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4   INTRODUCTION

1.1 INTRODUCTION

From the moment we are introduced to science, we are 
told it is a cooperative, cumulative enterprise. Like the 
artisans who construct a building from blueprints, bricks, 
and mortar, scientists contribute to a common knowledge 
structure. Theorists provide the blueprints and researchers 
collect the data that are the bricks. To extend the analogy  
further yet, we might say that research synthesists are 
the bricklayers and hodcarriers of the science guild. It 
is their job to stack the bricks according to the blue-
prints and apply the mortar that allows the structure to 
take shape.

Anyone who has attempted a research synthesis is enti-
tled to a wry smile as the analogy continues. They know 
that several sets of theory-blueprints often exist, describ-
ing structures that vary in form and function, with no a 
priori criteria for selecting between them. They also 
know that our data-bricks are not all six-sided with right 
angles. They come in a baffling array of sizes and shapes. 
Making them fit, securing them with mortar, and seeing 
whether the resulting construction looks anything like 
what the blueprint suggests is a challenge worthy of the 
most dedicated, inspired artisan.

1.1.1 Replication and Research Synthesis

Scientific literatures are cluttered with repeated studies of 
the same phenomena. Multiple studies on the same prob-
lem or hypothesis arise because investigators wish to ver-
ify and extend (that is, generalize or search for influences 
on) previous findings. Experience has shown that even 
when considerable effort is made to achieve direct repli-
cation, results across studies are rarely identical at any 
high level of precision (Valentine et al. 2011; Open Sci-
ence Collaboration 2015), even in the physical sciences 
(Hedges 1987). No two bricks are exactly alike. Still, the 
value and need for replication in the social sciences has 
received increased attention recently, due in part to con-
cerns about questionable data practices, such as selective 
reporting of findings. For example, the journal Perspec-
tives on Psychological Science published a special issue 
on replication (Pashler and Wagonmakers 2012).

How should scientists proceed when study results differ? 
First, it is clear how they should not proceed. They should 
not decide that results are not replicated simply because 
some results reject the null hypothesis and the others do 
not, in part because the outcome of null hypo thesis signif-
icance tests does not imply a difference in effect size 
(Gelman and Stern 2006). Differences in statistical power 
might explain this, as well as expected sampling variation. 
Even results suggesting that the relation of interest is in 
different directions are predictable, depending on the size 
of the underlying effect, its sensitivity to contextual vari-
ation, and the number of times it has been tested. Cer-
tainly, scientists should not decide that one study (perhaps 
the most recent one, or the one they conducted, or a study 
chosen via some other equally arbitrary criterion) pro-
duces the correct finding and others can be ignored. If 
results that are expected to be similar show variability, 
the scientific instinct should be to account for the vari-
ability by further systematic work. This is where research 
synthesis comes in.

1.2 RESEARCH SYNTHESIS IN CONTEXT

1.2.1 A Definition of the Literature Review

The American Psychological Association’s PsycINFO ref-
erence database defines a literature review as “the process 
of conducting surveys of previously published material” 
(http://psycnet.apa.org/psycinfo/1994-97192-000). Com-
mon to all definitions of literature reviews is the notion 
that they are “not based primarily on new facts and find-
ings, but on publications containing such primary infor-
mation, whereby the latter is digested, sifted, classified, 
simplified, and synthesized” (Manten 1973, 75).

Table 1.1 presents a taxonomy of literature reviews 
that capture six distinctions that review authors use to 
describe their own work (Cooper 1988). The taxonomy 
can be applied to literature reviews appearing through-
out a broad range of both the behavioral and physical 
sciences. The six features and their subordinate catego-
ries permit a rich level of distinction among works of 
synthesis.

It is necessary, while formulating the problems of which in our further advance we are 
to find the solutions, to call into council the views of those of our predecessors who have 
declared an opinion on the subject, in order that we may profit by whatever is sound in 
their suggestions and avoid their errors.

Aristotle, De Anima, Book 1, Chapter 2
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The first distinction among literature reviews concerns 
the focus of the review, the material that is of central 
interest to the reviewer. Most literature reviews center on 
one or more of four areas: the findings of individual pri-
mary studies, not necessarily but often empirical in 
nature; the methods used to carry out research; theories 
meant to explain the same or related phenomena; and the 
practices, programs, or treatments being used in an applied 
context.

The second characteristic of a literature review is its 
goals. Goals concern what the preparers of the review 
hope to accomplish. The most frequent goal for a review 
is to integrate past literature that is believed to relate to a 
common topic. Integration includes formulating general 
statements that characterize multiple specific instances 
(or research, methods, theories, or practices); resolving 
conflict between contradictory research results, ideas, or 
statements of fact by proposing a new conception that 
accounts for the inconsistency; and bridging the gap 

between concepts or theories by creating a new, common 
linguistic framework.

Another goal for literature reviews can be to critically 
analyze the existing literature. Unlike a review that seeks 
to integrate the existing work, one that involves a critical 
assessment does not necessarily summate conclusions or 
compare the covered works one with another. Instead, it 
holds each work up against a criterion and finds it more 
or less acceptable. Most often, the criterion will include 
issues related to the methodological quality of empirical 
studies; the logical rigor, completeness, or breadth of 
explanation if theories are involved; or comparison with 
the ideal treatment, when practices, policies, or applica-
tions are involved.

A third goal that often motivates literature reviews is to 
identify issues central to a field. These issues may include 
questions that have given rise to past work, questions that 
should stimulate future work, or methodological prob-
lems or problems in logic and conceptualization that have 
impeded progress within a topic area or field.

Of course, reviews more often than not have multiple 
goals. So, for example, it is rare to see a review that inte-
grates or critical examines existing work without identi-
fying central issues for future endeavors.

A third characteristic that distinguishes among literature 
reviews, perspective, relates to whether the reviewers 
have an initial point of view that might influence the dis-
cussion of the literature. The endpoints on the continuum 
of perspective might be called neutral representation and 
espousal of a position. In the former, reviewers attempt to 
present all arguments or evidence for and against various 
interpretations of the problem. The presentation is meant 
to be as similar as possible to those that would be pro-
vided by the originators of the arguments or evidence. At 
the opposite extreme of perspective, the viewpoints of 
reviewers play an active role in how material is inter-
preted and presented. The reviewers accumulate and syn-
thesize the literature in the service of demonstrating the 
value of the particular point of view that they espouse. The 
reviewers muster arguments and evidence so that it presents 
their contentions in the most convincing manner.

Of course, reviewers attempting to achieve complete 
neutrality are likely doomed to failure. Further, reviewers 
who attempt to present all sides of an argument do not 
preclude themselves from ultimately taking a strong posi-
tion based on the cumulative evidence. Similarly, reviewers 
can be thoughtful and fair while presenting conflicting 
evidence or opinions and still advocate for a particular 
interpretation.

Table 1.1 A Taxonomy of Literature Reviews

Characteristic Categories

Focus Research findings
Research methods
Theories
Practices or applications

Goal Integration
 Generalization
 Conflict resolution
 Linguistic bridge-building
Criticism
Identification of central issues

Perspective Neutral representation
Espousal of position

Coverage Exhaustive
Exhaustive with selective citation
Representative
Central or pivotal

Organization Historical
Conceptual
Methodological

Audience Specialized scholars
General scholars
Practitioners or policy makers
General public

source: Cooper 1988. Reprinted with permission from Transaction 
Publishers.
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The next characteristic, coverage, concerns the extent 
to which reviewers find and include relevant works in 
their paper. It is possible to distinguish at least four types 
of coverage. The first type, exhaustive coverage, suggests 
that the reviewers hope to be comprehensive in the pre-
sentation of the relevant work. An effort is made to 
include the entire literature and to base conclusions and 
discussions on this comprehensive information base. The 
second type of coverage also bases conclusions on entire 
literatures, but only a selection of works is actually 
described in the literature review. The authors choose a 
purposive sample of works to cite but claim that the infer-
ences drawn are based on a more extensive literature. 
Third, some reviewers will present works that are broadly 
representative of many other works in a field. They hope 
to describe just a few exemplars that are descriptive of 
numerous other works. The reviewers discuss the charac-
teristics that make the chosen works paradigmatic of the 
larger group. In the final coverage strategy, reviewers 
concentrate on works that were highly original when they 
appeared and influenced the development of future efforts 
in the topic area. These may include materials that initi-
ated a line of investigation or thinking, changed how 
questions were framed, introduced new methods, engen-
dered important debate, or performed a heuristic function 
for other scholars.

A fifth characteristic of literature reviews concerns a 
paper’s organization. Reviews may be arranged histori-
cally, so that topics are introduced in the chronological 
order in which they appeared in the literature; conceptu-
ally, so that works relating to the same abstract ideas appear 
together; or methodologically, so that works employing 
similar methods are grouped together.

Finally, the intended audiences of reviews can vary. 
Reviews can be written for groups of specialized research-
ers, general researchers, policymakers, practitioners, or 
the general public. As reviewers move from addressing 
specialized researchers to addressing the general public, 
they use less technical jargon and detail and often pay 
greater attention to the implications of the work being 
covered.

1.2.1.1 Definitions of Research Synthesis The terms 
research synthesis or research review or systematic review 
are often used interchangeably in the social science liter-
ature, though they sometimes connote subtly different 
meanings. Regrettably, no consensus has been reached 
about what these meaningful differences might be. There-
fore, we use the term research synthesis most frequently 
throughout this book. The reason for this choice is sim-

ple. In addition to its use in the context of research syn-
thesis, the term research review is also used to describe 
the activities of evaluating the quality of research. For 
example, a journal editor will obtain research reviews 
when deciding whether to publish a manuscript. Because 
research syntheses often include this type of evaluative 
review of research, using the term research synthesis 
avoids confusion. The term systematic review is less 
often used in the context of research evaluation, though 
the confusion is still there, and the specification that it is 
the results of research that are being synthesized is miss-
ing. The Cochrane Collaboration uses systematic review 
but has moved toward using Cochrane review to signify 
the use of its distinct tools and methodology (http:// 
community.cochrane.org). The Campbell Collaboration 
(http://www.campbellcollaboration.org) also uses the term 
systematic review to label all its reviews, whether quantita-
tive or qualitative.

A research synthesis can be defined as the conjunction 
of a particular set of literature review characteristics. Most 
distinctive about research syntheses are their primary 
focus and goal: research syntheses attempt to integrate 
empirical research for the purpose of creating generaliza-
tions. Implicit in this definition is the notion that seeking 
generalizations also involves seeking the limits of general-
izations. Also, research syntheses almost always pay atten-
tion to relevant theories, critically analyze the research 
they cover, try to resolve conflicts in the literature, and 
attempt to identify central issues for future research. 
According to Derek Price, research syntheses are intended 
to “replace those papers that have been lost from sight 
behind the research front” (1965, 513). Research synthesis 
is one of a broad array of integrative activities that scien-
tists engage in; its intellectual heritage can be traced back 
at least as far as Aristotle.

Using the described taxonomy, we can make further 
specifications concerning the type of research syntheses 
that are the focus of this book. With regard to perspective, 
readers will note that much of the material is meant to 
help synthesists produce neutral statements about evi-
dence, that is, avoid being affected by many types of bias 
including their own subjective outlooks. For example, the 
material on searching the literature for evidence is meant 
to help synthesists uncover all the evidence, not simply 
positive studies that might be overrepresented in pub-
lished research, or evidence that is easy for them to find 
and therefore might be overly sympathetic to their point 
of view. The material on the reliability of extracting 
information from research reports and how methodologi-
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cal variations in research should be handled is meant to 
increase transparency and interjudge reliability when 
these activities are carried out. The methods proposed 
for the statistical integration of findings are meant to 
ensure the same rules about data analysis are applied to 
the next users of data as were required of the data gener-
ators. Finally, the material on explicit and exhaustive 
reporting of methods is meant to assist both producers 
and consumers of research syntheses in evaluating if or 
where bias may have crept into the synthesis process and 
to replicate findings if they choose to do so.

Finally, the term meta-analysis often is used as a syn-
onym for research synthesis. However, in this volume,  
it is used in its more precise and original meaning— 
to describe the quantitative procedures that a research 
synthesist may use to statistically combine the results of 
studies. Gene Glass coined the term meta-analysis to 
refer to “the statistical analysis of a large collection of 
analysis results from individual studies for the purpose of 
integrating the findings” (1976, 3). The authors of this 
book reserve meta-analysis to refer specifically to statis-
tical analysis in research synthesis and not to the entire 
enterprise of research synthesis. Not all research synthe-
ses are appropriate for meta-analysis.

1.3  A BRIEF HISTORY OF RESEARCH SYNTHESIS 
AS A SCIENTIFIC ENTERPRISE

1.3.1 Early Developments

In 1971, Kenneth Feldman published an article titled 
“Using the Work of Others” in which he demonstrated 
remarkable prescience: “Systematically reviewing and 
integrating . . . the literature of a field may be considered a 
type of research in its own right—one using a character-
istic set of research techniques and methods” (86). He 
described four steps in the reviewing process: sampling 
topics and studies, developing a scheme for indexing and 
coding material, integrating the studies, and writing the 
report.

The same year, Richard Light and Paul Smith pre-
sented what they called a cluster approach to literature 
reviewing that was meant to redress some of the deficien-
cies in the existing strategies for integration (1971). They 
argued that, if treated properly, the variation in outcomes 
among related studies could be a valuable source of 
information rather than merely a source of consternation, 
as it appeared to be when treated with traditional review-
ing methods.

Three years later, Thomas Taveggia struck a comple-
mentary theme. He wrote,

A methodological principle overlooked by [reviewers] . . . 
is that research results are probabilistic. What this principle 
suggests is that, in and of themselves, the findings of any 
single research are meaningless—they may have occurred 
simply by chance. It also follows that, if a large enough 
number of researches has been done on a particular topic, 
chance alone dictates that studies will exist that report  
inconsistent and contradictory findings! Thus, what appears 
to be contradictory may simply be the positive and negative 
details of a distribution of findings. (1974, 397–98)

Taveggia went on to describe six common tasks in 
research syntheses: selecting research; retrieving, index-
ing, and coding information from studies; analyzing the 
comparability of findings; accumulating comparable find-
ings; analyzing distributions of results, and; reporting of 
results.

The development of meta-analytic techniques extends 
back further in time but their routine use by research syn-
thesists is also relatively recent. Where Glass gave us the 
term meta-analysis in 1976, in 1990 Ingram Olkin pointed 
out that ways to estimate effect sizes have existed since the 
turn to the twentieth century. For example, Karl Pearson  
took the average of estimates from five separate samples 
of the correlation between inoculation for enteric (or 
typhoid) fever and mortality (1904). He used this average 
to better estimate the typical effect of inoculation and to 
compare it with that of inoculation for other diseases. 
Early work on the methodology for combination of esti-
mates across studies includes papers in the physical  
sciences by Raymond Birge (1932) and in statistics by 
William Cochran (1937) and Frank Yates and Cochran 
(1938). Although they have fallen out of use today, 
methods for combining probabilities across studies also 
have a long history (Tippett 1931; Fisher 1932; Mosteller 
and Bush 1954).

Still, the use of quantitative synthesis techniques in the 
social sciences was rare before the 1970s. Late in that 
decade, several applications of meta-analytic techniques 
captured the imagination of behavioral scientists. Included 
among these were: in clinical psychology, Mary Smith 
and Gene Glass’s meta-analysis of psychotherapy research 
(1977); in industrial-organizational psychology, Frank 
Schmidt and John Hunter’s validity generalization of 
employment tests (1977); in social psychology, Robert 
Rosenthal and Donald Rubin’s integration of interper-
sonal expectancy effect research (1978); and in education, 
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Glass and Smith’s synthesis of the literature on class size 
and achievement (1978).

1.3.2 Research Synthesis Comes of Age

Two papers that appeared in the Review of Educational 
Research in the early 1980s brought the meta-analytic 
and research synthesis-as-research perspectives together. 
The first, by Gregg Jackson, proposed six reviewing tasks 
“analogous to those performed during primary research” 
(1980, 441). Jackson portrayed meta-analysis as an aid to 
the task of analyzing primary studies but emphasized its 
limitations as well as its strengths. Also noteworthy about 
his paper was his use of a sample of thirty-six review 
articles from prestigious social science periodicals to exam-
ine the methods used in integrative empirical reviews. For 
example, Jackson reported that only one of the thirty-six 
reported the indexes or retrieval systems used to locate pri-
mary studies. His conclusion was that “relatively little 
thought has been given to the methods for doing integra-
tive reviews. Such reviews are critical to science and 
social policy making and yet most are done far less rigor-
ously than is currently possible” (459).

The first half of the 1980s also witnessed the appear-
ance of four books primarily devoted to meta-analytic 
methods. The first, in 1981, by Glass, Barry McGaw,  
and Smith, presented meta-analysis as a new application 
of analysis of variance and multiple regression proce-
dures, with effect sizes treated as the dependent vari-
able. In 1982, Hunter, Schmidt, and Jackson introduced 
meta-analytic procedures that focused on comparing 
the observed variation in study outcomes to that expected 
by chance (the statistical realization of a point Taveggia 
made in 1974) and correcting observed effect-size esti-
mates and their variance for known sources of bias (such 
as sampling error, range restrictions, unreliability of mea-
surements). In 1984, Rosenthal presented a compendium 
of meta-analytic methods covering, among other topics, 
the combining of significance levels, effect-size estima-
tion, and the analysis of variation in effect sizes. Rosen-
thal’s procedures for testing moderators of variation in 
effect sizes were not based on traditional inferential sta-
tistics, but on a new set of techniques involving assump-
tions tailored specifically for the analysis of study 
outcomes. Finally, in 1985, with the publication of Statis-
tical Procedures for Meta-Analysis, Larry Hedges and 
Olkin helped elevate the quantitative synthesis of research 
to an independent specialty within the statistical sciences. 
This book, summarizing and expanding nearly a decade 

of programmatic developments by the authors, not only 
covered the widest array of meta-analytic procedures but 
also presented rigorous statistical proofs establishing 
their legitimacy.

Harris Cooper drew the analogy between research syn-
thesis and primary research to its logical conclusion and 
presented a five-stage model of the integrative review as a 
research project (1982). For each stage, he codified the 
research question, its primary function in the review, and 
the procedural differences that might cause variation in 
review conclusions. In addition, he applied the notion of 
threats-to-inferential-validity—which Donald Campbell 
and Julian Stanley introduced for evaluating the utility  
of primary research designs (1966)—to the conduct of 
research synthesis (also see Shadish, Cook, and Campbell 
2002). Cooper identified ten threats to validity specifically 
associated with reviewing procedures that might under-
mine the trustworthiness of the findings of a research syn-
thesis. He also suggested that other threats might exist and 
that any particular synthesis’ validity could be threatened 
by consistent deficiencies in the set of studies that formed 
its database. Table 1.2 presents a recent revision of this 
schema, which proposes a seven-stage model for conduct-
ing a research synthesis, separating the original coding 
stage into coding and study evaluation, the analysis stage 
into separate analyses, and interpretation stage into two 
distinct stages (Cooper 2017).

Another text that appeared in 1984 also helped elevate 
research synthesis to a more rigorous level. In it, Light 
and David Pillemer focused on the use of research reviews 
to help decision making in the social policy domain. 
Their approach placed special emphasis on the impor-
tance of meshing both numbers and narrative for the 
effective interpretation and communication of synthe-
sis results.

 Numerous books have appeared on research synthesis 
and meta-analysis since the mid-1980s—in fact, too 
many to mention all of them. Some focus on research 
synthesis in general (Card 2012; Lipsey and Wilson 
2001; Petticrew and Roberts 2006; Schmidt and Hunter 
2015); others treat it from the perspective of particular 
research designs (Bohning, Kuhnert, and Rattanasiri 
2008; Eddy, Hassleblad, and Schachter 1992). Still others 
are tied to particular software packages (Arthur, Bennett, 
and Huffcutt 2001; Chen and Peace 2013; Comprehen-
sive Meta-Analysis 2015). In 1994, the first edition of 
this book was published; the second edition appeared in 
2009. Readers interested in a popular history of the ori-
gins of meta-analysis in the social sciences can consult 
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Table 1.2 Research Synthesis Conceptualized as a Research Process

Step in Research 
Synthesis

Research Question Asked at 
This Stage of the Synthesis

Primary Function Served  
in the Synthesis

Procedural Variation That Might Produce 
Differences in Conclusions

Formulating the 
problem

What research evidence 
will be relevant to the 
problem or hypothesis of 
interest in the synthesis?

Define the variables and 
relationships of interest 
so that relevant and 
irrelevant studies can be 
distinguished

Variation in the conceptual breadth and 
distinctions within definitions might 
lead to differences in the research 
operations deemed relevant and/or 
tested as moderating influences

Searching the 
literature

What procedures should be 
used to find relevant 
research?

Identify sources (such as 
reference databases, 
journals) and terms used 
to search for relevant 
research

Variation in searched sources might lead 
to systematic differences in the 
retrieved research

Gathering 
information 
from studies

What information about 
each study is relevant  
to the problem or 
hypothesis of interest?

Collect relevant 
information about studies 
in a reliable manner

Variation in information gathered might 
lead to differences in what is tested as 
an influence on cumulative results,  
in coder training might lead to 
differences in entries on coding sheets, 
or in rules for deciding what study 
results are independent tests of 
hypotheses might lead to differences  
in the amount and specificity of data 
used to draw cumulative conclusions

Evaluating the 
quality of 
studies

What research should be 
included in the synthesis 
based on the suitability of 
the methods for studying 
the synthesis question or 
problems in research 
implementation?

Identify and apply criteria 
that separate studies 
conducted in ways that 
correspond with the 
research question from 
studies that do not

Variation in criteria for decisions about 
study methods to include might lead to 
systematic differences in which studies 
remain in the synthesis

Analyzing and 
integrating the 
outcomes of 
studies

What procedures should  
be used to condense and 
combine the research 
results?

Identify and apply 
procedures for 
combining results across 
studies and testing for 
differences in results 
between studies

Variation in procedures used to 
summarize and compare results of 
included studies (such as narrative, 
vote count, averaged effect sizes) can 
lead to differences in cumulative 
results

Interpreting the 
evidence

What conclusions can  
be drawn about the 
cumulative state of the 
research evidence?

Summarize the cumulative 
research evidence with 
regard to its strength, 
generality, and 
limitations

Variation in criteria for labeling results as 
important and attention to details of 
studies might lead to differences in 
interpretation of findings

Presenting the 
results

What information should 
be included in the report 
of the synthesis?

Identify and apply editorial 
guidelines and judgment 
to determine aspects of 
methods and results 
readers of the report will 
need to know

Variation in reporting might lead readers 
to place more or less trust in synthesis 
outcomes and influence others’ ability 
to replicate results

source: Authors’ compilation.
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How Science Takes Stock: The Story of Meta-Analysis 
(Hunt 1997). Most recently, the journal Research Synthe-
sis Methods published a special issue on the origins of 
modern meta-analysis (Shadish 2015).

Literally thousands of research syntheses have been 
published since the first edition of this book. Figure 1.1 
presents some evidence of the increasing impact of 
research syntheses on knowledge in the sciences and 
social sciences. The figure is based on entries in the Web 
of Science Core Collection reference database (Clarivate 
Analytics 2018). It charts the growth in the number of 
document titles including the terms research synthesis, 
systematic review, or meta-analysis in their title or during 
the years 1995 to 2017. The figure indicates that docu-
ments in the database titles using these terms has risen 

every year without exception and the growth is accelerat-
ing. Clearly, the role that research syntheses play in our 
knowledge claims is large and growing larger.

The use of research synthesis has spread from psychol-
ogy and education through many disciplines, especially 
in medicine, social policy analysis, and economics. Indeed, 
the development of scientific methods for research synthe-
sis has its own largely independent history in the medical 
sciences (see Chalmers, Hedges, and Cooper 2002). A 
most notable event in medicine was the establishment of 
the UK Cochrane Center in 1992. The center was meant 
to facilitate the creation of an international network to 
prepare and maintain systematic reviews of the effects of 
interventions across the spectrum of health-care prac-
tices. At the end of 1993, an international network of 
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individuals, the Cochrane Collaboration (http://www.
cochrane.org), emerged from this initiative (Chalmers 
1993; Bero and Rennie 1995). By 2019, the Cochrane 
Collaboration was an internationally renowned initiative 
that counted thousands of people in more than ninety 
countries contributing to its work. The Cochrane Collab-
oration is now the leading producer of research synthe-
ses in health care and is considered by many to be the 
gold standard for determining the effectiveness of dif-
ferent health-care interventions. Its library of system-
atic reviews numbers in the thousands. In 2000, an initiative 
known as the Campbell Collaboration was launched with 
similar objectives for the domain of social policy analy-
sis, focusing initially on policies concerning education, 
social welfare, and crime and justice (http://www.campbell 
collaboration.org).

Because of the efforts of scholars who chose to apply 
their skills to how research syntheses might be improved, 
syntheses written since the 1980s have been held to stan-
dards far more demanding than those applied to their pre-
decessors. The process of elevating the rigor of syntheses 
has continued into the twenty-first century.

1.3.3 Rationale for the Handbook

The Handbook of Research Synthesis and Meta-Analysis 
is meant to be the definitive vade mecum for behavioral 
and social scientists intent on applying the synthesis 
craft. It distills the products of forty years of develop-
ments in how research integrations should be conducted 
so as to minimize the chances of conclusions that do not 
truly reflect the cumulated evidence. Research synthesis 
in the 1960s was at best an art, at worst a form of yellow 
journalism. Today, the summarization and integration of 
studies is viewed as a research process in its own right, is 
held to the standards of a scientific endeavor, and entails 
the application of data gathering and analyses techniques 
developed for its unique purpose.

Numerous excellent texts on research synthesis exist. 
However, none is as comprehensive and detailed as this 
volume. Some texts focus on statistical methods. These 
often emphasize different aspects of statistical integration 
(such as combining probabilities, regression-analog mod-
els, estimating population effects from sampled effects 
with known biases) and often approach research accumu-
lation from different perspectives. Although these texts 
are complete within their domains, no single sourcebook 
describes and integrates all the meta-analytic approaches 
in most common use.

This volume incorporates quantitative statistical tech-
niques from all the synthesis traditions. It brings the lead-
ing authorities on the various meta-analytic perspectives 
together in a single volume. In doing so, it is an explicit 
statement that all the statistical approaches share a com-
mon assumptive base. This base is not only statistical but 
also philosophical. Philosophically, all the approaches rest 
on the presupposition that research syntheses need to be 
held to the same standards of rigor, systematicity, and 
transparency as the research on which they are based. The 
second and later users of data must be held as accountable 
for the validity of their methods as were the first.

Several problems arising in the course of conducting a 
quantitative synthesis have not received adequate treat-
ment in any existing text. These include nonindepen-
dence of data sets, synthesis of multivariate data sets, 
and sensitivity analysis, to name just a few. Every research 
synthesist faces these problems and has developed strat-
egies for dealing with them. Some of their solutions are 
published in widely scattered journals; others are often 
passed on to colleagues through informal contacts. They 
have never received complete treatment within the same 
text. This Handbook brings these topics together in a  
single volume.

Further, texts focusing on the statistical aspects of inte-
gration tend to give only passing consideration to other 
activities of research synthesis. These activities include 
the unique characteristics of problem formulation in 
research synthesis; methods of literature search; coding 
and evaluation of research reports; and the meaningful 
interpretation and effective communication of synthesis 
results. The existing texts that focus on these aspects of 
research synthesis tend not to be comprehensive in their 
coverage of statistical issues. Fully half of the chapters in 
this volume deal with issues that are not statistical in 
nature, evidencing the authors’ collective belief that high- 
quality syntheses require considerably more than simple 
application of quantitative procedures.

Finally, this volume is meant for those who carry out 
research syntheses. Discussions of theory and proof are 
kept to a minimum in favor of descriptions of the practi-
cal mechanics needed to apply well the synthesis craft. 
The chapters include multiple approaches to problem 
solving and discuss the strengths and weaknesses of each 
approach. Readers with a comfortable background in 
analysis of variance and multiple regression and who 
have access to a research library should find the chapters 
accessible. The Handbook authors want to supply work-
ing synthesists with the needed expertise to interpret their 



12   INTRODUCTION

blueprints, to wield their mortar hoe and trowel as accu-
rately as possible.

1.4 STAGES OF RESEARCH SYNTHESIS

The description of the stages of research synthesis pre-
sented in table 1.2 provides the conceptual organization 
of this book. In this section, we raise the principal issues 
associated with each stage. This allows us to briefly intro-
duce the content of each of the chapters that follow.

1.4.1  Formulating a Problem for  
a Research Synthesis

The one major constraint on problem formulation in 
research synthesis is that primary research on a topic must 
exist before a synthesis can be conducted. How much 
research? The methods of meta-analysis can be applied  
to literatures containing as few as two hypothesis tests  
(Valentine, Pigott, and Rothstein 2010). Under certain 
circumstances—for instance, researchers synthesizing a 
pair of replicate studies from their own lab—the use of 
meta-analysis in this fashion might be sensible. Yet, most 
scientists would argue that the benefits of such a review 
would be limited (and its chances for publication even 
more limited).

A more general answer to the “How much research?” 
question is that it varies depending on a number of char-
acteristics of the problem. All else being equal, conceptu-
ally broad topics would seem to profit from a synthesis 
only after the accumulation of a more varied and larger 
number of studies than a narrowly defined topic would 
(see chapter 2). Similarly, literatures that contain diverse 
types of operations also would seem to require a rela-
tively large number of studies before firm conclusions 
could be drawn from a synthesis. Ultimately, the arbiter 
of whether a synthesis is needed will not be numerical 
standards, but the fresh insights a synthesis can bring to a 
field. Indeed, although a meta-analysis cannot be per-
formed without data, many social scientists see value in 
“empty” syntheses that point to important gaps in our 
knowledge. When done properly, empty syntheses should 
proceed through the stages of research synthesis, includ-
ing careful problem formulation.

Once enough literature on a problem has collected, 
then the challenge, and promise, of research synthesis 
becomes evident. The problems that constrain primary 
researchers—small and homogeneous samples, limited 
time and money for turning constructs of interest into 

multiple operations—are less severe for synthesists. They 
can capitalize on the diversity in methods that has occurred 
naturally across primary studies. The heterogeneity of 
methods across studies may permit tests of theoretical 
hypotheses concerning the moderators and mediators of 
relations that have never been tested in any single primary 
study. Conclusions about the population and ecological 
validity of relations uncovered in primary research may 
also receive more thorough tests in syntheses.

Part II of this book focuses on issues in problem for-
mulation. In chapter 2 (“Hypotheses and Problems in 
Research Synthesis”), Harris Cooper discusses in detail 
the issues just mentioned. In chapter 3 (“Statistical Con-
siderations”), Larry Hedges looks at the implications of 
different problem definitions for how study results will 
be statistically modeled. The major issues involve the 
populations of people and measurements that are the tar-
get of a review’s inferences; how broadly the key constructs 
are defined, especially in terms of whether fixed- or random- 
effect models are envisioned; and how choices among 
models influence the precision of estimates and the statisti-
cal power of meta-analytic tests.

1.4.2 Searching the Literature

The literature search is the stage of research synthesis that 
is most different from primary research. Still, culling 
through the literature for relevant studies is not unlike gath-
ering a sample of primary data. The target of a literature 
search that is part of a synthesis attempting exhaustive 
coverage would be “all the research conducted on the 
topic of interest.”

In contrast to the (relatively) well-defined sampling 
frames available to primary researchers, literature 
searchers confront the fact that any single source of pri-
mary reports will lead them to only a fraction of the rele-
vant studies, and a biased fraction at that. For example, 
the most inclusive sources of literature are the refer-
ence databases, such as Google Scholar, Science Direct,  
PsycINFO, ERIC, and Medline. Still, many of these broad, 
nonevaluative systems exclude much of the unpublished 
literature. Conversely, the most exclusive literature 
searching technique involves accessing close colleagues 
and other researchers with an active interest in the topic 
area. Despite the obvious biases, there is no better source 
of unpublished and recent works. Further complicating 
the sampling frame problem is that the relative utility and 
biases associated with any single source will vary as a 
function of characteristics of the research problem, includ-
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ing, for example, how long the topic has been the focus of 
study and whether it is interdisciplinary.

These problems imply that research synthesists must 
carefully consider multiple channels for accessing litera-
ture and how the channels they choose complement one 
another. The three chapters in part III are devoted to help-
ing the synthesist consider and carry out this most unique 
task. In chapter 4 (“Scientific Communication and Liter-
ature Retrieval”), Howard White presents an overview of 
searching issues from the viewpoint of an information 
scientist. In chapter 5, “Searching Bibliographic Data-
bases,” Julie Glanville provides strategies for using elec-
tronic databases (such as reference databases, citation 
indexes, research registries) to assist researchers with 
finding and accessing scholarship that is relevant to their 
work. In chapter 6 (“Retrieving Grey Literature, Informa-
tion, and Data in the Digital Age”), Dean Giustini dis-
cusses the practical considerations of how to find research 
that is not indexed in the usual academic databases.

1.4.3  Evaluating Study Methodology  
and Extracting Information  
from Study Reports

Part IV offers four chapters on the evaluation of the study 
designs and implementation and retrieving information 
from studies. Once the synthesists have gathered the rel-
evant literature, they must extract from each document 
those pieces of information that will help answer the 
questions that impel research in the field. This step 
includes judgments about the critical aspects of each 
study’s research design, measurements, and procedures, 
and how variations in these relate to the inferences the 
synthesists wish to make. The problems faced during data 
coding provide a strong test of the synthesists’ knowl-
edge of the research area, thoughtfulness, and ingenuity. 
The decisions made during coding will have a profound 
influence on the contribution of the synthesis.

The aspect of coding studies that engenders the most 
debate involves how synthesists should represent differ-
ences in the design and implementation of primary studies 
that contribute to their data. What is meant by study qual-
ity when we are evaluating research methods? Should 
studies be given more or less credibility and therefore 
weighted differently in a meta-analysis if they differ in 
quality? Should studies be excluded if they contain too 
many flaws? How does one rate the quality of studies 
described in incomplete research reports? In chapter 7 
(“Incorporating Judgments About Study Quality into 

Research Syntheses”), Jeffrey Valentine examines the alter-
native approaches available to synthesists for represent-
ing primary research methodology.

But judging a studies credibility is only the beginning. 
Synthesists must make decisions about other classes of 
variables that are of potential interest to them. These can 
relate to variables that predict outcomes, potential mod-
erators and mediators of effects, and the differences in 
how outcomes are conceptualized (and, therefore, mea-
sured). Might the type of participants and the context of 
the study influence its outcomes? What about character-
istics of the experimental manipulation (for example, 
intensity, duration) and measurements (for example, reli-
ability, timing)? If a synthesist chooses not to code a  
particular feature of studies, then it cannot be considered 
in the analysis of results.

General guidelines for what information should be 
extracted from primary research reports are difficult to 
develop beyond recommendations that are general and 
abstract. Instead, direction will come from the issues that 
have arisen in the particular literature, coupled with the syn-
thesist’s personal insights into the topic. Still, commonali-
ties emerge about what information is important to collect 
and how to think about what information to retrieve from 
studies. Mark Lipsey, in chapter 8 (“Identifying Potentially 
Interesting Variables and Analysis Opportunities”), and 
David Wilson, in chapter 9 (“Systematic Coding for 
Research Synthesis”), present complementing templates 
for what generally should be included on coding frames.

Once decisions on what to code have been made, syn-
thesists need to consider how to carry out the coding (for 
example, who will retrieve information, how will they be 
trained) and how to assess the trustworthiness with which 
the coding frame is implemented. Numerous indexes of 
coder reliability are available, each with different strengths 
and weaknesses. In chapter 10 (“Evaluating Coding Deci-
sions”), Jack Vevea, Nicole Zelinsky, and Robert Orwin 
describe strategies for reducing the amount of error that 
enters a synthesis during the coding of the literature’s fea-
tures. Their description of reliability assessment focuses 
on three major approaches: sources of coding error, strat-
egies for reducing coding error, and strategies for statisti-
cally assessing and quantifying coding error. 

1.4.4  Statistically Describing and Combining 
Study Outcomes

As our brief history of research synthesis suggests, tech-
niques for the analysis of accumulated research outcomes 
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is an area of statistics abundant in dramatic develop-
ments. Four decades ago, the mechanics of integrating 
research usually involved intuitive processes taking place 
inside the heads of the reviewers. Meta-analysis made 
these processes public and based them on explicit, shared, 
statistical assumptions (however well met). We would 
not accept as valid a primary researcher’s conclusion if it 
were substantiated solely by the statement “I looked at 
the treatment and control scores and I found the treated 
group did better.” We would demand statistical testing 
(for example, a simple t-test) to back up the claim. Like-
wise, we should no longer accept “I examined the study 
outcomes and find the treatment is effective” as sufficient 
warrant for the conclusion of a research synthesis.

Part V covers the components of synthesis dealing 
with combining study results. Chapter 11, by Michael 
Borenstein and Larry Hedges on effect sizes, covers 
methods for estimating the outcomes of studies using a 
common metric. Thirty years ago, Jacob Cohen defined 
an effect size as “the degree to which the phenomenon is 
present in the population, or the degree to which the null 
hypothesis is false” (1988, 9–10).

To most research synthesists, the search for influences 
on study results is the most interesting and rewarding part 
of the synthesis process. The next two chapters deal with 
techniques for analyzing whether and why there are differ-
ences in the outcomes of studies. As an analog to analysis  
of variance or multiple regression procedures, effect sizes 
can be viewed as dependent or criterion variables and the 
features of study designs as independent or predictor 
variables. However, because effect-size estimates do not 
all have the same sampling uncertainty, they cannot sim-
ply be inserted into traditional inferential statistics. In 
chapter 12 (“Statistically Analyzing Effect Sizes: Fixed- 
and Random-Effects Models”), Spyros Konstantopoulos 
and Larry Hedges discuss the difference between fixed- and 
random-effects models of effect-size homogeneity, the 
conceptual and statistical considerations involved in choos-
ing an analytic model, and the statistical power of homo-
geneity tests. Chapter 13, by Larry Hedges, addresses 
recent advances in multivariate meta-analysis, in particu-
lar the use of meta-regression. This chapter also provides 
guidance to help reviewers avoid common mistakes when 
multivariate data are used in meta-analysis.

Part V delves into other approaches to the statistical 
combination of study results. In chapter 14, Rebecca 
Turner and Julian Higgins describe Bayesian meta- 
analysis, including Bayesian meta-regression and the 

advantages and limitations of this approach. Effect-size 
estimates may be affected by factors that attenuate their 
magnitudes. These may include, for example, a lack of 
reliability in the measurement instruments or restrictions 
in the range of values in the subject sample. These atten-
uating biases may be estimated and corrected using the 
procedures Frank Schmidt, Huy Le, and In-Sue Oh 
describe in chapter 15. In chapter 16, Betsy Becker and 
Ariel Aloe introduce model-based meta-analysis and 
how to use this approach to investigate partial effects, 
indirect effects (including mediation), and to address 
questions that have not been explicitly addressed in any 
individual studies.

Part VI addresses two important complications that arise 
when working with meta-analytic data that all research 
synthesists must attend to. In chapter 17, Terri Pigott 
takes up handling missing data. She addresses different 
types of missing data (missing studies, effect sizes, study 
descriptors), provides an overview and critique of com-
monly used methods, discusses model-based methods for 
addressing missing data, and outcome reporting biases. 
In chapter 18, which takes up publication bias, Jack 
Vevea, Kathleen Coburn, and Alexander Sutton introduce 
methods to identify the presence, assess the impact, and 
adjust results for the synthesists who want to examine 
whether the published literature might be a biased sample 
all the studies that have been conducted.

1.4.5 Interpreting Synthesis Outcomes

Estimating and averaging effect sizes and searching for 
moderators of their variability is how the interpretation 
of cumulative study results begins. However, it must be 
followed by other procedures that help the synthesists 
properly interpret what they have discovered. Proper inter-
pretation of the results of a research synthesis requires 
careful use of declarative statements regarding claims 
about the evidence, specification of what results warrant 
each claim, and any appropriate qualifications to claims 
that need to be made.

