Willoughby in the book is redeemed? For someone 

who red and cherished the book long before the movie, those are the things 

always difficult to digest.<br /><br />As for the actors, I love Kate 

Winslet as Marianne. She is not given the best script in the world to work 

with but she still pulls it up gracefully, without too much sentimentality. 

Alan Rickman is great, a bit old perhaps, but he plays the role 

beautifully. And Elizabeth Spriggs, she is absolutely fantastic as always.

Model Prediction Probabilities:

('negative', 0.028707732768304406)

('positive', 0.9712922672316956)

Figure 9-18. Model interpretation for our classification model's incorrect prediction

The preceding output tells us that our model predicted the movie review indicating 

a positive sentiment when in fact the actual sentiment label is negative for the same 

review. The results in Figure 9-18 tell us that the reviewer shows signs of positive 

sentiment in the movie review, especially in parts where he/she tells us that “I loved 

it. I still think the directing and cinematography are excellent, as is the music… Alan 

Rickman is great, a bit old perhaps, but he plays the role beautifully. And Elizabeth 

Spriggs, she is absolutely fantastic as always.” The feature words from the same have 

been depicted in the top features contributing to positive sentiment.
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The model interpretation also correctly identifies the aspects of the review 

contributing to negative sentiment, such as “But it’s really the script that has over 

time started to bother me more and more.” Hence, this is one of the more complex 

reviews because it indicates positive and negative sentiment. The final interpretation 

is in the reader’s hands. You can now use this same framework to interpret your own 

classification models and understand where your model might be performing well and 

where it might need improvements!

 Analyzing Topic Models
Another way of analyzing key terms, concepts, or topics responsible for sentiment is 

to use a different approach known as topic modeling. We covered some basics of topic 

modeling in the section titled “Topic Models” under “Feature Engineering on Text 

Data” in Chapter 4. The main aim of topic models is to extract and depict key topics 

or concepts that are otherwise latent and not very prominent in huge corpora of text 

documents. We saw the use of Latent Dirichlet Allocation (LDA) and Non-Negative 

Matrix Factorization (NMF) for topic modeling in Chapter 6. In this section, we use Non-

Negative Matrix Factorization. Refer to the Jupyter notebook titled Sentiment Causal 

Analysis - Topic Models.ipynb for an interactive experience.

The first step in this analysis is to combine all our normalized train and test reviews 

and separate these reviews into positive and negative sentiment reviews. Once we do 

this, we will extract features from these two datasets using the TF-IDF feature vectorizer. 

The following snippet helps us achieve this.

In [11]: from sklearn.feature_extraction.text import TfidfVectorizer

    ...:

    ...: # consolidate all normalized reviews

    ...: norm_reviews = norm_train_reviews+norm_test_reviews

    ...: # get tf-idf features for only positive reviews

    ...:  positive_reviews = [review for review, sentiment in zip(norm_

reviews, sentiments) if sentiment == 'positive']

    ...: ptvf = TfidfVectorizer(use_idf=True, min_df=0.02, max_df=0.75,

                                ngram_range=(1,2), sublinear_tf=True)

    ...: ptvf_features = ptvf.fit_transform(positive_reviews)

    ...: # get tf-idf features for only negative reviews
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    ...:  negative_reviews = [review for review, sentiment in zip(norm_

reviews, sentiments) if sentiment == 'negative']

    ...: ntvf = TfidfVectorizer(use_idf=True, min_df=0.02, max_df=0.75,

                                ngram_range=(1,2), sublinear_tf=True)

    ...: ntvf_features = ntvf.fit_transform(negative_reviews)

    ...: # view feature set dimensions

    ...: print(ptvf_features.shape, ntvf_features.shape)

(25000, 933) (25000, 925)

From the preceding output dimensions, you can see that we have filtered out a lot 

of the features we used previously when building our classification models by making 

min_df to be 0.02 and max_df to be 0.75. This is to speed up the topic modeling process 

and remove features that either occur too much or not very often. Let’s now import the 

necessary dependencies for the topic modeling process.

In [12]: import pyLDAvis

    ...: import pyLDAvis.sklearn

    ...: from sklearn.decomposition import NMF

    ...: import topic_model_utils as tmu

    ...:

    ...: pyLDAvis.enable_notebook()

    ...: total_topics = 10

The NMF class from Scikit-Learn helps us do the topic modeling. We also use 

pyLDAvis to build interactive visualizations of topic models. The core principle behind 

Non-Negative Matrix Factorization (NNMF) is to apply matrix decomposition (similar to 

SVD) to a non-negative feature matrix X so that the decomposition can be represented 

as X ≈ WH, where W and H are both non-negative matrices which, if multiplied, should 

approximately reconstruct the feature matrix X. A cost function like L2 norm can be used 

to get this approximation. Let’s apply NNMF to get 10 topics from our positive sentiment 

reviews.

# build topic model on positive sentiment review features

pos_nmf = NMF(n_components=total_topics, solver='cd', max_iter=500,

               random_state=42, alpha=.1, l1_ratio=.85)

pos_nmf.fit(ptvf_features)
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# extract features and component weights

pos_feature_names = np.array(ptvf.get_feature_names())

pos_weights = pos_nmf.components_

# extract and display topics and their components

pos_feature_names = np.array(ptvf.get_feature_names())

feature_idxs = np.argsort(-pos_weights)[:, :15]

topics = [pos_feature_names[idx] for idx in feature_idxs]

for idx, topic in enumerate(topics):

    print('Topic #'+str(idx+1)+':')

    print(', '.join(topic))

    print()

Topic #1:

but, one, make, no, take, way, even, get, seem, like, much, scene, may, 

character, go

Topic #2:

movie, watch, see, like, think, really, good, but, see movie, great, movie 

not, would, get, enjoy, say

Topic #3:

show, episode, series, tv, season, watch, dvd, television, first, good, 

see, would, air, great, remember

Topic #4:

family, old, young, year, life, child, father, mother, son, year old, man, 

friend, kid, boy, girl

Topic #5:

performance, role, actor, play, great, cast, good, well, excellent, 

character, story, star, also, give, acting

Topic #6:

film, see, see film, film not, watch, good film, watch film, dvd, great 

film, film but, film see, release, year, film make, great
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Topic #7:

love, love movie, story, love story, fall love, fall, beautiful, song, 

wonderful, music, heart, romantic, romance, favorite, character

Topic #8:

funny, laugh, hilarious, joke, humor, moment, fun, guy, get, but, line, 

show, lot, time, scene

Topic #9:

ever, ever see, movie ever, one good, one, see, good, ever make, good 

movie, movie, make, amazing, never, every, movie one

Topic #10:

comedy, romantic, laugh, hilarious, fun, humor, comic, joke, drama, light, 

romance, star, british, classic, one

While some of the topics might be very generic, we can see that some of the topics clearly 

indicate the specific aspects from the reviews, which led to them having a positive sentiment. 