Part VII examines two important issues in data inter-
pretation. In chapter 19 (“Interpreting Effect Sizes”), 
Jeffrey Valentine, Ariel Aloe, and Sandra Jo Wilson dis-
cuss methods for interpreting effect sizes in real-world 
terms. In chapter 20 (“Heterogeneity in Meta-Analysis”), 
Michael Borenstein introduces important considerations 
when thinking about differences between studies, includ-
ing the distinction between observed and true effects, 
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statistics for assessing and describing heterogeneity, the 
null hypothesis of effect-size homogeneity, and common 
mistakes in thinking about heterogeneity.

1.4.6 Presenting Synthesis Results

Presenting the background, methods, results, and mean-
ing of a research synthesis’ findings are the final chal-
lenges to the synthesists’ skill and intellect. These are 
addressed in the summary section, part VIII. In chap-
ter 21, Evan Mayo-Wilson and Sean Grant describe the 
standards for reporting meta-analysis. As is true of the 
coding frame, no simple reporting scheme fits all syn-
theses. However, certain commonalities do exist. Not 
too surprisingly, the organization that emerges bears 
considerable resemblance to that of a primary research 
report although, also obviously, the content differs dra-
matically. In chapter 22 (“Threats to the Validity of 
Generalized Inferences from Research Syntheses”), 
Georg Matt and Thomas Cook provide an overall 
appraisal of how inferences from research syntheses 
may be restricted or faulty. This chapter brings together 
many of the concerns expressed throughout the book by 
the various chapter authors. Finally, chapter 23 (“Poten-
tials and Limitations of Research Synthesis”), Harris 
Cooper, Larry Hedges, and Jeffrey Valentine pay spe-
cial attention to possible future developments in synthe-
sis methodology, the feasibility and expense associated 
with conducting a sound research synthesis, and a 
broad-based definition of what makes a literature review 
good or bad.

No secret will be revealed by stating our conclusion in 
advance. If procedures for the synthesis of research are 
held to standards of objectivity, systematicity, and rigor, 
then our knowledge edifice will be made of bricks and 
mortar. If not, it will be a house of cards.
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2.1 INTRODUCTION

Texts on research methods often list sources of research 
ideas (see, for example, Christensen, Johnson, and Turner 
2014). Sometimes ideas for research come from personal 
experiences, sometimes from pressing practical issues. 
Sometimes a researcher wishes to test a theory meant to 
help understand the roots of human behavior. Yet other 
times researchers find topics by reading scholarly research.

Still, sources of ideas for research are so plentiful that 
the universe of possibilities seems limitless. Perhaps you 
must be satisfied with Karl Mannheim’s suggestion that 
the ideas researchers pursue are rooted in their social 
and material relations, in their existential circumstances 
(1936). Then, at least, you have a course of action for 
studying why a particular researcher chooses one topic 
to study rather than another.

I do not begin my exploration of problems and hypoth-
eses in research synthesis by examining the determinants 
of choice. Nor do I describe the existential bounds of the 
researcher. Instead, I start with a simple statement: the 
problems and hypotheses in research syntheses are drawn 
from those that already have had data collected on them 
in primary research. By definition, a research synthesis 
is an integration of past research. Then, my task becomes 
much more manageable. In this chapter, I examine the 
characteristics of research problems and hypotheses that 
(a) make them empirically testable and (b) are similar and 
different for primary research and research synthesis.

That syntheses are tied to only those problems that have 
previously generated data does not mean research synthe-
sis is an uncreative exercise. The process of synthesis 
often requires the creation of explanatory models to help 
make sense of related studies that produced incommensu-
rate data. Why did this study of a reading curriculum pro-
duce twice the effect of a similar study? These schemes 
can be novel, having never appeared in previous theo-
rizing or research. The cumulative results of studies are 
much more complex than the results of any single study. 
Discovering why two studies that appear to be direct rep-
lications of one another produced conflicting results pres-
ents a deliberative challenge for any research synthesist.

2.2  DEFINITIONS OF BASIC VARIABLES  
IN SOCIAL SCIENCE RESEARCH

In its most basic form, the statement of a research prob-
lem includes a clear delineation of what variables are of 
interest to the researches and how the variables can be 

measured empirically. The rationale for a research problem 
can be that some circumstance needs fuller description (as 
in survey research or ethnography) or the estimation of the 
relation between variables might be important (either 
associational or causal). Alternatively, the problem can 
contain a prediction about a particular link between the 
variables—based on theory or previous observation. This 
type of prediction is called a hypothesis.

Primary research or research syntheses can be under-
taken regardless of whether a study’s rationale is a 
description of events, the association between variables, 
or a causal relationship between variables (more on these 
distinctions follows). For example, you might be inter-
ested in how doctors’ training correlates with how they 
perform diagnoses. Here, you may know the problem is 
important but may have no precise theory that leads to a 
hypothesis about whether and how training is related to 
diagnoses. Your research problem is more exploratory and 
might begin with rich verbal descriptions by doctors of 
how they question patients about their ailments. Or, you 
might want to test the hypothesis that teachers’ expecta-
tions concerning how a student’s intelligence changes 
over the course of a school year will cause the students’ 
intelligence to change in the expected direction. This 
hypothesis might be based on firsthand observations of 
how teachers treat students for whom they hold different 
expectations or on a well-specified model of how interper-
sonal communications change (such as nonverbal cues, 
body position, voice tone) as a function of the teachers’ 
beliefs. Another example might be that you are interested 
in how students’ perceptions of their instructors in college 
correlate with achievement in the course. Here, you may 
know the problem is important but have no precise theory 
that leads to a hypothesis about whether and how percep-
tions of the instructor are related to achievement in the 
course. You might look for variations in instructor’s 
behavior and relate them to student achievement.

2.2.1 Conceptual and Operational Definitions

The variables involved in social science research must be 
defined in two ways. First, each variable must be given a 
conceptual or theoretical definition. This describes quali-
ties of the variable that are independent of time and space 
but that can be used to distinguish events that are and are 
not relevant to the concept (Shoemaker, Tankard, and 
Lasorsa 2004). For instance, a broad conceptual defini-
tion of intelligence might be the ability to acquire and 
apply knowledge.
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Conceptual definitions can differ in breadth, or in the 
number of events to which they refer. Thus, if you define 
achievement as a thing done successfully, whether by 
effort, courage, or skill, the concept is broader than if you 
confine the domain of achievement to academic tasks, or 
activities related to school performance in verbal and 
quantitative domains. The broader definition of achieve-
ment would include goals reached in physical, artistic, 
and social spheres of activity, as well as academic ones. 
So, if you are interested in the relationship between stu-
dent ratings of instructors and achievement writ large 
you would include ratings taken in gym, health, and 
drama classes. If you are interested in academic achieve-
ment only, these types of classes would fall outside your 
conceptual definition. The need for well-specified con-
ceptual definitions is no different in research synthesis 
than it is in primary research. Both primary researchers 
and research synthesists must clearly specify their con-
ceptual definitions.

To relate concepts to concrete events, the variables in 
empirical research must also be operationally defined. An 
operational definition is a description of the characteris-
tics of observable events used to determine whether the 
event represents an occurrence of the conceptual variable. 
Put differently, a concept is operationally defined by the 
procedures used to produce and measure it. Again, both 
primary researchers and research synthesists must specify 
the operations included in their conceptual definitions.

An operational definition of the concept of intelligence 
might first focus on scores from standardized tests meant 
to measure reasoning ability. This definition might be 
specified further to include only tests that result in intel-
ligent quotient (IQ) scores, for example, the Stanford- 
Binet and the Wechsler tests. Or, the operational definition 
might be broadened to include the Scholastic Aptitude Test 
(SAT), the Graduate Record Exam (GRE), or the Miller 
Analogies Test (MAT). This last group might be seen as 
broadening the definition of intelligence because these 
tests may be influenced by the test takers’ knowledge—
what they have been taught in the past—as well as their 
native ability to acquire and apply knowledge.

Also needing operational definitions are the ingredi-
ents of a treatment, or more formally, the components of 
an intervention or training program. For example, a psy-
chologist might devise an intervention for doctors meant 
to improve their ability to make accurate diagnoses. This 
might include training in the interpretation of x-rays and 
what kinds of follow-up questions to ask when patients 
make particular complaints.

2.2.1.1 Distinctions Between Operational Definitions  
in Primary Research and Research Synthesis The first 
critical distinction between operational definitions in pri-
mary research and research synthesis is that primary 
researchers cannot start data collection until the variables 
of interest have been given a precise operational defini-
tion, an empirical reality. Otherwise, the researcher does 
not know how to proceed with a treatment or experi-
mental manipulation or what data to collect. A primary 
researcher studying intelligence must pick the measure or 
measures of intelligence they wish to study, ones that fit 
nicely into their conceptual definition, before the study 
begins.

In contrast, research synthesists need not be quite so 
conceptually or operationally precise, at least not ini-
tially. The literature search for a research synthesis can 
begin with only a broad, and sometimes fuzzy, concep-
tual definition and a few known operations that measure 
the construct. The search for studies then might lead the 
synthesists not only to studies that define the construct in 
the manners they specified, but also to research in which 
the same construct was studied with different operational 
definitions. Then, the concept and associated operations 
in the research synthesis can grow broader or narrower—
and hopefully more precise—as the synthesists grow 
more familiar with how the construct has been defined 
and measured in the extant research. Synthesists have the 
comparative luxury of being able to evaluate the concep-
tual relevance of different operations as they grow more 
familiar with the literature. They can even modify the 
conceptual definition as they encounter related alterna-
tive concepts and operations in the literature. This can be 
both a fascinating and anxiety-arousing task. Does intel-
ligence include what is measured by the SAT? Should 
achievement include performance in music class?

I do not want to give the impression that research syn-
thesis permits fuzzy thinking. Typically, research synthe-
sists begin with a clear idea of the concepts of interest 
and with some a priori specification of related empirical 
realizations. However, during a literature search, it is not 
unusual for synthesists to come across definitions that 
raise issues about concept boundaries they may not have 
considered or operations that they did not know existed 
but seem relevant to the construct being studied. This can 
be as simple as finding a measure of intelligence they did 
not know existed. It can be as complicated as discovering 
a whole literature on how to measure accuracy in diagno-
ses and what that term even means. Some of these new 
considerations may lead to changes in the conceptual 



22   FORMULATING A PROBLEM

definition. In sum, primary researchers need to know 
exactly what events will constitute the domain to be sam-
pled before beginning data collection. Research synthe-
sists may discover unanticipated elements of the domain 
along the way.

Another distinction between the two types of inquiry is 
that primary studies will typically involve only one, and 
sometimes a few, operational definitions of the same con-
struct. In contrast, research syntheses usually include many 
empirical realizations. For example, primary researchers 
may pick a single measure of intelligence, if only because 
the time and economic constraints of administering multi-
ple measures of intelligence will be prohibitive. A few 
measures of academic achievement might be available to 
primary researchers, if they can access archived student 
data such as grade point averages and achievement test 
scores. On the other hand, research synthesists can uncover 
a wide array of operationalizations of the same construct 
within the same research area. For example, a synthesist 
may find that one researcher used peer judgments to define 
the accuracy of a diagnosis, and that another used cure rate, 
and yet another used patient satisfaction.

2.2.2 Fit Between Concepts and Operations

The variety of operationalizations that a research synthe-
sist may uncover in the literature can be both a curse and 
a blessing. The curse concerns the fit between concepts 
and operations.

2.2.2.1 Broadening and Narrowing of Concepts  
Synthesists may begin a literature search with broad con-
ceptual definitions. However, they may discover that the 
operations used in previous relevant research have been 
confined to a narrower conceptualization. For instance, if 
you are conducting a research synthesis about how student 
perceptions of instructors in college correlate with course 
achievement you might discover that all or nearly all past 
research has measured only “liking the instructor,” and not 
the instructor’s perceived “expertise in the subject matter” 
or “ability to communicate.” Then, it might be inappro-
priate for you to label the conceptual variable as “student 
perceptions of instructors.” When such a circumstance 
arises, you need to narrow your conceptual definition to 
correspond better with the existing operations, such as 
“liking the instructor.” Otherwise, the synthesis’ conclu-
sions might appear to apply more generally, to cover more 
operations, than warranted by the evidence.

The opposite problem can also confront synthesists—
that is, they start with narrow concepts but then find mea-
sures in the literature that could support broader definitions. 

For example, this might occur if you find many studies 
of the effects of teachers’ expectations on SAT scores 
when you initially intended to confine your operational 
definition of intelligence to IQ scores. You would then 
face the choice of either broadening the allowable mea-
sures of intelligence, and therefore perhaps the concep-
tual definition, or excluding many studies that others might 
deem relevant.

Thus, it is not unusual for a dialogue to take place 
between research synthesists and the research literature. 
The dialogue can result in an iterative redefining of the 
conceptual variables that are the focus of the synthesis 
as well as the included empirical realizations. As the lit-
erature search proceeds, it is extremely important that 
synthesists take care to reevaluate the correspondence 
between the breadth of their concepts and the variation in 
ideas and operations that primary researchers have used 
to define them.

Before leaving the issue of concept-to-operation-fit, 
one more point is important to emphasize. The dialogue 
between synthesists and research literatures needs to pro-
ceed on the basis of trying to provide precise conceptual 
definitions that lead to clear linkages between concepts 
and operations in a way that allows meaningful interpre-
tation of results by the audience of the synthesis. What 
this means is that synthesists must never let the results of 
the primary research dictate what operations will be used 
to define a concept. For example, it would be inappropri-
ate for you to decide to operationally define intelligence 
as cognitive abilities measured by IQ scores and leave 
out results involving the Miller Analogies Test because 
the IQ tests revealed results consistent with your hypoth-
esis and the MAT did not. The relevance of the MAT must 
be based on how well its contents correspond to your 
conceptual definition, and that alone. If this test of intel-
ligence produces results different from other tests, then 
the reason for the discrepancy should be explored as part 
of the research synthesis, not used as a rationale for the 
exclusion of MAT studies.

2.2.2.2 Multiple Operations and Concept-to- 
Operation Fit Multiple operations also create oppor-
tunities for research synthesists. Eugene Webb and his 
colleagues present strong arguments for the value of mul-
tiple operations (2000). They define multiple operation-
ism as the use of many measures that share a conceptual 
definition but that have different patterns of irrelevant 
components. Multiple operationism has positive conse-
quences because

once a proposition has been confirmed by two or more 
independent measurement processes, the uncertainty of its 
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interpretation is greatly reduced. . . . If a proposition can 
survive the onslaught of a series of imperfect measures, 
with all their irrelevant error, confidence should be placed 
in it. Of course, this confidence is increased by minimizing 
error in each instrument and by a reasonable belief in the 
different and divergent effects of the sources of error. 
(Webb et al. 2000, 35)

So, the existence of a variety of operations in research 
literatures offers the potential benefit of stronger infer-
ences if it allows the synthesists to rule out irrelevant 
sources of influence. However, multiple operations do 
not ensure concept-to-operation correspondence if all or 
most of the operations lack a minimal correspondence 
to the concept. For example, studies of teacher expecta-
tion effects may manipulate expectations in a variety of 
ways—sometimes by providing teachers with informa-
tion on students in the form of tests scores, sometimes by 
reports from psychologists—and measure intelligence in 
a variety of ways. If results do not vary systematically 
as a function of the operations used, then the finding that 
expectations influence intelligence has passed a test of 
robustness. If the results are systematically related to 
operations, then qualifications to the finding are in order. 
For example, if you find that teacher expectations influ-
ence SAT scores but not IQ scores, you might postulate 
that perhaps expectations affect knowledge acquisition 
but not mental acuity. This inference is less strong 
because it requires you to develop a post hoc explanation 
for your findings.

2.2.2.3 Use of Operations Meant to Represent Other 
Concepts Literature searches of reference databases typi-
cally begin by using keywords that represent the concep-
tual definitions of the variables of interests. Thus, you are 
much more likely to begin a search by crossing the key-
words “teacher expectations” with “intelligence” than 
you are by crossing “Test of Intellectual Growth Poten-
tial” (a made-up test that might have been used to manip-
ulate teacher expectations) with “Stanford-Binet” and 
“Wechsler.” It is the abstractness of the keywords that 
allows unexpected operationalizations to get caught in 
the search net.

By extending the keywords even further, synthesists 
may uncover research that has been cast in conceptual 
frameworks different from their own but that include 
manipulations or measures relevant to the concepts the 
synthesist has in mind. For instance, several concepts 
similar to interpersonal expectancy effects appear in the 
research literature—one is behavior confirmation—but 
come from different disciplinary traditions. Even though 

these concepts are labeled differently, the operations used 
in the studies they generate may be very similar and are 
certainly relevant to one another. When relevant opera-
tions associated with different constructs are identified, 
they should be included in the synthesis. In fact, similar 
operations generated by different disciplinary traditions 
often do not share other features of research design— 
for example, they may draw participants from different 
populations—and therefore can be used to demonstrate 
the robustness of results across methodological varia-
tions. Synthesists can improve their chances of finding 
broadly relevant studies by searching in reference data-
bases for multiple disciplines and by using the database 
thesauri to identify related, broader, and narrower terms.

2.2.3  Effects of Multiple Operations  
on Synthesis Outcomes

Multiple operations do more than introduce the potential 
for more robust inferences about relationships between 
conceptual variables. They are an important source of 
variance in the conclusions of different syntheses meant 
to address the same topic. A variety of operations can 
affect synthesis outcomes in at least two ways.

First, the operational definitions covered in two research 
syntheses involving the same conceptual variables can be 
different from one another. Thus, two syntheses claiming 
to integrate the research on the effects of teacher expec-
tations on intelligence can differ in the way intelligence 
is operationally defined. One might include SAT and 
GRE scores along with IQ test results and the other only 
IQ tests. Each synthesis may contain some operations 
excluded by the other, or one definition may completely 
contain the other.

Second, multiple operations affect outcomes of syn-
theses by leading to variation in the way study operations 
are treated after the relevant literature has been identified. 
Some synthesists pay careful attention to study opera-
tions. They identify meticulously the operational distinc-
tions among retrieved studies and test for whether results 
are robust across these variations. Other synthesists pay 
less attention to these details.

2.2.4  Variable Definitions and  
the Literature Search

I mention one way in which the choice of keywords in a 
reference database search can influence the studies that are 
uncovered. I point out that entering databases with con-
ceptual terms as keywords will permit the serendipitous  
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discovery of aligned areas of research, more so than 
entering operational descriptions will. Now I extend this 
recommendation further: synthesists should begin the lit-
erature search with the broadest conceptual definition in 
mind. While reading study abstracts, the synthesists should 
use the tag “potentially relevant” as liberally as possible. 
At later stages of the synthesis, it is okay to exclude par-
ticular operations for their lack of correspondence with 
the precise conceptual definition. However, in the early 
stages, when conceptual and operational boundaries may 
still be a bit fuzzy, the synthesists should err on the overly 
inclusive side, just as primary researchers collect some 
data that might not later be used in analysis.

This strategy initially creates more work for synthesists 
but has several long-term benefits. First, it keeps within 
easy reach operations that on first consideration may be 
seen as marginal but later jump the boundary from irrele-
vant to relevant. Reconstituting the search because rele-
vant operations have been missed consumes far more 
resources than first putting them in the Inbox but exclud-
ing them later.

Second, a good conceptual definition speaks not only 
to which operations are considered relevant but also to 
which are irrelevant. By beginning a search with broad 
terms, synthesists are forced to struggle with operations 
that are at the margins of their conceptual definitions. 
Ultimately, this results in definitions with more precise 
boundaries. For example, if you begin a search for studies 
of teacher expectation effects with the keyword “intel-
ligence” rather than “IQ”, you may decide to include 
research using the MAT, thus broadening the intelligence 
construct beyond IQ, but exclude the SAT and GRE, 
because they are too influenced by knowledge, rather 
than mental acuity. But, by explicitly stating these tests 
were excluded, the audience of the synthesis gets a better 
idea of where the boundary of the definition lies, and can 
argue otherwise if they choose. Had you started the 
search with “IQ” you might never have known that others 
considered the SAT and GRE tests of intelligence in 
teacher expectation research.

Third, a broad conceptual search allows the synthesis to 
be carried out with greater operational detail. For example,  
searching for and including IQ tests only permits us to 
examine variations in operations, such as whether the test 
was group versus individually administered and timed 
versus untimed. Searching for, and ultimately including, a 
broader range of operations permits the synthesists to 
examine broader conceptual issues when they cluster find-
ings according to operations and look for variation in 

results. Do teacher expectations produce different effects 
on IQ tests and the SAT? If so, are there plausible expla-
nations for this? What does it mean for the definition of 
intelligence? Often, these analyses produce the most 
interesting results in a research synthesis.

2.3  TYPES OF RESEARCH PROBLEMS  
AND HYPOTHESES

After researchers have defined their concepts and opera-
tions, they need to define the problem or hypothesis of 
interest. Does the problem relate simply to the prevalence 
or level of a phenomenon in a population? Does it relate 
to how a person acting in the environment interprets their 
experience? Does it suggest that the variables of interest 
relate to one another as a simple association or with a 
causal connection? Does it refer to a process that operates 
at the level of an individual unit—how it changes over 
time—or to general tendencies within and between groups 
of units, and how they might differ from one another?

The distinctions embodied in these questions have crit-
ical implications for the choice of appropriate research 
designs. I assume you are familiar with research designs 
and their implications for drawing inferences. Still, a 
brief discussion of the critical features of research prob-
lems as they relate to research design is needed to under-
stand the role of design variations in research synthesis.

2.3.1  Three Questions About Research 
Problems and Hypotheses

Researchers need to answer three questions about their 
research problems or hypotheses to be able to determine 
the appropriateness of different research designs for 
addressing them (for a fuller treatment of these questions, 
see Cooper 2006):

• Should the results of the research be expressed in 
numbers or narrative?

• Is the problem or hypothesis meant to uncover a 
description of an event, an association between events, 
or an explanation of an event?

• Does the problem or hypothesis seek to understand 
how a process unfolds within an individual unit over 
time, or what is associated with or explains variation 
between units or groups of units?

If the answer to the first question is narrative, the syn-
thesists will likely focus on qualitative research, or more 
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accurately, interpretive research (some forms of inter-
pretive research are steeped in quantitative analysis, for 
example, discourse analysis). Carla Willig suggests that 
these approaches to research are most appropriate when 
the researchers want to uncover the impetus to behav-
ior that exists for the actors themselves rather than test the 
explanatory power of their own (or someone else’s) theory 
or perspective (2012).

For the remainder of this chapter, I assume that the first 
question was answered “numbers.” However, the synthe-
sis of narrative, or qualitative, research is an important 
area of methodology and scholarship (for detailed exam-
inations of approaches to synthesizing qualitative research, 
see Sandelowski and Barroso 2007; Pope, Mays, and 
Popay 2007).

2.3.1.1 Descriptions, Associations, and Explanations  
First, a research problem might be largely descriptive. 
Such problems typically ask, “What is happening?” As in 
survey research, the desired description could focus on a 
few specific characteristics of the event or events of inter-
est and broadly sample those few aspects across multiple 
event occurrences (Fowler 2014). Thus you might ask  
a sample of undergraduates, perhaps drawn randomly 
across campuses and in different subject areas, how much 
they like their instructors. From this, you might draw an 
inference about how well liked instructors generally are 
on college campuses.

A second type of research problem might be “What 
events happen together?” Here, researchers ask whether 
characteristics of events or phenomena co-occur with one 
another. A correlation coefficient might be calculated to 
measure the degree of association. For example, your 
survey of undergraduates’ liking for their instructors 
might also ask the students how well they did in their 
classes. Then, the two variables could be correlated to 
answer the question, “Are students’ liking of instructors 
associated with their class grades?”

The third research problem seeks an explanation for an 
event and might be phrased, “What events cause other 
events to happen?” In this case, a study is conducted to 
isolate and draw a direct productive link between one 
event (the cause) and another (the effect). In the example, 
you might ask, “Does increasing the liking students have 
for their instructors cause them to get higher grades in 
class?”

Three classes of research designs are used most often 
to help make these causal inferences. I call the first mod-
eling research. It takes simple correlational research a 
step further by examining co-occurrence in a multivariate 

framework. For example, if you wish to know whether 
liking an instructor causes students to get higher grades, 
you might construct a multiple regression equation or 
structural equation model that attempts to provide an 
exhaustive description of a network of relational linkages 
(Kline 2011). This model would attempt to account for, 
or rule out, all other co-occurring phenomena that might 
explain away the relationship of interest. Likely, the 
model will be incomplete or imperfectly specified, so any 
casual inferences from modeling research will be tenta-
tive at best. Studies that compare groups of participants to 
one another—such as men and women or different ethnic 
groups—and control for other co-occurring phenomena 
are probably best categorized as modeling studies.

The second class of explanatory research designs 
involves quasi-experimental research (Shadish, Cook, and 
Campbell 2002). Here, the researchers (or some other 
external agent) control the introduction of an event, often 
called an intervention in applied research or a manipula-
tion in basic research, but not precisely who may be 
exposed to it. Instead, the researchers use some statistical 
control in an attempt to equate the groups receiving and 
not receiving the intervention. It is difficult to tell how 
successful the attempt at equating groups has been. For 
example, you might be able to train doctors to ask specific 
questions when diagnosing an ailment. However, you 
might not be able to assign doctors to receive this training 
(they would be free to take part or not) so you might match 
doctors on educational background and ignore those who 
are not a good match.

Finally, in experimental research both the introduc-
tion of the event (such as training in diagnosis) and who 
is exposed to it (which doctors) are both controlled by 
the researcher (or other external agent). The researcher 
uses a random procedure to assign subjects to conditions, 
leaving the assignment to chance (Christensen 2012). In 
the example, because the random assignment procedure 
minimizes average existing differences between doctors 
with regard to their types and amounts of education 
prior to the experiment, you can be most confident that 
any differences between the diagnoses are caused by the 
new training rather than other potential explanations. Of 
course, numerous other aspects of the design must be 
attended to for this strong inference to be made—for 
example, standardizing office visit conditions across doc-
tors and ensuring that doctors are unaware of the experi-
mental hypothesis. For our purposes, however, focusing 
on the characteristics of researcher control over the con-
ditions of the experiment and assignment of participants 
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to conditions captures what is needed to proceed with 
the discussion.

2.3.1.2 Examining Change Within Units or Variation  
Across Units Some research problems reference changes 
that occur within a unit over time. Others relate to the 
average differences and variation in a characteristic 
between groups of units. This latter problem is best 
addressed using the designs just discussed. The former—
the problem of change within a unit—would best be studied 
using the various forms of single-case designs, a research 
design in which units are tested at different times, typi-
cally equal intervals, during the course of a study. For 
example, you might ask a student in a class how much he 
or she liked an instructor after each weekly class meeting. 
You might also collect the student’s grade on that week’s 
homework assignment. A concomitant time series design 
would then reveal the association between change in liking 
and homework grades.

If the research hypothesis seeks to test for a causal 
relationship between liking and grades, it would call for 
charting a student’s change in grades, perhaps on home-
work assignments or in-class quizzes, before and after an 
experimental manipulation changed the way the instruc-
tor behaved, perhaps from being distant to being friendly. 
Or, the change from distant to friendly instruction might 
involve having the instructor add a different “friendly 
teaching technique” with each class session, for example, 
leaving time for questions during session 2, adding 
revealing personal information during session 3, adding 
telling jokes during session 4. Then you would chart how 
each additional “friendly” teaching technique affected a 
particular student’s grades on each session’s homework 
assignment.

Of course, for this type of design to allow strong causal 
inferences other experimental controls would be needed—
for example, the random withdrawal and reintroduction 
of teaching techniques. For our purposes, however, the 
key point is that it is possible that how each individual 
student’s grades change as a function of the different 
teaching techniques could look very different from the 
moving group average of class-level homework grades. 
For example, the best description of how instructor 
friendliness affected grades based on how individual stu-
dents react might be to say, “Each student’s performance 
improved precipitously after the introduction of a specific 
‘friendly’ teaching technique that seemed to appeal to 
that student while other techniques produced little or no 
change.” However, because different students might have 

found different approaches appealing, averaged across 
the students in the class, the friendliness manipulations 
might be causing gradual improvements in the average 
homework grade. At the class level of analysis the best 
description of the results might be, “The gradual intro-
duction of additional friendly teaching techniques led to 
a gradual improvement in the classes’ average homework 
grades.” So, the group-averaged data can be used to 
explain improvement in grades only at the group level; it 
is not descriptive of the process happening at the indi-
vidual level, nor vise versa.

The designation of whether an individual or group 
effect is of interest depends upon the research question 
being asked. So, the group performance in this example 
is also a description of how one classroom might per-
form. This would be the case if an instructor wanted to 
raise her or his likability but was not interested in whether 
or how it influenced any particular student. Thus, the key 
to proper inference is that the unit of analysis at which the 
data from the study is being analyzed corresponds to the 
unit of interest in the problem or hypothesis motivating 
the primary research or research synthesis. If not, an erro-
neous conclusion is possible.

2.3.2  Problems and Hypotheses  
in Research Synthesis

2.3.2.1 Synthesizing Descriptive Research When a 
description of the quantitative frequency or level of an 
event is the focus of a research synthesis, it is possible 
to integrate evidence across studies by conducting what 
Robert Rosenthal calls aggregate analysis (1991). Floyd 
Fowler suggests that two types of descriptive questions 
are most appropriately answered using quantitative 
approaches (2014). The first involves estimating the fre-
quency of an event’s occurrence. For example, you might 
want to know, “How many college students receive a 
grade of A in their classes?” The second descriptive ques-
tion involves collecting information about attitudes, 
opinions, or perceptions. For example, your synthesis 
concerning liking of instructors might be used to answer 
the question, “On average, how well do college students 
like their instructors?”

Conducting a synthesis of research on the question 
involving frequency of grades would lead you to collect 
from each relevant study the number of students receiv-
ing grades of A and the total number of students in each 
study. The question regarding opinions would lead you to 
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collect the average response of students on a question 
about “liking” of their instructor.

The primary objective of the studies you are aggre-
gating data from might not have been to answer your 
descriptive questions. For example, this evidence (on fre-
quency of grades, liking of instructor) could have been 
reported as part of a study examining teacher expectation 
effects. However, it is not unusual for such studies to 
report, along with the effect of interest, the distribution of 
grades in the classes under study and even the average 
liking of the instructors (perhaps to test as a moderator 
of the expectation effect). Further, this might be done 
because the primary researchers wanted to examine the 
data for restrictions in range (“Was there enough varia-
tion in grades and liking to permit a strong test of their 
association?”) or to describe their sample for purposes of 
assessing the generality of their findings (“How were the 
students in this study doing in school relative to the more 
general population of interest?”).

The difficulty of aggregating descriptive statistics 
across studies depends on whether frequencies or atti-
tudes, opinions, and perceptions are at issue. With regard 
to frequencies, as long as the event of interest is defined 
similarly across studies, it is simple to collect the frequen-
cies, add them together, and, typically, report them as a 
proportion of all events. But two complications remain.

First, in using the proviso “defined similarly” I am 
making the assumption that, for example, it is the act of 
getting a grade of A that interests you, not that getting an 
A means the same thing in every class used in every study. 
If instructors use different grading schemes, getting an A 
might mean very different things in different classes and 
different studies. Of course, if different studies report dif-
ferent frequencies of A grades, you can explore whether 
other features of studies (such as the year in which the 
study was conducted, if you are interested in grade infla-
tion) covary with the grading curve used in their partici-
pating classrooms.

Second, it might be that the aggregation of frequencies 
across studies is undertaken to estimate the frequency of 
an event in a population. So, your motivating question 
might be, “What is the frequency with which the grade  
of A is assigned in American college class?” The value of 
your aggregate estimate from studies will then depend  
on how well the studies represented American college 
classes. It would be rare for classes chosen because they 
are convenient to be fortuitously representative of the 
nation as a whole. But, it might be possible to apply some 

sampling weights that would improve your approxima-
tion of a population value.

Aggregating attitudes, opinions, and perceptions across 
studies is even more challenging. This is because social 
scientists often use different scales to measure these vari-
ables, even when the variables have the same concep-
tual definition. Suppose you wanted to aggregate across 
studies the reported levels of liking of the instructor. It 
would not be unusual to find that some studies simply 
asked, “Do you like your instructor, yes or no?” and that 
others asked, “How much do you like your instructor?” 
but used different scales to measure liking. Some might 
have used 10-point scales while others used 5-point or 
7-point scales. Scales with the same numeric gradations 
might also differ in the anchors they used for the “liking” 
dimension. For example, some might have anchored the 
positive end of the dimension with “a lot,” others with 
“very much,” and still others with “my best instructor 
ever.” In this case, even if all the highest numerical ratings 
are identical, the meaning of the response is different.

Clearly, you cannot simply average these measures. 
One solution would be to aggregate results across studies 
using the identical scales and reporting results separately 
for each scale type. Another solution would be to report 
simply the percentage of respondents using one side of 
the scale or the other. For example, your cumulative 
statement might be “Across all studies, 85 percent of 
students reported positive liking for their instructor.” This 
percentage is simply the number of students whose ratings 
are on the positive side of the scale, no matter what the 
scale, divided by the total number of raters. The number 
can be derived from the raw rating frequencies, if they 
are given, or from the mean and variance of the ratings 
(see Cooper et al. 2003, for an example).

In general, it is rare to see research syntheses in social 
science that seek to aggregate evidence across studies 
to answer descriptive questions quantitatively. However, 
when this occurs, it is critical that the synthesists pay 
careful attention to whether the measures being aggre-
gated are commensurate. Combining measures that are 
incommensurate will result in gibberish.

2.3.2.2 Synthesizing Group-Level Associations and 
Causal Relationships The accumulation and integration 
of comparisons between group-level statistics for testing 
associations and causal relationships has been by far the 
most frequent objective of research syntheses in social 
science. In primary research, a researcher selects the 
most appropriate research design for investigating the 
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problem or hypothesis. It is rare for a single study to 
implement more than one design to answer the same 
research question, although multiple operationalizations 
of the constructs of interest are possible. More typical 
would be instances in which primary researchers intended  
to carry out an optimal design for investigating their 
problem but, due to unforeseen circumstances, end up 
implementing a less-than-optimal design. For example, if 
you are interested in asking “Does increasing the liking 
students have for their instructors cause students to do 
better in class?” you might begin by intending to carry 
out an experiment in which high school students are ran-
domly assigned to friendly and distant instructors (who 
are also randomly assigned to teaching style). However, 
as the semester proceeds, some students move out of the 
school district, some change sections because of conflicts 
with other courses, and others change sections because 
they do not like the instructor. By the end of the semester, 
it is clear that the students remaining in the sections were 
not equivalent, on average, when the study began. To res-
cue the effort, you might use post hoc matching or statis-
tical controls to re-approximate equivalent groups. Thus, 
the experiment has become a quasi-experiment. If stu-
dents in the two conditions at the end of the study are so 
different on pretests that procedures to produce post hoc 
equivalence seem inappropriate (for example, lead to 
small groups of students sampled from different tails of 
the class distributions), you might simply correlate the 
students’ ratings of liking (originally meant to be used as 
a manipulation check in the experiment) with grades. So, 
a study searching for a causal mechanism has become a 
study of association (with a known confound). The legit-
imate inferences allowed by the study began as strong 
causal inference, degraded to weak causal inference, and 
ended as simple association.

In contrast, research synthesists are likely to come 
across a wide variety of research designs that relate the 
concepts of interest to one another. A search for studies 
using the term “instructor ratings” and examining them 
for measures of “achievement” should identify studies 
that resulted in simple correlations, multiple regressions, 
perhaps a few structural equation models, some quasi- 
experiments, a few experiments, and maybe even some 
time series involving particular students or class averages.

What should the synthesists do with this variety of 
research designs? Certainly, your treatment of them 
depends primarily on the nature of the research problem 
or hypothesis. If your problem is whether there is an 
association between the liking students have for their 

instructors and grades in the course, then it seems that 
any and all of the research designs address the issue. The 
regressions, structural equation models, quasi-experiments, 
and experiments ask a more specific question about asso-
ciation—these seek a causal connection or one with other 
explanations ruled out—but they are tests of an associa-
tion nonetheless. Thus, it seems that you would be well 
advised to include all the research designs in your synthe-
sis of evidence on association.

The issue is more complex when your research ques-
tion deals with causality: “Does increasing the liking 
students have for their instructors cause higher student 
grades?” Here, the different designs produce evidence 
with different capabilities for drawing strong infer-
ences about your problem. Again, correlational evidence 
addresses a necessary but not sufficient condition for 
drawing a causal inference. Thus, if this were the only 
research design found in the literature, it would be appro-
priate for you to assert that the question remained untested. 
When an association is found, multiple regressions sta-
tistically control for some alternative explanations for 
the relationship, but probably not all of them. Structural 
equation models relate to the plausibility of causal net-
works but do not address causality in the generative 
sense, that is, manipulating one variable will produce  
a change in the other variable. Well-conducted quasi- 
experiments may permit weak causal inferences, made 
stronger through multiple and varied replications. Exper-
iments permit the strongest inferences about causality.

How should synthesists interested in problems of cau-
sality treat the various designs? At one extreme, they can 
discard all studies but those using true experimental 
designs. This approach applies the logic that these are 
the only studies that directly test the question of interest. 
All other designs either address association only or do 
not permit strong inferences. The other approach would 
be to include all the research evidence while carefully 
qualifying inferences as the ability of the design for pro-
viding evidence for causality moves farther from the 
ideal. A less extreme approach would be to include some 
but perhaps not all designs while again carefully qualifying 
inferences.

Arguments support each of these approaches. The first 
obligation of synthesists is to clearly state the approach 
they have used and the rationale for it. In research areas 
where strong experimental designs are relatively easy to 
conduct and plentiful—such as research on the impact of 
aerobic exercise on the cognitive functioning of older 
adults (Smith et al. 2010)—I have been persuaded that 
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excluding designs that permit only weak causal infer-
ences was an appropriate approach to the evidence.

In other instances, experiments may be difficult to 
conduct and rare—such as the impact of homework on 
achievement (Cooper et al. 2006). Here, the synthesists 
are forced to make a choice between two philosophically 
different approaches to evidence. If the synthesists 
believe that discretion is the better part of valor, then they 
might opt for including only the few experimental studies 
or stating simply that little credible evidence on the 
causal relationship exists. Alternatively, if they believe 
that any evidence is better than no evidence at all, then 
they might proceed to summarize the less-than-optimal 
studies, with the appropriate precautions.

Generally speaking, when experimental evidence on 
causal questions is lacking or sparse, a more inclusive 
approach is called for, assuming that the synthesists pay 
careful and continuous attention to the impact of research 
design on the conclusions that they draw. In fact, the inclu-
sive approach can provide some interesting benefits to infer-
ences. Returning to the example of instructor liking, you 
might find a small set of studies in which the likability of 
the instructor has been manipulated and students assigned 
randomly to conditions. However, to accomplish the 
manipulation, these studies might have been conducted 
in courses that involved a series of guest lecturers, used 
to manipulate instructor’s likability. Grades were opera-
tionalized as scores on homework assignments turned in 
after each lecture. These studies might have demonstra-
ted that more likable guest lecturers produced higher 
student grades on homework. Thus, to carry out the 
manipulation it was necessary to study likability in short-
term instructor-student interactions. Could it be that over 
time—more like the real-world relationships that develop 
between instructors and students—likability becomes 
less important and perceived competence becomes more 
important? Could it be that the effect of likability is short 
lived—it appears on homework grades immediately after 
a class but does not affect how hard a student studies for 
exams and therefore has much less, if any, effect on test 
scores and final grades?

These issues, related to construct and external validity, 
go unaddressed if only the experimental evidence is per-
mitted into the synthesis. Instead, you might use the 
non-experimental evidence to help you gain tentative, 
first approximations about how the likability of instruc-
tors plays out over time and within broader constructions 
of achievement. The quasi-experiments found in the liter-
ature might use end-of-term class grades as outcome 

measures. The structural equation models might use 
large, nationally representative samples of students and 
relate ratings of liking of instructors in general to broad 
measures of achievement, such as cumulative grade point 
averages and SAT scores.