You can leverage pyLDAvis to visualize these topics in an interactive visualization.

In [14]: pyLDAvis.sklearn.prepare(pos_nmf, ptvf_features, ptvf, mds='mmds')

Figure 9-19. Visualizing topic models on positive sentiment movie reviews
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The visualization in Figure 9-19 shows us the 10 topics from positive movie reviews 

and we can see the top relevant terms for Topic 5 from our previous output (pyLDAvis 

gives its own ordering to topics). From the topics and the terms, we can see terms like 

movie cast, actors, performance, play, characters, music, wonderful, script, good, and 

so on contribute to positive sentiment in various topics. This is quite interesting and 

gives you good insight into components of the reviews that contribute to the positive 

sentiment of the reviews. This visualization is completely interactive if you are using 

the Jupyter notebook. You can click on any of the bubbles representing topics in the 

Intertopic Distance Map on the left to see the most relevant terms in each of the topics in 

the bar chart on the right.

The plot on the left is rendered using multi-dimensional scaling (MDS). Similar 

topics should be close to one another and dissimilar topics should be far apart. The size 

of each topic bubble is based on the frequency of that topic and its components in the 

overall corpus.

The visualization on the right shows the top terms. When no topic it selected, it 

shows the top 30 most salient terms in the corpus. A term’s saliency is defined as a 

measure of how frequently the term appears in the corpus and its distinguishing factor 

when used to distinguish between topics. When a topic is selected, the chart changes 

to show something similar to Figure 9-19, which shows the top 30 most relevant terms 

for that topic. The relevancy metric is controlled by λ, which can be changed based 

on a slider on top of the bar chart (refer to the notebook to interact with this). Readers 

interested in more mathematical theory behind these visualizations are encouraged to 

check out https://cran.r-project.org/web/packages/LDAvis/vignettes/details.

pdf, which is a vignette for the R package LDAvis, which has been ported to Python as 

pyLDAvis.

Let’s now extract topics and run this same analysis on our negative sentiment 

reviews from the movie reviews dataset.

# build topic model on negative sentiment review features

neg_nmf = NMF(n_components=total_topics, solver='cd', max_iter=500,

              random_state=42, alpha=.1, l1_ratio=.85)

neg_nmf.fit(ntvf_features)

# extract features and component weights

neg_feature_names = ntvf.get_feature_names()

neg_weights = neg_nmf.components_
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# extract and display topics and their components

neg_feature_names = np.array(ntvf.get_feature_names())

feature_idxs = np.argsort(-neg_weights)[:, :15]

topics = [neg_feature_names[idx] for idx in feature_idxs]

for idx, topic in enumerate(topics):

    print('Topic #'+str(idx+1)+':')

    print(', '.join(topic))

    print()

Topic #1:

but, one, character, get, go, like, no, scene, seem, take, show, much, 

time, would, play

Topic #2:

movie, watch, good, bad, think, like, but, see, would, make, even, movie 

not, could, really, watch movie

Topic #3:

film, film not, good, bad, make, bad film, acting, film but, but, actor, 

watch film, see film, script, watch, see

Topic #4:

horror, budget, low, low budget, horror movie, horror film, gore, flick, 

zombie, blood, scary, killer, monster, kill, genre

Topic #5:

effect, special, special effect, fi, sci, sci fi, acting, bad, look, look 

like, cheesy, terrible, cheap, creature, space

Topic #6:

funny, comedy, joke, laugh, not funny, show, humor, stupid, try, hilarious, 

but, fun, suppose, episode, moment

Topic #7:

ever, ever see, bad, bad movie, movie ever, see, one bad, ever make, one, 

movie, film ever, bad film, make, horrible, movie bad
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Topic #8:

waste, waste time, time, not waste, money, complete, hour, spend, life, 

talent, please, crap, total, plot, minute

Topic #9:

book, read, novel, story, version, base, character, change, write, love, 

movie, comic, completely, miss, many

Topic #10:

year, old, year old, kid, child, year ago, ago, young, age, adult, boy, 

girl, see, parent, school

While some of the topics might be very generic, just like we observed in the previous 

code segment, we can see some of the topics clearly indicate the specific aspects from the 

reviews which led to them having a negative sentiment. You can now leverage pyLDAvis to 

visualize these topics in an interactive visualization, just like the previous plot.

In [16]: pyLDAvis.sklearn.prepare(neg_nmf, ntvf_features, ntvf, mds='mmds')

Figure 9-20. Visualizing topic models on positive sentiment movie reviews
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The visualization in Figure 9-20 shows us the 10 topics from negative movie reviews 

and we can see the top relevant terms for Topic 4 highlighted in the output. From the 

topics and the terms, we can see terms like low budget, horror movie, gore, blood, cheap, 

scary, nudity, and so on have contributed to the negative sentiments. Of course, there are 

good chances of overlap between topics from positive and negative sentiment reviews 

but there will be distinguishable, distinct topics that further help us with interpretation 

and causal analysis.

 Summary
This real-world case-study oriented chapter introduced the IMDB movie review 

dataset with the objective of predicting the sentiment of the reviews based on the 

textual content. We covered multiple aspects from NLP, including text preprocessing, 

normalization, feature engineering, and text classification. Unsupervised learning 

techniques using sentiment lexicons like TextBlob, Afinn, SentiWordNet, and Vader 

were covered in extensive detail, to show how we can analyze sentiment in the absence 

of labeled training data, which is a valid problem in today’s organizations. Detailed 

workflow diagrams depicting text classification as a supervised machine learning 

problem helped us relate NLP to machine learning so that we can use machine learning 

techniques and methodologies to solve this problem of predicting sentiment when 

labeled data is available.

The focus on supervised methods was two-fold. This included traditional machine 

learning approaches and models like logistic regression and support vector machines 

and newer deep learning models including deep neural networks, RNNs, and LSTMs. 

Detailed concepts, workflows, hands-on examples, and comparative analyses with 

multiple supervised models and different feature engineering techniques have been 

covered for the purpose of predicting sentiment from movie reviews with maximum 

model performance. The final section of this chapter covered a very important aspect of 

machine learning, which is often neglected in our analyses. We looked at ways to analyze 

and interpret the cause of the positive or negative sentiments. Analyzing and visualizing 

model interpretations and topic models was covered with several examples, to give 

you good insight into how you can reuse these frameworks on your own datasets. The 

frameworks and methodologies used in this chapter should be useful for tackling similar 

problems in your own text data.
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CHAPTER 10

The Promise of Deep 
Learning
The focus of this book has been primarily to get you up to speed on essential techniques 

in natural language processing, so covering detailed applications leveraging deep 

learning for NLP is out of the current scope. However, we have still tried to depict some 

interesting applications of NLP throughout the book, including Chapter 4, where we 

covered interesting methods around word embeddings using deep learning methods 

like Word2Vec, GloVe, and FastText and Chapter 5, where we built text classification 

models using deep learning. The intent of this chapter is to talk a fair bit about the recent 

advancements made in the field of NLP with the help of deep learning and the promise 

it holds toward building better models, solving more complex problems and helping us 

build better and more intelligent systems.

There has been a lot of hype with deep learning and artificial intelligence (AI) in 

general with skeptics portraying them as a failure and the media portraying a grim 

future with the loss of jobs and the rise of the so-called killer robots. The intent of 

this chapter is to cut through the hype and focus on the current reality of how these 

methods help build better and more generic systems with less effort on aspects like 

feature engineering and complex modeling. Deep learning has been delivering and 

is continuing to deliver continual success in areas like machine translation, text 

generation, text summarization, and speech recognition, which were all really tough 

problems to solve. Besides just solving them, they have also enabled us to reach 

human-level accuracy in the last couple of years!

Another interesting aspect is the scope of building universal models or 

representations such that we can represent any corpus of text in a vector space with 

minimal effort in feature engineering. The idea is to leverage some form of transfer 

learning such that we can use a pretrained model (which has been trained on huge 
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corpora of rich textual data) to generalize representations on new text data, especially 

in problems with a lack of data. The best part of computer vision is that we have huge 

datasets like ImageNet with a suite of pretrained accurate models like VGG, Inception, 

and ResNet, which can be used as feature extractors in new problems. But what about 

NLP? Therein lies an inherent challenge considering that text data is so diverse, noisy, 

and unstructured. We’ve had some recent successes with word embeddings, including 

methods like Word2Vec, GloVe, and FastText, all of which are covered in Chapter 4. In 

this chapter, we will be showcasing several state-of-the-art generic sentence-embedding 

encoders, which tend to give surprisingly good performance especially on small 

amounts of data for transfer learning tasks as compared to word-embedding models. 

This will showcase the promise deep learning holds for NLP. We will be covering the 

following models:

• Averaged sentence embeddings

• Doc2Vec

• Neural-net language models (hands-on demo!)

• Skip-thought vectors

• Quick-thought vectors

• InferSent

• Universal sentence encoders

We cover the essential concepts and showcase some hands-on examples leveraging 

Python and TensorFlow in a text-classification problem focused on sentiment analysis 

based on the dataset from the previous chapter. This chapter is based on my recent 

thoughts, which I penned in a popular article that you can also access here if interested: 

https://towardsdatascience.com/deep-transfer-learning-for-natural-language-

processing-text-classification-with-universal-1a2c69e5baa9. The intent of this 

chapter is not just to talk about some generic content around deep learning for NLP, but 

also to showcase cutting edge state-of-the-art deep transfer learning models for NLP 

with real world hands-on examples. Let's get started! All the code examples showcased 

in this chapter are available on the book's official GitHub repository, which you can 

access here:  https://github.com/dipanjanS/text-analytics-with-python/tree/

master/New-Second-Edition.
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 Why Are We Crazy for Embeddings?
What is this sudden craze behind embeddings? I’m sure many of you might be hearing it 

everywhere. Let’s clear up the basics first and cut through the hype.

An embedding is a fixed-length vector typically used to encode and repre-
sent an entity (document, sentence, word, graph!).

I’ve talked about the need for embeddings in the context of text data and NLP 

in Chapter 4 and in one of my articles at: https://towardsdatascience.com/

understanding- feature-engineering-part-4-deep-learning-methods-for-text-

data- 96c44370bbfa. But I will reiterate this briefly here for the sake of convenience. 

With regard to speech or image recognition systems, we already get information in the 

form of rich dense feature vectors embedded in high-dimensional datasets like audio 

spectrograms and image pixel intensities. However, when it comes to raw text data, 

especially count-based models like Bag of Words, we are dealing with individual words 

that may have their own identifiers and do not capture the semantic relationship among 

words. This leads to huge sparse word vectors for textual data and thus if we do not have 

enough data, we may end up getting poor models or even overfitting the data due to the 

curse of dimensionality. See Figure 10-1.

Figure 10-1. Comparing feature representations for audio, image, and text

Predictive methods like neural network based language models try to predict words 

from neighboring words by looking at word sequences in the corpus. In the process, it 

learns distributed representations, thus giving us dense word embeddings.

Chapter 10  the promise of Deep Learning

https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa


634

Now you might be thinking, big deal, we get a bunch of vectors from text. What 

now? Well, if we have a good numeric representation of text data that captures even the 

context and semantics, we can use this for a wide variety of downstream real-world tasks 

like sentiment analysis, text classification, clustering, summarization, translation, and so 

on. The fact of the matter is, machine learning or deep learning models run on numbers 

and embeddings (see Figure 10-2) are they key to encoding text data to be used by these 

models.

A big trend here has been finding so-called “universal embeddings,” which are 

basically pretrained embeddings obtained from training deep learning models on a 

huge corpus. This enables us to use these pretrained (generic) embeddings in a wide 

variety of tasks, including scenarios with constraints like lack of adequate data. This is a 

perfect example of transfer learning, in that it involves leveraging prior knowledge from 

pretrained embeddings to solve a completely new task! The following figure showcases 

some recent trends in universal word and sentence embeddings thanks to an amazing 

article (https://medium.com/huggingface/universal-word-sentence-embeddings-

ce48ddc8fc3a) from the folks at HuggingFace (see Figure 10-3)!

Figure 10-2. Text embeddings
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Figure 10-3 shows some interesting trends, including Google’s universal sentence 

encoder, which we will be exploring in detail. Let’s take a brief look at trends and 

developments in word- and sentence-embedding models before diving deeper into 

universal sentence encoder.

 Trends in Word-Embedding Models
The word-embedding models are perhaps some of the older and more mature models 

that have been developed starting with Word2Vec in 2013. The three most common 

models leveraging deep learning (unsupervised approaches) based on embedding word 

vectors in a continuous vector space based on semantic and contextual similarity are:

• Word2Vec

• GloVe

• FastText

Figure 10-3. Recent trends in universal word and sentence embeddings (Source: 
https://medium.com/huggingface/universal-word-sentence-embeddings-
ce48ddc8fc3a)
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These models are based on the principle of distributional hypothesis in the field of 

distributional semantics, which tells us that words that occur and are used in the same 

context are semantically similar to one another and have similar meanings (“a word is 

characterized by the company it keeps”). Do refer to my article on word embeddings, as 

it covers these three methods in detail, if you are interested in the gory details!