By using these results to form a web of evidence, you 
can come to more or less confident interpretations of the 
experimental findings. If the non-experimental evidence 
reveals relationships consistent with the experiments, you 
can be more comfortable in suggesting that the experi-
mental results generalize beyond the specific operations 
used in the experiments. If the evidence is inconsistent, it 
should be viewed as a caution to generalization.

In sum, it is critical in both primary research and 
research synthesis that the type of relationship between 
the variables of interested be clearly specified. This spec-
ification dictates whether any particular piece of primary 
research has used a research design appropriate for the 
research question. Designs appropriate to gather data on 
one type of problem may or may not provide information 
relevant for another type. Typically, in primary research 
only a single research design can be used in each study. In 
research synthesis, however, a variety of research designs 
relating the variables of interest are likely. When the rela-
tion of interest concerns an association between variables, 
designs that seek to rule out alternative explanations or 
establish causal links are still relevant. When the problem 
of interest concerns establishing a causal link between 
variables, designs that seek associations or seek to rule 
out a specified set of but not all alternative explanations 
do not match the question at hand. Still, if the constraints 
of conducting experiments place limits on these studies’ 
ability to establish construct and external validity, a syn-
thesis of the non-experimental work can give a tentative, 
first approximation of the robustness, and limits, of infer-
ences from the experimental work.

2.3.2.3 Synthesizing Studies of Change in Units 
Across Time The study of how individual units change 
over time and what causes this change has a long history 
in the social sciences. Single-case research has developed 
its own array of research designs and data analysis strat-
egies (see, for example, Kazden 2011). The issues I have 
discussed regarding descriptive, associational, and causal 
inferences and how they relate to different research 
designs play themselves out in the single-case arena in a 
manner similar to that in group-level research. Different 
time series designs are associated with different types  
of research problems and hypotheses. For example, the 
question “How does a student’s liking for the instructor 
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change over the course of a semester?” would be most 
appropriately described using a simple time series design. 
The question “Is a student’s liking for the instructor asso-
ciated with the student’s grades on homework as the semes-
ter progresses?” would be studied using a concomitant 
time series design. The question “Does a change in a stu-
dent’s liking for the instructor cause a change in the stu-
dent’s homework grade?” would be studied using any of 
a number of interrupted time series designs. Much like 
variations in group designs, variations in these interrupted 
time series would result in stronger or weaker inferences 
about the causal relationship of interest.

The mechanics of quantitative synthesis of single-case 
designs requires its own unique toolbox (for examples, 
see Shadish and Rindskopf 2007). However, the logic of 
synthesizing single-case research is identical to that of 
group-level research. It would not be unusual for synthe-
sists to uncover a variety of time series designs relating 
the variables of interest to one another. If you are inter-
ested in whether a change in a student’s liking of the 
instructor caused a change in the student’s course grade, 
you may very well find in the literature some concomitant 
time series, some interrupted time series with a single 
“liking” intervention, and perhaps some designs in which 
liking is enhanced and then lessened as the semester pro-
gresses. Appropriate inferences drawn from each of these 
designs correspond more or less closely with your causal 
question. You may choose to focus on the most corre-
spondent designs, or to include designs that are less cor-
respondent but that do provide some information. The 
decision about which of these courses of action are most 
appropriate again should be influenced by the number and 
nature of studies available. Of course, regardless of the 
decision rule adopted concerning the inclusion of research 
designs, synthesists are obligated to carefully delimit their 
inferences based on the strengths and weaknesses of the 
included designs.

2.3.2.4 Problems and Hypotheses Involving Inter-
actions At their broadest level, the problems and hypoth-
eses that motivate most research syntheses involve main 
effects, the relations between two variables. Does liking 
of the instructor cause higher class grades? Do teachers’ 
expectations influence intelligence test scores? This is 
due to the need to establish such fundamental relation-
ships before investigating the effects of third variables on 
them. Of course, research can examine multiple bivariate 
relations at once (with the question, for example, “What 
are the determinants of class grades?”).

The preponderance in practice of main effect questions 
does not mean that a focus on an interaction cannot or 
should not motivate a research synthesis. For example, it 
may be that a bivariate relationship is so well established 
that an interaction hypothesis has become the focus of 
attention in a field. That liking the instructor causes 
higher grades in high school may be a finding little in 
dispute, perhaps because a previous research synthesis 
has shown it to be so. Now the issue is whether the causal 
impact is equally strong across classes dealing with lan-
guage or mathematics. So, you undertake a new synthesis 
to answer this interaction question: “Is the effect of liking 
on grades equally strong across different subject areas?”

Also, undertaking a synthesis to investigate the exis-
tence of a main effect relationship should in no way dim-
inish the attention paid to interactions within the same 
synthesis project. Indeed, in my earlier example, the fact 
that the previous research synthesis on liking of the instruc-
tor causing higher grades in high school did not look at 
the moderating influence of subject matter might be con-
sidered a shortcoming of that synthesis. Typically, when 
main effect relationships are found to be moderated by 
third variables, these findings are given inferential prior-
ity and viewed as a step toward understanding the pro-
cesses involved in the causal chain of events.

Examining interactions in research syntheses presents 
several unique opportunities and unique problems. So 
that both can be fully understood, I introduce yet another 
critical distinction in the types of evidence that can be 
explored in research synthesis.

2.4  STUDY-GENERATED AND  
SYNTHESIS-GENERATED EVIDENCE

Research synthesis can contain two sources of evidence 
about the research problem or hypothesis. The first is 
called study-generated evidence. Study-generated evi-
dence is present when a single study generates results 
that directly test the relation being considered. Research 
syntheses also include evidence that does not come from 
individual studies but instead from the variations in pro-
cedures across studies. This type of evidence, called 
synthesis-generated evidence, is present when the results 
of studies using different procedures to test the same 
hypothesis are compared with one another.

Any research problem or hypothesis—a description, 
simple association, or causal link—can be examined 
through either study-generated or synthesis-generated 
evidence. However, only study-generated evidence based 
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on experimental research allows synthesists to make state-
ments concerning causality.

2.4.1  Study-Generated Evidence  
on Main Effect Relationships

Suppose you were interested in synthesizing the research 
on whether teacher expectations influence IQ test scores. 
You conduct a literature search and discover twenty 
studies that randomly assigned students to one of two 
conditions. Teachers for one group of students were given 
information indicating that they could expect unusual 
intellectual growth during the school year from a ran-
domly chosen sample of students in their class. They 
were given no out-of-the-ordinary information about the 
other students. These twenty studies each provide study- 
generated evidence regarding a simple two-variable rela-
tionship, or main effect. The cumulative results of these 
studies comparing the end-of-year IQ scores of students 
in the two groups could then be interpreted as supporting 
or not supporting the hypothesis that teacher expectations 
influence IQ.

2.4.2 Study-Generated Evidence on Interactions

Next, assume you are interested as well in whether teacher 
expectations manipulated through the presentation of a 
bogus Test of Intellectual Growth Potential has more of an 
impact on student IQ scores than the same manipulation 
created by telling teachers simply that students’ past teach-
ers predicted unusual intellectual growth based on subjec-
tive impressions. You discover twenty experimental studies 
used both types of expectation manipulation. These studies 
provide study-generated evidence regarding an inter action. 
Here, if you found that test scores produced a stronger 
expectation-IQ link than past teachers’ impressions, you 
could conclude that the mode of expectation induction 
caused the difference. This is because the type of manip-
ulation used is not confounded with other study charac-
teristics. For example, while the grade levels of students 
might differ from study to study, grade level would be 
equally represented in each type of manipulation group. 
Of course, the same logic would apply to attempts to 
study higher order interactions—involving more than 
one interacting variable—although these are still rare in 
research syntheses.

2.4.2.1 Integrating Interaction Results Across 
Studies Often, the integration of interaction results in 
research synthesis is not as simple as combining signif-

icance levels or calculating and averaging effect sizes 
from each study. Figure 2.1 illustrates the problem by 
presenting the results of two hypothetical studies com-
paring the effects of manipulated (high) teacher expecta-
tions on student IQ scores. You want to examine whether 
the expectation effect was moderated by the number of 
students in the class. In study 1, involving, say, ten classes, 
the sizes of the class in which expectations were manipu-
lated ranged from ten to twenty-eight. A significant inter-
action was found suggesting larger expectation effects in 
smaller class. Study 2 also involved twenty classes but the 
class sizes ranged only from ten to twenty students. Study 
2 might have reported a significant main effect only.

You might be tempted to conclude that the two studies 
produced inconsistent results regarding the existence of 
an interaction involving class size. However, a closer 
examination of the two figures illustrates why this might 
not be an appropriate interpretation. The results of study 2 
probably would have closely approximated those of 
study 1 had the class sizes in study 2 represented the same 
range of values as those in study 1. Note that the slopes for 
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the high expectations groups in study 1 and study 2 are 
nearly identical, as are those for the control groups.

This example demonstrates that synthesists should not 
assume that strengths of interaction uncovered by different 
studies necessarily imply inconsistent results. Synthesists 
need to examine the differing ranges of values of the vari-
ables employed in different studies, be they measured or 
manipulated. If possible, they should chart results taking 
the different levels into account, just as I did in figure 2.1. 
In this manner, one of the benefits of research synthe-
sis is realized. Whereas one study might conclude that 
the effect of expectations dissipates as class size grows 
larger and a second study might not, the research syn-
thesists can discover that the two results are in fact per-
fectly commensurate (if the range in class sizes is used 
as a mediating variable in a search for influences on the 
results of studies).

This benefit of research synthesis also highlights the 
importance of primary researchers presenting detailed 
information concerning the levels of variables used in 
their studies. Research synthesists cannot conduct a 
between-studies analysis similar to my example without 
this information. If the primary researchers in study 1 and 
study 2 neglected to specify their range of class sizes, 
perhaps because they simply said they compared smaller 
classes with larger classes, the commensurability of the 
results would have been impossible to uncover.

Variations in ranges of values for variables can also 
produce discrepancies in results involving two-variable 
or main effect relationships. I mention it in the case of 
interactions because this is the circumstance under which 
the problem is least likely to be recognized and is most 
difficult to remedy when it is discovered.

2.4.3  Synthesis-Generated Evidence  
on Main Effect Relationships

Earlier, I provided an example of a two-variable relation-
ship studied with synthesis-generated evidence when I 
suggested that you might relate the average grade given 
to students by their instructors to the year in which the 
study was conducted. You might do so to obtain an indi-
cation of whether grades were getting higher over time. 
Here, you have taken two descriptive statistics from the 
study reports and related them to one another. This is  
synthesis-generated evidence for a two-variable relation-
ship, or main effect.

It should be clear that only associations can be studied 
in this way because you have not randomly assigned 

studies to conditions. It should also be clear that looking 
for such relationships between study-level characteristics 
opens up the possibility of examining a multitude of prob-
lems and hypotheses that might never have been the prin-
cipal focus of individual primary studies.

The use of synthesis-generated evidence to study main 
effect relationships is rarely the primary focus of research 
synthesis, although there is no pragmatic reason why this 
should be the case, other than the weak causal inferences. 
Study characteristics—that is, evidence at the synthesis 
level—most often come into play as variables that influ-
ence the magnitude of two-variable relationships exam-
ined within studies. Conceptually, the difference is simply 
that in the former case—interaction case—one of the two 
study characteristics being examined already is some 
expression of a two-variable relationship.

2.4.4  Synthesis-Generated Evidence  
on Three-Variable Interactions

Let us return to the teacher expectations and IQ example. 
Suppose you find no studies that manipulated the mode 
of expectation induction but you do discover that ten of 
the studies that experimentally manipulated expectations 
did so using test scores but ten others used the impres-
sions of previous teachers. When you compare the mag-
nitude of the expectation effect on IQ between the two 
sets of studies, you discover that the link is stronger in 
studies using test manipulations. You could then infer  
that an association exists between mode-of-expectation- 
induction and IQ but you could not infer a causal relation 
between the two. This is synthesis-generated evidence 
for an interaction.

When groups of effect sizes are compared within a 
research synthesis, regardless of whether they come from 
simple correlational analyses or controlled experiments 
using random assignment, the synthesists can establish 
only an association between a moderator variable—a 
characteristic of the studies—and the outcomes of studies.  
They cannot establish a causal connection. Synthesis- 
generated evidence is restricted to making claims only 
about associations and not about causal relationships 
because it is the ability to employ random assignment of 
participants that allows primary researchers to assume 
third variables are represented equally in the experimen-
tal conditions.

The possibility of unequal representation of third vari-
ables across study characteristics cannot be eliminated 
in your synthesis because you did not randomly assign 
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experiments to modes of expectation manipulation. For 
example, it might be that the set of studies using tests to 
manipulate IQ were also conducted in higher grades. 
Now, you do not know whether it was the use of tests  
or the age of the students that caused the difference in  
the relationship between teacher expectations and IQ. 
The synthesists cannot discern which characteristic of the 
studies, or perhaps some unknown other variable related 
to both, produced the stronger link. Thus, when study 
characteristics are found associated with study outcomes, 
the synthesists should report the finding as just that, an 
association, regardless of whether the included studies 
tested the causal effects of a manipulated variable or esti-
mated the size of an association.

Synthesis-generated evidence cannot legitimately rule 
out as possible true causes other variables confounded 
with the study characteristic of interest. Thus, when  
synthesis-generated evidence reveals a relationship that 
would be of special interest if it were causal, the synthe-
sists should include a recommendation that future research 
examine this factor using a more systematically controlled 
design so that its causal impact can be appraised. In the 
example, you would call for a primary study to experi-
mentally manipulate the mode of expectation induction and 
ensure that lower- and higher-grade classes are randomly 
assigned the different expectation induction conditions.

2.4.5  High and Low Inference Codes  
of Study Characteristics

The examples of study characteristics I have used so far 
might all be thought of as low inference codes. Variables 
such as class size or the type of IQ measure require the 
synthesists only to locate the needed information in the 
research report and transfer it to the synthesis database. In 
some circumstances, synthesists might want to make more 
inferential judgments about study operations. These high 
inference codes typically involve attempting to infer how 
a contextual aspect of the studies might have been inter-
preted by participants.

For example, I used the mode-of-manipulation as a 
study-level variable that might have been examined as a 
potential moderator of the link between teacher expecta-
tions and change in student IQ scores. I used bogus tests 
and previous teachers’ impressions as the two modes of 
manipulation. Most manipulations of these types could 
be classified into the two categories with relatively little 
inference on the part of the synthesists. However, sup-
pose that you found in the literature a dozen types of 

expectation manipulations, some involving long tests 
taken in class, others short tests taken after school, some 
the impressions of past teachers, and others the clinical 
judgments of child psychologists. It might still be rela-
tively simple to categorize these manipulations at an 
operational level but the use of the multiple categories 
for testing meaningful hypotheses at the synthesis level 
becomes more problematic. Now, you might reason that 
the underlying conceptual difference between study oper-
ations that interests you is the credibility of the manipula-
tion. So, to ask the question “Does the magnitude of the 
teacher expectation-student IQ link vary with the credi-
bility of the expectation manipulation?” you might want 
to examine each study report and score the manipulations 
on this dimension. This high inference code than becomes 
a study characteristic you relate to study outcomes. Here 
you are dimensionalizing the manipulations by making 
an inference about how much credibility the participat-
ing teachers might have placed in the information given 
to them.

High inference codes create a special set of problems 
for research synthesists. First, careful attention must be 
paid to the reliability of inference judgments. It is there-
fore important to show that these judgments are being 
made consistently both across and within those people 
making the judgments. Also, judges are being asked to 
play the role of a research participant—in this example 
the teachers being given expectation information—and 
the validity of role-playing methodologies has been the 
source of much controversy (Greenberg and Folger 1988). 
However, Norman Miller, Ju-Young Lee, and Michael 
Carlson have empirically demonstrated that high infer-
ence codes can lead to valid judgments (they did so by 
comparing inferences to manipulation checks) and can 
add a new dimension to synthesists’ ability to interpret 
literatures and resolve controversies (1991). If high infer-
ence information can be validly extracted from articles 
and the benefit of doing so is clear, then this can be an 
important technique for exploring problems and hypothe-
ses in research synthesis (see also chapters 8 and 9).

2.4.6 Value of Synthesis-Generated Evidence

In sum, it is critical that synthesists keep the distinction 
between study-generated and synthesis-generated evi-
dence in mind. Only evidence coming from experimental 
manipulations within a single study can support asser-
tions concerning causality. However, I do not want my 
attention to the fact that synthesis-generated evidence 
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cannot support causal inferences to suggest that this 
source of evidence should be ignored. As the examples 
suggest, the use of synthesis-generated evidence allows 
you to test relations that may have never been examined 
by primary researchers. In fact, typically synthesists can 
examine many more potential moderators of study out-
comes than have appeared as interacting variables in pri-
mary research. Often, these study-level variables are of 
theoretical importance. For example, it is easy to see how 
the mode-of-expectation-induction variable relates to the 
credibility of the information given to teachers and how 
class size relates to the teachers’ opportunities to commu-
nicate their expectations to students. By searching across 
studies for variations in the operationalizations of theoreti-
cally relevant construct, synthesists can produce the first 
evidence on these potentially critical moderating variables. 
Even though this evidence is equivocal, it is a major bene-
fit of research synthesis and a source of potential hypoth-
eses (and motivation) for future primary research.

2.5 CONCLUSION

A good way to summarize this chapter is to recast its major 
points by framing them in the context of their impact on 
the validity of the conclusions drawn in research syn-
theses. The most central decisions that synthesists make 
during problem and hypothesis formulation concern, first, 
the fit between the concepts used in variable definitions 
and the operational definitions found in the literature and, 
second, the correspondence between the inferences about 
relationships permitted by the evidence in the studies at 
hand and those drawn by the synthesists.

First, synthesists need to clearly and carefully define the 
conceptual variables of interest. Unlike primary researchers, 
research synthesists need not complete this task before the 
search of the literature begins. Some flexibility permits the 
synthesist to discover operations unknown to them before 
the literature search began. It also permits them to expand 
or contract their conceptual definitions so that, in the end, 
the conceptual definitions appropriately encompass opera-
tions present in the literature. If relatively broad concepts 
accompany claims about the generality of findings not 
warranted by the operationalizations in hand, then an infer-
ential error may be made. Likewise, relatively narrow con-
cepts accompanied by marginally related operations also 
may lead to inferential errors. Research synthesists need 
to expand or contract conceptual definitions or retain or 
eliminate operations so that the highest correspondence 
between them has been achieved.

When some discretion exists regarding whether to 
expand or contract definitions, the first decision rule should 
be that the results will be meaningful to the audience that 
is the target of the synthesis. The second decision rule is 
pragmatic: will expanding the definitions make the syn-
thesis so large and unwieldy that the effort will outstrip 
the synthesists’ resources? If these concerns are negligible, 
sometimes synthesists will opt to use narrow definitions 
with only a few operations to define their concepts to 
ensure consensus about how the concepts are related to 
observable events. However, there is reason to favor using 
broader constructs with multiple realizations. Then, num-
erous rival interpretations for the findings may be tested 
and ruled out if the multiple operations produce similar 
results. Also, narrow concepts may provide little infor-
mation about the generality or robustness of the results. 
Therefore, the greater the conceptual breadth of the defi-
nitions used in a synthesis, the greater the capacity for 
conclusions that are more general than when narrow defi-
nitions are used.

The word potential is emphasized because if synthesists 
only cursorily detail study operations, their conclusions 
may mask important moderators of results. An erroneous 
conclusion—that research results indicate negligible dif-
ferences in outcomes across studies—can occur if differ-
ent results across studies are masked in the use of very 
broad categories.

So, holding constant the needs of the audience and 
assuming adequate resources are available to the syn-
thesists, the availability of ample studies to support a fit 
between either narrow or broad conceptual definitions 
suggests that it is most desirable for syntheses to use the 
broadest possible conceptual definition. To test this pos-
sibility, they should begin their literature search with a 
few central operations but remain open to the possibility 
that other relevant operations will be discovered in the 
literature. When operations of questionable relevance 
are encountered, the synthesist should err toward overly 
inclusive decisions, at least in the early stages of the proj-
ect. However, to complement this conceptual broadness, 
synthesists should be thorough in their attention to possi-
bly relevant distinctions in study characteristics. Any 
suggestion that a difference in study results is associated 
with a distinction in study characteristics should be tested 
using moderator analyses.

The second set of validity issues introduced during 
problem and hypothesis formulation concerns the nature 
of the relationship between the variables under study. 
Only study-generated evidence can be used to support 



HYPOTHESES AND PROBLEMS IN RESEARCH SYNTHESIS   35

causal relationships. When the relationship at issue is a 
causal one, synthesists must take care to categorize research 
designs according to their strength of causal inference. 
They might then exclude all but the most correspondent 
study-generated evidence (that is, experiments using 
random assignment). Or, they might separately examine 
less correspondent study-generated evidence and use it to 
obtain first approximations of the construct and external 
validity of a finding.

Also, synthesis-generated evidence cannot be used to 
make causal claims. Thus, synthesists should be careful 
to distinguish study-generated evidence from synthesis- 
generated evidence. Of course, this does not mean that 
synthesis-generated evidence is of little or no use. In 
fact, synthesis-generated evidence is new evidence, often 
exploring problems and hypotheses unexplored in primary 
research. As such, it is the first among many unique con-
tributions that research synthesis makes to the advance 
of knowledge.
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3.1 INTRODUCTION

Research synthesis is an empirical process. As with any 
empirical research, statistical considerations have an influ-
ence at many points in the process. Some of these, such 
as how to estimate a particular effect parameter or estab-
lish its sampling uncertainty, are narrowly matters of sta-
tistical practice. They are considered in detail later in this 
book. Other issues, which this chapter addresses, are more 
conceptual and might best be considered statistical con-
siderations that impinge on general matters of research 
strategy or interpretation.

3.2 PROBLEM FORMULATION

The formulation of the research synthesis problem has 
important implications for the statistical methods that may 
be appropriate and for the interpretation of results. Careful 
consideration of the questions to be addressed in the syn-
thesis will also have implications for data collection, data 
evaluation, and presentation of results. In this section,  
I discuss two broad considerations in problem formula-
tion: universe to which generalizations are referred and 
the number and source of hypotheses addressed.

3.2.1 Model of Generalization

A central aspect of statistical inference is making a gener-
alization from an observed sample to a larger population 
or universe of generalization. Statistical methods are cho-
sen to facilitate valid inferences to the universe of gener-
alization. There has been a great deal of confusion about 
the choice between fixed- and random-effects statistical 
methods in meta-analysis. Although it is not always con-
ceived in terms of inference models, the universe of gen-
eralization is the central conceptual feature that determines 
the difference between these methods.

The choice between fixed- and random-effects proce-
dures has sometimes been framed as entirely a question 
of homogeneity of the effect-size parameters. That is, if 
all of the studies estimate a common effect-size parame-
ter, then fixed-effects analyses are appropriate. However, 
if evidence indicates heterogeneity among the population 
effects estimated by the various studies, or heterogeneity 
remains after conditioning on covariates, then random- 
effects procedures should be used. Although fixed- and 
random-effects analyses give similar answers when in fact 
an effect size is common across a population, the under-
lying inference models remain distinct.

I argue that the most important issue in determining sta-
tistical procedure should be the nature of the inference 
desired, in particular, the universe to which one wishes to 
generalize. If the analyst wishes to make inferences only 
about the effect-size parameters in the set of studies 
observed (or to a set of studies identical to the observed 
studies except for uncertainty associated with the sam-
pling of subjects into those studies), this is what I will call 
a conditional inference. One might say that conditional 
inferences about the observed effect sizes are intended to 
be robust to the consequences of sampling error associ-
ated with sampling of subjects (from the same popula-
tions) into studies. Strictly, conditional inferences apply to 
this collection of studies and say nothing about other studies 
that may be done later, could have been done earlier, or 
may have already been done but are not included among 
the observed studies. Fixed-effects statistical procedures 
can be appropriate for making conditional inferences.

In contrast, the analyst may wish to make a different 
kind of inference, one that embodies an explicit general-
ization beyond the observed studies. In this case, the 
observed studies are not the only studies that might be of 
interest. Indeed, the studies observed are of interest only 
because they reveal something about a putative popula-
tion of studies that are the real object of inference. If the 
analyst wishes to make inferences about the parameters 
of a population of studies that is larger than the set of 
observed studies and which may not be strictly identical 
to them, I call this an unconditional inference. Random- 
effects (or mixed-effects) analysis procedures are designed 
to facilitate unconditional inferences.

3.2.1.1 Conditional Inference Model In the condi-
tional inference model, the universe to which generali-
zations are made consists of ensembles of studies identical 
to those in the study sample except for the particular peo-
ple (or primary sampling units) that appear in the studies. 
Thus the studies in the universe differ from those in the 
study sample only as a result of sampling of people into 
the groups of the studies. The only source of sampling 
error or uncertainty is therefore the variation resulting 
from the sampling of people into studies.

In a strict sense the universe is structured—it is a col-
lection of identical ensembles of studies, each study in an 
ensemble corresponding to a particular study in each of 
the other ensembles. Each of the corresponding studies 
would have exactly the same effect-size parameter (popu-
lation effect size). In fact, part of the definition of identical 
(in the requirement that corresponding studies in different 
ensembles of this universe be identical) is that they have 
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the same effect-size parameter. Note that the individual 
effect-size parameters in each ensemble need not be the 
same (they need not be homogeneous).

The model is called the conditional model because it 
can be conceived as one that holds fixed, or conditions on, 
the characteristics of studies that might be related to the 
effect-size parameter. The conditional model in research 
synthesis is in the same spirit as the usual regression 
model and fixed-effects analysis of variance in primary 
research. In the case of regression, the fixed effect refers 
to the fact that the values of the predictor variables are 
taken to be fixed (not randomly sampled). The only 
source of variation that enters into the uncertainty of esti-
mates of the regression coefficients or tests of hypotheses 
is that due to the sampling of individuals (in particular, 
their outcome variable scores) with a given ensemble of 
predictor variable scores. Uncertainty due to the sampling 
of predictor variable scores themselves is not taken into 
account. To put it another way, the regression model is 
conditional on the particular ensemble of values of the 
predictor variables in the sample.

The situation is similar in the fixed-effects analysis. 
Here the term refers to the fact that the treatment levels in 
the experiment are considered fixed, and the only source 
of uncertainty in the tests for treatment effects is a conse-
quence of sampling of a group of individuals (or their 
outcome scores) within a given ensemble of treatment 
levels. Uncertainty due to the sampling of treatment levels 
from a collection of possible treatment levels is not taken 
into account.

3.2.1.1.1 Inference to Other Cases. In conditional 
models (including regression and ANOVA) inferences are, 
in the strictest sense, limited to cases in which the ensem-
ble of values of the predictor variables are represented in 
the sample. Of course, conditional models are widely used 
in primary research and the generalizations supported typ-
ically are not constrained to predictor values in the sample. 
For example, generalizations about treatment effects in 
fixed-effects ANOVA are usually not constrained to apply 
only to the precise levels of treatment found in the experi-
ment, but are viewed as applying to similar treatments as 
well even if they were not explicitly part of the experiment. 
How are such inferences justified? Typically this is on the 
basis of an a priori (extra-empirical) decision that other 
levels (other treatments or ensembles of predictor values) 
are enough like those in the sample that their behavior will 
be identical. The argument has two variations. One is that 
a level not in the sample is enough like one or more in the 
sample that it is judged essentially identical to them (for 

example, this instance of behavior modification treatment 
or this twenty-week treatment is essentially the same as its 
counterpart in the sample). The other variation is that a 
level that is not in the sample “lies between” values in the 
sample on some implicit or explicit dimension and thus it 
is safe to “interpolate” between the results obtained for 
levels in the sample. For example, suppose we have the 
predictor values 10 and 20 in the sample, then a new case 
with predictor value 15 might reasonably have an outcome 
halfway between that for the two sampled values, or a new 
treatment might be judged between two others in intensity 
and therefore its outcome might reasonably be assumed 
to be between that of the other two. This interpolation 
between realized values is sometimes formalized as a 
modeling assumption (for example, in linear regression, 
where the assumption of a linear equation justifies the 
interpolation or even extrapolation to other data provided 
they are sufficiently similar to fit the same linear model). In 
either case, the generalization to levels not present in the 
sample requires an assumption that the levels are similar to 
those in the sample—one not justified by a formal sam-
pling argument.

Inference to studies not identical to these in the sample 
can be justified in meta-analysis by the same intellectual 
devices used to justify the corresponding inferences in 
primary research. Specifically, inferences may be justified 
if the studies are judged a priori to be “sufficiently simi-
lar” to those in the study sample. The inference process 
has two distinct parts. One is the generalization from the 
study sample to a universe of identical studies, which is 
supported by a sampling theory rationale. The second is 
the generalization from the universe of studies that are 
identical to the sample to a universe of sufficiently similar 
but not identical studies. This second part of the general-
ization is not strictly supported by a sampling argument 
but by an extra-statistical one.

3.2.1.2 Unconditional Inference Model In the uncon-
ditional model, the study sample is presumed to be literally 
a sample from a hypothetical collection (or population) of 
studies. The universe to which generalizations are made 
consists of a population of studies from which the study 
sample is drawn. Studies in this universe differ from 
those in the study sample along two dimensions: study 
characteristics and effect-size parameters. The generaliza-
tion is not, as it was in the fixed-effects case, to a universe 
consisting of ensembles of studies with corresponding 
members of the ensembles having identical characteris-
tics and effect-size parameters. Instead, the studies in the 
study sample (and their effect-size parameters) differ 
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from those in the universe by as much as might be expected 
as a consequence of drawing a sample from a population. 
Second, the studies in the study sample differ from those 
in the universe because of the sampling of people into the 
groups of the study. This results in variation of observed 
effect sizes about their respective effect-size parameters.

We can conceive of these two dimensions as introducing 
two sources of variability into the observed (sample) effect 
sizes in the universe. One is due to variation in observed 
(or potentially observable) study effect sizes about their 
effect-size parameters. This variability is a result of the 
sampling of people into studies and is the only variability 
conceived as random in the conditional model. The other is 
variation in effect-size parameters across studies.

This model is called the unconditional model because, 
unlike the conditional model, it does not condition (or 
hold fixed) characteristics of studies that might be related 
to the effect-size parameter. The random-effects model in 
research synthesis is in the same spirit as the correlation 
model or the random-effects analysis of variance in pri-
mary research. In the correlation model both the values of 
predictor variable and those of the dependent variable are 
considered to be sampled from a population—in this 
case, one with a joint distribution. In the random-effects 
analysis of variance, the levels of the treatment factor are 
sampled from a universe of possible treatment levels (and 
consequently, the corresponding treatment effect param-
eters are sampled from a universe of treatment effect 
parameters). There are two sources of uncertainty in esti-
mates and tests in random-effects analyses. One is due to 
sampling of the treatment effect parameters themselves 
and the other to the sampling of individuals (in particular, 
outcome scores) into each treatment.

3.2.1.2.1 Inference to Other Cases. In the uncondi-
tional model, inferences are not limited to cases with pre-
dictor variables represented in the sample. Instead, for 
example, inferences about the mean or variance of an 
effect-size parameter apply to the universe of studies from 
which the study sample was obtained. In effect, the war-
rant for generalization to other studies is via a classical 
sampling argument. Because the universe contains studies 
that differ in their characteristics, and those differences 
find their way into the study sample by the process of ran-
dom selection, generalizations to the universe pertain to 
studies that are not identical to those in the study sample.

By using a sampling model of generalization, the ran-
dom-effects model seems to avoid subjective difficulties 
that plagued the fixed-effects model in generalizations to 
studies not identical to the study sample. That is, we do 

not need to ask, “How similar is similar enough?” Instead, 
we substitute another question: “Is this new study part of 
the universe from which the study sample was obtained?” If 
study samples were obtained from well-defined sampling 
frames via overtly specified sampling schemes, this might 
be an easy question to answer. This however is virtually 
never the case in meta-analysis (and is unusual in other 
applications of random-effects models). The universe is 
usually rather ambiguously specified and consequently 
the ambiguity in generalization based on random-effects 
models is that it is difficult to know precisely what the uni-
verse is. In contrast, the universe is clear in fixed-effects 
models, but the ambiguity arises in deciding whether a 
new study might be similar enough to the studies in the 
study sample.

The random-effects model does provide the technical 
method to address an important problem not handled in 
the fixed-effects model, namely, the additional uncertainty 
introduced by the inference to studies that are not identical 
(except for the sample of people involved) to those in the 
study sample. Inference to (nonsampled) studies in the 
fixed-effects model occurs outside the technical frame-
work; hence any uncertainty it contributes cannot be eval-
uated by technical means within the model. In contrast, 
the random-effects model does incorporate between-study 
variation into the sampling uncertainty used to compute 
tests and estimates.

Although the random-effects model has the advantage of 
incorporating inferences to a universe of studies exhibiting 
variation in their characteristics, the definition of the uni-
verse may be ambiguous. A tautological universe definition 
could be derived by using the sample of studies to define “a 
universe from which the study sample is representative.” 
Such a definition remains ambiguous; furthermore, it may 
not be the universe definition desired for the use of the 
information produced by the synthesis. For example, if 
the study sample includes many studies of short-duration, 
high-intensity treatments, but the likely practical applica-
tions usually involve low-intensity, long-duration treat-
ments, the universe defined implicitly by the study sample 
may not be the universe most relevant to applications.

One potential solution to this problem might be to 
explicitly define a structured universe in terms of study 
characteristics, and to consider the study sample as a strat-
ified sample from this universe. Estimates of parameters 
describing this universe could be obtained by weighting 
each “stratum” appropriately. For example, if half of the 
studies in the universe are long-duration studies, but 
only one-third of the study sample are, the results of each 
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long-duration study must be weighted twice as much as 
the short-duration studies.

3.2.1.3 Fixed Versus Random Effects The choice 
between fixed (conditional) or random (unconditional) 
modeling strategies arises in many settings in statistics and 
has caused lengthy debates because it involves subtleties 
of how to formulate questions in scientific research and 
what data are relevant to answering questions. For exam-
ple, the debate between R. A. Fisher and Yates versus  
Pearson on whether to condition on the marginal fre-
quencies in the analysis of 2 × 2 tables is about precisely 
this issue (see Camilli 1990), as is that on whether word 
stimuli should be treated as fixed or random effects in 
psycho-linguistics (see Clark 1973).

Those who advocated the fixed-effects position (for 
example, Peto 1987) argue that the basis for scientific infer-
ence should be only the studies actually conducted and 
observed in the study sample. Statistical methods should be 
employed only to determine the chance consequences of 
sampling of people into these (the observed) studies. Thus 
they would emphasize estimation and hypothesis testing for 
(or conditional on) this collection of studies. If we must 
generalize to other studies, they would argue that this is best 
done by subjective or extra-statistical procedures.

Those who advocate the random-effects perspective 
argue that the particular studies we observe are, to some 
extent, an accident of chance. The important inference ques-
tion is not “what is true about these studies,” but “what is 
true about studies like these that could have been done?” 
They would emphasize the generalization to other studies 
or other situations that could have been studied and that 
these generalizations should be handled by formal statistical 
methods. In many situations where research is used to 
inform public policy by providing information about the 
likely effects of treatments in situations that have not been 
explicitly studied, this argument seems persuasive.

3.2.1.4 Using Empirical Heterogeneity Although 
most statisticians would argue that the choice of analy-
sis procedure should be driven by the inference model, 
some researchers choose based on the outcome of a sta-
tistical test of heterogeneity of effect sizes. This is called 
a conditionally random-effects analysis in a study of the 
properties of such tests for both conditional and uncondi-
tional inferences (Hedges and Vevea 1998). The authors 
find that the type I error rate of conditionally random- 
effects analyses were in between those of fixed- and 
random-effects tests: slightly inferior to fixed-effects 
tests for conditional inferences (but better than random- 
effects tests) and slightly inferior to random-effects tests 

for unconditional inferences (but better than fixed-effects 
tests). Whatever the technical performance of condition-
ally random-effects tests, their disadvantage is that they 
permit the user to avoid a clear choice of inference popu-
lation, or worse to allow the data to (implicitly) make that 
determination depending on the outcome of a statistical 
test of heterogeneity.

3.2.1.5 Inference Populations The concept of a pop-
ulation about whose parameters we wish to draw infer-
ences (the inference population) is explicit in the logic of 
the random-effects model. The definition of that infer-
ence population is not explicit, except that the studies 
observed could have been a random sample from that 
population. However, it is not always obvious that the 
desired target of inference would be the effect of the typ-
ical or average study that is observed. This is one of the 
reasons that subsets of studies (for example, those reflect-
ing different subject population subgroups) are often 
examined in research syntheses. However, in some cases, 
populations have rather complex structure involving 
many attributes, and this is difficult to reflect in a simple 
subgroup structure. That is, the population is defined in 
terms of many variables.

The problem of generalization from samples in ran-
domized trials has begun to be studied more explicitly as 
a problem of matching the study sample to the inference 
population (see, for example, O’Muircheartaigh and 
Hedges 2014; Tipton 2013). These methods are in the 
same spirit as cross design synthesis (see Droitcour,  
Silberman, and Chelimsky 1993). They require explicit 
specification of an inference population and model-based 
matching of study samples to inference populations. 
Exactly the same methods could be applied with individ-
ual patient data to improve generalizability of the results 
of research syntheses. In principle, these methods could 
be used to improve generalizability of conventional 
meta-analyses involving aggregate data, although the 
analytic details are more complex.

3.2.2 Nature of Parameters

Another fundamental issue in problem formulation con-
cerns the nature of the effect-size parameter to be esti-
mated. The issue can best be described in terms of 
population parameters (although each parameter has a 
corresponding sample estimate). Consider an actual study 
in which the effect-size parameter represents the true or 
population relationship between variables measured in the 
study. This effect-size parameter may be systematically 
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affected by artifactual sources of bias such as restriction 
of range or measurement error in the dependent variable. 
Correspondingly, imagine a hypothetical study in which 
the biases due to artifacts were controlled or eliminated. 
The effect-size parameter would differ from that of the 
actual study because the biases from artifacts of design 
would not be present. A key distinction is between a theo-
retical effect size (reflecting a relationship between vari-
ables in a hypothetical study) and an operational effect size 
(the parameter that describes the population relationship 
between variables in an actual study) (see chapter 15). 
Theoretical effect sizes are often conceived as those cor-
rected for bias or for some aspect of experimental proce-
dure (such as a restrictive sampling plan or use of an 
unreliable outcome measure) that can systematically 
influence effect size. Operational effect-size parameters, 
by contrast, are often conceived as affected by whatever 
bias or aspects of procedure that happen to be present in a 
particular study.

Perhaps the most prominent example of a theoretical 
effect size is the population correlation coefficient cor-
rected for attenuation due to measurement error and 
restriction of range. One can also conceive of this as the 
population correlation between true scores in a population 
where neither variable is subject to restriction of range. 
The operational effect size is the correlation parameter 
between observed scores in the population in which vari-
ables have restricted ranges. Because the relation between 
the attenuated (operational) correlation and disattenuated 
(theoretical) correlation is known, it is possible to convert 
operational effect sizes into theoretical effect sizes.

Most research syntheses use operational effect size. 
Theoretical effect sizes are sometimes used, however, for 
one of two reasons. One is to enhance the comparability 
and hence combinability of estimates from studies whose 
operational effect sizes would otherwise be influenced 
quite substantially (and differently) by biases or incidental 
features of study design or procedure. This has sometimes 
been characterized as “putting all of the effect sizes on the 
same metric” (Glass, McGaw, and Smith 1981, 116). For 
example, in research on personal selection, virtually all 
studies involve restriction of range, which attenuates cor-
relations (see Hunter and Schmidt 2004). Moreover, the 
amount of restriction of range typically varies substantially 
across studies. Hence correction for restriction of range 
ensures that each study provides an estimate of the same 
kind of correlation—the correlation in a population having 
an unrestricted distribution of test scores. Because restric-
tion of range and many other consequences of design are 

incidental features of the studies, disattenuation to remove 
their effects is sometimes called artifact correction.

A more controversial reason for using theoretical effect 
sizes is that they are considered more scientifically rele-
vant. For example, to estimate the benefit of scientific per-
sonnel selection using cognitive tests versus selection on an 
effectively random basis, we would need to compare the 
performance of applicants with the full range of test scores 
(those selected at random) with that of applicants selected 
via the test—applicants who would have a restricted range 
of test scores. Although a study of the validity of a selection 
test would compute the correlation between test score and 
job performance based on the restricted sample, the cor-
relation that reflects the effectiveness of the test in pre-
dicting job performance is the one that would have been 
obtained with the full range of test scores—a theoretical 
correlation. Another example might be the estimation of 
the standardized mean difference of a treatment intended 
for a general population of people, but which has typically 
been investigated with studies using more restricted groups. 
Because the scores in the individual studies have a smaller 
standard deviation than the general population, the effect 
sizes will be artifactually large—that is if the treatment 
produced the same change in raw score units, dividing by 
the smaller standard deviations in the study sample would 
make the standardized difference look artifactually large.  
Hence a theoretical effect size might be chosen—the 
effect size that would have been obtained if the outcome 
scores in each study had the same variation as the gen-
eral population. This would lead to corrections for sam-
pling variability. Corrections of this sort are discussed 
in chapter 15.

3.2.3 Number and Source of Hypotheses

More than thirty years ago, Richard Light and David  
Pillemer distinguished between two types of questions 
that might be asked in a research synthesis (1984). One 
kind of question concerns a hypothesis that is specified 
precisely in advance (for example, on average does this 
treatment work?). The other type of question is specified 
only vaguely (for example, under what conditions does 
the treatment work best?). This distinction in problem 
specification is similar to that between planned and post 
hoc comparisons in the analysis of variance familiar to 
many researchers. Although either kind of question is 
legitimate in research synthesis, the calculation of levels 
of statistical significance may be affected by whether the 
question was defined in advance or discovered post hoc 
by examination of the data.
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Although it is useful to distinguish the two cases, sharp 
distinctions are not possible in practice. Some of the litera-
ture is surely known to the reviewer before the synthesis, 
thus putatively a priori hypotheses are likely to have been 
influenced by the data. Conversely, hypotheses derived 
during exploration of the data may have been conceived 
earlier and proposed for explicit testing because the exam-
ination of the data suggested that they might be fruitful 
given the data. Perhaps the greatest ambiguity arises when 
a very large number of hypotheses are proposed a priori for 
testing. In this case, it is difficult to distinguish between 
hypotheses selected by searching the data informally, then 
proposing a hypothesis a posteriori and simply proposing 
all possible hypotheses a priori. For this reason, it may be 
sensible to treat large numbers of hypotheses as if they 
were post hoc. Despite the difficulty in drawing a sharp 
distinction, we still believe that the conceptual distinction 
between cases in which a few hypotheses are specified in 
advance and those in which there are many hypotheses (or 
hypotheses not necessarily specified in advance) is useful.

The primary reason for insisting on this distinction is 
statistical. When testing hypotheses specified in advance, 
it is appropriate to consider that test in isolation from 
other tests that might have been carried out. This is often 
called the use of a testwise error rate in the theory of 
multiple comparisons, meaning that the appropriate defi-
nition of the significance level of the test is the propor-
tion of the time this test, considered in isolation, would 
yield a type I error.

In contrast, when testing a hypothesis derived after 
exploring the data, it may not be appropriate to consider 
the test in isolation from other tests that might have been 
done. For example, by choosing to test the most “promis-
ing” of a set of study characteristics (that is, the one that 
appears to be most strongly related to effect size), the 
reviewer has implicitly used information from tests that 
could have been done on other study characteristics. 
More formally, the sampling distribution of the largest 
relationship is not the same as that of one relationship 
selected a priori. In cases where the hypothesis is picked 
after exploring the data, special post hoc test procedures 
that take account of the other hypotheses that could have 
been tested are appropriate (see chapter 12; Hedges and 
Olkin 1985; or, more generally, Miller 1981). This is 
often called the use of an experimentwise error rate 
because the appropriate definition of the statistical signif-
icance level of the test is the proportion of the time the 
group of tests would lead to selecting a test that made a 
type I error.

Post hoc test procedures are frequently much less power-
ful than their a priori counterparts for detecting a particu-
lar relationship that is of interest. On the other hand, the 
post hoc procedures can do something that a priori proce-
dures cannot: detect relationships that are not suspected in 
advance. The important point is the trade-off between the 
ability to find relationships that are not suspected and the 
sensitivity to detect those thought to be likely.

3.2.4  Analytic Models and Between- Versus 
Within-Study Relations

The distinction between evidence generated from contrasts 
between effects within studies (study-generated evidence) 
and that derived from contrasts between effects in different 
studies (review-generated evidence) has been appreciated 
for some time (see Cooper 1982). A generalization of this 
distinction has been less well appreciated, but can intro-
duce ambiguities in meta-analyses with complex data 
structures involving multiple effects within studies.

Multiple effect sizes within studies (such as effect sizes 
associated with subgroups defined by subject characteris-
tics, treatment intensities, follow-up intervals, and so on) 
signify a two-level data structure (effect sizes nested 
within studies). In such a two-level data structure, three 
relations are possible between effect sizes and any covari-
ate: the relation within studies, the relation of study means 
on the variables of interest, and the total relation that 
ignores the nesting structure of effect sizes within studies 
(for a tutorial on this point, see Knapp 1977). The within- 
study and between-study relations are independent of one 
another (and there is no mathematical reason for them to 
be consistent with each other), but the total relation is a 
weighted linear combination of the other two.

The important point here is that the between-study 
relations are necessarily confounded with between-study 
differences on unmeasured variables, and thus these rela-
tions have weaker validity as estimates of causal associa-
tions. Meta-regression models can (and generally should) 
separate between-study and within-study models. How-
ever, doing so requires careful specification of the regres-
sion models and distinct interpretation of the coefficients 
reflecting each type of relation (see, for example, Tanner- 
Smith, Tipton, and Polanin 2016).

3.3 DATA COLLECTION

Data collection in research synthesis is largely a sam-
pling activity that raises all of the concerns attendant 
on any other sampling activity. Specifically, the sampling 
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procedure must be designed to yield studies representa-
tive of the intended universe of studies. Ideally, the sam-
pling is carried out in a way that reveals aspects of the 
sampling (such as dependence of units in the sample, see 
chapter 13), or selection effects (such as publication bias, 
see chapter 18) that might influence the analytic methods 
chosen to draw inferences from the sample.

3.3.1 Representativeness

Given that a universe has been chosen so that we know the 
kind of studies about which the synthesis is to inform us, 
one fundamental challenge is selecting the study sample 
in such a way that it supports inferences to that universe. 
One aspect of this effort is ensuring that search criteria 
are consistent with the universe definition. Assuming that 
they are, an exhaustive sample of studies that meet the 
criteria is often taken to be a representative sample of 
studies of the universe. However, sometimes viewing this 
proposition skeptically is in order.

The concept of representativeness has always been a 
somewhat ambiguous idea (see Kruskal and Mosteller 
1979a, 1979b, 1979c, 1980) but the concept is useful in 
helping illuminate potential problems in drawing infer-
ences from samples.

One reason is that some types of studies in the intended 
universe may not have been conducted. The act of defin-
ing a universe of studies that could be conducted does 
not even guarantee that it will be nonempty. We hope that 
the sample of studies will inform us about a universe of 
studies exhibiting variation in their characteristics, but 
studies with a full range of characteristics may not have 
been conducted. The types of studies that have been con-
ducted therefore limit the possibility of generalizations, 
whatever the search procedures. For example, the universe 
of studies might be planned to include studies with both 
behavioral observations and other outcome measures. But 
if no studies have been conducted using behavioral obser-
vations, no possible sample of studies can, strictly speak-
ing, support generalizations to a universe including studies 
with behavioral observations. The situation need not be 
as simple or obvious as suggested in this example. Often 
the limitations on the types of studies conducted arise at 
the level of the joint frequency of two or more charac-
teristics, such as categories of treatment and outcome. In 
such situations, the limitations of the studies available are 
evident only in the scarcity of studies with certain joint 
characteristics, not in the marginal frequency of any type 
of study.

A second reason that exhaustiveness of sampling may 
not yield a representative sample of the universe is 
that, although studies may have been conducted, they 
may not have been reported in the forums accessible to 
the reviewer. This is the problem of missing data, as 
discussed in chapter 17. Selective reporting (at least in 
forums accessible to synthesists) can occur in many ways: 
entire studies may be missing or only certain results from 
those studies may be missing, and missingness may or may 
not be correlated with study results. The principal point 
here is that exhaustive sampling of data bases rendered 
nonrepresentative by publication or reporting bias does not 
yield a representative sample of the universe intended.

3.3.2 Dependence

Several types of dependence may arise in the sampling of 
effect-size estimates. The simplest is when several esti-
mates are computed from measures from identical or par-
tially overlapping groups of subjects. This can occur, for 
example, when the different outcomes are measured on 
the same subjects, or when several treatment groups are 
compared with the same control group to produce multi-
ple effect sizes. This form of dependence most often arises 
when several effect-size estimates are computed from 
data reported in the same study, but it can also arise when 
several different studies report data on the same sample of 
subjects. Failure to recognize this form of dependence—
and to use appropriate analytic strategies to cope with it—
can result in inaccurate estimates of effects and their 
standard errors.

A second type of dependence occurs when studies with 
similar or identical characteristics exhibit less variability 
in their effect-size parameters than the entire sample of 
studies does. This might happen, for example, when a 
single laboratory or a single group of investigators use 
common procedures that might not be shared by other 
investigators and procedural variation is related to study 
effects. Because this kind of dependence leads to nested 
groups of studies with dependency, it is often called the 
hierarchal dependence model. Such an intra-class cor-
relation of study effects leads to misspecification of 
random-effects models and hence to erroneous charac-
terizations of between-study variation in effects. This form 
of dependence would also suggest misspecification in 
fixed-effects models if the study characteristics involved 
were not part of the formal explanatory model for 
between-study variation in effects.

We usually characterize the effect-size estimate T in a 
study as the sum of the effect-size parameter q and the 
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estimation error e, so that T = q + e. The first type of 
dependence occurs through estimation error ε, the sec-
ond type through the effect-size parameters q. Methods 
for handling both types of dependence are discussed in 
chapter 13.

3.3.3 Study Selection and Publication Bias

A particularly pernicious form of missing data occurs 
when the probability that a result is reported depends on 
the result obtained (for example, on whether it is statis-
tically significant). Such missing data would be called 
non-ignorable in the Little-Rubin framework and can 
lead to bias in the results of a meta-analysis. The resulting 
biases are typically called publication bias, although the 
more general reporting bias is a more accurate term. 
Methods for detecting and adjusting for publication bias 
are discussed at length in chapter 18.

3.4 DATA ANALYSIS

Much of this volume deals with issues of data analysis 
in research synthesis. It is appropriate here to discuss 
three issues of broad application to all types of statisti-
cal analyses in research synthesis.

3.4.1 Heterogeneity

Heterogeneity of effects in meta-analysis introduces a 
variety of interpretational problems that do not exist or 
are simpler if effects are homogeneous. For example, if 
effects are homogeneous, then fixed- and random-effects 
analyses essentially coincide and problems of generaliza-
tion are simplified. Homogeneity also simplifies interpre-
tation by making the synthesis basically an exercise in 
simple triangulation, the findings from different studies 
behaving as simple replications.

Unfortunately, heterogeneity is a rather frequent find-
ing in research syntheses. This compels the synthesist to 
find ways of representing and interpreting the hetero-
geneity and dealing with it in statistical analyses. Fortu-
nately, progress has been considerable in procedures for 
representing heterogeneity in interpretable ways, such as 
theoretically sound measures of the proportion of vari-
ance in observed effect sizes due to heterogeneity (the I2 
measure) (see chapter 12, this volume). Similarly, there 
has been great progress in both theory and software for  
random- and mixed-effects analyses that explicitly include 
heterogeneity in analyses (see chapter 12, this volume).

Some major issues arising in connection with hetero-
geneity are not easily resolvable. For example, heteroge-
neity is sometimes a function of the choice of effect-size 
index. If effect sizes of a set of studies can be expressed 
in more than one metric, they are sometimes more consis-
tent when expressed in one metric than another. Which 
then (if either) is the appropriate way to characterize the 
heterogeneity of effects? This question has theoretical 
implications for statistical analyses (for example, how 
necessary is homogeneity for combinability, see Cochran 
1954; Radhakrishna 1965). However, it is more than a 
theoretical issue because empirical evidence indicates 
that meta-analyses using some indexes find more hetero-
geneity than others; for example, meta-analyses using 
odds ratios are often more consistent across studies than 
risk differences (see Engels et al. 2000).

3.4.2 Unity of Statistical Methods

Much of the literature on statistical methodology for 
research synthesis is conceived as statistical methods for 
the analysis of a particular effect-size index. Thus, much 
of the literature on meta-analysis provides methods for 
combining estimated of odds ratios, or correlation coeffi-
cients, or standardized mean differences. Even though the 
methods for a particular effect-size index might be similar 
to those for another index, they are presented in the litera-
ture as essentially different methods. There is, however, a 
set of underlying statistical theory (see Cochran 1954; 
Hedges 1983) that provides a common theoretical justifi-
cation for analyses of the effect-size measures in common 
use (for example, the standardized mean difference, the 
correlation coefficient, the log odds ratio, the difference in 
proportions, and so on).

Essentially all commonly used statistical methods for 
effect-size analyses rely on two facts. The first is that the 
effect-size estimate (or a suitable transformation) is  
normally distributed in “large samples” with a mean of 
approximately the effect-size parameter. The second is that 
the standard error of the effect-size estimate is a continu-
ous function of the within-study sample sizes, the effect 
size, and possibly other parameters that can be estimated 
consistently from within-study data. Statistical methods 
for different effect-size indexes appear to differ primarily 
because the formulas for the effect-size indexes and their 
standard errors differ.

I am mindful of the variety of indexes of effect size 
that have been found useful. Chapter 11 is a detailed 
treatment of the variety of effect-size indexes that can be 
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applied to studies with continuous or categorical outcome 
variables. However, in this handbook we stress the con-
ceptual unity of statistical methods for different indexes 
of effect size by describing most methods in terms of a 
“generic” effect size statistic T, its corresponding effect 
size parameter q, and a generic variance v. This permits 
statistical methods to be applied to a collection of any 
type effect-size estimates by substituting the correct for-
mulas for the individual estimates and their standard 
errors. This procedure provides not only a compact pre-
sentation of methods for existing indexes of effect size, 
but also the basis for generalization to new indexes that 
are yet to be used.

3.4.3 Large Sample Approximations

Virtually all of the statistical methods described in this 
volume and used in the analysis of effect sizes in research 
synthesis are based on what are called large sample 
approximations. This means that, unlike some simple 
statistical methods such as the t-test for the differences 
between means or the F-test in analyses of the general 
linear model, the sampling theory invoked to construct 
hypothesis tests or confidence intervals is not exactly true 
in very small samples. Large sample statistical theory is 
not limited to meta-analysis; in fact, it is used much more 
frequently in applied statistics than exact (or small sam-
ple) theory is, typically because the exact theory is too 
difficult to develop. For example, Pearson’s chi-square 
test for simple interactions and log linear procedures for 
more complex analysis in contingency tables are large 
sample procedures, as are most multivariate test proce-
dures, procedures using structural equation models, item 
response models, or even Fisher’s z-transform of the cor-
relation coefficient.

That large sample procedures are widely used does not 
imply that they are always without problems in any par-
ticular setting. Indeed, one of the major questions in any 
application of large sample theory is whether the “large 
sample” approximation is accurate enough in samples of 
the size available to justify its use. In meta-analysis, large 
sample theory is primarily used to obtain the sampling 
distribution of the sample effect-size estimates. The sta-
tistical properties of combined estimates or tests depends 
on the accuracy of the (approximations) to the sampling 
distributions of these individual effect-size estimates. 
Fortunately quite a bit is known about the accuracy of 
these approximations to the distributions of effect-size 
estimates.

In the cases of the standardized mean difference, the 
large sample theory is quite accurate for sample sizes as 
small as ten per group (see Hedges 1981, 1982; Hedges 
and Olkin 1985). In the cases of the correlation coeffi-
cient, the large sample theory is notoriously inaccurate in 
samples of less than a few hundred, particularly if the 
population correlation is large in magnitude. However, 
the large sample theory for the Fisher z-transformed cor-
relation is typically quite accurate when the sample size 
is twenty or more. For this reason, I usually suggest that 
analyses involving correlation coefficients as the effect-
size index be performed using the Fisher z-transforms of 
the correlations.

The situation with effect-size indexes for experiments 
with discrete outcomes is more difficult to characterize. 
The large sample theory for differences in proportions 
and for odds ratios usually seems to be reasonably accu-
rate when sample sizes are moderate (for example, 
greater than fifty) as long as the proportions involved 
are not too near zero or one. If they are near zero or one, 
larger sample sizes may be needed to ensure compara-
ble accuracy. In cases where all of the sample sizes are 
very small, real caution is required. In such cases “sparse 
sample” methods such as Mantel-Haenszel methods 
should be used.

A final technical point about the notion of large sample 
theory in meta-analysis concerns the dual meaning of  
the term. The total sample size N may be thought of as the 
sum of the sample sizes across k studies included in the 
synthesis. In studies comparing a treatment group with 
sample size ni

E in the ith study and a control group with 
sample size ni

C in the ith study, the total sample size is

( )= Σ +N n n .i
E

i
C

The formal statistical theory underlying most meta- 
analytic methods is based on large sample approxima-
tions that hold when N is large in such a way that all of 
n1

E, n1
C, n2

E, n2
C, . . . , nk

E, nk
C are also large.

Formally, the large sample theory underlying most 
meta-analysis describes the behavior of the limiting dis-
tribution as N → ∞ in such a way that nE/N and nC/N are 
fixed as N increases. Much of this theory is not true when 
N → ∞ by letting k increase and keeping the within-study 
sample sizes nE and nC small (see Neyman and Scott 1948). 
In most practical situations, this distinction is not import-
ant because the within-study sample sizes are large enough 
to support the assumption that all nE and nC are “large.”
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New and important exceptions to the usual asymptotic 
methods are the robust variance methods described in 
chapters 12 and 13. Here the asymptotic model is one in 
which k → ∞ with no condition on the nE or nC. An 
important part of the development of this methodology is 
work on understanding and improving the small sample 
(small k) behavior of these methods (see Tipton 2015).

3.4.4 Synthetic Secondary Data Analysis

Improvements in data storage and computation are mak-
ing it increasingly possible to conduct research syn-
theses using the complete corpus of primary data from 
every study in the synthesis. In medicine, this is called 
individual patient data meta-analysis or individual par-
ticipant data (IPD) meta-analysis. Although such analy-
ses are currently rare outside medicine, the widespread 
adoption of data-sharing policies by journals and fund-
ing agencies promises that it will be increasingly possi-
ble in other areas. Such analyses offer great promise in 
facilitating analyses involving within-study comparisons 
(using individual-level covariates).

IPD meta-analyses can be carried out using conven-
tional multilevel statistical models and therefore are 
actually a form of synthetic secondary analysis. In such 
analyses, it is important to respect the multilevel structure 
of the data, which might be a two-level (participants within 
studies) or, in the case of more than one outcome variable 
per participant, a three-level (participants within outcomes 
within studies) structure. It is also important to carefully 
check model assumptions such as homoscedasticity in 
models for multilevel general linear models for continuous 
data and over- or underdispersion in multilevel generalized 
linear models for discrete outcomes.

Although IPD analyses offer great flexibility and the 
advantage of using conventional statistical methods, 
they offer little if any increase in statistical efficiency. 
Most meta-analytic estimation methods are asymptoti-
cally efficient (Hedges 1983). For example, in the case 
of meta-analyses using the standardized mean difference, 
improvements in small sample efficiency must occur 
through savings in degrees of freedom. A degree of free-
dom is lost in each study to standardize the effect size, 
but a degree of freedom must be used in the IPD analysis 
to account for study fixed effects, hence the modeling 
uses the same number of degrees of freedom obviating 
the advantage of the IPD model.

Bayesian methods do not require IPD, but those that do 
use IPD can provide the important advantage of having 

known small sample properties as well as the interpre-
tational advantages of the Bayesian framework (see 
chapter 14).

3.5 CONCLUSION

Statistical thinking is important in every stage of research 
synthesis, as it is in primary research. Statistical issues 
are part of the problem definition, play a key role in data 
collection, and are obviously important in data analysis. 
The careful consideration of statistical issues throughout 
a synthesis can help ensure its validity.
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4.1 COMMUNING WITH THE LITERATURE

A defining mission of science is the communication of 
warranted findings. This communication has four broad 
modes: informal oral, informal written, formal oral, and 
formal written. The first two include face-to-face or tele-
phone conversations and emails or tweets among col-
leagues. They are undoubtedly important, particularly as 
ways of sharing news and of receiving preliminary feed-
back on professional work. Only through the formal modes, 
however, can scientists achieve their true goal—priority 
in making sound new knowledge claims in a cumulative 
enterprise. The cost to them is the effort needed to prepare 
the claims for public delivery, especially to critical peers.

Of all the modes, formal written communication is 
the most premeditated, even more so than a formal oral 
presentation, such as a briefing or lecture. Its typical 
products—papers, articles, monographs, reports, in printed 
or digital form—constitute the primary literatures by 
which scientists lay open their work to permanent public 
scrutiny in hopes that their claims to new knowledge will 
be validated and esteemed.

Reading to keep current in one’s field is itself an act of 
communication. It is communing with the literature—
with durably stored, interrelated, claims-bearing texts. 
However, the mass of studies on many topics is daunting, 
and research reviews are a partial remedy. They emerge 
at a late stage in formal communication, after scores or 
even hundreds of primary writings have appeared, and 
they serve both to pack literatures into brief compass and 
to warrant or undermine claims. As a result, they are 
likely to find readers not only among researchers, but 
among policymakers, practitioners, and members of the 
general public.

Among the literature reviewer’s tasks, three stand out: 
discovering and retrieving primary works, critically eval-
uating them in light of theory, and distilling their essen-
tials in syntheses that conserve the reader’s time. All 
three tasks require the judgment of one trained in the 
research tradition (the theory and methodology) under 
study. As Patrick Wilson puts it, “The surveyor must be, 
or be prepared to become, a specialist in the subject mat-
ter being surveyed” (1977, 17). But the payoff, he argues, 
can be rich:

The striking thing about the process of evaluation of a body 
of work is that, while the intent is not to increase knowl-
edge by the conducting of independent inquiries, the result 
may be the increase of knowledge, by the drawing of con-
clusions not made in the literature reviewed but supported 

by the part of it judged valid. The process of analysis and 
synthesis can produce new knowledge in just this sense, 
that the attempt to put down what can be said to be known, 
on the basis of a given collection of documents, may result 
in the establishment of things not claimed explicitly in any 
of the documents surveyed. (11)

4.2 THE REVIEWER’S PROGRESS

In the first edition of this book, this section was called 
“The Reviewer’s Burden” to highlight the oft-perceived 
difficulty of getting scientists to write literature reviews 
as part of their communicative duties (White 1994). The 
typical review involved tasks that many scientists found 
irksome—an ambitious literature search, obtaining of 
documents, extensive reading, reconciliation of conflict-
ing claims, preparation of citations—and the bulk of 
effort was centered on the work of others, as if one had to 
write chapter 2 of one’s dissertation all over again. The 
Committee on Scientific and Technical Communication 
quoted one reviewer as saying, “Digesting the material so 
that it could be presented on some conceptual basis was 
plain torture; I spent over 200 hours on that job. I wonder 
if 200 people spent even one hour reading it” (1969, 181). 
A decade later, Charles Bernier and Neil Yerkey observed, 
“Not enough reviews are written, because of the time 
required to write them and because of the trauma some-
times experienced during the writing of an excellent crit-
ical review” (1979, 48–49). A decade after that, Eugene 
Garfield identified a further impediment in the view 
among some scientists “that a review article—even one 
that is highly cited—is a lesser achievement than a piece 
of original research” (1989, 113).

Against that backdrop, the research synthesis move-
ment was an intriguing development. It began circa 1975 
with initiatives for meta-analyses of studies (Cooper 
2000; Glass 2000). Far from avoiding the literature 
search, meta-analysts were advised to look for all empir-
ical studies on a subject—even the unpublished ones—so 
as to evaluate the full range of reported statistical effects 
(Rosenthal 1984; Green and Hall 1984). This required a 
creative attack on the problem of overload. What had 
been merely too many things to read became a population 
of studies that could be treated like the respondents in 
survey research. Just as pollsters put questions to people, 
reviewers could “interview” existing studies and system-
atically record their attributes. The process could become 
a team effort, with specialization of labor prior to writing: 
for example, a librarian to retrieve abstracts, a project 
director to choose studies for review and to create the 
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coding sheet, graduate students to code the attributes, and 
a statistician to run computer analyses and prepare tables.

By the time of the second edition of this book, the 
research synthesis movement had become a strong coun-
terforce to the older, “narrative” style of reviewing (White 
2009; see also Hunt 1997; Petticrew 2001). Research syn-
thesists sought to make reviews more rigorous, with at 
least the level of statistical sophistication found in primary 
research. Narrative reviewers had been able to get by on 
their methodological skills without extra reading; the syn-
thesists wrote entire textbooks on meta-analysis (Wang  
and Bushman 1999; Lipsey and Wilson 2001; Hunter 
and Schmidt 2004; Littell, Corcoran, and Pillai 2008). 
Narrative reviewers had been mute on how they found the  
studies under review; the synthesists called for explicit 
mention of sources and search strategies. Narrative review-
ers had accepted or rejected studies impressionistically; 
the synthesists wanted firm editorial criteria. Narrative 
reviewers were inconsistent in deciding which aspects of 
studies to discuss; the synthesists required consistent 
coding of attributes across studies. Narrative reviewers 
used ad hoc judgments as to the meaning of statistical 
findings; the synthesists insisted on formal comparative 
and summary techniques. These standards were being 
extended even to qualitative studies and to nonstatistical 
integration of findings (Bland, Meurer, and Maldonado 
1995; Petticrew 2001; Hawker et al. 2002; Jones 2004; 
Dixon-Woods et al. 2004; Thomas et al. 2004).

The period also saw spectacular technical improvements 
in communication (Brown 2010). The internet advanced 
interpersonal messaging, expanded the resources for pub-
lication, created limitless library space, and brought swift 
retrieval to vast stores of documents. The full reaches of 
the Web and its specialized databases were accessible day 
or night through search engines, notably Google. Retriev-
als were routinely based on specific words and phrases in 
documents and not merely on global descriptions such as 
titles and subject headings. In many cases, one could pass 
quickly from bibliographic entries to full texts, closing a 
centuries-old gap.

The new technologies for literature retrieval made it 
much easier for fact-hungry professionals to retrieve 
something they especially valued: documentary evidence 
for claims, preferably statistical evidence from random-
ized controlled experimental trials (Mulrow and Cook 
1998; Petitti 2000; Egger, Davey-Smith, and Altman 
2008). Evidence-based practice, although not without 
critics (Pawson 2006), had become another movement, 
especially in medicine and health care but also in psycho-

logy, education, social work, and public policy studies. 
The various evidence-based communities were an ideal 
audience for research as represented by this book—that 
is, compactly displayed tests of evidence from multiple 
experiments (Cooper 2000, see appendix).

In this edition, the research synthesis movement is 
fully mainstream. The Cochrane Collaboration and the 
Campbell Collaboration, to be discussed shortly, have 
flourished as its institutional bases since the 1990s. The 
commercial website Comprehensive Meta-analysis offers 
software and other resources (https://www.meta-analysis.
com). Specialized journals such as Research Synthesis 
Methods (2010–), Systematic Reviews (2012–), and World 
Journal of Meta-Analysis (2013–) have emerged. New or 
revised textbooks still appear (Borenstein et al. 2009; 
Bronson and Davis 2012; Saini and Shlonsky 2012; Fink 
2014; Cheung 2015; Cooper 2017; Booth, Sutton, and 
Papaioannou 2016). The movement’s literature continues 
its rapid growth, as seen in graphics to come. Reviews in 
some topical areas now require integrative reviews them-
selves (Whitlock et al. 2008; Smith et al. 2011). A paper 
by Hilda Bastian, Paul Glasziou, and Iain Chalmers  
is titled “Seventy-Five Trials and Eleven Systematic 
Reviews a Day: How Will We Ever Keep Up?” (2010). 
But conditions of overload are likely to persist, because 
techniques for producing reviews are becoming faster 
(Ananiadou et al. 2009; Ganann, Ciliska, and Thomas 
2010; Khangura et al. 2012).

4.3 THE COCHRANE COLLABORATION

Although research synthesis and evidence-based practice 
exemplify symbiotic scientific communication in the inter-
net era, both movements were gathering strength before 
the internet took off. A striking organizational improvement 
antedates many of the internet’s technological advances: 
the international Cochrane Collaboration, founded in 1993. 
Cochrane members typically believe that finding and 
exploiting studies with randomized controlled trials (RCTs) 
is too important to be left to the older, haphazard methods. 
To produce systematic reviews—another name for meta- 
analytic integrative reviews or research syntheses—these 
members have built a socio-technical infrastructure for 
assembling relevant materials. Criteria for selecting 
studies to review, for statistical analysis, and for report-
ing results are now explicit. Teams of specialists known 
as review groups are named to monitor specific empir-
ical literatures and to contribute their choices to several 
databases, called the Cochrane Library, that function as 
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large-scale instruments of quality control. The library 
includes databases of completed systematic reviews, of 
methodology reviews, of abstracts of reviews of effects, 
and of controlled trials available for meta-analysis. 
Library staff also publish an annual titled Cochrane 
Methods (2010–).

The Cochrane Handbook for Systematic Reviews of 
Interventions, viewable online and downloadable by sub-
scribers, sets procedures for retrieving and analyzing items 
from the databases (Higgins and Green 2011). According 
to Andrea Furlan and her colleagues, for instance, retriev-
als for the Cochrane Back and Neck (CBN) Group should 
involve

A search of the Cochrane Central Register of Controlled 
Trials (CENTRAL) that is included in the most recent 
issue of the Cochrane Library. CENTRAL includes 
some, but not all trials from MEDLINE and EMBASE  
as well as the CBN Group Specialized Trials Register.

A computer-aided search of MEDLINE (for example, 
via PubMed) database since its inception for new 
reviews and since the date of the previous search for 
updates of reviews.

Screening references listed in relevant systematic 
reviews and identified trials.

Identification of unpublished and ongoing trials: WHO 
International Clinical Trials Registry Platform (http:// 
www.who.int/ictrp/en) and the U.S. National Insti-
tutes of Health (https://clinicaltrials.gov). Including 
a search for unpublished trials is useful to assess the 
presence and magnitude of publication bias. (2015, 
1662)

Recommendations such as these are complemented by Sys-
tematic Reviews, a Cochrane-linked monograph from the 
University of York’s Centre for Reviews and Dissemination 
(2009). It, too, is strict about conducting and document-
ing literature searches properly (see 21–22, 249–52).

In the bad old days, Gregg Jackson surveyed thirty- 
six integrative reviews and found that only one stated the 
indexes (such as Psychological Abstracts) used in the 
search, and only three mentioned drawing on the biblio-
graphies of previous review articles (1980). He remarked, 
“The failure of almost all integrative review articles to 
give information indicating the thoroughness of the 
search for appropriate primary sources does suggest that 
neither the reviewers nor their editors attach a great deal 
of importance to such thoroughness” (444). Today, by 
contrast, the Cochrane influence can be seen even in the 

abstracts of reviews, many of which describe the litera-
ture search underlying them, as in this protocol-based 
section of an abstract by Rob Smeets and his colleagues:

Method. Systematic literature search in PUBMED,  
MEDLINE, EMBASE and PsycINFO until December 
2004 to identify observational studies regarding decon-
ditioning signs and high quality RCTs regarding the effec-
tiveness of cardiovascular and/or muscle strengthening 
exercises. Internal validity of the RCTs was assessed by 
using a checklist of nine methodology criteria in accor-
dance with the Cochrane Collaboration. (2006, 673)

This is not to say that post-Cochrane reviewers always 
characterize their work adequately. For instance, Vivien 
Bramwell and Christopher Williams report that in more 
than a hundred qualitative reviews in the Journal of 
Clinical Oncology, “Authors rarely gave information on 
methods of data identification (11.3 percent), data selec-
tion (10.4 percent) and assessment of validity (8.4 per-
cent)” (1997, 1185). Donna Stroup and her colleagues 
propose better specification of details in meta-analytic 
observational studies (2000). David Moher and his col-
leagues criticize three hundred systematic reviews from 
MEDLINE, writing, “SRs are now produced in large 
numbers, and our data suggest that the quality of their 
reporting is inconsistent. This situation might be improved 
if more widely agreed upon evidence-based reporting 
guidelines were endorsed and adhered to by authors and 
journals” (2007, 447). As a follow-up, Moher and col-
leagues introduced PRISMA, an initialism for preferred 
reporting items for systematic reviews and meta-analyses 
(2009). Published in several medical journals and online, 
PRISMA is a checklist with commentary and examples 
of the deficiencies it seeks to correct.

The Cochrane approach upgrades reviewing in general. 
The stakeholders in medical and health-care research, not 
least the funders, are likely to want Cochrane standards 
imposed wherever possible—Gresham’s law in reverse. 
Reviewers for their part seem willing to accept greater 
discipline, as indicated by their exploding literature. Fig-
ure 4.1 shows publications during 2006 through 2015 
with “meta-analy*,” “integrative review,” or “systematic 
review” in their descriptions in the Science Citation 
Index Expanded of the Web of Science. As of April 2016, 
they exceed 131,500, with most coming from journals in 
medicine or allied fields. This count actually understates 
the literature’s true size, because it excludes items not 
matching the search terms, as well as books and other 
publications not covered by SCI Expanded.
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4.4 THE CAMPBELL COLLABORATION

The goal of medical fields is beneficial intervention in 
crucial situations. Because crucial in this case can mean 
life or death, it is obvious why professionals in these 
fields would want to base their decisions on the best 
available evidence and why the Cochrane Collaboration 
emerged in response. But professionals outside medi-
cine and health care also seek to intervene beneficially in 
people’s lives, and their interventions may also have far- 
reaching social and behavioral consequences. Thus, draw-
ing on the Cochrane model, the international Campbell  
Collabora tion (C2) was formed in 1999 to facilitate sys-
tematic reviews of intervention effects in such areas 
as education, delinquency and criminal justice, mental 
health, welfare, housing, and employment (Cooper 2000).  
For example, the influence of C2 is seen in at least one 
study that relates systematic review techniques to edu-
cation (Davies 2000), and in articles that relate them to 
social policy and practice in general (see Boaz, Ashby, 
and Young 2002; Petticrew and Roberts 2006; Shlonsky 
et al. 2011).

Eamonn Noonan and Arild Bjørndal note three ways in 
which C2 reviews differ from their Cochrane counter-
parts: research in the social sciences is less integrated 
with practice than in clinical medicine; the relative scar-
city of randomized trials means that C2 reviews include 
more nonrandomized studies; and interventions are com-
plex (2011). Mark Petticrew clarifies these points: “If 
researchers see ‘simplicity’ in an intervention, then they 
may be more likely to argue that randomized controlled 
trials (as opposed to other sorts of research) are feasible 
and appropriate. However if they see complexity (non-
linear pathways, multiple synergistic components, feed-
back loops and so on) as the key features, then by 
implication other types of research may be necessary for 
illuminating those complex processes” (2011, 397). The 
weighing of more disparate kinds of evidence in C2 
reviews is thus a particular concern.

Like Cochrane, C2 is strong on tutorial materials— 
for example, this re-paragraphed description from the 
Campbell Collaboration website:

The purpose of a systematic review is to sum up the best 
available research on a specific question. This is done by 
synthesizing the results of several studies. A systematic 
review uses transparent procedures to find, evaluate and  
synthesize the results of relevant research. Procedures are 
explicitly defined in advance, in order to ensure that the 
exercise is transparent and can be replicated. This practice is 
also designed to minimize bias. Studies included in a review 
are screened for quality, so that the findings of a large num-
ber of studies can be combined. Peer review is a key part of 
the process; qualified independent researchers control the 
author’s methods and results. (2016)

Also like Cochrane, the Campbell Collaboration offers 
infrastructural databases: the C2 Social, Psychological, 
Education, and Criminological Trials Registry, and the 
C2 Reviews of Interventions and Policy Evaluations. 
Within these broad areas, it has organized coordinating 
groups to supervise review preparation. Accordingly, the 
Steering Group of the Campbell Collaboration calls for 
crisply standardized reporting, as suggested by their out-
line of what the methods section of a C2 protocol should 
contain (2015, 22):

Characteristics of the studies relevant to the objectives 
of the review

Criteria for inclusion and exclusion of studies in the 
review

Search strategy for finding eligible studies
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Data extraction and study coding procedures

Risk of bias

Synthesis procedures and statistical analysis

Treatment of qualitative research

Persons who perform the actual retrievals for C2 reviews 
can consult a monograph by Shannon Kugley and her 
colleagues that sets out the whole search process and its 
documentation in detail (2016).

Prescriptiveness along these lines has coincided with 
steady increases in literatures relevant to the C2 world. 
Figure 4.2 plots the growth of the almost thirty-six thou-
sand articles and reviews covered by the Social Sciences 
Citation Index (SSCI) between 2006 and 2015. These 
items were retrieved with the same search strategy as 
those in figure 4.1. A fair number are also counted in fig-
ure 4.1 because, if an item has both medical aspects and 
social-behavioral aspects, SCI Expanded and SSCI both 
cover it. Table 4.1 ranks the fifty journals that yield the 
most items in SSCI. Journals in psychology, psychiatry, 
and medicine predominate. Numerous social science 
journals appear in ranks not shown.

Although the problems of literature retrieval are never 
entirely solved, the Cochrane and Campbell materials make 
them much likelier to be addressed by research synthesists 
today. The idea of carefully documenting retrievals is not 
new, of course. Decades ago, for example, Patrick Wilson 
(1968) and Marcia Bates (1976) argued that the compiler of 
a rigorous bibliography should state its domain, scope, and 
selection principles:

• Domain—all the sources searched, including sources 
that yielded nothing although they initially seemed 
plausible.

• Scope—the subject headings or other topical language 
used to search the various sources; also the terms that 
imposed geographic, temporal, organizational, and 
language constraints on retrievals.

• Selection principles—editorial criteria used to include 
or exclude items on the basis of their content.

But these guidelines were published primarily for librari-
ans, scholars, and students, who cannot prescribe biblio-
graphic practices to scientists. Now, similar criteria have 
been adopted by scientists who can prescribe them to their 
peers and who also have an influential constituency, the 
evidence-based practitioners, to back them up. Since scien-
tists communicate not only results but norms, this new con-
sensus on bibliographic standards is a significant advance.

4.5 RECALL AND PRECISION

The field centrally concerned with retrieving documents 
from literatures is library and information science (LIS). 
Research synthesis, evidence-based practice, and LIS 
thus fit naturally together. The convergence is still incom-
plete, however, as Laura Sheble’s extensive historical 
and bibliometric analyses attest (2014, 2016).

In the vocabulary of LIS, synthesists are unusually inter-
ested in high recall of documents (Beahler, Sundheim,  
and Trapp 2000; Conn et al. 2003; Schlosser et al. 2005). 
Recall is a measure used by information scientists to 
evaluate literature searches: it expresses (as a percentage) 
the ratio of relevant documents retrieved to all those in a 
collection that should be retrieved. For large collections 
the latter value is, in truth, unavailable: if we could iden-
tify all relevant documents in order to count them, we 
could retrieve them all, and so recall would always be 
100 percent. The denominator in the recall ratio is there-
fore almost always an estimate. Nevertheless, recall is a 
useful fiction in analyzing possible demands on retrieval 
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systems. Another major desideratum in retrieval systems 
is high precision, where precision expresses (as a per-
centage) the ratio of documents retrieved and judged rel-
evant to all those actually retrieved. Precision measures 
how many irrelevant documents—false positives—one 
must examine to find the true positives, or hits.