Another interesting model in this area that has been developed recently is ELMo 

(https://allennlp.org/elmo). It was developed by the Allen Institute for Artificial 

Intelligence. ELMo is a take on the famous Muppet character of the same name from 

the show “Sesame Street,” but it’s also an acronym for “Embeddings from Language 

Models”.

ELMo gives us word embeddings that are learned from a deep bidirectional language 

model (biLM), which is typically pretrained on a large text corpus, enabling transfer 

learning and for these embeddings to be used across different NLP tasks. Allen AI 

tells us that ELMo representations are contextual, deep, and character-based. It uses 

morphological clues to form representations even for OOV (out-of-vocabulary) tokens.

 Trends in Universal Sentence-Embedding Models
The concept of sentence embeddings is not new, because back when word embeddings 

were built, one of the easiest ways to build a baseline sentence-embedding model was 

with averaging.

A baseline sentence-embedding model can be built by averaging the individual word 

embeddings for every sentence/document (kind of similar to Bag of Words, where we 

lose that inherent context and sequence of words in the sentence). I do cover this in 

detail in my article (https://towardsdatascience.com/understanding-feature- 

engineering- part-4-deep-learning-methods-for-text-data-96c44370bbfa), as well 

as in Chapter 5. Figure 10-4 shows a way of implementing this.
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Figure 10-4. Baseline sentence-embedding models
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Of course, there are more sophisticated approaches like encoding sentences in a 

linear weighted combination of their word embeddings and then remove some of the 

common principal components. Check out, “A Simple but Tough-to-Beat Baseline for 

Sentence Embeddings” at https://openreview.net/forum?id=SyK00v5xx.

Doc2Vec is also a very popular approach proposed by Mikolov et al. in their paper 

entitled “Distributed Representations of Sentences and Documents”. Herein, they 

propose the paragraph vector, which is an unsupervised algorithm that learns fixed-

length feature embeddings from variable-length pieces of text, such as sentences, 

paragraphs, and documents (see Figure 10-5).

Based on this depiction, the model represents each document by a dense vector, 

which is trained to predict words in the document. The only difference being the 

paragraph or document ID used along with the regular word tokens to build out the 

embeddings. Such a design, enables this model to overcome the weaknesses of bag-of-

words models.

Neural-Net Language Models (NNLM) is a very early idea based on a neural 

probabilistic language model proposed by Bengio et al. in their 2013 paper,  

“A Neural Probabilistic Language Model,” where they talk about learning a distributed 

representation for words that allows each training sentence to inform the model 

Figure 10-5. Word2Vec vs. Doc2Vec (source: https://arxiv.org/abs/1405.4053)
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about an exponential number of semantically neighboring sentences. The model 

learns simultaneously a distributed representation for each word along with the 

probability function for word sequences, expressed in terms of these representations. 

Generalization is obtained because a sequence of words that has never been seen before 

gets high probability if it is made of words that are similar (in the sense of having a 

nearby representation) to words forming an already seen sentence.

Google built a universal sentence-embedding model, nnlm-en-dim128 (https://

tfhub.dev/google/nnlm-en-dim128/1), which is a token-based text-embedding 

model trained using a three hidden layer feed-forward neural-net language model 

on the English Google News 200B corpus. This model maps any body of text into 

128-dimensional embeddings. We will be using this in our hands-on demonstration 

shortly!

Skip-thought vectors were also one of the first models in the domain of unsupervised 

learning-based generic sentence encoders. In their proposed paper, “Skip-Thought 

Vectors,” using the continuity of text from books, they trained an encoder-decoder 

model that tries to reconstruct the surrounding sentences of an encoded passage. 

Sentences that share semantic and syntactic properties are mapped to similar vector 

representations. See Figure 10-6.

This is just like the Skip-gram model but for sentences, where we try to predict the 

surrounding sentences of a given source sentence.

Quick-thought vectors is a more recent unsupervised approach toward learning 

sentence embeddings (see Figure 10-7). Details are mentioned in the paper, “An efficient 

framework for learning sentence representations”. Interestingly, they reformulate 

Figure 10-6. Word2Vec vs. Doc2Vec (source: https://arxiv.org/abs/1405.4053)
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the problem of predicting the context in which a sentence appears as a classification 

problem by replacing the decoder with a classifier in the regular encoder-decoder 

 architecture.

Thus, given a sentence and the context in which it appears, a classifier distinguishes 

context sentences from other contrastive sentences based on their embedding 

representations. An input sentence is first encoded by using some function. But instead 

of generating the target sentence, the model chooses the correct target sentence from a 

set of candidate sentences. Viewing generation as choosing a sentence from all possible 

sentences, this can be seen as a discriminative approximation to the generation problem.

InferSent is interestingly a supervised learning approach to learning universal 

sentence embeddings using natural language inference data. This is hardcore supervised 

transfer learning, where just like we get pretrained models trained on the ImageNet 

dataset for computer vision, they have universal sentence representations trained using 

supervised data from the Stanford natural language inference datasets. Details are 

mentioned in their paper, “Supervised Learning of Universal Sentence Representations 

from Natural Language Inference Data”. The dataset used by this model is the SNLI 

dataset consists of 570,000 human-generated English sentence pairs, manually labeled 

with one of three categories: entailment, contradiction, or neutral. It captures natural 

language inference useful for understanding sentence semantics. See Figure 10-8.

Figure 10-7. Quick-thought vectors (source: https://openreview.net/forum? 
id=rJvJXZb0W)
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Based on the architecture depicted in Figure 10-8, we can see that it uses a shared 

sentence encoder that outputs a representation for the premise u and the hypothesis v. 

Once the sentence vectors are generated, three matching methods are applied to extract 

relations between u and v:

• Concatenation (u, v)

• Element-wise product u ∗ v

• Absolute element-wise difference |u − v|

The resulting vector is then fed into a three-class classifier consisting of multiple fully 

connected layers culminating in a softmax layer.

Universal Sentence Encoder, from Google, is one of the latest and best universal 

sentence- embedding models, and it was published in early 2018! The Universal 

Sentence Encoder encodes any body of text into 512-dimensional embeddings that can 

be used for a wide variety of NLP tasks, including text classification, semantic similarity, 

and clustering. It is trained on a variety of data sources and a variety of tasks with the aim 

of dynamically accommodating a wide variety of natural language understanding tasks 

that require modeling the meaning of sequences of words rather than just individual 

words.