Precision and recall tend to vary inversely. If one seeks 
high recall—complete or comprehensive retrievals—one 
must examine the many irrelevant documents that present 
technology also disgorges, which degrades precision. 
Alternatively, retrievals can be made highly precise so as 
to cut down on false positives, but at the cost of missing 
the relevant documents (false negatives) that the search 
terms fail to capture, which degrades recall.

Most literature searchers actually want high-precision 
retrievals, preferring relatively little bibliographic output 
to scan and relatively few items to read at the end of the 
judgment process. This is one manifestation of “least 
effort,” an economizing behavior often seen in informa-
tion seekers (Mann, 1993, 91–101). The research synthe-

sists are distinctive in wanting—or at least accepting the 
need for—high recall. As Jackson puts it, “Since there is 
no way of ascertaining whether the set of located studies 
is representative of the full set of existing studies on the 
topic, the best protection against an unrepresentative set 
is to locate as many of the existing studies as is possible” 
(1978, 14). Bert Green and Judith Hall call such attempts 
essential, although mundane and often tedious (1984). 
Some meta-analysts doubt that comprehensive searches 
are worth the effort, but even they seem to have higher 
standards for uncovering studies than librarians and 
information specialists typically encounter (Laird 1990). 
The only other group likely to be as driven by a need for 
exhaustiveness are doctoral students in the early stages of 
writing their dissertations.

The point of high recall is not to track down every 
paper that is somehow related to the topic. Research syn-
thesists who reject this idea are quite sensible. The point 
is to avoid missing a consequential paper that lies outside 
the synthesist’s regular purview—in other words, to ensure 

Table 4.1 Top 50 SSCI Journals in Articles Relevant to Research Synthesis, 2006–2015

1,171 Value in Health
  528 Cochrane Database of Systematic Reviews
  516 PLoS One
  319 Clinical Psychology Review
  315 Journal of Affective Disorders
  269 BMC Public Health
  252 Schizophrenia Research
  246 Psychological Bulletin
  246 Journal of Advanced Nursing
  238 Journal of Clinical Nursing
  207 Journal of the American Geriatrics Society
  196 Psychological Medicine
  191 Schizophrenia Bulletin
  185 International Journal of Nursing Studies
  182 Psycho Oncology
  179 European Psychiatry
  177 BMC Health Services Research
  176 Journal of Epidemiology and Community Health
  166 British Journal of Psychiatry
  164 Implementation Science
  162 Patient Education and Counseling
  161 Journal of Clinical Psychiatry
  161 BMJ Open
  160 Addiction
  156 Obesity Reviews

 156 Disability and Rehabilitation
 143 American Journal of Preventive Medicine
 139 Social Science Medicine
 136 Annals of Behavioral Medicine
 135 Journal of Applied Psychology
 131 Psychology Health
 129 International Psychogeriatrics
 129 Acta Psychiatrica Scandinavica
 123 Journal of Psychosomatic Research
 120 Quality of Life Research
 119 Frontiers in Psychology
 116 Pharmacoeconomics
 113 Aggression and Violent Behavior
 110 Health Technology Assessment
 103 Preventive Medicine
 103 Australian and New Zealand Journal of Psychiatry
 102 Psychiatry Research
  98 Journal of Clinical Epidemiology
  98 International Journal of Geriatric Psychiatry
  97 Nursing Research
  97 European Journal of Public Health
  96 Pediatrics
  96 Ciencia Saude Coletiva
  94 American Journal of Public Health
  93 Gerontologist

source: Author’s compilation.
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that habitual channels of communication will not bias the 
retrieval. In professional matters, most researchers find it 
hard to believe that subscriptions to certain journals and 
conversations with certain colleagues can fail to keep them 
well informed. But the history of science and scholarship is 
full of examples of mutually relevant specialties that were 
unaware of each other for years because their members 
construed their topics too narrowly and failed to ask 
what other researchers—perhaps with different techni-
cal vocabularies (Grupp and Heider 1975)—were doing 
in a similar vein.

 More to the point, researchers are likely to miss writ-
ings in their own specialties. The experience of one research 
team shows that even known sources immediately at hand 
may produce an unexpectedly large yield (Greenhouse, 
Wachter, and Straf 1990). The further lesson is that sources 
worth checking may still be unknown. Research synthe-
sists primarily concerned with substantive and method-
ological issues should get professional advice in literature 
retrieval, just as they would in statistics or computing  
if a problem exceeded their expertise (Petticrew 2001,  
100–101). Retrieval specialists have produced many publi-
cations of their own in the research synthesis context (for 
example, Doig and Simpson 2003; Wong, Wilczynski, and 
Haynes 2006; Jesson, Matheson, and Lacey 2011; Bayliss,  
Davenport, and Pennant 2014).

4.6 IMPROVING THE YIELD

The most obvious way to improve recall is for research-
ers to avail themselves of a variety of reference databases 
(also called bibliographic databases or abstracting and 
indexing services). Harris Cooper describes fifteen ways 
in which fifty-seven authors of empirical research reviews 
actually conducted literature searches (1985, 1987). Most 
authors preferred to trace the references in review papers, 
books, and nonreview papers already in hand (presumably 
many were from their own files) and to ask colleagues for 
recommendations. These are classic least-effort ways of 
minimizing work and maximizing payoff in retrievals. 
For those purposes, they are unexceptionable, which is 
why academics and other intelligent people use them so 
often. Nevertheless, they are almost guaranteed to miss 
relevant writings, particularly if literatures are large and 
heterogeneous. Moreover, because they are unsystematic,  
they cannot easily be replicated.

How many modes of searching are there? In an account 
from the LIS literature, Patrick Wilson categorizes five 
major modes, into which Cooper’s more specific fifteen 

fit nicely (1992). Thomas Mann, a Library of Congress 
reference librarian, names eight modes, but they are sim-
ply variants on Cooper’s fifteen, and they, too, fit well in 
Wilson’s categories (1993). The convergence of these 
three independent accounts illustrates Wilson’s claim, 
quoted earlier, that writings in combination may yield 
knowledge not found in any of them separately.

To show the convergence, table 4.2 places Cooper’s 
and Mann’s modes under Wilson’s headings, all verba-
tim. Discussing computer searching, Mann combines 
citation databases with other kinds; here, they are put 
with his example of citation searches in printed sources; 
otherwise, his text is unaltered. As high-level generaliza-
tions, these modes do not date, even when the technolo-
gies within them have changed, and jointly they pretty 
well exhaust possible ways of searching. All of them ought 
to be considered by someone striving for high recall of 
documents.

The different modes can be used concurrently to save 
time. Research synthesists disinclined to go beyond their 
favorite few can extend their range by delegating searches 
to information specialists, including librarians, and by 
tasking team members to search independently. This del-
egation would particularly hold for less favored strate-
gies, such as searching reference databases, browsing 
library collections, and discovering topical bibliogra-
phies. Nowadays, the Cochrane and Campbell databases 
would be important places to look.

The other obvious way to improve recall is to do forward 
searches in the citation indexes of the Web of Science 
(published by Clarivate Analytics), Scopus (published  
by Elsevier), and Google Scholar. The footnote chasing 
entries in table 4.2 reflect citation searches that go back-
ward in time, that is, from a known publication to the ear-
lier items it cites. The contrasting kind of citation search 
moves forward in time from a known publication to the 
later items that cite it. Although citation indexes will not 
infallibly yield new hits, it is fatuous to ignore them—
roughly equivalent to not keeping abreast of appropriate 
statistical techniques.

The result of accepting higher retrieval standards is 
that, rather than veiling one’s strategies, one can state them 
candidly as documentation in the final report (Rothstein 
et al. 2004). Whether such statements appear in the main 
text, endnotes, or appendices, they help later searchers 
replicate the original searcher’s results and avoid unnec-
essary duplication of effort (Atkinson et al. 2015).

Because the thoroughness of the search depends on 
knowledge of the major modes for retrieving studies,  
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a more detailed look at each of Wilson’s five categories 
follows (1992). Cooper’s and Mann’s examples appear in 
italics as they are woven into the discussion. The first two 
modes, footnote chasing and consultation, are understand-
ably attractive to most scholars, but may be affected by 
personal biases more than the other three, which involve 
searching impersonal databases or collections. Hence the 
discussion is somewhat weighted in favor of the latter. It 
is best to assume that all five are needed, although differ-
ent topics may require them in different proportions.

4.7 FOOTNOTE CHASING

This is the adroit use of other authors’ footnotes, or, more 
broadly, their references to the prior literature on a topic. 
Because footnotes may seem too much a humanities 
term, references will replace it in what follows. The rea-
son research synthesists like to chase references is that 
doing so may immediately lead to usable primary studies. 
Moreover, the references of a substantive work do not 
come as unevaluated listings (like those in an anonymous 
bibliography), but as choices by an author whose judg-
ment one can assess in the work itself. They are thus 
more like scholarly intelligence than raw data, especially 
if one values the author who provides them.

Reference chasing is obviously a two-stage process: 
to follow up on those made by someone else, the work 
in which they occur must be in hand. Some reference- 
bearing works will be already known; others must be 
discovered. Generally, the correlation between the famil-
iarity of works and their physical distance from the 
researcher will be strong; known items will tend to be 
near by (for example, in the researcher’s office), and 
unknown items, farther away (for example, in a local or 
nonlocal library collection or undiscovered online).

The first chasing many researchers do is simply to 
assemble the publications they already know or can read-
ily discover. Indeed, from the standpoint of efficiency, the 
best way to begin a search is to first pick studies from 
one’s own shelves and files and then to follow up leads 
to earlier work from their reference sections. Cooper’s 
example of this was references in nonreview papers from 
journals you subscribe to. The term snowballing is used 
for multiple iterations of such searches—that is, using 
references to gather documents, then using the latter’s 
references to gather more documents, and so on increas-
ingly (Greenhalgh and Peacock 2005).

According to Green and Hall, meta-analysts doing a 
literature search should page through the volumes of the 

Table 4.2 Five Major Modes of Searching

Footnote Chasing
  Cooper 1985
    References in review papers written by others
    References in books by others
     References in nonreview papers from journals you  

 subscribe to
     References in nonreview papers you browsed through  

 at the library
    Topical bibliographies compiled by others
  Mann 1993
     Searches through published bibliographies (including 

sets of footnotes in relevant subject documents)
    Related records searches

Consultation
  Cooper 1985
     Communication with people who typically share  

 information with you
    Informal conversations at conferences or with students
     Formal requests of scholars you knew were active in  

 the field (for example, solicitation letters)
    Comments from readers or reviewers of past work
    General requests to government agencies
  Mann 1993
     Searches through people sources (whether by verbal  

 contact, email, electronic bulletin board, letters, and  
 so on)

Searches in Subject Indexes
  Cooper 1985
     Computer search of abstract data bases (for example,  

 ERIC, Psychological Abstracts)
    Manual search of abstract data bases
  Mann 1993
     Controlled-vocabulary searches in manual or printed  

 sources
    Keyword searches in manual or printed sources
     Computer searches—which can be done by subject  

 heading, classification number, keyword . . . 

Browsing
  Cooper 1985
    Browsing through library shelves
  Mann 1993
    Systematic browsing

Citation Searches
  Cooper 1985
    Manual search of a citation index
    Computer search of a citation index (for example, SSCI)
  Mann 1993
    Citation searches in printed sources
    Computer searches by citation

source: Adapted from Cooper 1985, Wilson 1992, and Mann 1993. 
The boldface headings are from Wilson.
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best journals for a topic year by year—presumably not 
only those to which they personally subscribe, but also 
those in the library (1984, 46). An alerting service such  
as Current Contents Connect from Clarivate Analytics 
can be used as well. Despite its apparent cost in time, 
so-called hand searching may actually prove effective, 
given the small and focused set of titles in any particular 
table of contents. Items found in this fashion may lead as 
a bonus to earlier studies, through what Cooper calls ref-
erences in nonreview papers you browsed through at the 
library (or nowadays online).

Existing syntheses and reviews are probably the type 
of works most likely to be known to a researcher, but a 
good starting assumption is that at least one is unknown. 
The first goal in a literature search, therefore, should be to 
discover previous review papers or books by others on a 
topic because they are likely to be both substantively 
important in their own right and a rich source of refer-
ences to earlier studies. It is also important to ascertain 
the nonexistence of such reviews (if that is the case), 
because the researcher’s strategy of presentation will 
depend on whether the literature of a topic has already 
been surveyed. Articles on the retrieval of systematic 
reviews are numerous (see, for example, Harrison 1997; 
Boynton et al. 1998; White et al. 2001; Montori et al. 
2005; Papaioannou et al. 2009; Lee et al. 2012; Lunny, 
McKenzie, and McDonald 2016). It has been claimed that 
Google Scholar by itself is sufficient for such retrieval 
(Gehanno, Rollin, and Darmoni 2013); the ensuing con-
troversy may be traced online.

Another goal in some cases should be to discover 
topical bibliographies compiled by others. The entries in 
freestanding bibliographies may be harder to judge for 
relevance than references in a book or article, especially 
if abstracts or summaries are lacking. Nevertheless, if  
a bibliography exists, tracking down its entries may 
diminish the need for further retrievals (Mann 2015, 
169–77). Such bibliographies might be especially useful 
in discovering items not at the research front but of his-
torical interest.

Mann’s related records searches are a sophisticated 
form of reference chasing that became practical only with 
computerization. They make it possible to find articles 
that cite identical works. For example, the full record of a 
single article in the Web of Science (WoS) includes a 
Find Related Records hyperlink. Following that link will 
retrieve all articles that refer to at least one of the same 
earlier writings as the seed article. They are ranked high 
to low by the number of references they share with the 

seed. In some cases, the shared cited works can them-
selves be retrieved through the WoS interface.

Reference chasing is an inviting method—so inviting 
that the danger lies in stopping with it, on the pretext 
that any other method will quickly produce diminishing 
returns. A person serious about finding primary studies to 
consider will not assume without checking that they do 
not exist or that diminishing returns begin outside the 
office door. The substantive reason for concern is the pos-
sibility of failing to capture the full range of studies (and 
reported effects) that exist. Just as researchers’ references 
may reflect personal biases, so may their collection of 
books and journal articles. The authors of these books 
and articles will tend to cite works compatible with biases 
of their own. In journals, this tendency produces citation 
networks that link some journals tightly and others 
loosely or not at all. The result is that specialties and dis-
ciplines fail to communicate despite interests in common. 
Thus, reference chasing may simply reinforce the homo-
geneity of findings, and other methods are needed to 
learn whether unknown but relevant writings exist. The 
next strategy is only a partial solution, as we shall see.

4.8 CONSULTATION

Many researchers trust people over bibliographies for 
answers on what is worth reading. Wilson’s  
“consultation”—the finding of usable studies by talking 
and writing to others rather than by online searching—is 
illustrated in table 4.2 (1992). Cooper gives examples 
such as informal conversations at conferences or with 
students; Mann mentions ways of getting in touch. Actu-
ally, one is still searching bibliographies; they are simply 
inside people’s heads. Everyone, including the most 
learned, does this; there is no more practical or fruitful 
way of proceeding. The only risk lies in relying on a 
personal network to the exclusion of other sources—a 
risk similar to overreliance on a personal library. Biblio-
graphies, however dull, will help a person search a liter-
ature more thoroughly than recommendations from 
colleagues, however responsive.

It is not uncommon now for researchers to state for-
mally that they consulted experts in seeking studies to 
review. A brief article in support of consultation reported 
that, for a review of studies of primary medical care, fifty 
of the items selected were found in databases, thirty-one 
through hand searching, and forty through expert advice 
(McManus et al. 1998). Some of the items were named 
by more than one source, but the McManus team added 
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that twenty-four of the references would have been missed 
entirely without the experts. A librarian objected in a letter 
that this merely knocks down a straw man, because no 
one in librarianship would claim that MEDLINE searches 
invariably generate comprehensive bibliographies (Due 
1999). In a letter below Due’s, the McManus team 
responded that what is self-evident to librarians is not 
necessarily so to clinicians. This may be true; one does 
hear of innocents who think that database or Web searches 
retrieve everything that exists on a topic.

 The quality of advice that researchers can get depends 
on how well connected they are, and also perhaps on their 
energy in seeking new ties. Regarding the importance  
of personal connections, a noted author on scientific  
communication, the late Belver Griffith, told his seminar 
students, “If you have to search the literature before 
under taking research, you are not the person to do the 
research.” He was being only slightly ironic. In his view, 
you may read to get to a research front, but you cannot 
stay there by waiting for new publications to appear; you 
should be in personal communication with the creators  
of the literature and other key informants before your 
attempt at new research or synthesis begins. Some of 
these people who typically share information with you 
may be local—that is, colleagues in your workplace with 
whom face-to-face conversations are possible. Others 
may be geographically dispersed but linked through tele-
phone calls, email, conferences, workshops, and so on in 
your “invisible college” (Cronin 1982; Price 1986).

Invisible colleges are social circles whose members 
communicate with each other because they share an 
intense interest in a set of research problems (Crane 
1972). Although the exact membership of an invisible 
college may be hard to define, a nucleus of productive 
and communicative insiders can usually be identified. A 
nonmember of this core group can still try to elicit its 
advice on the literature by making formal requests of 
scholars you knew were active in the field or by seeking 
comments from readers or reviewers of past work.

The National Faculty Directory, the Research Centers 
Directory, and handbooks of professional organizations 
are useful when trying to find addresses or telephone 
numbers of persons to contact. Most research universities 
have easy-to-find faculty and departmental webpages 
containing CVs, interviews, and videos, as well as links 
to publications available to colleagues across disciplines. 
Moreover, important developments in science and social 
science are reported in major newspapers, posted on web-
sites, tweeted, and blogged. Web searches for possible 

consultants are therefore often surprisingly productive, 
although beset by the problem of homonymic names 
(such as multiple Howard D. Whites).

Although consultation with people may well bring 
published writings to light, its unique strength lies in 
revealing unpublished works (Royle and Milne 2003). 
Clarity on the difference between published and unpub-
lished is essential to appreciating this point. Writings 
such as doctoral dissertations and Education Resources 
Information Center (ERIC) reports are often called 
unpublished. Actually, a document has been published in 
the legal sense if anyone may copy it or obtain a copy of 
it (Strong 1990). This would include PDF files on the 
Web and machine-readable data files in archives. The 
confusion occurs because people associate publication 
with editorial quality control; they write unpublished 
when unrefereed or not independently edited would be 
more accurate. Conference papers are published by pro-
fessional organizations, whose standards of refereeing run 
from very high to very low. Documents such as e-prints, 
reports, dissertations, and data files are published by their 
authors (or other relatively uncritical groups). Preprints—
manuscripts sent to requestors after being accepted by an 
editor—are simply not yet published.

Most bibliographies and bibliographic databases cover 
only published documents. Yet research synthesists place 
unusual stress on including effects from unpublished 
studies in their syntheses to counteract a potential bias 
among editors and referees for publishing only effects that  
are statistically significant (Chalmers, Frank, and Reitman  
1990; McAuley et al. 2000; Rothstein, Sutton, and  
Borenstein 2005). Documents of limited distribution— 
reports, dissertations, and other grey literature—may be 
available through standard online bibliographic services, 
such as Dissertation Abstracts International and the 
[U.S.] National Technical Information Service. Truly 
unpublished documents or data are only circulated among 
members of an invisible college (for example, papers  
in draft from distant colleagues) or revealed through 
extensive solicitation campaigns (for example, general 
requests to government agencies). There is no biblio-
graphic control over unreleased writings in file drawers 
except the human memories one hopes to tap.

Consultation may lead to studies not cited because 
they have never been published, and, like reference chas-
ing, it produces bibliographic advice that is selective 
rather than uncritical. But also like reference chasing, it 
can introduce bias into the search. The problem again is 
too much homogeneity in what people recommend. 
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Members of an invisible college may recommend only 
studies that support a dominant set of beliefs. This may 
be even more likely within groups in daily contact, such as 
departmental colleagues or teachers and their students.

The countermeasure is to seek heterogeneity. The 
national conferences of research associations are trade 
fairs for people with new ideas. Their bibliographic  
counterparts—big, open, and diversified—are the national  
bibliographies, the disciplinary abstracting and indexing 
services, the online library catalogs, the classified library 
stacks. What many researchers would regard as the weak-
ness of these instruments—that editorially they are so 
inclusive—may be for research synthesists their greatest 
strength. We turn now to the ways in which one can use 
large-scale, critically neutral bibliographies to explore 
existing subject literatures, as a complement to the 
more selective approaches of reference chasing and 
consultation.

4.9 SEARCHES WITH SUBJECT INDEXING

Wilson defines subject searching as “the strategy of 
approaching the materials we want indirectly by using 
catalogs, bibliographies, indexes: works that are primar-
ily collections of bibliographical descriptions with more 
or less complete representations of content” (1992, 156). 
Although it seems straightforward, retrieval of unknown 
publications by subject has in fact provided design prob-
lems to LIS for more than a century. The main problem, 
of course, is to effect a match between the searcher’s 
expressed interest and the documentary description.

Only a few practical pointers can be given here. The 
synthesist wanting to improve recall of publications 
through a manual search or computer search of abstract 
data bases needs to understand the different ways in 
which topical literatures may be broken out from larger 
documentary stocks. Searchers get what they ask for, and 
so it helps to know that different writings will be retrieved 
by different ways of asking. What follows is intended to 
produce greater fluency in the technical vocabulary of 
document retrieval.

Various kinds of indexing bind groups of publications 
into literatures. These are authors’ natural-language terms, 
indexers’ controlled vocabulary terms, names of journals 
(or monographic series of books), and authors’ citations. 
Although all are usable separately in retrievals from 
printed bibliographic tools, they can also be combined, to 
some degree, in online searching to improve recall or pre-
cision or both. If the synthesist is working with a profes-

sional searcher, all varieties of terms should be discussed 
in the strategy-planning interview. Moreover, the synthe-
sist would do well to try out search statements personally, 
so as to learn how different expressions perform.

4.9.1 Natural Language and Keywords

When authors write, they manifest their topics with terms 
such as “aphasia,” “teacher burnout,” or “criterion- 
referenced education” in their titles, abstracts, and full 
texts. Because these terms are not assigned by indexers 
from controlled vocabularies but emerge naturally from 
authors’ vocabularies, librarians call them natural lan-
guage or keywords. Thus, insofar as all documents with 
“teacher burnout” in their titles or abstracts constitute a 
literature, that entire literature can be retrieved. (Many 
systems can now find natural-language terms of interest 
in multiple fields of a bibliographic record.) Moreover, 
Google searches are now carried out across the full texts 
of documents, and those full texts themselves may be 
downloadable.

Keywords is a slippery designation. By it, librarians 
usually mean all substantive words in an author’s text. 
Authors may mean only the five or six phrases with which 
they index their own writings at the request of editors. 
Retrieval systems designers have used it to mean all non-
stoplisted terms in a database, including the controlled 
vocabulary that indexers add. It can also mean the search 
terms that spontaneously occur to online searchers.

Google has so accustomed people to searching with 
natural language off the top of their heads that they may 
not realize there is any other way. (Other ways include 
controlled vocabulary and forward citation retrievals.) 
The Google search algorithm, though powerful, cannot 
yet distinguish among the different senses of a natural- 
language query such as “Wall Street.” This explains  
why Google retrievals are often both huge and noisy—a 
failure of precision. Nor can Google expand a natural- 
language query to pick up different ways of expressing 
the same or related concepts; that is, it does not automat-
ically link an input term such as “urban renewal” to “revi-
talization” and “gentrification”; or an input term such as 
“retirees” to “elderly,” “older people,” “senior citizens,” 
and “old-age pensioners.” This explains why Google 
retrievals miss potentially valuable material—a failure  
of recall. Regarding the latter, a famous 1985 study by 
David Blair and M. E. Maron showed that lawyers who 
trusted computerized natural-language retrieval to bring 
them all documents relevant to a major litigation got only 



SCIENTIFIC COMMUNICATION AND LITERATURE RETRIEVAL   63

about one-fifth of those that were relevant. The lawyers 
thought they were getting three-quarters or more. Google 
taps by far the largest collection of documents in history— 
a wonderful thing—but it has not solved the recall prob-
lem that Blair and Maron addressed.

Research synthesists have a special concern in that they 
generally want to find empirical writings with measured 
effects and acceptable research designs (Cooper and Ribble 
1989; Dieste and Padua 2007). This is a precision problem 
within the larger problem of achieving high recall (White 
et al. 2001). That is, given a particular topic, a researcher 
does not want to retrieve literally all writings on it—only 
those with a certain empirical content. Therefore, the 
strategy should be to specify the topic as broadly as possi-
ble (with both natural language and controlled vocabulary 
terms), but then to qualify the search by adding terms 
designed to match specific natural language in abstracts, 
such as “ANOVA,” “random-” “control-” “t test,” “F test” 
and “correlat-.” Professional searchers can build up large, 
reusable groups of such terms, called hedges, so that if 
any one of them appears in an abstract, the document is 
retrieved (Bates 1992). A database of existing hedges is 
maintained by the Health Information Research Unit at 
McMaster University (2016).

The search strategy beginning with “ANOVA” pre-
sumes that abstracts of empirical studies state methods 
and results. It would thus be most useful in partitioning a 
large subject literature into empirical and non-empirical 
components. Of course, it would also exclude empirical 
studies that lacked the chosen signal words in their 
abstracts, and so would have to be used carefully. Never-
theless, it confers a valuable power.

Some professional searchers distinguish between 
hedges and filters (Campbell 2016). For them, hedges are 
reusable lists of subject terms, whereas filters are reus-
able nonsubject terms added to search strings to limit 
retrievals. Searchers for systematic reviews in medicine 
filter documents on grounds such as document type, 
research methods, characteristics of experimental sub-
jects, and relation to clinical concepts (diagnosis, progno-
sis, treatment). The InterTASC Information Specialists’ 
Sub-Group has published on the Web an extensive guide 
to search filters (Glanville, Lefebvre, and Wright 2008).

4.9.2 Controlled Vocabulary

Controlled vocabulary pertains to the terms added to the 
bibliographic record by the employees of abstracting and 
indexing services or large research libraries—broadly 
speaking, indexers. The major reason for controlled vocab-

ulary is that authors’ natural language in titles, abstracts, 
and full texts may scatter related writings rather than 
bringing them together (Mann 2015, 76). Controlled 
vocabulary counteracts scattering by restating the content 
of documents in standardized headings (such as “senior 
citizens” to unify documents that use various terms for that 
concept). It thereby creates literatures for searchers who 
would otherwise have to guess how authors might express 
a subject. Blair and Maron’s lawyers failed on just this 
count, and they are not alone.

Controlled vocabulary consists of such things as hierar-
chical classification codes and subject headings for books, 
as well as descriptors for articles and reports (Mann 2015). 
For example, codes from the Library of Congress Classifi-
cation scheme are assigned one to a book, so that each book 
will have a single position in collections arranged for 
browsing. On the other hand, catalogers may assign more 
than one heading per book from the Library of Congress 
Subject Headings. In the past, they usually assigned no 
more than three, because tables of contents and back-of-
the-book indexes were presumed as complements, but now 
terms may be assigned much more generously.

Subject headings are as a rule the most specific terms (or 
compounds of terms, such as “reference services—auto-
mation—bibliographies”) that match the scope of an entire 
work. In contrast, descriptors, taken from a list called a 
thesaurus, name salient concepts in writings rather than 
characterizing the work as a whole. Unlike compound sub-
ject headings, which are combined by indexers before any 
search occurs, descriptors are combined by the searcher at 
the time of a computerized search. Because the articles and 
reports they describe often lack the internal indexes seen in 
books, they are applied more liberally than subject head-
ings, eight or ten being common.

Descriptors are important because they are used to 
index the journal and report literatures that synthesists 
typically want, and a nodding familiarity with tools such 
as the Thesaurus of ERIC Descriptors, the Medical Sub-
ject Headings, or the Thesaurus of Psychological Index 
Terms will be helpful in talking with librarians and infor-
mation specialists when searches are to be delegated. 
Thesauri, created by committees of subject experts, 
enable one to define research interests in standardized 
language. They contain definitions of terms (called scope 
notes), pointers from nonpreferred terms to preferred 
equivalents (“for criterion-referenced education use 
competency-based education”), and displays of term 
hierarchies (“aversion therapy” is a kind of “behavior 
modification” and is placed under it). Their drawback is 
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that they are always a bit behind authors’ natural lan-
guage, because committee-based standardizations of 
vocabulary take time. For example, the term “evidence- 
based medicine” was not approved in Medical Subject 
Headings until 1997, although it had appeared in journals 
at least five years earlier (Harrison 1997). Therefore, a 
searcher should combine descriptors with natural lan-
guage to achieve the desired fullness of recall.

In keeping with the earlier distinction between C2 
reviews and Cochrane reviews, the social sciences pres-
ent searchers with graver retrieval problems than medi-
cine. According to Lesley Grayson and Alan Gomersall, 
the problems include “a more diverse literature; the 
greater variety and variability of secondary bibliographi-
cal tools; the increasing availability of material on the 
internet; and a less precise terminology” (2003, 2). Ana-
lyzable social-scientific studies are thus frequently harder 
to find than medical studies. Materials from certain 
nations or regions, especially those not in English, may 
not be covered by any tool. Abstracts may be missing or 
inadequate. Publications may lack vocabulary control 
altogether. If thesauri exist, they may be inconsistent in 
the descriptors and other types of indexing they offer, and 
indexers may apply them inconsistently. Some indexers, 
for example, might apply terms naming research meth-
ods, while other indexers omit them. Alison Wallace and 
her colleagues discuss at length their problems in retriev-
ing documents relevant to housing policy (2006).

Supplements to descriptors include identifiers (spe-
cialized topical terms not included in the thesaurus) and 
document types (which partition literatures by publica-
tion format, such as article or book review, rather than 
subject). Being able to qualify an online search by docu-
ment type allows synthesists to break out one of their 
favorite forms, past reviews of research, from a subject 
literature. For example, Marcia Bates combined descrip-
tors and document types in a search statement still usable 
today in the ERIC database: “Mainstreaming AND 
(Deafness OR Hearing Impairments OR Partial Hearing) 
AND (Literature Reviews OR State of the Art Reviews)” 
(1992, 211).

Recalling the earlier distinction, the related subject 
descriptors “Deafness, Hearing Impairments, Partial 
Hearing” might go into a hedge, while the document-type 
descriptors would be a filter. In the Web of Science and 
Scopus, document types such as research reviews can be 
retrieved by checkbox.

Raya Fidel states that some online searchers routinely 
favor natural language over subject descriptors and docu-

ment-type descriptors that require thesaurus lookups 
(1991). Her observation, which antedates the Web and 
Google, would be even more true today (Mann 2015,  
114–15). Relatively few nonprofessional searchers ever 
learn to distinguish between natural language and con-
trolled vocabulary; everything is keywords. Contemporary 
retrieval systems reflect the principle of least effort for the 
greatest number; they cater to searchers who do not know 
about controlled vocabulary and would probably not use 
thesauri even if they did. But that does not mean that most 
searchers are good searchers where both high recall and 
high precision are concerned (Mann 2015, 316–19). To 
retrieve optimally for systematic reviews, searchers should 
be able to exploit all resources available.

4.9.3 Journal Names

When editors accept contributions to journals, or, in the 
case of books, to monographic series, they make the journal 
or series name a part of the writing’s bibliographic record. 
Writings so tagged form literatures of a kind. Abstracting 
and indexing services usually publish lists of journals they 
cover, and many, though not all, of the journal titles may be 
read as if they were broad subject headings.

To insiders, names such as American Sociological 
Review or Psychological Bulletin connote not only a subject 
matter but also a level of authority. The latter is a function 
of editorial quality control, and can be used to rank jour-
nals in prestige, which implicitly extends to the articles 
appearing in their pages. Earlier, a manual search through 
“the best” journals was mentioned—probably for items 
thought to be suitably refereed before publication. Actu-
ally, if the goal is to confine a subject search to certain 
journals, the computer offers an alternative. Journal and 
series names may be entered into search statements just 
like other index terms. Thus, one may perform a standard 
subject or citation search but restrict the final set to items 
appearing in specific journals or series. For example, one 
could combine “aphasia AND Journal of Verbal Learning 
and Verbal Behavior;” there might still be a fair number of 
abstracts to browse through, but all except those from the 
desired journal would be winnowed out.

4.10 BROWSING

Browsing, too, is a form of bibliographic searching. How-
ever, browsing through library shelves is not a majority 
strategy; only about one in four claimed to do it when 
Cooper wrote, and that was in the 1980s. Even delegating 
it to a librarian or information specialist is problematical, 
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because success depends on recognizing useful books or 
other writings that were not foreknown, and people differ 
in what they recognize.

The referees of a draft of this chapter claimed that no 
one browses in libraries any more. Today researchers set 
up journal table of contents feeds, visit websites, or follow 
conference hashtags on Twitter. They use blog feeds, 
saved searches, journal apps, and other automated alerts 
to monitor the latest prepublication drafts, conference 
proceedings, grey literatures, or open source publications. 
But wherever one browses, the principle is the same:

Library shelves: Face book spines classed by librarians 
and look for items of interest.

Journals: Subscribe to articles bundled by editors and 
look for items of interest.

Web: Use search terms to form sets of documents and 
look for items of interest.

Library classification codes, journal names, and terms 
entered into search engines are all ways of assembling 
documents on grounds of their presumed similarity. 
People who browse examine these collections in hopes 
they can recognize valuable items, as opposed to seek-
ing known items by name. In effect, they let collections 
search them, rather than the other way around.

Wilson calls browsing book stacks “a good strategy 
when one can expect to find a relatively high concentra-
tion of things one is looking for in a particular section of a 
collection; it is not so good if the items being sought are 
likely to be spread out thinly in a large collection” (1992, 
156). The Library of Congress (or Dewey) classification 
codes assigned to books are supposed to bring subject- 
related titles together so that knowledge of one book will 
lead to knowledge of others like it, and serendipitous finds 
do take place. It is also true that synthesists do more than 
gather articles to review. They need background knowl-
edge of many kinds, and even old-fashioned library 
browsing may further its pursuit in some topical areas. For 
example, several textbooks on meta-analysis can be found 
if one traces the class number of, say, Kenneth Wachter 
and Myron Straf (1990) to the H62 section in large librar-
ies using the Library of Congress classification scheme.

4.11 CITATION SEARCHES

The last type of strategy identified in table 4.2 is, in  
Cooper’s language, the manual or computer search of a 
citation index. Authors’ citations make topical or method-

ological links between studies explicit, and networks of 
cited and citing publications thus constitute literatures. 
To repeat, in forward citation searching, earlier writings 
become terms by which to retrieve the later items that cite 
them. This kind of retrieval has much to recommend it 
because it tends to produce hits different from those pro-
duced by retrievals with natural language or controlled 
vocabulary. In other words, it yields writings related to 
the topic that have relatively little overlap with those 
found by other methods (Pao and Worthen 1989).

The reasons for the lack of overlap are, first, that authors 
inadvertently hide the relevance of their work to other 
studies by using different natural language, which has a 
scattering effect; and, second, that indexers often fail to 
remedy this when they apply controlled vocabulary. Luck-
ily, the problems of both kinds of terminology are partly 
corrected by citation linkages, which are vocabulary inde-
pendent. They are also authors’ linkages rather than index-
ers’, and so presumably reflect greater subject expertise. 
Last, citation databases are multidisciplinary, and cita-
tions frequently cut across disciplinary lines. The items 
that cite a given work may be quite numerous, which 
improves the chances for disciplinary diversity. Hence, 
anyone who wants to achieve high recall should use for-
ward citation searches with other retrieval techniques.

In the Web of Science, the cited items that one enters 
as search terms may be writings of any sort—books, arti-
cles, reports, government documents, conference papers, 
dissertations, films, and so on. However, the later citing 
items retrieved from the best-known WoS databases  
(Science Citation Index, Social Sciences Citation Index, 
and Arts and Humanities Citation Index) are taken only 
from journals. Thus, the articles (or other journal pieces) 
that cite the entry document can be retrieved, but not the 
books or conference papers that cite it. This fact was 
bemoaned for many years, and now, as a solution, WoS 
offers subscribers a separate Book Citation Index (cover-
age from 2005) and a Conference Proceedings Citation 
Index (coverage from 1990).

The WoS databases are available for separate or joint 
searching. The searcher can begin with modest biblio-
graphic data: a known document, author, or organization. 
If need be, such data can be discovered by searching ini-
tially on natural language from the titles or abstracts of 
citing articles. Title terms may be intersected with names 
of cited documents or cited authors to improve precision.

The situation in Scopus is roughly parallel. It too orig-
inally allowed cited documents of any type as input but 
could retrieve only citing journal articles. Its claim to 
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fame was that its coverage of citing journals was even 
broader than that of WoS (if not as deep chronologically). 
Now it makes document types other than articles retriev-
able through its main interface—selected book series, 
conference proceedings, trade publications, and patents. 
By making books retrievable, both it and WoS seek to 
attract users from book-oriented fields in the social sci-
ences and humanities.

Unlike WoS and Scopus, Google Scholar (GS) is free 
of charge and its ready availability has won it wide use. 
Completely automated, it covers citations to any sort of 
document from any sort of document, as long as they can 
be found by its Web crawlers. Hence, GS frequently 
records far more citations to an item than WoS or Scopus. 
Given an entry phrase such as words from a title, an 
author’s name, or a subject term, it will retrieve docu-
ments on the Web bearing that phrase, plus the documents 
that cite them. That is, the retrieved documents are ranked 
high to low by the number of documents that cite them, 
and the latter can themselves be retrieved through click-
able links. This makes GS good for extending one’s reach 
in literature retrieval. Precisely because its use is so 
seductive, however, one should know that its lack of 
vocabulary control (and editorial oversight in general) 
can lead to numerous false drops.

The WoS databases also have problems of vocabulary 
control. For example, where authors are concerned, dif-
ferent persons can have the same name (homonyms), and 
the same person can have different names (allonyms, a 
coinage of White 2001). Homonyms degrade precision, 
because works by authors or citees other than the one the 
searcher intended will be lumped together with it in the 
retrieval and must be disambiguated. The WoS practice of 
using only initials for first and middle names worsens the 
problem. (For instance, “Lee, AJ” unites documents that 
“Lee, Alan J.” and “Lee, Amos John” would separate. 
Authors’ affiliations, if available, often disambiguate 
names, but not always.) Allonyms by contrast degrade 
recall, because the searcher may be unable to guess all the 
different ways an author’s or citee’s name has been copied 
into the database. The same author usually appears in at 
least two ways (for example, “Small HG” and “Small H”). 
Derek J. de Solla Price’s name is cited in more than a 
dozen ways. Authors also change their names for various 
reasons, such as marriage. A nonproprietary service called 
ORCID addresses homonym and allonym problems by 
giving authors unique ID numbers on request.

One other matter relates to Clarivate Analytics, which 
obtained its citation databases from the former Institute 

for Scientific Information (ISI) and continues ISI’s policy 
of indexing only journals that are cited above a certain 
threshold (Testa 2016). This policy has led to accusations 
of bias in favor of U.S. or North American or Anglo- 
American sources. The WoS indexes do have an English- 
language bias, because of the international prominence 
of English in science and scholarship; even so, leading 
journals in other languages are indexed. Yet researchers 
routinely lament the absence of journals they deem 
important. Unfortunately, the threshold is dictated by 
economic constraints on Clarivate Analytics and its sub-
scribers, and many thousands of journals in both English 
and other languages will never make the cut. Tools such as 
Scopus, Google Scholar, Google Books, and the Chinese 
Social Sciences Citation Index are needed to extend 
researchers’ capabilities for retrieval across relatively less-
cited journals, languages, and formats.