Figure 10-8. InferSent training scheme (source: https://arxiv.org/abs/1705.02364)
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Their key finding is that transfer learning using sentence embeddings tends to 

outperform word embedding level transfer. Check out their paper, “Universal Sentence 

Encoder” for further details. Essentially they have two versions of their model available 

in TF-Hub  as universal-sentence-encoder (https://tfhub.dev/google/universal- 

sentence- encoder/2). Version 1 uses the transformer-network based sentence encoding 

model and Version 2 uses a Deep Averaging Network (DAN), where input embeddings 

for words and bi-grams are averaged together and then passed through a feed-forward 

deep neural network (DNN) to produce sentence embeddings. We will be using Version 

2 in our hands-on demonstration shortly.

 Understanding Our Text Classification Problem
It’s time to put some of these universal sentence encoders into action with a hands-on 

demonstration! As the article mentions, the premise of our demonstration here is to 

focus on a very popular NLP task, text classification ,  in the context of sentiment analysis. 

We will be working with the benchmark IMDB Large Movie Review Dataset. Feel free 

to download it at http://ai.stanford.edu/~amaas/data/sentiment/ or you can 

even download it from my GitHub repository https://github.com/dipanjanS/data_

science_for_all/tree/master/tds_deep_transfer_learning_nlp_classification. 

See Figure 10-9.

This dataset consists of a total of 50,000 movie reviews, where 25,000 have positive 

sentiments and 25,000 have negative sentiments. We will be training our models on a 

total of 30,000 reviews as our training dataset, validate on 5,000 reviews, and use 15,000 

reviews as our test dataset. The main objective is to correctly predict the sentiment of 

each review as positive or negative.

Figure 10-9. Sentiment analysis on movie reviews
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 Universal Sentence Embeddings in Action
Now that we have defined our main objective, let’s put universal sentence encoders 

into action! The code is available in the GitHub repository for this book at https://

github.com/dipanjanS/text-analytics-with-python. Feel free to play around with it. 

I recommend using a GPU-based instance. I love using Paperspace, where you can spin 

up notebooks in the cloud without worrying about configuring instances manually.

My setup was an eight-CPU, 30GB, 250GB SSD and an NVIDIA Quadro P4000, which 

is usually cheaper than most AWS GPU instances (I love AWS though!).

 Load Up Dependencies
We start by installing tensorflow-hub, which enables us to use these sentence encoders 

easily.

!pip install tensorflow-hub

Collecting tensorflow-hub

   Downloading https://files.pythonhosted.org/packages/5f/22/64f246ef80e64b

1a13b2f463cefa44f397a51c49a303294f5f3d04ac39ac/tensorflow_hub-0.1.1-py2.

py3-none-any.whl (52kB)

    100% |################################| 61kB 8.5MB/s ta 0:00:011

Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (1.14.3)

Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (1.11.0)

Requirement already satisfied: protobuf>=3.4.0 in /usr/local/lib/python3.6/

dist-packages (from tensorflow-hub) (3.5.2.post1)

Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist- 

packages (from protobuf>=3.4.0->tensorflow-hub) (39.1.0)

Installing collected packages: tensorflow-hub

Successfully installed tensorflow-hub-0.1.1

Let’s now load our essential dependencies for this tutorial!

import tensorflow as tf

import tensorflow_hub as hub

import numpy as np

import pandas as pd

Chapter 10  the promise of Deep Learning

https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python
https://www.paperspace.com/
https://www.leadtek.com/eng/products/workstation_graphics(2)/NVIDIA_Quadro_P4000_(10775)/detail


644

The following commands help you check if tensorflow will be using a GPU (if you 

have one set up already):

In [12]: tf.test.is_gpu_available()

Out[12]: True

In [13]: tf.test.gpu_device_name()

Out[13]: '/device:GPU:0'

 Load and View the Dataset
We can now load the dataset and view it using pandas. I provide a compressed version of 

the dataset in my repository, which you can use as follows.

dataset = pd.read_csv('movie_reviews.csv.bz2', compression='bz2')

dataset.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50000 entries, 0 to 49999

Data columns (total 2 columns):

review       50000 non-null object

sentiment    50000 non-null object

dtypes: object(2)

memory usage: 781.3+ KB

We encode the sentiment column as 1s and 0s just to make things easier during 

model development (label encoding). See Figure 10-10.

dataset['sentiment'] = [1 if sentiment == 'positive' else 0 for sentiment 

in dataset['sentiment'].values]

dataset.head()
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 Building Train, Validation, and Test Datasets
We will now create the train, validation, and test datasets before we start modeling. We 

will use 30,000 reviews for the train dataset, 5,000 for the validation dataset, and 15,000 

for the test dataset. You can use a train-test splitting function also, like train_test_

split() from scikit-learn.

reviews = dataset['review'].values

sentiments = dataset['sentiment'].values

train_reviews = reviews[:30000]

train_sentiments = sentiments[:30000]

val_reviews = reviews[30000:35000]

val_sentiments = sentiments[30000:35000]

test_reviews = reviews[35000:]

test_sentiments = sentiments[35000:]

train_reviews.shape, val_reviews.shape, test_reviews.shape

((30000,), (5000,), (15000,))

 Basic Text Wrangling
There is some basic text wrangling and preprocessing we need to do to remove some 

noise from our text, like the contractions, unnecessary special characters, HTML tags, 

and so on. The following code helps us build a simple, yet effective text-wrangling 

system. Install the following libraries if you don’t have them. If you want you can also 

reuse the text-wrangling module we built in Chapter 3.

Figure 10-10. Our movie review dataset
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!pip install contractions

!pip install beautifulsoup4

The following functions help us build our text-wrangling system.

import contractions

from bs4 import BeautifulSoup

import unicodedata

import re

def strip_html_tags(text):

    soup = BeautifulSoup(text, "html.parser")

    [s.extract() for s in soup(['iframe', 'script'])]

    stripped_text = soup.get_text()

    stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text)

    return stripped_text

def remove_accented_chars(text):

     text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').

decode('utf-8', 'ignore')

    return text

def expand_contractions(text):

    return contractions.fix(text)

def remove_special_characters(text, remove_digits=False):

    pattern = r'[^a-zA-Z0-9\s]' if not remove_digits else r'[^a-zA-Z\s]'

    text = re.sub(pattern, ", text)

    return text

def pre_process_document(document):

    # strip HTML

    document = strip_html_tags(document)

    # lower case

    document = document.lower()

    # remove extra newlines (often might be present in really noisy text)

    document = document.translate(document.maketrans("\n\t\r", "   "))
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    # remove accented characters

    document = remove_accented_chars(document)

    # expand contractions

    document = expand_contractions(document)

    # remove special characters and\or digits

    # insert spaces between special characters to isolate them

    special_char_pattern = re.compile(r'([{.(-)!}])')

    document = special_char_pattern.sub(" \\1 ", document)

    document = remove_special_characters(document, remove_digits=True)

    # remove extra whitespace

    document = re.sub(' +', ' ', document)

    document = document.strip()

    return document

pre_process_corpus = np.vectorize(pre_process_document)

Let’s now preprocess our datasets using the function we implemented above.

train_reviews = pre_process_corpus(train_reviews)

val_reviews = pre_process_corpus(val_reviews)

test_reviews = pre_process_corpus(test_reviews)

 Build Data Ingestion Functions
Since we will be implementing our models in tensorflow using the tf.estimator API, 

we need to define some functions to build data and feature engineering pipelines to 

enable data flowing into our models during training. The following functions will help 

us. We leverage the numpy_input_fn() function, which feeds a dictionary of numpy arrays 

into the model.

# Training input on the whole training set with no limit on training epochs.

train_input_fn = tf.estimator.inputs.numpy_input_fn(

    {'sentence': train_reviews}, train_sentiments,

    batch_size=256, num_epochs=None, shuffle=True)
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# Prediction on the whole training set.

predict_train_input_fn = tf.estimator.inputs.numpy_input_fn(

    {'sentence': train_reviews}, train_sentiments, shuffle=False)

# Prediction on the whole validation set.

predict_val_input_fn = tf.estimator.inputs.numpy_input_fn(

    {'sentence': val_reviews}, val_sentiments, shuffle=False)

# Prediction on the test set.

predict_test_input_fn = tf.estimator.inputs.numpy_input_fn(

    {'sentence': test_reviews}, test_sentiments, shuffle=False)

We are now ready to build our models!

 Build Deep Learning Model with Universal Sentence 
Encoder
We need to first define the sentence-embedding feature that leverages the Universal 

Sentence Encoder before building the model. We can do that using the following code.

embedding_feature = hub.text_embedding_column(

    key='sentence',

    module_spec="https://tfhub.dev/google/universal-sentence-encoder/2",

    trainable=False)

INFO:tensorflow:Using /tmp/tfhub_modules to cache modules.

Like we discussed, we use the Universal Sentence Encoder Version 2 and it works on 

the sentence attribute in our input dictionary, which will be a numpy array of our reviews. 

We will build a simple feed-forward DNN now with two hidden layers. Just a standard 

model—nothing too sophisticated since we want to see how well these embeddings 

perform even on a simple model. Here, we are leveraging transfer learning in the form of 

pretrained embeddings. We are not fine-tuning by keeping the embedding weights fixed 

by setting trainable=False.

dnn = tf.estimator.DNNClassifier(

          hidden_units=[512, 128],

          feature_columns=[embedding_feature],

          n_classes=2,
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          activation_fn=tf.nn.relu,

          dropout=0.1,

          optimizer=tf.train.AdagradOptimizer(learning_rate=0.005))

# train for approx 12 epochs

# 256*1500 / 30000 == 12.8

We had set our batch_size to 256 and we will be flowing in data in batches of 256 

records for 1,500 steps. This translates to roughly 12–13 epochs.

 Model Training
Let’s now train our model on our training dataset and evaluate on the train and 

validation datasets in steps of 100.

tf.logging.set_verbosity(tf.logging.ERROR)

import time

TOTAL_STEPS = 1500

STEP_SIZE = 100

for step in range(0, TOTAL_STEPS+1, STEP_SIZE):

    print()

    print('-'*100)

    print('Training for step =', step)

    start_time = time.time()

    dnn.train(input_fn=train_input_fn, steps=STEP_SIZE)

    elapsed_time = time.time() - start_time

    print('Train Time (s):', elapsed_time)

     print('Eval Metrics (Train):', dnn.evaluate(input_fn=predict_train_

input_fn))

     print('Eval Metrics (Validation):', dnn.evaluate(input_fn=predict_val_

input_fn))

--------------------------------------------------------------------

Training for step = 0

Train Time (s): 78.62789511680603

Eval Metrics (Train): {'accuracy': 0.84863335, 'accuracy_baseline': 

0.5005, 'auc': 0.9279859, 'auc_precision_recall': 0.92819566, 'average_
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loss': 0.34581015, 'label/mean': 0.5005, 'loss': 44.145977, 'precision': 

0.86890674, 'prediction/mean': 0.47957155, 'recall': 0.8215118, 'global_

step': 100}

Eval Metrics (Validation): {'accuracy': 0.8454, 'accuracy_baseline': 0.505, 

'auc': 0.92413086, 'auc_precision_recall': 0.9200026, 'average_loss': 

0.35258815, 'label/mean': 0.495, 'loss': 44.073517, 'precision': 0.8522351, 

'prediction/mean': 0.48447067, 'recall': 0.8319192, 'global_step': 100}

--------------------------------------------------------------------

Training for step = 100

Train Time (s): 76.1651611328125

Eval Metrics (Train): {'accuracy': 0.85436666, 'accuracy_baseline': 0.5005, 

'auc': 0.9321357, 'auc_precision_recall': 0.93224275, 'average_loss': 

0.3330773, 'label/mean': 0.5005, 'loss': 42.520508, 'precision': 0.8501513, 

'prediction/mean': 0.5098621, 'recall': 0.86073923, 'global_step': 200}

Eval Metrics (Validation): {'accuracy': 0.8494, 'accuracy_baseline': 

0.505, 'auc': 0.92772096, 'auc_precision_recall': 0.92323804, 'average_

loss': 0.34418356, 'label/mean': 0.495, 'loss': 43.022945, 'precision': 

0.83501947, 'prediction/mean': 0.5149463, 'recall': 0.86707073, 'global_

step': 200}

--------------------------------------------------------------------

...

...

...