4.12 FINAL OPERATIONS

The synthesist’s ideal in gathering primary studies is to 
have the best possible pool from which to select those 
finally analyzed. Principled stopping rules for searchers 
appear in articles by Monika Kastner and her colleagues 
(2009) and by Andrew Booth (2010). In practice, the 
selection of studies has a discretionary element, attribut-
able to individual tastes and expectations about reader-
ships. Different synthesists interested in the same topic 
may differ on the primary studies to be included. If a 
set of studies is challenged as incomplete, it might be 
claimed that gathering a different set was not cost effec-
tive. The strategies and criteria actually used in searches 
will determine whether that defense has merit.

4.12.1 Judging Relevance

The comprehensiveness of a search may be in doubt, but 
not the fact that meta-analysis requires documents with 
comparable, quantified findings. The need for studies 
with appropriate data sharply divides what is relevant 
from what is not; an explicit test is the presence or absence 
of usable statistical tables. Of course, if nonquantitative 
studies are included, relevance judgments may be more 
difficult. Presumably, the judges will be scientists or 
advanced students with domain knowledge, high interest 
in the literature to be synthesized, and adequate time in 
which to make decisions. Further, they will be able to 
decide on the basis of abstracts or, better, full texts of 
documents. That limits the sources of variation in rele-
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vance judgments to factors such as the uses to which doc-
uments will be put and the order in which documents are 
considered.

A remaining variable is openness to information. 
Although research synthesists as a group seem highly open 
to information, some are more open than others. This prob-
ably influences not only their relevance judgments, but also 
their appetites for multimodal literature searches and their 
degree of tolerance for studies of less than exemplary qual-
ity. Some want to err on the side of inclusiveness, and  
others want stricter editorial standards.

Where ancillary services are concerned, health profes-
sionals have doubted librarians’ ability to judge the rele-
vance of meta-analyses for evidence-based practice 
(Lewis, Urquhart, and Rolinson 1998). However, librari-
ans and information specialists have long prepared to 
work on this front and by now may bring considerable 
sophistication to it (Cumming and Conway 1998; Tsafrir 
and Grinberg 1998; Wade et al. 2006; Rankin, Grefsheim, 
and Canto 2008; Grant and Booth 2009; Sheble 2014, 
2016).

4.12.2 Document Delivery

The final step in literature retrieval is to obtain copies of 
items judged relevant. The online vendors cooperate with 
document suppliers so that hard copies of items may be 
ordered as part of an online search, often through one’s 
academic library. Frequently the grey literature, such as 
dissertations, technical reports, and government docu-
ments, can also be acquired on the Web or through spe-
cialized documentation centers. When local collections 
fail, interlibrary loan services are generally reliable for 
books, grey publications, and photocopies of articles. 
The foundation of international interlibrary loan in North 
America is the Online Computer Library Center (OCLC) 
system, whose more than 435 million bibliographic 
records include those for a growing number of numeric 
data files in machine-readable form. In the United King-
dom, the British Library at Boston Spa serves an interna-
tional clientele for interlibrary transactions. The transfer 
of texts, software, and data files is now routinely done by 
computer. Nevertheless, bibliographic organizations such 
as OCLC and the British Library are needed to make 
resources discoverable in the digital wilderness.

The key to availing oneself of these resources is to 
work closely with librarians and information specialists, 
whose role in scientific communication has received 
more emphasis here than is usual, so as to raise their vis-

ibility. If they themselves do not belong to synthesis 
teams, they may be able to advise or train team members 
in matters such as bibliographic databases and software, 
search strategies, and ways of obtaining documents. 
Locating an expert in high recall may take effort; persons 
with the requisite motivation and knowledge are not at 
every reference desk. But such experts exist, and it is 
worth the effort to find them.
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5.1 INTRODUCTION

This chapter provides an overview of how to select and 
search bibliographic databases, which are the backbone 
of most literature searches undertaken for research syn
thesis, and discusses the following aspects of searching 
databases:

• what bibliographic databases are designed to do, 
what they capture, and how they differ;

• why a range of databases might need to be searched 
when conducting a research synthesis;

• how to plan and develop a search strategy to search a 
database, giving consideration to identifying the con
cepts to be captured by the search strategy, the search 
terms to be used to capture the concepts and the com
binations of terms and concepts;

• how to focus or limit the results of database searches;

• how to peer review a search strategy;

• how to manage search results using reference man
agement software and how to select relevant records 
from search results; and

• how to record the search as it is being conducted and 
how to report the search strategy in a final report or 
other publication.

The chapter focuses on databases that record and index 
research relevant to the social, behavioral, and medical 
sciences. It assumes that the reader

• is acquainted with the key journals, handbooks, and 
reference tools in their discipline and the most 
important sources on the topic of synthesis;

• intends to conduct an extensive search of the litera
ture, if appropriate to the synthesis question, to iden
tify as many relevant studies as possible to contribute 
to the synthesis being conducted;

• is familiar with the structure and organization of 
research libraries and their access via catalogs and 
inquiry services;

• has read other chapters in this volume, particularly 
those on scientific communication (chapter 4) and 
grey literature (chapter 6); and

• is collaborating with an information specialist or libra
rian with experience of searching bibliographic data
bases in the topic of the synthesis being undertaken.

Table 5.1 presents a glossary of the key terminology 
used in the chapter.

Database searching is a skill informed by a knowledge 
of the design and content of individual databases and the 
facilities for searching offered by the interfaces to individ
ual databases. Access to databases is provided by search 
interfaces that can offer a range of facilities to retrieve 
records. For example, the PsycINFO database (American 
Psychological Association 2016) is accessible via many 
interfaces including Ovid, DIMDI, EBSCO, and Pro
Quest. Each interface is unique in terms of look and feel 
as well as in the range and format of options it offers for 
searching and downloading records. Search strategies 
often need to be adapted to take account of these options.

Searching also draws on an awareness of how researchers 
might unintentionally fail to communicate their research 
fully in title and abstracts. In the limited number of words 
permitted in an abstract, authors may not capture every 
detail of their methods or list every outcome in their study.

Searching to inform research synthesis is often, but not 
always, undertaken from the perspective of trying to be 
exhaustive or extensive. Often, research synthesis seeks to 
find as much relevant research as possible (to minimize 
the impact of various biases, including publication bias) 
while trying to minimize the number of irrelevant research 
records that need to be processed as a result of the search. 
This means that search strategies tend to emphasize sensi
tivity (see table 5.1), and typically researchers will be 

5.4.9 Managing the Search Results 92
5.4.10 Record Selection 93

5.5 Recording and Reporting the Search 94
5.5.1 Recording the Search Process 94
5.5.2 Reporting the Search 94

5.6 Summary 95

5.7 References 95



SEARCHING BIBLIOGRAPHIC DATABASES   75

Table 5.1 Key Concepts in Database Searching to Inform Research Synthesis

Concept or Term Definition

Bibliographic database Collection of records describing publications. Typically each record provides the title, author, 
source information, and date. Many databases also include an abstract. Some databases may 
add subject index terms and other codes to facilitate retrieval.

Bibliographic reference 
management software

Software to manage records that have been downloaded from bibliographic databases. 
Examples include EndNote, Reference Manager, RefWorks, and Mendeley.

Concept Topic or theme that forms part of a research question, for example, a population of interest 
such as children with attention deficit disorder.

Free text terms Words in an information source record other than the indexing terms. Freetext terms are 
usually those in the title and abstract of a database record.

Hand searching Searching the contents of a journal by looking at each article in sequence and making an 
assessment of the relevance of the article to the synthesis question. Hand searching may also 
be undertaken for sections of databases or websites.

Indexing Addition of indexing terms to database records, to provide a single search term for records that 
might be described by authors using different terms.

Indexing language Controlled vocabulary used to index records in a database to enhance consistent retrieval of 
records. For example, the ERIC Thesaurus in the ERIC database of educational research 
(Institute of Education Sciences n.d.).

Indexing term Word or phrase from an indexing language.

Information source Database, website, or library that provides access to research evidence and other documents.

Information specialist An information scientist or librarian who has extensive experience of searching for research 
evidence from a variety of information sources.

Interface Set of options or facilities that are available for searching a database. Options may include 
ways to combine sets of search results, including Boolean operators and proximity 
operators, ways to search for word variants (truncation, stemming, and wildcards) and the 
ability to restrict searches to specific fields such as the title.

Precision Proportion of relevant records among all the records retrieved by a search strategy (relevant 
records retrieved divided by all records retrieved). In research synthesis, a precise search 
strategy is often traded off in favor of high sensitivity.

Proximity operators Search operators that specify that a search term can be retrieved when it occurs within a certain 
distance from another search term. The distance can often be varied.

Search filters Collection of search terms that identifies records about a specific population, study design, or 
other issue; ideally derived by research.

Search strategy Collection of search terms used to interrogate a database to identify records relevant to a 
research synthesis question.

Sensitivity Proportion of relevant records retrieved by a search strategy from a database (number of 
relevant records retrieved divided by total number of relevant records). Searches for 
research synthesis purposes usually aim to be sensitive. Also known as recall.

Specificity Proportion of irrelevant records not retrieved by a search strategy from a database.

Text mining Use of software to analyze unstructured text and identify patterns and derive information about 
a body of literature. In the searching context, can be used to identify terms, phrases, and 
collocated terms that might be used in search strategies. Also has applications in record 
selection.

source: Author’s compilation.
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willing to trade off precision or specificity (looking at as 
few irrelevant records as possible) to achieve sensitivity 
(Wood and Arber 2016b). It also means that searchers 
may need to search a range of databases because one 
database is unlikely to record all of the available research. 
Even where the same research is recorded in two data
bases, the search options available may result in the 
record being found in one database but not the other.

Information specialists, such as librarians, are import
ant sources of expertise for teams undertaking research 
synthesis. Research has shown that trained information 
specialists tend to find more relevant studies than untrained 
researchers (Kuller et al. 1993; Erickson and Warner 
1998). Information specialists who support research syn
thesis bring expertise in terms of being able to develop 
search strategies, knowing the technical issues involved in 
database searching, and knowing which resources are 
most relevant to specific questions. Consulting, or better 
still, involving an information specialist in the research 
synthesis is highly recommended (Higgins and Green 
2011; Eden et al. 2011; Petticrew and Roberts 2006).

This chapter focuses on searching bibliographic (or ref
erence) databases such as PsycINFO or Criminal Justice 
Abstracts (EBSCO Information Services n.d.a). These 
databases are collections of records containing the citation 
details and usually the abstracts of research publications. 
The records are representations of larger documents and 
have only a limited number of words to capture the full 
content of the larger document. To provide additional 
access points to the documents and so increase opportuni
ties that searches will retrieve them, some databases add 
subject indexing (or thesaurus) terms to records. Other 
coding may also be added to database records, such as 
population codes, age codes or publication types.

Bibliographic databases such as PsycINFO are expen
sive to produce and access is usually by subscriptions. 
Academic libraries, professional bodies, and other orga
nizations purchase subscriptions and provide access to 
databases to their members as a group. The larger the 
organization, the more databases may be available to an 
employee. Some large bibliographic databases, such as 
PubMed (U.S. National Library of Medicine n.d.b) and 
other governmentfunded resources, may be accessible 
free of charge to searchers. Oneoff access to individual 
subscription databases for the purposes of contributing to 
research synthesis can sometimes be purchased direct 
from the database publisher or via a commercial informa
tion intermediary. Professional organizations may provide 
access to some databases as a membership benefit.

Databases and database searching are constantly evolv
ing. Searching databases as part of the research synthesis 
process is becoming increasingly evidence based, as can 
be seen in guidance from international initiatives, national 
organizations, and published handbooks (Higgins and 
Green 2011; Kugley et al. 2016; European Food Safety 
Authority 2010; Centre for Reviews and Dissemination 
2009; Petticrew and Roberts 2006; Eden et al. 2011; 
Joanna Briggs Institute 2014). Guidance on best searching 
practice is easy to identify in some disciplines such as 
health care and social sciences, but not in all subjects. 
Searching toolkits are also available.

Searching for different types of evidence may also 
require different approaches. Searching for quantitative 
evidence is the main focus of this chapter. Syntheses of 
qualitative evidence may be better suited to a more explor
atory, organic, and iterative search approach, in which it is 
not essential to find all relevant studies, but instead to find 
representative studies that cover an adequate range of rel
evant issues (Stansfield, Brunton, and Rees 2014). Further 
information about the evidence base for search approaches 
to undertaking syntheses of qualitative evidence is pro
vided in a review by the information specialist Andrew 
Booth (2016). Points where practice may differ between 
searches for quantitative and qualitative evidence are 
highlighted in this chapter.

This chapter provides a general introduction, with the 
expectation that the reader will find relevant specific sub
ject support for their research synthesis question from their 
local information specialist and from relevant research 
synthesis guidance in their particular discipline.

5.2 WHAT ARE BIBLIOGRAPHIC DATABASES?

Bibliographic databases tend to be focused on recording 
either a type of publication, such as journal articles, or all 
types of publication in a particular subject area. For exam
ple, the Cumulative Index to Nursing and Allied Health 
Literature (CINAHL) (EBSCO Health n.d.) database cap
tures the nursing and allied health literature published in 
journals, books, reports, and dissertations (EBSCO Health 
n.d.). Brief details of a publication are captured in a data
base record. The volume of information within a database 
record varies by database and by the type of publication 
included. When encountering a database for the first time, 
it is important to read the descriptive information, FAQs, 
or Help section about the database as well as the searching 
options available. This information is important to ensure 
that searches are designed to elicit the most appropriate 
information from the database and to run efficiently. This 
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section describes the broad differences across databases 
collecting different publication types.

5.2.1 Synthesized Evidence

Before beginning a new research synthesis, it is wise to 
check that the question has not been published elsewhere 
recently. An increasing number of databases provide access 
to reviews and other evidence syntheses. Reviews can also 
be helpful for scoping the review synthesis question and 
providing examples of searches and other methods used by 
other researchers. Identifying whether a database of system
atic reviews in a discipline exists should be a primary task 
in considering a new research synthesis.

Examples of collections of evidence syntheses include 
the following:

• The Cochrane Library contains reviews of healthcare 
interventions (Cochrane Library n.d.).

• The Campbell Library has reviews of social work, 
criminology, and education (Campbell Collabora
tion n.d.).

• VetsRev has reviews of veterinary research (Centre 
for EvidenceBased Veterinary Medicine n.d.).

• The Environmental Evidence library offers access 
to completed and ongoing systematic reviews in 
environmental research.

• Epistemonikos collects published reviews and pro
vides links to the eligible records in the reviews 
(Epistemonikos n.d.).

It is also important to try to identify ongoing systematic 
reviews. These may be recorded in the collections of evi
dence syntheses but may also be found in research regis
ters. For example, in health care, the PROSPERO database 
is a registration route for systematic review protocols 
(National Institute for Health Research n.d.). Increasingly, 
journals such as Systematic Reviews publish review proto
cols, so searching bibliographic databases to identify pro
tocols may also be productive.

5.2.2 Journal Literature

Bibliographic databases are the most efficient way to iden
tify a set of potentially relevant studies that have been 
published as journal articles. Databases such as PsycINFO, 
Criminal Justice Abstracts, and ERIC (Institute of Educa
tion Sciences n.d.) have been designed to facilitate effec
tive information retrieval through searches of the citation 

information, abstracts, and indexing terms of journal arti
cles. The words in the title and abstract are known as free
text terms and are presented as provided by the authors of 
the articles. The indexing terms, which are derived from a 
controlled vocabulary or indexing language, are applied 
by the publisher of the database and are designed to pro
vide a consistent term to describe a subject that might be 
described in different ways by different authors. Many 
electronic bibliographic databases include links to the full 
text of the article where available. Some database inter
faces will also provide access from individual records to 
“related” articles, based on an analysis of similarities in 
the freetext terms or indexing terms.

Bibliographic databases of the journal literature can be 
broad ranging in their coverage, or more focused. For 
example, ERIC contains more than 1.5 million records 
of research publications in education; Criminal Justice 
Abstracts has more than five hundred thousand records 
indexing criminal justice research; and PsycINFO has more 
than four million records relating to psychology and the 
behavioral and social sciences. Each of these databases is 
indexed with its own indexing language: the ERIC Thesau
rus, the Criminal Justice Abstracts Thesaurus, and the 
Thesaurus of Psychological Index Terms®. Scopus, in 
contrast, is a major crossdisciplinary database including 
records from journals in science, technology, medicine, 
social sciences, and the arts and humanities (SCOPUS n.d.). 
It does not apply its own indexing language to its records, 
so searching within such a database does not benefit from 
the assistance of additional terminology. Databases may 
also have a regional focus. For example, the LILACS data
base indexes medical journals from the Latin American 
and Caribbean region (Virtual Health Library n.d.).

Deciding which databases need to be searched for any 
topic under consideration for research synthesis needs to be 
informed by a knowledge of the unique content of the data
bases. Typically, in research synthesis we seek advice from 
research evidence, where possible, to guide our practice. 
CENTRAL (a database in the Cochrane Library), PubMed, 
and Embase (Elsevier Life Sciences. n.d.) are generally 
considered the most important sources for reports of 
clinical trials in health care (Lefebvre, Manheimer, and 
Glanville 2011). In veterinary medicine, a 2012 study 
identified CAB Abstracts as an essential source because it 
indexed more than 90 percent of the key veterinary journals 
identified by the authors (CABI 2016; Grindlay, Brennan, 
and Dean 2012). Research synthesis guidance documents 
can be valuable in determining the number of, and poten
tially most fruitful, databases to be searched.
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That a database currently indexes a particular journal 
does not necessarily mean that it has always indexed that 
journal. Searchers should check the database coverage of 
key journals relevant to the research synthesis and search 
additional databases if coverage is partial. A database 
may not index the full content of a journal. The searcher 
should check the extent of indexing (cover to cover or 
selective) of key journals relevant to the research synthe
sis question and, if indexing is selective, should consider 
hand searching those journals (see table 5.1).

5.2.3 Books

Books are the best recorded publication format, but their 
importance to research synthesis varies by discipline. 
For example, books rarely feature in systematic reviews 
of healthcare since the main publication route for new 
research is journals. Researchers can identify books by 
searching library catalogs. Large national libraries, such as 
the U.S. Library of Congress, provide excellent access to 
books in their international multidisciplinary collections; 
books can also be retrieved through internet search engines. 
WorldCat provides access to the catalogs of more than 
ten thousand libraries worldwide (OCLC WorldCat n.d.). 
Some subject databases, such as PsycINFO and CINAHL, 
include books and book chapters, but coverage should be 
checked on a database by database basis.

Library catalog records do not typically contain abstracts, 
so the records offer limited information to search and do 
not typically provide detailed information on the individual 
chapters within books. The search interfaces to catalogs 
may be relatively simple relative to those for databases of 
journal articles. Therefore, as with most database searches, 
searches in library catalogs should be sensitive and use a 
range of synonyms to find records of potentially relevant 
books. These issues mean that searching catalogs can be 
time consuming and that searchers should allocate adequate 
resources for these searches.

5.2.4 Dissertations and Theses

Dissertations and theses are recorded and indexed in spe
cialized information sources, such as ProQuest’s Disser
tations & Theses Global database (ProQuest n.d.). These 
databases are focused on recording this publication type 
and are designed to promote access to these potentially dif
ficult to find documents by providing searchable records 
and options to order copies. In addition to large multi
national databases, there are many national dissertation 

databases, such as the EThOS:UK ETheses Online 
Service (British Library n.d.).

Some subject databases, such as PsycINFO and CINAHL, 
also index dissertations within their subject fields. World
Cat also contains records for dissertations and theses.

5.2.5 Conference Papers

Research findings are published in papers and posters deliv
ered at congresses and conferences. Systematic reviews of 
the human health literature have concluded that 50 percent 
of trials reported in conference abstracts never reach 
full publication (Hopewell, Clarke, Stewart, et al. 2007). 
The picture in other disciplines may not yet have been 
reviewed, but primary studies indicate the possibility of 
similar issues (Snedeker, Totton, and Sargeant 2010). 
Therefore, to minimize publication bias, searchers should 
explore conference abstracts from which they may be 
able to trace subsequent publications (such as posters, 
PowerPoints, journal articles or reports), or contact the 
study authors for additional information.

The inclusion of conference abstracts in subject bib
liographic databases is not universal. For example, Embase 
now includes large numbers of conference abstracts from 
medical conferences published in the journals that it 
indexes, whereas the National Library of Medicine does 
not for the journals it includes in PubMed.

Searchers can find conference abstracts via specific 
indexes such as the BIOSIS Citation Index and the Confer
ence Proceedings Citation Index (Thomson Reuters 2014 
n.d.a). However, even these databases are unlikely to 
retrieve all relevant studies presented at conferences. 
Searchers, therefore, should consider additional approaches 
such as hand searching or electronically searching confer
ence proceedings that are made available online or in print. 
The growing trend for conference organizers to provide 
their abstracts on a conference website will improve current 
access to this type of publication. However, conference 
websites are often transitory and it cannot always be guar
anteed that a conference website will exist a year hence. In 
addition, many conference websites can be accessed only 
by paying the conference attendance fee. Searchers should 
keep personal copies of any potentially interesting confer
ence papers to ensure continued access.

Identifying conference papers is also valuable for 
research synthesis because it can identify recent research 
not yet indexed by bibliographic databases, as well as pro
vide signals to journal articles that may have been included 
but were missed by the search strategy. A Cochrane review 
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concluded that a combination of hand searching confer-
ence proceedings and database searching could help fully 
identify relevant studies published in health journals 
(Hopewell, Clarke, Lefebvre, et al. 2007).

Choosing which conferences to search is likely to be 
informed by subject knowledge (or the advice of an infor-
mation specialist) about the key conferences in the topic of 
the research synthesis. Once identified, the searcher should 
check whether the conferences are indexed in the journal 
databases to be searched: if they are, the number of confer-
ence websites that need to be individually searched can be 
minimized.

5.2.6 Ongoing Research

Research registers—databases that record ongoing 
research—are particularly useful for identifying ongoing 
or as yet unpublished studies, and thus are one way to 
reduce publication bias. Many research registers exist 
and most are publicly available online. They may be 
discipline specific, such as ClinicalTrials.gov, which 
records trials in health care. They may be country or 
region specific, such as the European Commission’s 
CORDIS (European Commission n.d.). They may col-
lect trials funded by particular organizations, such as  
the UK Research and Innovation Gateway to Research 
(2018). They may also be produced and maintained by 
manufacturers, pressure groups, and international organi-
zations. No single database of research registers exists, 
however. Searchers should therefore allocate adequate 
resources to identify candidate registers and to search 
key international, national, subject, and funder registers 
relating to the topic of the research synthesis.

Many research register databases have very basic search 
interfaces and offer few of the sophisticated search options 
typical of large bibliographic databases, such as set combi-
nation and result downloading (Glanville et al. 2014). This 
means that searchers may have to use simple and repetitive 
searches. Also, searchers may find that the results are not 
formatted or downloadable and they may therefore need to 
cut and paste search results into nonbibliographic software 
such as Word or OneNote.

5.2.7 Citation Databases

Citation indexes, such as those published by Thomson 
Reuters (Science Citation Index Expanded, Social Sci-
ences Citation Index, and Arts & Humanities Citation 
Index), or citation search services such as those provided 

by Google Scholar (Google n.d.), provide access to 
journal articles that cite other journal articles. Using 
selected key papers as the seeds, searchers can use these 
information sources to identify newer papers that may 
have cited the seed papers and hence may be reporting 
on a similar topic. Research in the human health litera-
ture for research synthesis has shown that citation search-
ing can be a useful adjunct to database searching and hand 
searching (Greenhalgh and Peacock 2005; Linder et al. 
2015); it may therefore be relevant in other disciplines as 
well. Citation analysis may also have potential to reduce the 
burden of searching bibliographic databases (Belter 2016). 
Different citation resources may yield different results for 
the same search question (Levay et al. 2015).

5.2.8 Grey Literature

The extensive range of grey literature, including research 
and technical reports, some of which is captured in data-
bases such as the National Technical Information Service 
(NTIS), is described in chapter 6.

5.2.9 Other Searching Activities

As well as database searches, and depending on the syn-
thesis topic and available resources, other research iden-
tification methods are options:

Searchers should consider whether hand searching of key 
journals, databases, or conferences would be helpful. 
For health-care systematic reviews, research shows 
that searching the contents of a journal by looking at 
each article in sequence and making an assessment 
of the relevance of the article to the synthesis question 
may yield additional studies (Hopewell, Clarke, 
Lefebvre, et al. 2007). However, because this is  
a resource intensive activity, searchers should con-
duct an exploratory study when developing the 
research synthesis proposal, to assess whether this 
effort is merited.

Searchers should check the references within relevant 
reviews and studies to identify any additional studies 
(Horsley, Dingwall, and Sampson 2011). This can 
provide reassurance that database searches have been 
adequate, but may also identify additional studies 
(Doree et al. 2018).

Searchers should consider contacting experts when they 
have a list of known relevant studies to request recom-
mendations of any additional relevant publications.



80   SEARCHING THE LITERATURE

Searchers should ideally conduct citation searches on 
known relevant papers to identify later citations refer
ring back to those key papers.

Searchers should consider searching databases for addi
tional publications by named key authors;

Searchers should consider following any “related refer
ences” links offered by databases (Doree et al. 2018).

5.3  WHY SEARCH A RANGE OF  
BIBLIOGRAPHIC DATABASES?

Searchers need to be aware of two key challenges to iden
tifying relevant studies for research synthesis that the lit
erature search is seeking to minimize. First, searches are 
seeking to minimize reporting biases such as publication 
bias and, second, the search is trying to overcome the 
limitations inherent in database records and search inter
faces. This section describes these challenges and the 
impact they have on literature searches.

5.3.1 The Challenge of Publication Bias

A number of reporting biases affect access to research 
findings (Song et al. 2010). A systematic review reports 
that “statistically significant, ‘positive’ results that indi
cate that an intervention works are more likely to be pub
lished, more likely to be published rapidly, more likely to 
be published in English, more likely to be published more 
than once, more likely to be published in high impact jour
nals and, related to the last point, more likely to be cited 
by others” (Sterne, Egger, and Moher 2011, 298). These 
biases pose a significant challenge for searches seeking to 
retrieve all relevant studies for a research synthesis. As a 
result of publication bias, a proportion of research will not 
be published in peerreviewed journals. Of the research 
that is published, a significant proportion will not be 
indexed in the major bibliographic databases (Sterne, 
Egger, and Moher 2011). This evidence relates to the human 
health field, but is likely to apply in other fields given that 
the impetus for publication is likely to be similar for most 
disciplines. Some evidence, for example, suggests that pub
lication bias is also an issue in the field of food and feed 
safety (Glanville et al. 2014; O’Brien et al. 2006; Snedeker, 
Totton, and Sargeant 2010) and in veterinary and agri
cultural research (Nielen, Kruitwagen, and Beynen 2006; 
Berteaux et al. 2007).

Search strategies for research synthesis involving 
quantitative study designs should seek to minimize the 

effects of this bias by including searches beyond peer 
reviewed journal literature, the grey literature (chapter 6), 
and other evidence identification approaches. Research 
synthesis of qualitative data may be conducted with  
less exhaustive approaches, but searchers should still 
review the range of resources to minimize bias by ensur
ing that enough types of information have been sampled 
(Booth 2016).

5.3.2 Limitations of Bibliographic Databases

The word limits for titles and abstracts in bibliographic 
databases and the variability in indexing terms mean that 
even when a study is recorded in a database, a specific 
search strategy may not find it (Lefebvre, Manheimer, 
and Glanville 2011; Kassai 2006; Snedeker, Totton, and 
Sargeant 2010; Rathbone et al. 2016; Kugley et al. 2016). 
Just because a record exists in a bibliographic database 
does not mean that it is easy to retrieve, even when 
using “appropriate” search strategies that search across 
indexing and freetext fields. Several explanations 
address failures to retrieve records. First, people (rather 
than machines) are still largely responsible for the selec
tion and application of indexing terms to bibliographic 
database records, and as a result indexing is subjective 
and open to error. This means that research may not be 
indexed in the way that seems most obvious to us or in 
the way we anticipate. Second, database abstracts are 
brief (and in some cases nonexistent) and may not cap
ture all aspects of a full document because of the limits of 
space. Third, authors may describe the same topic using 
different terminology in different records. Fourth, authors 
may not describe their methods or other elements of their 
research fully in the abstracts (Whiting et al. 2008; Booth 
2016). For example, the abstract may not reflect all of the 
outcomes that the authors report in the full document, and 
thus searches that contain the outcome concept run the 
risk of missing relevant records. In healthcare searches, 
outcomes rarely form part of the search precisely for this 
reason. Searchers rely on the record selection process 
rather than the search to check the desired outcomes are 
addressed in the publication. Similarly, authors may not 
report their methods clearly. These issues pose a signifi
cant challenge for a research synthesis search aiming to 
retrieve all relevant quantitative studies. Searchers need 
to be able to anticipate such issues and use methods to 
minimize their potential impact. These issues are also the 
reason that search strategy development is often an itera
tive process.
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5.3.3 Importance of Extensive Searching

Searching multiple information sources, including a range 
of databases, increases the likelihood of retrieving rele
vant records (Avenell, Handoll, and Grant 2001; Grindlay, 
Brennan, and Dean 2012). It also reduces the impact of 
database indexing variability because a study not retrieved 
by a particular search strategy in one database may be 
retrieved in another (Lefebvre, Manheimer, and Glanville 
2011). Searchers should consider the topic of their research 
synthesis when identifying bibliographic databases to 
search and identify databases that cover not only the spe
cific topic, but also different publication types. In contexts 
such as agrifoodrelated health research, for example, 
these may include both medical and agricultural databases 
(Sargeant et al. 2006). Where possible, searchers should 
select databases that will also retrieve research published 
in languages other than English, as well as ongoing and 
recently completed research.

For research synthesis questions involving qualitative 
research, exhaustive searching may be less of a focus 
because researchers are trying to find a large enough sam
ple of representative cases. In this context, the range of 
databases required needs to be assessed from a different 
perspective (Brunton, Stansfield, and Thomas 2012; Booth 
2016) and the searcher needs to determine whether enough 
databases have been searched to ensure that a range of 
relevant issues will have been identified.

5.3.4 Bibliographic Database Selection

The research synthesis plan or protocol should include a 
specification of the search process. This will include a list 
of the information sources (including bibliographic data
bases) that will be searched and the search terms that will 
be used to search them. This section focuses on how to 
select the bibliographic databases.

Searchers select databases based on a combination of 
many factors related to the research question. Their 
objective is to ensure that enough databases are selected 
to provide extensive coverage of the topic of the research 
synthesis and the types of publications in which research 
evidence might have been published. The factors affect
ing selection decisions include the following:

Topic or disciplinary scope. In which disciplines is 
research on the topic being conducted and which 
bibliographic databases capture the research in those 
disciplines? For example, accuracy of eyewitness 
testimony in a court of law is a topic of interest to 

both psychologists studying memory, and legal pro
fessionals wishing to win their cases. At least two 
disciplinary databases, PsycINFO, which captures 
the psychological research literature, and the Index 
to Legal Periodicals Full Text, which captures legal 
research, might contain relevant literature. How
ever, multidisciplinary databases such as Scopus 
could also yield relevant records. Ensuring adequate 
discipline coverage in the chosen databases is par
ticularly important in interdisciplinary topics.

Access. Which databases are available (free of charge) 
via local institutions or organizations? What other 
access routes are available?

Usability. Can the results from database searches be 
easily downloaded in terms of both volume and for
mats that can be loaded into bibliographic manage
ment software?

Date. What period does the topic cover? If the topic 
has been a subject of research for decades, such as 
water fluoridation, then databases that cover long 
periods will be required in addition to those initiated 
more recently. On rare occasions, when the relevant 
literature extends back into the early part of the 
twentieth century, searchers may need to identify 
and search paper indexes.

Language and country. Research synthesis often seeks 
to minimize publication bias by accessing research 
in a range of languages and in regional and national 
databases. Research in health care shows that bias 
can arise from excluding trials reported in languages 
other than English, as researchers from nonEnglish 
speaking countries are more likely to publish trials 
with positive results in Englishlanguage journals and 
trials with nonsignificant results in nonEnglish 
language journals (Egger et al. 1997; Hopewell, 
McDonald, et al. 2007). If resources permit, searchers 
should search beyond the Englishlanguage literature 
to mitigate the impact of publication biases.

Publication type coverage. Databases that cover the 
various publication types described earlier should 
be identified.

Advice on identifying candidate databases should be 
sought from an information specialist. Most large aca
demic libraries offer lists of databases and other refer
ence sources by topic (such as the subject guides and 
indexes at the University of Minnesota Libraries). It 
may be worth searching more than one such online guide 
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because different libraries may subscribe to different 
resources. The Gale Directory of Databases (n.d.) lists 
available databases, for example.

Once selected, searchers will need to plan the order 
in which the databases should be searched. Searchers 
should search the databases with the richest information 
first because results from subsequent databases can be 
deduplicated against those results. Searchers should pri
oritize the most specific subject databases because they 
are more likely to be indexed from the perspective of 
the topic and yield a higher proportion of relevant results. 
In contrast, multidisciplinary databases are likely to be 
indexed from a more general perspective and yield less 
focused results. Databases that include abstracts should 
probably be searched before those without abstracts so 
that the richest information is encountered first. In the 
absence of other factors, searchers should search the 
databases most likely to contribute the largest number 
of records first. They should also search databases that 
do not offer downloading options (and from which results 
will need to be cut and pasted) last, so that results can be 
matched against the previous search results to minimize 
the need for cutting and pasting records. The challenges 

of deciding when enough searches have been under
taken are discussed later.

5.4 PLANNING THE SEARCH STRATEGY

5.4.1 Context of the Research Question

Research synthesis is not a single concept and the search 
requirements may vary depending on the scope, time
lines, and resources of the specific synthesis (Grant and 
Booth 2009). It is important that the searches are fit for 
purpose and designed with an awareness of what the syn
thesis is trying to achieve within allocated resources. A 
brief typology of the searches that might be undertaken 
for scoping reviews, rapid reviews, and full evidence 
syntheses are presented in table 5.2. Other typologies are 
available (Grant and Booth 2009).

The first stage of a research synthesis may be a scop
ing search to assess the size and makeup of the litera
ture available for the evidence synthesis. This search is 
likely to be exploratory, high level, and much less 
exhaustive than the searches undertaken for the research 
synthesis proper. It is usually undertaken to develop the 

Table 5.2 Typology of Evidence Synthesis Searches

Type Characteristics

Scoping search Undertaken to understand the scale and scope of the literature. Can be used to identify which databases,  
to understand how many records will be retrieved by the searches, and to identify key search terms.

Review may inform the development of a research proposal and its budget.
Undertaken in only a few databases and with a relatively focused search. May involve the assessment of 

selected results only. One key aspect may be the identification of earlier reviews on the topic of interest 
to aid scoping.

Rapid review 
searches

Undertaken for evidence syntheses that have to be undertaken in a short time frame. Involve searches of a 
few selected databases. Strategies may not be exhaustive and therefore are less likely to minimize 
publication biases. Should be reported in detail even though they may be briefer and less extensive than 
those for more extensive evidence syntheses.

May be limited in pragmatic ways, such as by limiting by date, language, or study design.
Will usually not involve additional methods to identify relevant records.

Main or full 
searches

Undertaken for an evidence synthesis that is aiming to be extensive or exhaustive to minimize publication 
biases. A sensitive approach is usually undertaken, involving searches of a number of databases using 
strategies with a range of relevant synonyms and as few concepts as possible. Will usually involve 
additional methods to identify relevant records, such as reference checking, hand searching, and citation 
searching.

Should have as few limits as feasible.
Will be reported in detail.

source: Author’s compilation.
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research synthesis proposal or protocol. It is likely to 
include a search for previous reviews of the topic. Pub
lished reviews can provide a range of helpful informa
tion, not only to inform the searches, but also to highlight 
other challenges that the review topic may carry with it. 
Scoping searches are vital for budgeting purposes to 
inform calculations on the cost of both the search pro
cess and the size of the literature to be processed for the 
synthesis.

The evidence synthesis will require a protocol or 
project plan, which will in turn include a description of 
the methods used to conduct the search. The searcher 
will need to gain an understanding of the purpose and 
scope of the research synthesis by reading the proposal 
and related documentation, as well as any key known 
relevant studies and related documents that have already 
been identified. The searcher should clarify the review 
question and any search issues arising with other team 
members. The searcher will also ascertain whether the 
synthesis is a rapid review or an extensive evidence 

synthesis, because this will determine several search 
decisions (see table 5.2).

Once the search topic and the purpose of the review 
is known, the searcher can begin to develop the detailed 
searches, taking into account the concepts that will fea
ture in the search, the search terms that will capture the 
concepts, and the bibliographic databases that will be 
searched.

5.4.2 Identifying Concepts

The research question the research synthesis is seeking 
to answer is often broken down into its key concepts 
(Lefebvre, Manheimer, and Glanville 2011). These con
cepts are also used to develop the search strategy (de Vet 
et al. 2008; Lefebvre, Manheimer, and Glanville 2011; 
Booth 2016). Many conceptual models are available; the 
choice among them depends on the question being asked 
(see table 5.3). The important thing is that usually the 
final search strategies will not try to capture all of the 

Table 5.3 Examples of Published Conceptual Breakdowns

Acronym Concepts Usage

PICO/PECO (European Food 
Safety Authority 2010; Lefebvre 
et al. 2011)

Population, intervention or exposure, 
comparator, outcomes 

Reviews evaluating the effects of an 
intervention or exposure

PIT (de Vet et al. 2008; European 
Food Safety Authority 2010)

Population, index test, target condition Reviews of test accuracy

PO (European Food Safety 
Authority 2010)

Population, outcome Reviews that aim to answer descriptive 
questions: questions about prevalence, 
occurrence, consumption, and incidence

PICOTD (Elias et al. 2015) Population, intervention/exposure, 
comparator, outcomes + time + data

Reviews with measures of outcomes of 
interest, for example, blood glucose 
tests or hba1c levels

PICOCs (Petticrew and  
Roberts 2006)

Population, intervention or exposure, 
comparator, outcomes + context + 
study design

Reviews in the social sciences

ECLIPSE (Wildridge and  
Bell 2002)

Expectation, client group, location, 
impact, professionals, service

Reviews of service change

SPIDER (Cooke et al. 2012) Sample, phenomenon of interest, design, 
evaluation, research type

Reviews of qualitative and mixed method 
studies

SPICE (Booth 2006) Setting, perspective, intervention, 
comparison, evaluation

Reviews in which perspectives of the 
intervention need to be captured and the 
impact of the evaluation is important

source: Author’s compilation.
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concepts because search strategies with many concepts 
may be overprecise and lack sensitivity: a typical data
base record with only a title, abstract, and subject index
ing may not contain all four or five of the desired 
concepts in a particular research question. Concepts not 
captured in the search strategy, however, will still be 
required at the record selection stage of research synthe
sis, when they are used to select records most likely to 
meet the eligibility criteria.

The concepts that should be included in the search 
strategy are determined by exploration, but certain key 
issues typically inform the choice:

The most specific concept is often included in the search 
strategy because it is crucial to the research question 
and may yield the smallest number of records. For 
example, in a review of the diagnostic test accuracy 
of a new imaging technique to detect breast cancer, 
the imaging technique is likely to be the most specific 
concept relative to the disease being detected and the 
outcome of disease detection.

The outcomes concept is often not captured in the search 
because the outcomes may be various, difficult to cap
ture, or similar to the population concept. For example, 
in a review of the effectiveness of smoking cessation 
interventions, the outcomes can be described in many 
ways and may also involve search terms that have been 
used to capture the population, such as “smoking” or 
“tobacco.” As noted earlier, outcomes addressed in a 
document may not all be listed in an abstract.