--------------------------------------------------------------------

Training for step = 1400

Train Time (s): 85.99037742614746

Eval Metrics (Train): {'accuracy': 0.8783, 'accuracy_baseline': 0.5005, 

'auc': 0.9500882, 'auc_precision_recall': 0.94986326, 'average_loss': 

0.28882334, 'label/mean': 0.5005, 'loss': 36.871063, 'precision': 0.865308, 

'prediction/mean': 0.5196238, 'recall': 0.8963703, 'global_step': 1500}

Eval Metrics (Validation): {'accuracy': 0.8626, 'accuracy_baseline': 

0.505, 'auc': 0.93708724, 'auc_precision_recall': 0.9336051, 'average_

loss': 0.32389137, 'label/mean': 0.495, 'loss': 40.486423, 'precision': 

0.84044176, 'prediction/mean': 0.5226699, 'recall': 0.8917172, 'global_

step': 1500}
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--------------------------------------------------------------------

Training for step = 1500

Train Time (s): 86.91469407081604

Eval Metrics (Train): {'accuracy': 0.8802, 'accuracy_baseline': 0.5005, 

'auc': 0.95115364, 'auc_precision_recall': 0.950775, 'average_loss': 

0.2844779, 'label/mean': 0.5005, 'loss': 36.316326, 'precision': 0.8735527, 

'prediction/mean': 0.51057553, 'recall': 0.8893773, 'global_step': 1600}

Eval Metrics (Validation): {'accuracy': 0.8626, 'accuracy_baseline': 0.505, 

'auc': 0.9373224, 'auc_precision_recall': 0.9336302, 'average_loss': 

0.32108024, 'label/mean': 0.495, 'loss': 40.135033, 'precision': 0.8478599, 

'prediction/mean': 0.5134171, 'recall': 0.88040406, 'global_step': 1600}

Based on the output logs, you can see that we get an overall accuracy of close to 

87% on our validation dataset and an AUC of 94%, which is quite good on such a simple 

model!

 Model Evaluation
Let’s now evaluate our model and check the overall performance on the train and test 

datasets.

dnn.evaluate(input_fn=predict_train_input_fn)

{'accuracy': 0.8802, 'accuracy_baseline': 0.5005, 'auc': 0.95115364,

 'auc_precision_recall': 0.950775, 'average_loss': 0.2844779,

 'label/mean': 0.5005, 'loss': 36.316326, 'precision': 0.8735527,

 'prediction/mean': 0.51057553, 'recall': 0.8893773, 'global_step': 1600}

dnn.evaluate(input_fn=predict_test_input_fn)

{'accuracy': 0.8663333, 'accuracy_baseline': 0.5006667, 'auc': 0.9406502,

  'auc_precision_recall': 0.93988097, 'average_loss': 0.31214723, 'label/

mean': 0.5006667,

 'loss': 39.679733, 'precision': 0.8597569, 'prediction/mean': 0.5120608,

 'recall': 0.8758988, 'global_step': 1600}
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We get an overall accuracy of close to 87% on the test data, giving us consistent 

results based on what we observed on our validation dataset earlier. Thus, this should 

give you an idea of how easy it is to leverage pretrained universal sentence embeddings 

and not worry about the hassle of feature engineering or complex modeling.

 Bonus: Transfer Learning with Different Universal 
Sentence Embeddings
Let’s now try building different deep learning classifiers based on different sentence 

embeddings. We will try the following:

• NNLM-128

• USE-512

We will also cover the two most prominent methodologies for transfer learning here.

• Build a model using frozen pretrained sentence embeddings

• Build a model where we fine-tune and update the pretrained 

sentence embeddings during training

The following generic function can plug and play different universal sentence 

encoders from tensorflow-hub.

import time

TOTAL_STEPS = 1500

STEP_SIZE = 500

my_checkpointing_config = tf.estimator.RunConfig(

    keep_checkpoint_max = 2,       # Retain the 2 most recent checkpoints.

)

def train_and_evaluate_with_sentence_encoder(hub_module, train_

module=False, path="):

    embedding_feature = hub.text_embedding_column(

        key='sentence', module_spec=hub_module, trainable=train_module)

    print()

    print('='*100)
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    print('Training with', hub_module)

    print('Trainable is:', train_module)

    print('='*100)

    dnn = tf.estimator.DNNClassifier(

            hidden_units=[512, 128],

            feature_columns=[embedding_feature],

            n_classes=2,

            activation_fn=tf.nn.relu,

            dropout=0.1,

            optimizer=tf.train.AdagradOptimizer(learning_rate=0.005),

            model_dir=path,

            config=my_checkpointing_config)

    for step in range(0, TOTAL_STEPS+1, STEP_SIZE):

        print('-'*100)

        print('Training for step =', step)

        start_time = time.time()

        dnn.train(input_fn=train_input_fn, steps=STEP_SIZE)

        elapsed_time = time.time() - start_time

        print('Train Time (s):', elapsed_time)

         print('Eval Metrics (Train):', dnn.evaluate(input_fn=predict_train_

input_fn))

         print('Eval Metrics (Validation):',  dnn.evaluate(input_fn=predict_

val_input_fn))

    train_eval_result = dnn.evaluate(input_fn=predict_train_input_fn)

    test_eval_result = dnn.evaluate(input_fn=predict_test_input_fn)

    return {

      "Model Dir": dnn.model_dir,

      "Training Accuracy": train_eval_result["accuracy"],

      "Test Accuracy": test_eval_result["accuracy"],

      "Training AUC": train_eval_result["auc"],

      "Test AUC": test_eval_result["auc"],

      "Training Precision": train_eval_result["precision"],

      "Test Precision": test_eval_result["precision"],
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      "Training Recall": train_eval_result["recall"],

      "Test Recall": test_eval_result["recall"]

    }

We can now train our models using these defined approaches.

tf.logging.set_verbosity(tf.logging.ERROR)

results = {}

results["nnlm-en-dim128"] = train_and_evaluate_with_sentence_encoder(

     "https://tfhub.dev/google/nnlm-en-dim128/1", path='/storage/models/

nnlm-en-dim128_f/')

results["nnlm-en-dim128-with-training"] = train_and_evaluate_with_sentence_

encoder(

     "https://tfhub.dev/google/nnlm-en-dim128/1", train_module=True, path='/

storage/models/nnlm-en-dim128_t/')

results["use-512"] = train_and_evaluate_with_sentence_encoder(

     "https://tfhub.dev/google/universal-sentence-encoder/2", path='/

storage/models/use-512_f/')

results["use-512-with-training"] = train_and_evaluate_with_sentence_encoder(

     "https://tfhub.dev/google/universal-sentence-encoder/2", train_

module=True, path='/storage/models/use-512_t/')

====================================================================

Training with https://tfhub.dev/google/nnlm-en-dim128/1

Trainable is: False

====================================================================

--------------------------------------------------------------------

Training for step = 0

Train Time (s): 30.525171756744385

Eval Metrics (Train): {'accuracy': 0.8480667, 'auc': 0.9287864, 

'precision': 0.8288572, 'recall': 0.8776557}

Eval Metrics (Validation): {'accuracy': 0.8288, 'auc': 0.91452694, 

'precision': 0.7999259, 'recall': 0.8723232}

--------------------------------------------------------------------
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...

...