The comparators (if these feature in the conceptual 
breakdown) are often not included in the search. For 
example, a review question on probiotic feed supple
mentation for the prevention of Salmonella infection 
in poultry may not include a concept for the compar
ators because these may be too various to describe or 
include “doing nothing” or “no supplementation,” 
which can be difficult to capture in search terms. 
Comparators may be difficult to search for if they 
have not been explicitly described in the abstract: the 
idea of a comparison may be indicated by the word
ing, but the specific comparators may not be stated.

Sometimes a concept to capture the study designs of 
interest may be included in the search strategy. 
Decisions on whether to introduce such a concept 
will hinge on how many study designs might need 
to be captured and whether the terminology used to 
describe the study designs is consistent within and 

across disciplines and databases. Where the study 
designs are few and consistently described, adding 
a study design concept to the search may be helpful 
but should be considered on a database by database 
basis. Strategies to find specific study designs may 
be available as published search filters.

Searchers should develop the strategy in a single data
base that has been identified as important to the research 
synthesis question. Later, they can adapt the search strat
egy to run in other databases, but this is usually only after 
a series of iterations to improve the search strategy. To 
illustrate the search development process, let us look at 
the example topic of memory accuracy of adult eyewit
ness testimony. The conceptual breakdown of this ques
tion might initially be considered to be adults, eyewitness 
testimony, and memory accuracy.

Increasingly, searchers may wish to make use of text 
mining (text analysis) tools, which can help assess the 
concepts available within a literature. Text analysis 
packages analyze the frequency of words and concepts 
in sets of records. This can reveal both frequently occur
ring words and phrases, which could be tested in strate
gies, and the presence of concepts within sets of records. 
Many packages provide helpful visual representations of 
the features of the records, which can help with both 
concept and term identification. It is possible to carry out 
a broad scoping search—such as “eyewitnesses AND 
memory”—in a database such as PsycINFO, download 
the results and then load the results into text visualiza
tion software such as VOSviewer, which displays the 
concepts within those records.

The searcher’s next tasks are intertwined: to explore 
which terms will capture concepts and to decide which of 
the concepts will feature in the final strategy, and in what 
combination.

5.4.3 Identifying Search Terms

Once the searcher has identified potentially useful  
concepts, efforts usually focus on identifying as many 
relevant terms as possible (Centre for Reviews and Dis
semination 2009; European Food Safety Authority 2010; 
Lefebvre, Manheimer, and Glanville 2011; Petticrew 
and Roberts 2006). Searchers should exploit search 
strategy techniques and database functionality within the 
available interfaces to achieve this, for example, through 
building a list of relevant and related search terms and by 
using truncation and proximity operators (Lefebvre, 
Manheimer, and Glanville 2011) (table 5.4). Inevitably, 
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Table 5.4 Database Interface Search Options

Option Description Examples

Truncation Used to specify different word endings to a word 
root. This reduces the number of freetext terms 
that must be typed.

In the Web of Science interface, “lactobacill*” 
will identify records containing the terms 
lactobacillaceae, lactobacillus or lactobacilli.

Character will differ depending on the database 
interface. Some interfaces permit the 
specification of a maximum number of 
additional characters.

In the Ovid interface, “random$3” will find all 
word variants (within 3 letters) ranging from 
“random,” through “randomly” to “randomise” 
and “randomize,” but not “randomised” or 
“randomized.” However, “random$” will 
retrieve all terms with the stem “random” no 
matter how many characters follow the stem.

A short word stem of three letters or less should 
be avoided because it is likely to retrieve too 
many irrelevant records.

Should be used carefully because it may also 
retrieve words that are not required.

Some database interfaces will permit lefthand 
truncation as well as righthand truncation.

Wildcards Account for internal spelling variation and can be 
particularly useful when trying to capture 
differences in UK and US spelling. 

In the Ovid interface, “randomi?ed” will identify 
records containing the word “randomized”  
as well as “randomised.”

In the EBSCO interface, the wildcard is ? or #. 
“ne?t” retrieves records containing “neat,” 
“nest,” or “next.”

Phrases Ensure that terms appear next to each other. In the Ovid interface, “criminal adj justice” finds the 
exact phrase “criminal justice.” In the EBSCO 
interface, exact phrases have to be surrounded by 
double quotes, for example, “criminal justice.”

Proximity 
operators

Ensure that terms appear near to each other. 
Usually the maximum distance that the terms 
can be apart is specified. 

Offer better precision than the use of AND alone, 
since terms linked by AND may be widely 
separated within a record and semantically 
unrelated.

In the Ovid interface
Breast adj3 (cancer* or neoplasm* or tumor* or 

tumour*) will search for “breast” within three 
words of any of the terms in the brackets.

This search string would therefore identify a range 
of word groupings including “breast cancer,”  
as well as “breast and colon neoplasms.”

In the Web of Science interface, the NEAR/x 
operator is available:

Salmon near/4 virus.

Restricting 
search terms to 
specific fields

Ensures that the search terms are searched only in 
nominated fields such as the title or the author 
keywords.

In the PubMed interface, searches can be limited 
to the title by using the field code within square 
brackets: “criminal justice [ti].”

In the Ovid interface, searches can be limited to 
the title field by using a suffix, for example, 
“Criminal.ti.”

Explosion of 
subject 
headings

Many interfaces to databases with subject 
indexing offer the facility to “explode” subject 
index terms to automatically include any more 
specific terms in the search.

In the Ovid interface to PsycINFO, exploding 
“Short Term Memory” (exp short term 
memory/) would also retrieve records for 
“Iconic Memory.”

source: Author’s compilation.
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conducting sensitive searches involves a tradeoff in 
terms of reduced precision. This tradeoff should be 
acknowledged as part of the research synthesis search pro
cess, and an appropriate balance should be sought within 
the context of the resources available.

The default search terms in any search strategy are 
likely to be those used to search the title and abstract of a 
record because at some point the search strategy will prob
ably be used in databases that do not have subject indexing 
schemes. However, for databases that do offer index
ing terms, the searcher will need to identify relevant index
ing terms and include them in the search strategy. Database 
subject indexing schemes are often hierarchical, broader 
(more general) indexing terms having one or more nar
rower (or more specific) term or terms below them. Sub
ject indexing schemes may also offer related terms that 
crossreference related subject headings. Usually, the data
base interface provides search tools to assist with identify
ing subject indexing terms and terms around them in the 
hierarchy. For example, the “Map term to subject heading” 
function in the Ovid interface automatically identifies rele
vant index terms in an indexed database for any freetext 
terms entered.

Databases that offer subject indexing, such as PsycINFO, 
provide a way to search information sources using a con
trolled vocabulary. Terms from a controlled vocabulary, or 
thesaurus, are assigned to records, usually by a human 
indexer, to describe the content of the item. Subject index
ing terms are valuable in increasing the sensitivity of a 
search because they provide a way of retrieving records 
whose authors may have used different words to describe 
the same concept. They can also be used to provide infor
mation in addition to that contained in the title and 
abstract. Indexing schemes are not interchangeable across 
databases; the indexing terms used in PsycINFO are likely 
to be different from those in another database. This is one 
reason a search strategy must be adapted before it can be 
run in another database. For example, MEDLINE does not 
have a Medical Subject Heading (MeSH) for “eye wit
ness,” “witness,” or “testimony,” but does have a MeSH for 
“Expert testimony,” whereas the Criminal Justice Abstracts 
subject indexing scheme has several terms around the con
cept of “witness,” including “Witness Credibility” and 
“Witnesses.”

The initial development stage for a strategy to find 
records about the accuracy of eyewitness memory is 
shown in figure 5.1. Many of the subject indexing terms 
specific to PsycINFO relating to memory are specific 
terms and are below “Memory” in the subject indexing 

hierarchy. If all the more specific subject indexing terms 
below “Memory” are relevant to the question, the searcher 
can explode the term “Memory” and retrieve records with 
all the more specific indexing terms around different types 
of memory in one action. However, the detailed entries in 
the PsycINFO thesaurus suggest that some of the more 
specific memory terms would not be relevant, so a searcher 
would select only those headings that seem potentially 
helpful to reduce the number of irrelevant records retrieved. 
Explosion can be a timesaving feature, but should not be 
used automatically; searchers should explore its impact by 
looking at the thesaurus.

Searchers should be aware that controlled vocabularies 
used by databases have evolved over time, with index 
terms being added and removed to reflect developments 

Database: PsycINFO <1806 to June Week 2 2016>
Search Strategy:

1 witnesses/ (4464)
2 witness$.ti,ab. (15890)
3 legal evidence/ (987)
4 legal testimony/ (1667)
5 or/1-4 (18470)
6 (memory or memories).ti,ab. (173295)
7 memory/ (55471) 
8 false memory/ (1946)
9 explicit memory/ (1015)
10 long term memory/ (4118)
11 recall$.ti,ab. (49821)
12 memory decay/ (991)
13 retrospective memory/ (164)
14 short term memory/ (20914)
15 spatial memory/ (5024)
16 verbal memory/ (2591)
17 visual memory/ (2523)
18 or/6-17 (206518)
19 5 and 18 (2687)
20 “300”.ag. (1512281)
21 (19 and “300”).ag. (1163)

Key: / indicates a subject heading search
$ - truncation symbol, finds all terms with the stem
.ti,ab. searches for words in the title and abstract
Or/1-4 combines results in set lines 1, 2, 3, or 4
.ag. searches records with PsycINFO specific age group 
codings. And Boolean operator to identify records 
containing results in both sets.

Figure 5.1 Preliminary PsycINFO Search

source: Author’s tabulation.
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in the discipline covered by the indexing scheme. This 
can affect the design of the search strategy. For exam-
ple, few MeSH index terms related to study design 
were available pre-1990. Therefore, the index terms 
must be supplemented with relevant free-text terms 
(searching the title and abstract) to retrieve this older 
material (Lefebvre, Manheimer, and Glanville 2011).

Indexing terms alone are not enough when searching for 
studies for a research synthesis; in addition, the accuracy 
of indexing can be affected by an author who reports study 
methods and objectives poorly, or by an indexer who fails 
to notice the methods reported in the publication. Indeed, 
some databases include records without indexing as well 
as records with indexing, so that a search limited to subject 
indexed records will miss those that have no indexing. 
Subject indexing can also fail to capture the topic of inter-
est at the granularity required: papers on male breast 
cancer, for example, may be indexed under a heading that 
includes both male and female breast cancer. Care should 
also be taken when searching in topic areas that do not use 
the precisely defined vocabularies found in disciplines like 
medicine and veterinary science. Where subject indexing 
is inadequate, for whatever reason, searchers will be aware 
that they are relying much more on the free-text terms in 
the strategy, and that using the subject indexing terms may 
impact on precision.

Subheadings are used by some subject indexing schemes 
such as MeSH for MEDLINE. Subheadings are added to a 
subject indexing term to focus it. For example, in Ovid 
MEDLINE, the search construction “Probiotics/ae” will 
restrict the probiotics subject indexing term to those 
records where the indexer has noted that the adverse 
effects of probiotics are addressed. Where subheadings 
are offered, they can also be searched on their own and 
unattached to specific subject headings; in this context they 
are called floating subheadings. In Ovid MEDLINE, the 
search construction “Probiotics/ and ae.fs.” will find 
records indexed with the term “Probiotics” and have adverse 
effects applied as a subheading to any of the indexing terms 
in the record. This is less precise than “Probiotics/ae” but 
may increase the sensitivity of the search. As with indexing 
terms, subheadings will have been applied to bibliographic 
records by a human indexer and are therefore not infallible. 
For this reason, it is suggested that, when constructing a 
search strategy for research synthesis, subheadings should 
not be used as the sole approach to searching but instead as 
an additional search approach.

Searchers can identify search terms in a number of 
ways: from key relevant papers provided by the review 

team (a technique often labeled as pearl growing) or 
identified from records retrieved by simple scoping 
searches. These records would be assessed for relevance 
by eye or by using text-mining software (Hausner et al. 
2012, 2015; Paynter et al. 2016). Text-mining techniques 
can process large volumes of records rapidly and provide 
lists of the terms and phrases that occur more or less fre-
quently within the records. Search terms can also be iden-
tified from the strategies included in published research 
syntheses, from experts on the research team, and by con-
sulting online thesauri, dictionaries, and webpages.

Given the example topic of memory accuracy of adult 
eyewitness testimony, we might try some scoping searches 
within a relevant database such as PsycINFO. Typing in a 
search phrase such as “eye witness” into PsycINFO (Ovid 
interface) and using the “Map term to subject heading” 
yields the following candidate subject headings (assigned 
by indexers): witnesses, memory, suggestibility, and recall 
(learning). Subject indexing terms can also be obtained by 
looking at the records of key known studies, identifying 
the subject index terms, and then looking them up in the 
PsycINFO thesaurus within the Ovid interface.

Exploring the indexing term “Witnesses” shows related 
subject indexing that might also be helpful to add to 
the term lists to be tested in exploratory searches: legal 
evidence and legal testimony.

Searching on “memory” in PsycINFO brings up many 
potentially relevant headings, including the following:

• false memory,

• explicit memory,

• long term memory,

• memory,

• memory decay,

• retrospective memory,

• short term memory,

• spatial memory,

• verbal memory, and

• visual memory.

Each subject indexing term will have a definition or 
scope note, which may provide context and information 
to help with deciding whether it is a relevant indexing 
term to use in the strategy. Information will also indi-
cate when the term was introduced into the database; to 
identify older records, additional search terms should be 
considered. The listings show that “eye witness” is not 
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available as a subject index term but that other terms are 
available.

As well as terms that capture the topic exactly, such as 
“memory” and the synonyms for those terms, such as 
“recall,” related terms and broader or narrower terms can 
be helpful to increase the sensitivity of the search and to 
take account of author variability and records with lim-
ited searchable text. This is why “legal” and “forensic” 
might be useful additions. The following factors are also 
important to consider and take into account:

• differences in US and UK English spelling and 
national terminologies, for example, “behavior” as 
well as “behaviour”;

• abbreviated and unabbreviated terms, as well as 
acronyms;

• differences in word ending (singular and plural, 
but also past and present tense, active and passive 
verb forms) (for example, in figure 5.1, “witness” 
is truncated using the Ovid $ option to ensure that 
“witness” and “witnesses” are retrieved);

• both the generic and branded names of products, 
such as pharmaceuticals, pesticides, and chemicals;

• scientific and common names of organisms; and

• changes in vocabulary over time (for example, third 
world country, developing country, low-income 
country).

When exploring the terms within a strategy, the use  
of facilities such as truncation and proximity operators 
offered by the database interface will also come into play. 
Typical search interface options are described in table 5.4 
and some are shown in figure 5.1.

Once the searcher has compiled lists of candidate 
terms to reflect the concepts, ways to combine the terms 
and concepts together are explored.

5.4.4 Combinations: Using Boolean Operators

In many database interfaces, search terms, and concepts 
are combined together using Boolean operators (AND, 
OR, NOT).

The OR operator will find records containing one or 
more of the search terms; using OR makes the search 
results larger. It should be used to accumulate search 
terms for the same concept. For example, in figure 5.1, the 
terms related to the concept of “witnesses” are gathered 
in set 5 by combining sets 1 to 4 using OR. The “mem-

ory” terms are gathered together in a large set by com-
bining sets 6 to 17 together using OR.

The AND operator will find records containing all of 
the concepts in the combination; using AND makes the 
search narrower or more focused. It should be used to 
join two (or more) concepts together. In figure 5.1, the 
two concepts “witnesses” and “memory” are combined 
together in set 19 using AND. The result of the AND 
combination is a smaller number of records than either 
“witnesses” or “memory” because the result set has to 
contain records that mention both concepts.

The NOT operator is used to exclude records from the 
search (Lefebvre, Manheimer, and Glanville 2011). 
However, it should generally be avoided because it can 
have a significant impact on the sensitivity of the search 
by inadvertently removing relevant records. For exam-
ple, searching for “adults NOT children” would remove 
not only records that are just about children, but also 
any record that was about both adults and children, simply 
because it mentioned children (figure 5.2).

Exploring the records retrieved by scoping searches 
about eyewitness memory shows that a range of issues 
are investigated and might be potentially relevant. The 
exploration suggests that a simple three-concept search 
risks missing relevant studies. In the light of this, a series 
of searches might be considered, which seek to compen-
sate for the fact that the literature is not captured neatly 
by one conceptual breakdown, and it is, in fact, multifac-
eted. An example of different conceptual breakdowns 
and a series of combinations, whose results are all gath-
ered into a final result set, is shown in figure 5.3.

Adults Children

Figure 5.2. The Negative Impact of Searching for Adults 
NOT Children

source: Author’s tabulation.
note: Only the records in the darker shade will be retrieved.
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The use of Boolean operators can be quite stringent and 
produces binary results: records are either retrieved or not 
retrieved because of the presence or absence of terms. The 
Boolean operators are not fuzzy and cannot reflect proba
bilities that a record may be relevant. As text mining 
becomes more widely available, we may see more occa
sions where, with complex multidimensional topics such 
as the eyewitness memory example, text mining is used to 
interrogate large sets of records (achieved, perhaps, through 
sensitive searches). Textmining techniques can facilitate 
the design of queries to select records according to the 
probabilities that they are relevant and to present records in 
potential order of relevance. Researchers can then review 
records in order of possible relevance, decide at what point 
the relevant records have been exhausted, and possibly 
stop screening (O’MaraEves et al. 2015; Shemilt et al. 
2014; Paynter et al. 2016).

Boolean logic is also unable to take account of the true 
focus of a document. For example, searches may retrieve 
records about “eye witnesses” when the only mention of 
the “eye witnesses” is in the final concluding sentence, 
which might be suggesting, perhaps, that “eye witness tes
timony should be sought.” The reader understands that 
this is a recommendation and is not likely to reflect the 
main focus of the record. However, the simple presence of 
relevant terms means that Boolean searches will retrieve 
this record. Boolean logic is also unable to search using 
the meaning of words within records. Developments in 
text mining may again prove useful in improving preci
sion in record retrieval because textmining techniques 
can help with semantic analysis of records (O’MaraEves 
et al. 2015).

However, for most strategies the searcher will develop 
for bibliographic database searching, development still 
usually involves identifying concepts and combining them 
with Boolean operators. Typically, the most specific con
cept is developed and tested first. If search results are rela
tively small, or the synthesis team are willing to screen 

many records, a single concept may be adequate. How
ever, the volume of results returned by the search may lead 
the research team to decide that additional concepts need 
to be added to the search to keep the number of retrieved 
records manageable. The searcher should explore the 
impact of adding the next most specific concept (using the 
AND operator) within the key database. The searcher will 
assess the impact of adding a second concept in terms of 
what proportion of the records that have been excluded 
were relevant. If a number of relevant records are lost by 
adding the second most specific concept, those records 
need to be explored to identify why they were missed. This 
might lead the searcher to the identification of additional 
terms to add to one or more concepts; it might also lead to 
the decision to abandon the second concept and to try 
another concept. Alternatively, it might lead to the conclu
sion that several search combinations will be necessary (as 
in figure 5.3). This type of multistranded or multifaceted 
approach is often seen in reviews of diagnostic test accu
racy studies and complex topics (de Vet et al. 2008). This 
exploration continues until the strategy seems to be captur
ing as many relevant records as possible and not excluding 
large numbers of relevant records.

Searches for reviews of qualitative evidence, as noted 
earlier, may be developed differently from those for 
reviews of quantitative evidence. Rather than trying to 
develop a single search strategy, searching for qualitative 
studies may involve a series of searches looking at differ
ent aspects of the research question. New topics may be 
introduced to the search as the researchers read publica
tions that suggest new avenues that should be explored. 
The series of searches is undertaken using a model of 
purposeful sampling (Booth 2016).

5.4.5 Focusing Searches

A range of methods to focus a search strategy may be con
sidered; these are often expressed as limits. Some data
bases and database interfaces may offer builtin options to 
limit by one or more features. Database interface limits 
should be used with care because they may have unex
pected effects; they also make the search reliant on the 
quality and consistency (and availability) of subject index
ing within records. All limits should be justified within the 
research synthesis protocol (see chapter 21) to ensure that 
bias is minimized.

5.4.5.1 Population Limits Some research synthesis 
questions may contain concepts relating to an organism or 
population group, such as female adults, or domestic pets, 

1.   Eyewitness concept AND testimony concept
2.   Testimony concept AND memory concept
3.   Eyewitness concept AND memory concept
4.   Memory concept AND accuracy concept AND legal
      settings concept
5.   1 OR 2 OR 3 OR 4

Figure 5.3 Second Stage PsycINFO Search:  
Developing the Conceptual Approach

source: Author’s tabulation.
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or bacteria. Databases may offer features to focus searches 
to those populations through indexing on issues such  
as age, sex, or species. The value and impact of using 
these options should be assessed carefully. The available 
searching and limiting options will vary from database 
to database. Developing searches to capture these issues 
can be challenging and the ISSG Search Filter Resource 
includes example filters that provide indications of how 
such searches could be developed (Glanville, Lefebvre, 
and Wright 2008).

In the example search, combining two concepts with 
AND to focus on memory and witnesses might then lead 
us to consider whether to add in a further concept for 
adults, since many of the papers retrieved would be about 
children as witnesses. Adding in a third concept, making 
use of PsycINFO’s age group coding (ag field), shows that 
the number of records retrieved is reduced (figure 5.1). 
However, the records that are no longer retrieved by add
ing the age concept would need to be explored to ensure 
that focusing on adults was not eliminating relevant 
records.

5.4.5.2 Date and Language Limits If date or lan
guage limits have been agreed at the protocol develop
ment stage, these may be added to the search using a 
limiting option offered by the database interface or by 
restricting the results using a date or language field, where 
those are available. Date limits should only be consid
ered if the context has changed since a specific date, for 
example, with the introduction of a new law, or standard, 
or technology (Lefebvre, Manheimer, and Glanville 
2011). Language limits may have been considered when 
the protocol was developed, if resources do not permit 
assessment of studies in all languages.

5.4.5.3 Geographic Limits In cases in which the geo
graphic context is crucial to the synthesis question, the 
search may include a concept to focus on geographical 
areas. Achieving such a focus is as challenging as devis
ing any other concept. The concept will make use of infor
mation in the title, abstract, and subject indexing, as well 
as information in other fields such as the author affilia
tions and any other country coding that specific databases 
have applied to records. The ISSG Search Filter Resource 
contains some geographic filters that provide an indica
tion of how geographic searches can be developed.

Sometimes it may be more efficient to remove geo
graphic areas that are not relevant than to try to retrieve 
records by focusing on the relevant area. For example, if 
European countries are the focus, it might be safest to 
exclude studies about South America, Australasia, and the 

United States than to try to create a strategy sensitive 
enough to find all the European studies.

5.4.5.4 Publication Type or Format Limits Because 
studies are not always published in journal articles, it is 
often inappropriate to restrict the search in terms of exclud
ing publication formats such as books or conference 
abstracts. The searcher will need to explore the impact of 
any such restrictions to ensure that relevant records would 
not be missed.

Sometimes, particular parts of journals—such as editori
als, news stories, or comments—are viewed as unlikely to 
report relevant information for a synthesis, and are explic
itly excluded from the search strategy. However, such 
exclusions should be made only after careful thought and 
investigation. For example, excluding letters may result in 
the loss of additional information where an author has 
reported an earlier study, a correction, or new information 
about a study that has been published elsewhere (Lefebvre, 
Manheimer, and Glanville 2011). Similarly, retractions of 
research are often first recorded in papers coded as “Com
ments” in MEDLINE, so excluding such papers (a common 
practice in searching) risks missing important relevant 
information (Wright and McDaid 2011).

5.4.5.5 Search Filters Search filters are tested, and 
ideally validated, search strategies designed to retrieve 
specific types of study or topic, such as a specific popula
tion, from a named database (Jenkins 2004; Wilczynski 
et al. 2016; Wood and Arber 2016a). They usually con
sist of indexing and freetext terms that describe the 
study design or topic of interest. The filter is added to 
the search strategy to provide an additional concept, for 
example, restricting the results of the search to a required 
study design or topic of interest. The ISSG Search Filter 
Resource is a free website that collates published and unpub
lished search filters grouped by study design and focus.

The value and availability of search filters for searches 
outside the healthcare field is not well researched. In 
health care, published search filters have been developed 
primarily for use in large biomedical bibliographic data
bases such as MEDLINE. Little research has been under
taken into filters designed for use in the wider range of 
information sources required by reviewers searching, for 
example, the psychology, criminology, veterinary, or agri
cultural literature. Moreover, whereas research has sug
gested that filters to retrieve RCTs in MEDLINE and 
Embase are reliable, evidence for the sensitivity and recall 
of filters for the wide range of other study designs is lim
ited in health care and even more scarce in other disci
plines (Booth 2016; Petticrew and Roberts 2006).



SEARCHING BIBLIOGRAPHIC DATABASES   91

Even when filters are available, they should be used 
with caution. Before incorporating any search filter into a 
search strategy, the searcher should assess the reliability of 
the filter’s reported performance by exploring the methods 
used to create it. If a filter is several years old, its current 
effectiveness should be considered given the frequent 
changes in interfaces and indexing terms that affect data
bases (Lefebvre, Manheimer, and Glanville 2011). Guid
ance on critically appraising search filters is available (Bak 
et al. 2009; Glanville et al. 2008; Jenkins 2004).

We are likely to see the development of alternative 
approaches to applying search filters in bibliographic data
bases. Textmining approaches allow us to conduct highly 
sensitive searches across a range of databases, to load 
results into the text mining applications, and then to inter
rogate the results either using machinelearning approaches 
or by developing relevance rules (O’MaraEves et al. 
2015; Paynter et al. 2016). Machine learning involves 
“training” textmining software to distinguish relevant 
records from irrelevant records. For complex synthesis 
questions that might benefit from text mining, it could be 
helpful to consult a textmining expert early in the project 
to explore options for using text mining to aid the search
ing and record selection processes.

5.4.6 When to Stop Searching

Developing a search is an iterative and exploratory pro
cess. The searcher needs to explore tradeoffs between 
search terms and assess their overall impact on the sen
sitivity and precision of the search. It is often difficult  
to decide in a scientific or objective way when a search 
is complete and search strategy development can stop. 
Searchers typically develop stopping decisions through 
the experience of developing many strategies. However, 
suggestions for stopping rules have been made around 
the retrieval of new records: we might stop the develop
ment process if adding in a series of new terms to a data
base yields no new relevant records or precision falls 
below a certain point (Chilcott et al. 2003). Stopping 
might also be appropriate when the removal of terms or 
concepts results in losing relevant records. Although 
many methods have been described to assist in deciding 
when to stop developing the search, few formal evalua
tions of the approaches have been undertaken (Booth 
2010; Wood and Arber 2016b).

At a basic level, the searcher needs to investigate that a 
strategy is performing adequately. One simple test 
involves checking whether the search is finding the pub

lications recommended as key publications or included in 
other similar reviews. However, it is not enough for the 
strategy to find only those records because it might be a 
sign that the strategy is biased to known studies and other 
relevant records might be being missed. The use of cita
tion searches and reference checking are also useful 
checks of strategy performance. If those additional meth
ods are finding documents that the searches have already 
retrieved, but that the team did not necessarily know 
about in advance, the results are one sign that the strategy 
is performing adequately. The searcher can also use the 
PRESS checklist to assess the quality of the strategy 
(McGowan et al. 2016). If some of the PRESS dimen
sions seem to be missing without adequate explanation, 
or arouse concerns, the searcher could conclude that the 
search may not yet be complete.

Other statistical techniques can be used to assess perfor
mance, such as capture recapture (Spoor et al. 1996) and 
the relative recall technique (Sampson and McGowan 
2011; Sampson et al. 2006). These techniques may be most 
useful at the end of the search process because they rely on 
the achievement of several searches to make judgments 
about the overall performance of strategies. Capture recap
ture needs a set of hand searched or similar results to com
pare with a database search to estimate the number of 
missed studies. Relative recall requires a range of searches 
to have been conducted so that the relevant studies have 
been built up by a set of sensitive searches. The perfor
mance of the individual searches can then be assessed in 
each database by determining how many of the studies 
included in the research synthesis, indexed within a data
base, can be found by the database search used in the syn
thesis. If a search in a database did not perform well and 
missed many known relevant studies, that search strategy 
is likely to have been suboptimal given that it missed 
studies. If the search strategy found most of the studies 
that were available to be found in the database, then it was 
likely to have been a sensitive strategy. Assessments of 
precision could also be made, but these mostly inform 
future search approaches because they cannot affect the 
searches and record assessment already undertaken.

In research synthesis involving qualitative evidence, 
searching is often more organic and intertwined with the 
subsequent analysis of the identified research, such that 
the searching stops when new information ceases to be 
identified (Booth 2016). The reasons for stopping search
ing in this case need to be documented; methodologists 
have suggested that explanations or justifications for 
stopping may center on saturation (Booth 2016).
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When developing search strategies, searchers will often 
find it helpful to make use of database interface facilities 
such as saved searches so that the search can be saved 
within the database interface and edited easily. This is 
more efficient than retyping the search regularly and min
imizes retyping errors.

5.4.7 Search Strategy Peer Review

Research synthesis methods encourage the use of double 
independent reviewing for many tasks. Ideally, search 
strategies should be peer reviewed by an independent 
information specialist. However, this type of support may 
not always be available locally. To support opportunities for 
peer review, informal reciprocal networks are being devel
oped. In the healthcare domain, PRESSForum offers inde
pendent peer review of search strategies (PRESSForum 
n.d.). Information sharing discussion lists such as expert-
searching@pss.mlanet.org can be helpful resources to ask 
questions about searching problems.

Published guidance in the form of a checklist, Peer 
Review of Electronic Search Strategies (PRESS), is also 
available to assist with detailed and consistent peer review 
and selfassessment of strategies (McGowan et al. 2016). 
The checklist is not weighted, so the relative importance 
of the dimensions of the checklist has to be determined on 
a case by case basis. The PRESS checklist can be used by 
the searcher, the peer reviewer, or by a journal referee 
to assess the quality of a search strategy. Other critical 
appraisal tools for search strategies are available (European 
Food Safety Authority 2015).

5.4.8 Main or Primary Searches

Once the searcher has finalized the search strategy in the 
key development database, and ideally had the strategy 
peer reviewed, the searches can be translated carefully to 
run in the other databases listed in the research synthesis 
protocol. In the example search, the PsycINFO strategy 
would be adapted to run in Criminal Justice Abstracts in 
the EBSCO interface by making the following changes:

select the relevant subject indexing terms for Criminal 
Justice Abstracts;

investigate whether it is possible to limit to adults in 
Criminal Justice Abstracts;

convert the search syntax, such as truncation symbols, 
set combination, and field limits, from the Ovid 
interface to those required by the EBSCO interface.

If the strategy is to be run in a database without a sub
ject indexing scheme, such as Science Citation Index 
(Thomson Reuters n.d.b), the searcher would remove the 
subject headings and would need to rethink or possibly 
remove the adult concept.

The searcher will also undertake any of the other 
research identification methods agreed to in the synthesis 
protocol. These might include grey literature searches 
(chapter 6), hand searching, reference checking, contact
ing experts, citation searches on key papers, named 
author searching, and following any “related references” 
links offered by some databases. It is probably most effi
cient for the searcher to do these searches after the results 
of the main database searches have been loaded into bib
liographic software, so that only new records need to be 
added to the software. Some of these additional searches 
may yield results that can be easily uploaded. Others may 
result in the need to cut and paste references.

For syntheses of qualitative data, the searches may not 
be undertaken as a single block after which the search 
results are analyzed. Instead, searches may be more explor
atory, organic, and sustained over a longer period (Booth 
2016). A search might yield results that might suggest new 
topics, which then involve new searches. This process 
might continue until no further new topics are identified. It 
is likely to require a more extended series of dialogues 
between the searcher and the rest of the research team than 
a synthesis of quantitative evidence.

5.4.9 Managing the Search Results

The searcher will need to manage the records retrieved by 
the searches carefully so that none are misplaced or ignored 
during the rest of the research synthesis process. Biblio
graphic software can make the storage, deduplication, 
and management of references retrieved from database 
searches more efficient. Bibliographic software includes 
packages such as EndNote, Reference Manager, RefWorks, 
Zotero, or Mendeley. A table listing a range of biblio
graphic software is provided in Wikipedia (Wikipedia 
2018a). Many academic organizations provide biblio
graphic software to students and staff.

At the end of each search, the searcher should down
load the results of the search, if possible, as a structured 
(tagged) file that can be loaded into bibliographic soft
ware. A common structured format that permits loading 
into many bibliographic software packages is the RIS 
format (Wikipedia 2018b). Once loaded into a package, 
the research team can manage the records through the 
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various stages of the research synthesis process. Bib
liographic software typically offers tools to rapidly 
deduplicate records obtained from several databases. It 
can also index records on several fields, including fields 
that users can define and use to store process information, 
such as the information source from which records were 
downloaded, the date of the search, whether the docu
ment is eligible for the synthesis, notes on reasons for 
inclusion or exclusion, document ordering information 
(date, source, format, cost), and document storage infor
mation. Bibliographic software may also provide the 
option to create virtual groups of publications and to iden
tify and link the full text of documents to the record. Bib
liographic software can also link into word processing 
packages to generate the references for the final synthesis 
report if desired; references can be quickly formatted to 
meet different citation styles.

5.4.10 Record Selection

Record selection is described in detail in most research 
synthesis guidance with many practical tips (Higgins and 
Green 2011; Collaboration for Environmental Evidence 
2013; Kugley et al. 2015; Centre for Reviews and Dis
semination 2009; European Food Safety Authority 2010; 
Petticrew and Roberts 2006; Eden et al. 2011; Joanna 
Briggs Institute 2014). Record selection may be achieved 
within bibliographic software; records may also be exported 
to other software for selection, such as Excel, DistillerSR, 
or Covidence. Tools developed specifically for record 
selection can be identified from the SR Toolbox (Marshall 
n.d.). As textmining techniques become more widely used, 
machinelearning tools may become a more common part 
of the record selection process (O’MaraEves et al. 2015). 
Best practice, advocated in many guidelines, is for record 
selection to be undertaken by two researchers inde
pendently and for a third researcher to be involved in cases 
of disagreement.

Record selection should be guided by the research syn
thesis protocol. Often researchers prepare a checklist, 
based on the protocol, to assist with deciding whether a 
record is to be included or excluded. Record selection 
may be a two or threestage process. Sometimes, stage 
one involves removing obviously irrelevant records rap
idly. In our example, studies that are clearly only about 
children as eyewitnesses might be quickly removed as a 
stage 1 exercise. This permits the more relevant studies to 
be seen more clearly. The second stage is usually an 
assessment of how far a record meets the synthesis eligi

bility criteria based on information contained within the 
title and abstract of the record. If a record is clearly rele
vant, it is retained, but also if its relevance remains 
unclear, it is retained because the decision requires more 
information from the full document. If a record is clearly 
irrelevant, it is rejected. Investigators should assign a 
rejection reason if possible so that records can be revis
ited if necessary. Disagreement or a lack of clarity about 
the eligibility criteria may indicate a need for a team dis
cussion. Disagreements may be adjudicated, perhaps by a 
senior investigator, and sometimes adjudication may 
involve a change to the eligibility criteria and an atten
dant change to the protocol.

After the research team has completed the selection pro
cess, it will seek to obtain fulltext copies of the documents 
to assess whether the documents are truly relevant to the 
synthesis question. Access to fulltext documents may be 
via the internet, library subscription services, or via interli
brary loan services. Sometimes the document’s author will 
be contacted for a copy of a document. It is important to be 
vigilant for additional information relating to a publica
tion. For example, a conference paper may have an abstract 
but also a PowerPoint presentation available. Journal arti
cles may have supplementary information in files on the 
journal website that are separate from the paper itself. This 
information needs to be obtained as well to ensure that the 
research data are as complete as possible.

Research team members then read the full documents 
and consider whether the documents meet the eligibility 
criteria for the synthesis. The reasons for rejecting a doc
ument are recorded, and usually rejected documents are 
listed in an excluded studies table in the final report. 
Records relevant to the research question pass to the data 
extraction stage of the synthesis. Again, if research team 
members disagree about the eligibility of a document or 
are unclear about the eligibility criteria, they may need to 
discuss queries as a team. As in the abstract screening 
stage, the disagreement may be adjudicated, and some
times the adjudication may involve a change to the eligi
bility criteria and an attendant change to the protocol.

As part of record selection, researchers also look for 
duplicate publications about the same study. Duplicate 
publications may be genuine duplicates, such as a single 
study reported in different journals, or may be publica
tions reporting different aspects of the same study in 
different journals. Often, conference papers about dif
ferent aspects of a study are published in addition to the 
full study report itself. Sometimes, different elements or 
analyses of a study may be published as separate papers. 
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Grouping publications by study is important to avoid 
double counting within the research synthesis.

5.5 RECORDING AND REPORTING THE SEARCH

Research synthesis methods encourage a scientific approach, 
and detailed reporting of the methods used to create the 
synthesis are an important element in demonstrating its 
scientific rigor (Kugley et al. 2016; Lefebvre, Manheimer, 
and Glanville 2011; 2013; European Food Safety Author
ity 2010; Centre for Reviews and Dissemination 2009; 
Petticrew and Roberts 2006; Eden et al. 2011; Joanna 
Briggs Institute 2014). The searcher should record the 
search process in adequate detail and report it in adequate 
detail in the final publication (Moher et al. 2009).

5.5.1 Recording the Search Process

The searcher should document search methods as the 
search progresses, to enable the search to be reported accu
rately. Elements of the PRESS checklist provide insights 
into some of the critical features of reporting the search:

The search strategy should match the research ques
tion, the search concepts should be clear and there 
should not be too many or too few concepts. These 
elements of the checklist suggest that the process 
for arriving at the strategy should be recorded in 
case it needs to be explained at a later point. Specif
ically, the PRESS checklist expects an explanation 
of complex or unconventional strategies.

The range of issues around the selection of subject 
headings in the PRESS checklist suggest that it is 
important for the searcher to record why subject 
headings have been chosen, and to defend the level 
of subject headings chosen and whether explosion 
has been employed.

The PRESS checklist includes a number of questions 
around the range of text words identified and used in 
the strategy, which suggests that the searcher should 
explain the choice of text words.

The PRESS checklist requires the searcher to provide 
appropriate limits and filters and to justify their 
choice. (McGowan et al. 2016)

Guidelines provide advice on best practice in recording 
search details (Kugley et al. 2016; Lefebvre, Manheimer, 
and Glanville 2011). The EFSA guidance for those carry
ing out systematic reviews in food and feed safety states 

that the following aspects should be recorded for each 
search:

the name of the database;

the date of the search for each database and the date 
range searched; and

the full search strategy (all terms and set combinations) 
and the number of records retrieved (this information 
should be copied and pasted for all databases where 
possible; retyping searches should be avoided as 
this may introduce errors). (European Food Safety 
Authority 2010)

The searcher should keep notes of key decisions that 
may affect the synthesis’ findings in a narrative format, 
such as the effects of selecting specific search headings, 
limiting the search in a particular way, or adding a 
search filter.

The searcher will also need to record the grey liter
ature searches undertaken (chapter 6) and any other 
research identification which may have been undertaken, 
such as hand searching, reference checking, and contact
ing experts. Some of these searches may be less straight
forward to record and searchers may wish to explore the 
use of notebook software such as OneNote or EverNote. 
OneNote and EverNote provide options to manage mixed 
media records such as notes, screenshots, cuttings, and 
links to downloaded files.

5.5.2 Reporting the Search

Wherever the research synthesis is reported, the search is 
one indicator of the capacity of the synthesis to have cap
tured as much relevant research as possible to answer the 
synthesis question or, in the case of reviews of qualitative 
evidence, as rich a set of information as possible. Search
ers should report the search strategy in enough detail to 
facilitate an assessment of the search’s quality in respect 
to the objectives of the research synthesis. Given evi
dence that the reporting of searches is less than optimal, 
reporting this element of the synthesis should be given 
appropriate attention. Many organizations provide guid
ance about the level of detail that should be included in 
search reports. For example, the PRISMA guidance on 
reporting systematic reviews and metaanalyses suggests 
“that all information sources should be described (data
bases with dates of coverage) and date last searched; 
[and] that the full electronic search strategy for at least 
one database should be presented, including any limits 
used, such that it could be repeated” (Moher et al. 2009).
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This seems to be a minimum requirement, many guide
lines suggesting that all strategies and study identification 
methods should be reported. Many syntheses include this 
level of detail, either in a report appendix or as a supple
mentary file to a peerreviewed paper. The fullest possi
ble reporting will make future updating much easier.