--------------------------------------------------------------------

Training for step = 1500

Train Time (s): 28.242169618606567

Eval Metrics (Train): {'accuracy': 0.8616, 'auc': 0.9385461, 'precision': 

0.8443543, 'recall': 0.8869797}

Eval Metrics (Validation): {'accuracy': 0.828, 'auc': 0.91572505, 

'precision': 0.80322945, 'recall': 0.86424243}

====================================================================

Training with https://tfhub.dev/google/nnlm-en-dim128/1

Trainable is: True

====================================================================

--------------------------------------------------------------------

Training for step = 0

Train Time (s): 45.97756814956665

Eval Metrics (Train): {'accuracy': 0.9997, 'auc': 0.9998141, 'precision': 

0.99980015, 'recall': 0.9996004}

Eval Metrics (Validation): {'accuracy': 0.877, 'auc': 0.9225529, 

'precision': 0.86671925, 'recall': 0.88808084}

--------------------------------------------------------------------

...

...

--------------------------------------------------------------------

Training for step = 1500

Train Time (s): 44.654765605926514

Eval Metrics (Train): {'accuracy': 1.0, 'auc': 1.0, 'precision': 1.0, 

'recall': 1.0}

Eval Metrics (Validation): {'accuracy': 0.875, 'auc': 0.91479605, 

'precision': 0.8661916, 'recall': 0.8840404}

====================================================================

Training with https://tfhub.dev/google/universal-sentence-encoder/2

Trainable is: False

====================================================================

--------------------------------------------------------------------
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Training for step = 0

Train Time (s): 261.7671597003937

Eval Metrics (Train): {'accuracy': 0.8591, 'auc': 0.9373971, 'precision': 

0.8820655, 'recall': 0.8293706}

Eval Metrics (Validation): {'accuracy': 0.8522, 'auc': 0.93081224, 

'precision': 0.8631799, 'recall': 0.8335354}

--------------------------------------------------------------------

...

...

--------------------------------------------------------------------

Training for step = 1500

Train Time (s): 258.4421606063843

Eval Metrics (Train): {'accuracy': 0.88733333, 'auc': 0.9558296, 

'precision': 0.8979955, 'recall': 0.8741925}

Eval Metrics (Validation): {'accuracy': 0.864, 'auc': 0.938815, 

'precision': 0.864393, 'recall': 0.860202}

====================================================================

Training with https://tfhub.dev/google/universal-sentence-encoder/2

Trainable is: True

====================================================================

--------------------------------------------------------------------

Training for step = 0

Train Time (s): 313.1993100643158

Eval Metrics (Train): {'accuracy': 0.99916667, 'auc': 0.9996535, 

'precision': 0.9989349, 'recall': 0.9994006}

Eval Metrics (Validation): {'accuracy': 0.9056, 'auc': 0.95068294, 

'precision': 0.9020474, 'recall': 0.9078788}

--------------------------------------------------------------------

...

...

--------------------------------------------------------------------

Training for step = 1500

Train Time (s): 305.9913341999054

Eval Metrics (Train): {'accuracy': 1.0, 'auc': 1.0, 'precision': 1.0, 

'recall': 1.0}
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Eval Metrics (Validation): {'accuracy': 0.9032, 'auc': 0.929281, 

'precision': 0.8986784, 'recall': 0.9066667}

I’ve depicted the evaluation metrics of importance in the output, and you can see we 

definitely get some good results with our models. The table in Figure 10-11 summarizes 

these comparative results in a nice way.

results_df = pd.DataFrame.from_dict(results, orient="index")

results_df

Figure 10-11. Comparing results from different universal sentence encoders

Looks like Google’s Universal Sentence Encoder with fine-tuning gave us the best 

results on the test data. Let’s load this saved model and run an evaluation on the test 

data.

# get location of saved best model

best_model_dir = results_df[results_df['Test Accuracy'] == results_df['Test 

Accuracy'].max()]['Model Dir'].values[0]

# load up model

embedding_feature = hub.text_embedding_column(

         key='sentence', module_spec="https://tfhub.dev/google/universal- 

sentence- encoder/2", trainable=True)

dnn = tf.estimator.DNNClassifier(

            hidden_units=[512, 128],

            feature_columns=[embedding_feature],

            n_classes=2,

            activation_fn=tf.nn.relu,

            dropout=0.1,

            optimizer=tf.train.AdagradOptimizer(learning_rate=0.005),

            model_dir=best_model_dir)
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# define function to get model predictions

def get_predictions(estimator, input_fn):

    return [x["class_ids"][0] for x in estimator.predict(input_fn=input_fn)]

# get model predictions on test data

predictions = get_predictions(estimator=dnn, input_fn=predict_test_input_fn)

predictions[:10]

[0, 1, 0, 1, 1, 0, 1, 1, 1, 1]

One of the best ways to evaluate our model performance is to visualize the model 

predictions in the form of a confusion matrix (see Figure 10-12).

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

with tf.Session() as session:

    cm = tf.confusion_matrix(test_sentiments, predictions).eval()

LABELS = ['negative', 'positive']

sns.heatmap(cm, annot=True, xticklabels=LABELS, yticklabels=LABELS, 

fmt='g')

xl = plt.xlabel("Predicted")

yl = plt.ylabel("Actuals")

Figure 10-12. Confusion matrix from our best model predictions
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We can also print out the model’s classification report using Scikit-Learn to depict 

the other important metrics that can be derived from the confusion matrix, including 

precision, recall, and f1-score.

from sklearn.metrics import classification_report

print(classification_report(y_true=test_sentiments,

                            y_pred=predictions, target_names=LABELS))

              precision    recall  f1-score   support

   negative       0.90      0.90      0.90      7490

   positive       0.90      0.90      0.90      7510

avg / total       0.90      0.90      0.90     15000

We obtain an overall model accuracy and f1-score of 90% on the test data, which is 

really good. Go ahead and try this out. You might get an even better score; if so, let me 

know about it!

 Summary and Future Scope
Universal sentence embeddings are definitely a huge step forward in enabling transfer 

learning for diverse NLP tasks. In fact, we have seen that models like ELMo, Universal 

Sentence Encoder, and ULMFiT have indeed made headlines by showcasing that 

pretrained models can be used to achieve state-of-the-art results on NLP tasks. I’m 

definitely excited about what the future holds for generalizing NLP even further and 

enabling us to solve complex tasks with ease!

This concludes the end of the last chapter in the book. I hope this enables you to go 

out there in the real world and apply some of the things you learned here to solve your 

own real-world problems in NLP. Always remember Occam's Razor, which states that the 

simplest solution is usually the best solution. While deep learning methods might be the 

cool thing right now, they are not the silver bullet for every solution. You should leverage 

them if and only if it makes perfect sense to do so, which you will better understand with 

intuition, experimentation, practicing, and reading over time. Now go out there and 

solve some interesting NLP problems and tell me about them!
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