5.6 SUMMARY

Research synthesis involves identifying relevant informa
tion from one or more information sources, including bib
liographic databases, using search strategies. The search 
and record selection process can be challenging, requiring 
a knowledge of query structuring, database content and 
structure, database interface variation, and software tools 
for record management and selection. Searchers will find 
that searches benefit from careful planning and adequate 
time to develop and complete strategies. Investing time in 
exploratory or scoping searches will assist in identifying 
concepts, terms, and search approaches used by previous 
researchers. Searchers should bear in mind the need for 
detailed recording and reporting of searches to inform 
research synthesis and to ensure that readers can assess 
the rigor and appropriateness of the search that underpins 
the synthesis.
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6.1 INTRODUCTION

The objective of this chapter is to discuss the retrieval of 
grey literature in support of the research synthesis and 
best practices that can be used to systematically conduct 
such a search. It is assumed that readers will be familiar 
with the basics of structured database searching in the 
social, behavioral, or medical sciences and will have read 
previous chapters in this volume, notably chapter 5, enti-
tled “Searching Bibliographic Databases.” To get the most 
from the present chapter, readers should read the descrip-
tions of terms in table 5.1 of chapter 5, “Key Concepts 
in Database Searching to Inform Research Synthesis.”

Grey literature is literature that has not been formally 
published, has limited distribution, or is not available 
via conventional channels (Auger 1998; Bonato 2018). 
Research synthesis is the practice of systematically retriev-
ing, distilling, and integrating data from a variety of sources 
(“the evidence base”) to draw more reliable conclusions 
from the literature (Cooper and Hedges 2009). Hannah 
Rothstein and Sally Hopewell observe “a critical relation-
ship between the reliability and validity of a research syn-
thesis, and the thoroughness of and lack of bias in the search 
for relevant studies” (2009, 104). In a high-quality review 
that aims to inform policy or practice, the goal is to identify 
all available evidence, including the grey literature, rele-
vant to the question (Boland, Cherry, and Dickson 2013; 
Institute of Medicine 2011).

The chapter examines definitions and document types 
specified as grey literature, focusing on issues such as 
methodical search planning, mapping resources to a 
research question, and identifying as many potentially rele-
vant resources for searching as possible. However, the strat-
egies and techniques by which desired outcomes in grey 
literature searching are reached will be unique in each proj-
ect. Key approaches and techniques are offered to assist 
searchers in building their search strategies and refining 
each one to suit an individual purpose and context.

Seeking advice from experts in systematic informa-
tion retrieval is highly recommended before any signifi-
cant grey literature searching (Lefebvre, Manheimer, and 

Glanville 2011; Boland, Cherry, and Dickson 2013). This 
chapter discusses the role of grey literature searching in 
amassing a representative body of literature for topics 
and the importance of peer review of search strategies or 
checking them with a librarian (McGowan et al. 2016a). 
It is also concerned with extending grey literature search 
techniques to locate a higher percentage of relevant 
documents.

6.2 WHAT IS GREY LITERATURE?

“Grey literature stands for manifold document 
types produced on all levels of government, aca-
demics, business and industry in print and elec-
tronic formats that are protected by intellectual 
property rights, of sufficient quality to be col-
lected and preserved by libraries and institutional 
repositories, but not controlled by commercial 
publishers; i.e. where publishing is not the pri-
mary activity of the producing body.”

Twelfth International Conference on  
Grey Literature, 2010 (Schöpfel 2010)

6.2.1 Terminologies, Types, and Definitions

Although subject to continuous revision, the best-known, 
classic definitions of grey literature are those formally 
accepted at the International Conferences on Grey Liter-
ature in 1997, 2004, and 2010 (Schöpfel 2010). The con-
cept of a vast fugitive literature was once described by 
Charles Auger, who said that the research literature was 
characterized by “a vast body of documents” of “continu-
ing increasing quantity” and was significant for “the dif-
ficulty it presented to the librarian” (1975). What these 
and other definitions underline are the challenges associ-
ated with finding grey literature today because of the 
speed and ease with which materials are published in the 
internet age. The question of whether these print era defi-
nitions are applicable in the digital age is also a challenge 
(Schöpfel and Rasuli 2018).
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Amanda Lawrence refers to a body of grey literature 
that is produced informally and defined by its elusive 
nature (2012). Further, grey literature includes a range of 
documents such as government publications, policy docu-
ments, white reports, fugitive or nonconventional litera-
ture, unpublished literature, and nontraditional publications 
of various kinds in print and online (Lawrence 2012). Over 
the years, Vilma Alberani and Irwin Weintraub have each 
added a great deal to our evolving understanding of grey 
literature typologies and terminologies (Alberani, De Castro 
Pietrangeli, and Mazza 1990; Weintraub 2000). The best 
way to understand grey literature in the digital age is to 

compare it with the published literature across key charac-
teristics (see table 6.1).

6.2.2 Characteristics

Grey literature documents increasingly refer to a broader 
and heterogeneous body of materials (Benzies et al. 2006; 
Bonato 2018). In the twenty-first century, many papers not 
formally published in academic journals can be classified 
as grey literature (Bellefontaine and Lee 2014; Paez 2017). 
Some of these papers are produced well beyond commer-
cial outlets and are consistently elusive and hard to find 

Table 6.1 Grey Literature Versus Published Literature

Issues Grey literature: harder to find Published literature: easier to find

Number of documents  
being published

Increasing rapidly, exponentially Increasing also, but slower in pace

Speed of production Instantaneous, due to the speed of desktop and 
self-publishing

Slow(er); time lag due to editing and peer-review 
processes

Costs Low(er) (in most cases) or free; some market 
research firms and manufacturers charge for 
access

High(er) due to editorial, production, marketing 
costs. Publisher profit motives. Some 
predatory publishers.

Access Free, open, immediate in many cases; some 
payment or association memberships 
required to access; some literature driven 
“underground”

Some free and open access; mostly paywalled  
(or restricted) due to digital rights management. 
Some literature is lost due to changing 
publishers

Quality Highly variable but is often peer reviewed and 
written by experts; may be produced with a 
“hidden social or political agenda.” Watch 
for bogus research firms.

Peer-reviewed quality can be high; but not 
immune from fraud, errors plagiarism, 
editorial interference, retracted publications.

Findability Improving, but often dispersed; may be “hit 
and miss” and hidden in the deep web. 
Linked data holds some promise to bring 
relevant documents together.

Highly variable. May be elusive if subscription 
databases are required. Some literature is only 
accessible to native speakers of grey report 
languages (for example, Chinese, Russian)

Archiving and 
preservation

Weaker archival and preservation practices 
and policies; may be difficult due to volume 
and multiple formats; rise of datasets; lack 
of infrastructure

Stronger, due to better digital infrastructure(s) 
and libraries; some problems due to legal 
restrictions, and publisher amalgamations

Impact on libraries Challenges and opportunities re: access, 
cataloguing, description, preservation and 
findability

Complex due to rising costs, back-up copies, 
copyright, licensing, digital rights management, 
storage

Role of publishers Some content available via the creative 
commons or made open access for wider 
dissemination

Commercial interests of publishers based on 
economic models, not scholarly models of 
communication

source: Author’s compilation.
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(Coonin 2003). These are not the only factors in deter-
mining whether something is grey, however. According to 
Rose Relevo and Howard Balshem, “Grey literature is, by 
definition, not systematically identified, stored, or indexed 
and therefore it can be difficult to locate” (2011, 2).

Taryn Rucinski identifies some of the more than 150 pos-
sible types of grey literature such as discussion papers, 
newsletters, surveys, working papers, technical reports, 
trade association publications, institutional or association 
reports, conference proceedings, academic and government 
reports (2015). Other grey documents include unpublished 
manuscripts, surveys, product catalogs, presentations, pre- 
prints, practice guidelines, and lecture notes, to name a 
few (Giustini 2016). In a recent monograph, Sarah Bonato 
explores the diversity of grey literature in the digital age 
in the form of governmental reports, working papers, and 
other unpublished research (2018).

New scholarly publishing platforms and social media 
have introduced categories of literature that fall into a 
distinct “grey zone” (Banks 2009; Aloia and Naughton 
2016; Giustini 2016). Some researchers refer to infor-
mation produced informally such as emails, meeting 
minutes and personal memories as “grey information” 
(Adams et al. 2016). “Grey data” refers to user-generated 
content on the web in the form of tweets, blog posts, and 
Facebook status updates (Adams et al. 2016). Increas-
ingly, unpublished research and the data they cite are 
referred to as grey literature (Godin et al. 2015).

Joachim Schöpfel and Dominic Farace note that better 
conceptual frameworks are needed to understand and 
monitor grey literature’s evolution (2011). The world of 
information in the twenty-first century is often portrayed 
as black and white but new shades of grey are needed 
(Rucinski 2015). According to Julie Gelfand and Daniel 
Tsang, “the definition [of grey literature] has been chal-
lenged as still being too narrow considering new forms 
and practices of scholarship and research underway and the 
methods of publishing now widely available” (2015, 30). 
Grey literature will continue to change in response to the 
production of new scientific knowledge in the digital age.

6.3 VALUE, IMPACT, AND QUALITY

The importance of grey literature searching in the research 
synthesis varies from topic to topic and the type of review 
undertaken (Grant and Booth 2009; Booth, Sutton, and 
Papaioannou 2016). In some cases, the benefits of includ-
ing grey literature will outweigh the time and resources 
required to search for it (Paez 2017). The decision about 

whether to perform extensive grey literature searching 
after the standard bibliographic databases may be the 
most complex issue to resolve (Benzies et al. 2006).  
Generally, the impact of grey literature is related to its 
role in broadening the set of papers found for the research 
synthesis. Despite its ephemeral nature, grey literature 
can enhance a research synthesis when published evi-
dence is scant or topics are new, changing quickly or 
inter disciplinary (Relevo and Balshem 2011). In 2006, 
Karen Benzies and her colleagues published a checklist 
to determine whether a state-of-the-evidence review would 
benefit from grey literature and made recommendations 
to include a consensus in the research is lacking and 
when the availability of existing evidence is scant or low 
quality. In pediatrics, Lisa Hartling and her colleagues con-
clude that grey literature searching represented a small 
proportion of included studies and rarely changed the 
results or conclusions of a review (2017). Still, inclusion 
of grey literature may have a direct impact when relevant 
studies are relatively few (Enticott, Buck, and Sawyer 
2018), or when vested interests in the published literature 
may be questionable (Hartling et al. 2017).

In health technology assessment, some types of grey lit-
erature may be vital to the research synthesis, such as clini-
cal study reports, synopses, regulatory data, trial registry 
records, conference proceedings, and abstracts (Halfpenny 
et al. 2016; Farrah and Mierzwinski-Urban 2019). Accord-
ing to some, grey literature encompasses materials such as 
unpublished trial data, government documents, and manu-
facturers’ information (Relevo and Balshem 2011). In the 
context of medical devices and drug research, and in health 
or public policy where the literature may be limited, locat-
ing and retrieving relevant grey literature is an essential part 
of the review. Grey literature can be important in dynamic 
and innovative fields where relatively little academic work 
has been done and when practice is seen to be ahead of 
research investigations (Adams, Smart, and Huff 2017).

Research synthesists should be aware of the problems 
associated with searching major bibliographic databases 
alone. Database bias (and other biases) may result from 
the inclusion or exclusion of research papers indexed in 
widely used databases such as MEDLINE and Embase 
(Egger et al. 2003). A bias toward positive findings may 
result when papers are found only by searching the major 
databases. This is because statistically significant positive 
results are more likely to be published in peer-reviewed, 
indexed papers. Grey literature may be important to the 
overall results of the review when studies with null results 
are located (Adams et al. 2016). Similarly, excluding 
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grey literature can lead to inflated estimates of treatment 
effects (Blackhall 2007). Without searching for the grey 
literature the research synthesis can result in a distorted or 
incomplete view of a topic (Schmucker et al. 2013, 2017).

Schöpfel asserts that grey literature’s importance depends 
on each discipline (2010). In the biomedical and life 
sciences, the traditional preference is for peer-reviewed 
papers; in agriculture and aeronautics, grey literature plays 
a more prominent role (Schöpfel 2010). The Institute of 
Medicine states that grey literature searching should form 
part of all systematic reviews (2011). Jean Adams and her 
colleagues emphasize the value of grey literature in the 
investigation of public health interventions (2016). Grey 
literature provides useful perspectives in engineering and 
law (Rucinski 2015). In the social sciences, a search for 
grey literature lends credibility and value to review syn-
theses of various kinds (Adams, Smart, and Huff 2017). 
Grey literature can provide more details than the pub-
lished literature because no length restrictions come into 
play (Adams, Smart, and Huff 2017). However, as more 
supplemental files and data are attached to the published 
journal literature, this distinction may become less obvi-
ous over time.

6.3.1 Challenges in Use

Debate is mounting about whether every research synthe-
sis should include a search for grey literature (Bellefontaine 
and Lee 2014; Hartling et al. 2017). Time-consuming and 
complex literature searches, which cover the grey litera-
ture and all relevant languages and databases, are nor-
mally recommended to prevent reporting biases from being 
introduced into the research synthesis (Egger et al. 2003). 
All relevant specialist theses and dissertations on the 
topic, and their references, should at least be reviewed 
(Bellefontaine and Lee 2014). Andrew Booth mentions the 
depth of reporting possible in PhD dissertations but warns 
against their uncritical inclusion, especially when their 
results swamp the findings in other smaller studies (2016).

The research synthesis team can determine the degree 
of comprehensiveness by taking into account the specific 
requirements of the review and its resources (Egger et al. 
2003). Some researchers argue in favor of finding all 
evidence regardless of the time it takes (Boland, Cherry 
and Dickson 2013). However, the time it takes to find 
only one additional obscure report or study that in all 
probability will not change the results of a review may 
not be worth while (Boland, Cherry, and Dickson 2013; 
Finfgeld-Connett and Johnson 2013). In some cases,  

grey literature may be helpful “to tip the balance” when 
evidence for an intervention is inconclusive (Hickner, 
Friese, and Irwin 2011, 32). Systematic exclusion of the 
grey literature would be ill advised in some cases given 
the scarcity of information in certain disciplines (Martinez, 
Williams, and Yu 2015).

In some disciplines, the belief is persistent that the 
quality of grey literature is uneven or low relative to tra-
ditionally published papers (Hopewell, MacDonald, et al. 
2007). Some researchers have said that in light of trans-
parency and quality concerns, papers available in certain 
grey literature outlets are of limited value (Martinez, 
Williams, and Yu 2015). Further, the perception is preva-
lent that grey literature is produced by authors with no 
academic credentials or an interest in publishing in out-
lets that adhere to scholarly publishing norms (Adams, 
Smart, and Huff 2017). Peer-reviewed articles may be suf-
ficient for some topics, leaving little to be gained by add-
ing the grey literature. Papers indexed outside MEDLINE  
or Embase are more difficult to find and may require trans-
lation into English, which will increase costs and delay the 
conclusion of a review (Egger et al. 2003). Further, “trials 
that are difficult to locate tend to be of lower method-
ological quality than trials that are easily accessible and 
published in English” (Egger et al. 2003, 3).

Some researchers believe that grey literature is not con-
sistently peer-reviewed in the way academic journal arti-
cles are reviewed (Boland, Cherry, and Dickson 2013). In 
a 2004 survey, 44.2 percent of respondents felt that grey 
literature had benefited from some kind of peer review 
(Boekhorst, Farace, and Frantzen 2005). Others say that 
grey literature is often high quality and written by experts 
(Yasin and Hasnain 2012). Quality-control mechanisms, 
such as editing and peer review, are often but not always 
part of publishing grey literature (Conn et al. 2003).

Research synthesists can evaluate the quality of com-
ponent papers in the research synthesis through robust 
critical appraisal. The Critical Appraisal Skills Pro-
gramme (CASP) Tools developed by Oxford University 
in the United Kingdom and the Joanna Briggs Institute 
(JBI) in Australia can be used to evaluate grey literature. 
The AACODS checklist, a tool specifically designed for 
evaluating grey literature, which stands for authority, accu-
racy, coverage, objectivity, date, and significance can also 
be used (Tyndall 2010). Affan Yasain and Muhammad 
Hasnain created a similar list of issues to ask in assessing 
grey literature based on a DARE (Database of Abstracts 
of Reviews of Effects) checklist (2012). Because these 
questions included where a paper was discussed, Yasain 
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and Hasnain observe that grey reports are more likely to be 
discussed online and cited if they are valued as research.

6.3.2 Costs and Resources

One of the significant challenges with grey literature is 
that it is the least efficient type of literature to find (Cook 
et al. 2001). Researchers see its value but may not be fully 
aware of the required investment of time to find it (Booth, 
Sutton, and Papaioannou 2016). Performing exhaustive 
searches of grey literature presents a considerable work 
burden to the searcher (Balshem et al. 2013). Internet 
searches, where much of the grey literature is located, can 
be difficult to design and time consuming to execute 
(Benzies et al. 2006).

One study reported on how long it took to perform 
expert searches (developing, refining, and adapting 
searches to different databases), specifying two weeks of 
a librarian’s time and a large investment of resources 
(Greenhalgh and Peacock 2005). Ahlam Saleh, Melissa 
Ratajeski, and Marnie Bertolet find that the average time 
spent searching for the systematic review was twenty-four 
hours, within a range of two to 113 hours, and half the 
searches taking eight or fewer hours (2014). They identi-
fied the time spent searching by examining eighteen sys-
tematic reviews that reported some form of grey literature 
searching. The average time spent searching online was 
approximately seven hours, within a range of twenty min-
utes to fifty-eight hours. Locating grey literature con-
sumed about 27 percent of the total searching time.

6.3.3 Challenges in Finding and Preserving

Even when the quality of grey literature is acceptable, the 
question remains as to whether it will be found efficiently, 
even within the standard bibliographic databases. Grey 
literature was present in the majority (68 percent) of 
biblio graphic databases and nearly all institutional repos-
itories (95 percent) that Wanda Marsolek and her col-
leagues examined (2018). Internet search engines and open 
access have made grey literature more accessible (Banks 
2004; Marsolek et al. 2018), but a range of acquisition 
and cataloging issues continue to affect its findability 
(Childress and Jul 2003; Okoroma 2011; Vaska and 
Vaska 2016). Poor findability is often related to weak 
preservation and data management practices (Gelfand 
and Tsang 2015). In fact, some grey literature producers 
do not consistently preserve publications for the future 
thereby creating “endangered documents” (Schöpfel and 
Farace 2011). Some scientists do not consider the long-

term durability of their unpublished datasets thereby 
making them hidden or invisible to researchers; in one 
analysis, the authors sought to retrieve lost data and 
found that grey data substantially increased the size of their 
study sample (Augusto et al. 2010). Recent international 
requirements for data management for funded research at 
the National Institutes of Health and the Canadian Insti-
tute of Health Research (CIHR), for example, should 
further improve the archiv ing and preservation of scien-
tific datasets into the future (NIH 2015; Canada 2018).

Julia Gelfand and Daniel Tsang suggest that not all grey 
literature (or data) should be preserved (2015). Janice 
Kung and Sandy Campbell point to a lack of policies for 
selecting valuable research data for preservation (2016). 
Making a determination of what to preserve is a chal-
lenge for librarians and researchers. This is why the 
definition of grey literature, updated at the International 
Conference on Grey Literature in 2010, emphasizes pre-
serving grey literature of “sufficient quality.” Preserva-
tion is also at the center of GreyNet International’s Pisa 
Declaration (Giustini 2014). Other international projects 
are looking at document preservation such as LOCKSS 
(Lots of Copies Keep Stuff Safe), based at Stanford Uni-
versity and CLOCKSS (Controlled Lots of Copies Keep 
Stuff Safe), an independent nonprofit organization in the 
United States. Portico, operated by the organization that 
produces JSTOR, is another example (Mering 2015). 
Ultimately, researchers can take steps to ensure that their 
papers are preserved for the long term.

6.4 PREPARING FOR SEARCHING

Extensive grey literature searching begins with methodi-
cal planning and preparation; this includes determining 
the data and citation requirements of the research synthe-
sis (Adams et al. 2016). Planning to search for the grey 
literature outside bibliographic databases is an important 
consideration in several types of research and research 
methods (Booth, Sutton, and Papaioannou 2016). Nar-
rowing down which resources are appropriate for grey 
literature searching is key to planning (Booth 2016).

6.4.1 Sources

A number of subject guides and checklists are worth con-
sulting and have been published by organizations such 
as the Canadian Agency for Drugs and Technologies in 
Health (CADTH), the Agency for Healthcare Research and 
Quality (AHRQ) and the Cochrane Collaboration (see 
table 6.2). Academic subject guides written by librarians 
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Table 6.2 Sources of Grey Literature and Data

This list of guides and starting points is not exhaustive but will help to locate online resources and websites that pertain to 
your research synthesis. The following list is organized into five main categories, and begins with where to start with early 
search planning by using various meta-lists, followed by meta-search tools and larger more comprehensive search tools, 
databases, archives, and repositories. Some examples include the directories of open access journals, data repositories, 
clinical trial registries and specialized bibliographic databases. Identify items of interest and visit their websites to locate 
publications that are relevant.

1.  Meta-lists, structured checklists and other information starting points
 Cochrane Handbook for Systematic Reviews of Interventions (https://training.cochrane.org/handbook)
 Campbell Collaboration Information Retrieval Guide (https://campbellcollaboration.org/information-retrieval- 

guide.html)
 Grey Matters: a practical tool for searching health-related grey literature (https://www.cadth.ca/resources/ 

finding-evidence/grey-matters)
 HTAi Vortal (http://vortal.htai.org, see also SuRe Info)
 Joanna Briggs Institute Reviewers Manual (https://wiki.joannabriggs.org/display/MANUAL/

Joanna+Briggs+Institute+Reviewer%27s+Manual)
 National Library of Medicine. “HTA101: VII. Retrieve Evidence”. National Information Center on Health Services 

Research and Health Care Technology (NICHSR, https://www.nlm.nih.gov/nichsr/hta101/ta10109.html)
 Public Health Grey Literature Sources (Canada and Beyond) (http://www.ophla.ca/pdf/Public%20Health%20Grey 

%20Literature%20Sources.pdf)
 Subject guides written by librarians via Google search
 Summarized Research in Information Retrieval (SuRe Info, http://vortal.htai.org/?q=sure-info)
 Wikipedia (https://en.wikipedia.org/wiki/Main_Page)

2.  Meta-search databases, platforms, repositories
 Academic Search (https://www.ebsco.com/products/research-databases/academic-search-complete)
 BASE (Bielefield Academic Search Engine, https://www.base-search.net/)
 Cochrane Library (https://www.cochranelibrary.com/)
 Campbell Collaboration Library (https://campbellcollaboration.org/library.html)
 DOAJ (Directory of Open Access Journals, https://doaj.org/)
 ERIC (Education Resources Information Center, https://eric.ed.gov/)
 Google Book Search (https://books.google.com/), Google Scholar (https://scholar.google.ca/), and Microsoft Academic 

Search (https://academic.microsoft.com/)
 GreyGuide (http://greyguide.isti.cnr.it/)
 Institute of Medicine (IOM, http://www.nationalacademies.org/hmd/)
 McMaster Health Systems Evidence (https://www.healthsystemsevidence.org/)
 New York Academy of Medicine, “The Grey Literature Report” (http://www.greylit.org/)
 National Technical Information Service (NTIS, https://www.ntis.gov/)
 OA subject repositories; arXiv (https://arxiv.org/), bioRxiv (https://www.biorxiv.org/), ChemRxiv (https://chemrxiv.org/),  

engrXiv (https://blog.engrxiv.org/), SocArXiv (https://osf.io/preprints/socarxiv/), Social Science Research Network 
(SSRN, https://www.ssrn.com/en/)

 OA publishing platforms: BioMedCentral (https://www.biomedcentral.com/), PubMedCentral (https://www.ncbi.nlm.
nih.gov/pmc/)

 OpenGrey System for Information on Grey Literature in Europe (http://www.opengrey.eu/)
 OAISter (http:/oaister.worldcat.org/)
 OpenDOAR: Registry of Open Access Repositories (http://v2.sherpa.ac.uk/opendoar/)
 PQDT Open (https://pqdtopen.proquest.com/search.html), Thesis Canada (http://www.bac-lac.gc.ca/eng/services/

theses/Pages/theses-canada.aspx), NTDLD (http://www.ndltd.org/), British Library EThOS (https://ethos.bl.uk/)  
and Dart Europe (http://www.dart-europe.eu/basic-search.php)

 Scopus (https://www.elsevier.com/solutions/scopus)
 Web of Science (https://clarivate.com/products/web-of-science/)
 WorldCat (https://www.worldcat.org/)

(Continued)
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will also be useful structured tools in outlining the steps 
of grey literature searching and framing its principles for 
each discipline (Vaska and Vaska 2016).

Creating a document with detailed search steps should 
be viewed as adhering to reporting standards such as 
PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) (Godin et al. 2015). Accord-
ing to Dagmara Chojecki and Lisa Tjosvold, however, 
recording and reporting the search are two separate pro-
cesses: “that of documenting the search strategy and that 
of reporting the search strategy.” Further, “documenting 
the search can be seen as recording information about the 
search simultaneously as it is run. This information is 
often used for internal purposes and records. Reporting 
the search involves the final formal write up of the search 
methodology that will be included in the published ver-
sion of the review” (2016).

Grey literature searching presents the researcher with 
various challenges in terms of search reproducibility. 
This is because grey literature searching is a more uncon-
trolled and iterative type of searching than that performed  
in standard bibliographic databases (Booth, Sutton, and 
Papaioannou 2016; Godin et al. 2015). The resulting 
uncontrollable mass of documents found by searching for 
grey literature on some websites is often due to their lack 
of organization. Their unique search facilities impose 

additional challenges and limitations that require repeti-
tious searching and navigation in many places (Stans-
field, Dickson, and Bangpan 2016). Further, many of 
these websites do not permit the narrowing of topics or 
provide features such as sorting, refining, or saving 
results. Some of the larger concerns expressed about the 
difficulty of using these websites are their inability to 
perform complex Boolean search queries and to export 
citations (Stansfield, Dickson, and Bangpan 2016).

6.4.2 Search Construction

I now turn to a priori planning, expecting that readers will 
develop a more structured process for their searching. 
Search planning should result in locating a higher per-
centage of the overall relevant literature. A search plan-
ning document or grid is the first step in this construction 
(see table 6.3).

There is no true “gold standard” for grey literature 
searching and insufficient detail about how to conduct 
such a search (Adams et al. 2016; Godin et al. 2015). The 
goal in systematic searching is to generate as exhaustive a 
list as possible of significant published and unpublished 
studies that are relevant to a research question (Lefebvre, 
Manheimer, and Glanville 2011). Systematic searchers 
should aim to strike a balance between sensitivity (as many 

Table 6.2 (Continued)

3.  Some producers of syntheses
 Agency for Healthcare Research and Quality (AHRQ, https://www.ahrq.gov/)
 Cochrane Collaboration (http://www.cochrane.org/)
 Campbell Collaboration (http://www.campbellcollaboration.org)
 Joanna Briggs Institute (http://joannabriggs.org/)
 Canadian Agency for Drugs and Technologies in Health (CADTH, https://www.cadth.ca/)
 EPPI-Centre database of educational research (http://eppi.ioe.ac.uk/cms/Default.aspx?tabid=185)

4. Data repositories and trial registries
 ClinialTrials.gov (https://clinicaltrials.gov/)
 ISRCTN Registry–metaRegister of Controlled Trials (http://www.isrctn.com/page/mrct)
 PROSPERO: International prospective register of systematic reviews (https://www.crd.york.ac.uk/PROSPERO/)
 OpenTrials (https://www.crd.york.ac.uk/PROSPERO/)
 Registry of Research Data Repositories (re3data, https://www.re3data.org/)
 WHO International Clinical Trials Registry Platform (https://www.who.int/ictrp/en/)

5. Highly specialized bibliographic databases
 Ageline (https://www.ebsco.com/products/research-databases/ageline)
 Agricola (https://www.ebsco.com/products/research-databases/agricola)
 PapersFirst (FirstSearch, https://help.oclc.org/Discovery_and_Reference/FirstSearch/FirstSearch_databases)
 POPLINE (https://www.popline.org/poplinesubjects)

source: Author’s compilation.
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potentially relevant records as possible) and specificity (the 
relevant records found as a proportion of all records exam-
ined) (Shaw et al. 2004). Ultimately, searching for grey lit-
erature will involve some compromise in sensitivity but 
should still aim to identify as much of the available relevant 
evidence as possible (Boland, Cherry, and Dickson 2013).

Planning systematic literature searches and managing 
the results are distinguishing characteristics of research 
syntheses (Shaw et al. 2004). Broadly speaking, the 
searcher will be asked to use reproducible scientific 
methods in the search, as increasingly required by 
grant-funding agencies (Hickner, Friese, and Irwin 2011). 
Rothstein and Hopewell have said that “the soundness of 
a research synthesis depends heavily on the degree to 
which the search for relevant studies is thorough, system-
atic, unbiased, transparent, and clearly documented” 

(2009, 105). How to manage hundreds, in some cases 
thousands, of citations and full-text documents will also 
need to be determined (Booth, Sutton, and Papaioannou 
2016).

Two reference managers used to manage citations in 
research are Endnote, which offers a free basic package 
and a subscription-based version, and Mendeley, which is 
free to use, though a fee-based premium model is also 
available. Mendeley can be used to download batch 
records by dragging folders of pdfs directly into a library 
of references (Saleh, Ratajeski, and Bertolet 2014). A 
handy way to search across documents is programmed 
into Mendeley, as are ways to create research groups to 
share unpublished and published materials with others. 
Mendeley is able to create individual citation records for 
each file “dropped” into the system, and offers screen 

Table 6.3 Grey Literature Search Construction and Planning

 1.  Create a search document (planning grid) with tables from left to right using Word or an Excel spreadsheet  
(see also table 6.4).

 2.  State the review question using a framework (PICO, ECLIPSE) to break down the topic with all concepts listed 
(or use your own conceptual breakdown).

 3.  List key databases, web resources, conference proceedings, repositories, and search engines (platforms or vendors 
used) to be searched (and by whom).

 4.  Take note that online resources will cover different subject areas and formats; each will have its own unique 
organization.
 Search strategies should be tailored to each website, accounting for characteristics of search interfaces and areas of 

focus of host organization.
 Ensure websites include affiliated organizations and website addresses.

 5.  List all free-text terms, concepts, associated synonyms, subjects, search strings (strategies) and modify as needed 
for each site that will be searched.
 Consider spellings, and differences in Canadian, American, or British English.
 Statement of the search terms used and any search restrictions.
 If possible, save longer search sets by using saved search features or store searches in a separate Word document.

 6.  Perform some test or pilot searches at key websites; record number of hits; compare with other resources 
searched.

 7.  Indicate when (dates) the searches will be conducted in a timeline, and any time, language, publication (or other) 
limits to be used.

 8.  Indicate total number of results found; number of results retrieved and saved.

 9.  Use comments column at far right to note unique search features of resources/websites.

10.  Indicate how citations will be imported into Endnote, RefWorks, Mendeley or other bibliographic referencing 
software such as CSV or tabbed format or RIS.

source: Author’s compilation.
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scraping facilities and metadata extraction for grey liter-
ature (Price 2016).

Other reference management tools are RefWorks, a 
subscription-based tool, and Zotero, which is open source 
with some novel features such as website archiving. The 
RefGrab-It tool in RefWorks, a handy drag-and-drop 
bookmarklet, aids the searcher in capturing metadata 
from websites; Endnote has a capture references feature 
and bookmarklet to perform a similar function. Two 
obstacles in managing grey literature are the nonstandard 
search interfaces that are encountered and dealing with 
citation inaccuracies (Kratochvíl 2016). Websites that 
include grey literature may both be difficult to search and 
present a range of challenges in citation management 
such as exporting records and duplicate citations.

Duplicate (and triplicate or more) citations can be a 
challenge in the review synthesis and make overall data 
and citation management more difficult (Adams et al. 
2016). The challenge is reinforced by the multiple ver-
sions of documents encountered in grey literature search-
ing. Some search engines, such as Yahoo, allow the 
development of APIs to search and remove duplicates 
from web searches (Bellefontaine and Lee 2014). End-
note uses de-duplication algorithms that can be adjusted 
to assist in efficient search planning and capture of cita-
tions (Bramer et al. 2016). Neal Haddaway and his col-
leagues discuss some of the advantages and disadvantages 
of the many available methods to extract full citations 
(and citation metadata) from websites by using citation 
management and analysis software versus web-crawling 
software (2017). For example, they discuss the software 
tool Import.io (https://import.io) as an alternative web-
based platform for extracting data from websites to 
document searches. Import.io allows the user to define 
precisely what information should be extracted from a 
website and can be used across a range of search engines, 
though it can be a difficult tool to implement without 
adequate software knowledge.

6.4.3 Driving the Process

The first stage in the research synthesis is to adequately 
refine the topic and convert it into an answerable question 
(Booth, Sutton, and Papaioannou 2016). Researchers 
developing ideas for a research synthesis come equipped 
with fuzzy or grey questions (McKimmie and Szurmak 
2002). Framing a question is thus the driving force behind 
evidence-based practice (Eldredge 2000); further, it pro-
vides an opportunity to clarify the aims of research.

In several evidence-based practices, researchers use 
frameworks to structure their research questions. These 
frameworks or mnemonics help to define topics, break 
them down into searchable parts, and determine whether 
they are feasible for investigation. Two frameworks are 
widely used. One is PICO (patient, intervention, compar-
ison, outcome), which has been used in medicine to break 
down clinical questions (Cooke, Smith, and Booth 2012; 
Methley et al. 2014). Another is ECLIPSE (expectation, 
client, location, impact, professionals, service), which 
was developed to address questions in health policy and 
management (Wildridge and Bell 2002). Some research-
ers find it helpful to add study design (S) to the PICO 
framework, but both frameworks are flexible enough to 
be adapted accordingly. A good third option, SPICE (set-
ting, perspective, intervention, comparison, evaluation), 
was developed to answer questions in the social sciences 
(Booth, Sutton, and Papaioannou 2016). SPICE pro-
vides librarians with a useful framework given the S (set-
ting) and perspective (P) parts in the model, which are 
useful in focusing research questions in the information 
professions (for examples of the use of PICO, ECLIPSE, 
and SPICE, see table 5.3).

After the review parameters are established, the 
searcher should take a closer look at how to plan and doc-
ument the actual searches (see table 6.4). The planning 
document, or search grid, is a diary of the searches per-
formed that consists of the names of databases, websites, 
and online resources as well as any key journals to be 
searched by hand. The inclusion and exclusion criteria 
for the research project should be explicit, and the search 
should be developed accordingly. The planning phase 
relies on an exhaustive listing of concepts from the 
review question and is concept centered; all key con-
cepts and the ways they can be expressed in natural lan-
guage are the foundation for searching (Booth, Sutton, 
and Papaioannou 2016). Key terms and concepts deter-
mine, to a large extent, the organizing framework for the 
review (Webster and Watson 2002).

It should be determined in early pre-searches (“orient-
ing the searcher to the literature”) that a good-quality 
review does not already exist on the topic. If it does, the 
question is whether it needs to be updated or a completely 
new review is needed (Booth, Sutton, and Papaioannou 
2016). To determine whether any systematic reviews 
are under way, check PROSPERO and journals such as 
Systematic Reviews, which publishes systematic review 
protocols.

Examining the methods of already found, relevant 
papers is useful to see whether reviewers were explicit 
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about their search strategies. Gold standard searches or 
“pearls” and a set of relevant papers can be used to create 
more specific searches as necessary (Bellefontaine and 
Lee 2014; Hinde and Spackman 2015). Bibliographic 
databases such as Cochrane, MEDLINE, PsycINFO, or 
Sociological Abstracts are useful in locating published 
syntheses and searching across a body of literature (Booth, 
Sutton, and Papaioannou 2016). Some of the larger bib-
liographic databases such as Academic Search Premier and 
ERIC are useful in finding well-cited and seminal papers. 
Resources such as Google Scholar and Wikipedia can be 
useful to refine topics as searches are conducted across an 
interdisciplinary pool of papers and grey literature (Bramer 
et al. 2016; Spencer, Krige, and Nair 2014).

6.5 IDENTIFYING KEY SOURCES

Before reading this section, readers should be acquainted 
with the key information sources, monographs, data-
bases, and websites in their disciplines and relevant 
resources that pertain to their research questions. If read-

ers are unaware of these resources, academic libraries can 
create subject guides and organized lists of reference 
sources and bibliographic databases by topic for this pur-
pose (for example, see http://guides.library.harvard.edu/
sb.php and http://guides.library.ubc.ca/). To appreciate 
the scope of grey literature searching, see the example in 
appendix 1 (“Acupuncture in the Management of Drug 
and Alcohol Dependence”) where a hypothetical research 
question is posed and a range of sources of information to 
search are identified.

Initial searches in the major bibliographic databases 
and library catalogs will provide searchers with a general 
idea of the overall size and quality of monographs and 
journal literature for a topic. Narrowing the topic will 
invariably be necessary for some topics, but it must first 
be ascertained that the available body of evidence is sub-
stantial enough to address the research question fully. 
Scoping the topic is part of establishing the feasibility of 
the review and determining the quantity and quality of 
literature to answer a question (Booth 2016). This early 
searching should give the searcher some general idea of 

Table 6.4 Checklist to Document Grey Literature Searches

 Documentation includes a clearly stated question and scope of the research project.

 Description of the rationale and methods used to develop the search strategy are included; why some grey literature 
sources were searched (and others were not).

 Topic is broken down into workable components; search terms, key concepts, keywords; use of truncation, stemming, 
wildcards, and variants are listed.

 Boolean operators, proximity operators, and search restrictions are stated (anything you wish to exclude from the search).

 Variant spellings and differences in Canadian, American, or British English are noted.

 Screenshots and print-outs of detailed searches are added and longer search sets are saved in a Word document.

 Authors and experts, and their affiliated organizations, are noted and searched specifically.

 Websites and online resources were searched and in priority order (some duplication of the standard bibliographic 
databases was required).

 Online resources, affiliated organizations, and web addresses are listed.

 When (date) searches were conducted in each resource, and number of hits, are indicated; end date of searches  
(for example, 2010 through 2017) is noted.

 Comments are included to note when resources and websites were last updated in case you need to revisit and update 
your searches.

 (Un)indexed journals that will be hand searched are indicated; a record of experts and organizations contacted;  
other nondatabase methods of searching are listed.

 Special search techniques such as reference harvesting and citation searching are indicated.

source: Author’s compilation.

note: For more detailed information on the documentation of searches, see Chojecki and Tjosvold (2016). http://vortal.htai.org/sites/default/
files/Elements%20of%20the%20Search%20to%20be%20Reported%20Table%201.pdf (accessed January 19, 2019).
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grey literature suppliers and producers for the topic. The 
searcher’s findings can be discussed with the review syn-
thesis team before proceeding.

After the scoping is completed, key websites and 
sources of information can be investigated in more detail 
and the most relevant selected (Brien et al. 2010). The 
searcher selects resources based on a combination of fac-
tors related to the research question. The objective is to 
ensure that selected resources provide extensive coverage 
of a topic as well as access to the types of publications 
where relevant evidence is likely to be published. Asking 
the review team for suggestions will assist in identifying 
these resources. Locating subject-specific databases, web-
sites, and online resources will also involve some explo-
ration (Booth, Sutton, and Papaioannou 2016).

The term website in grey literature searching is used 
broadly to help identify search engines and websites 
at organizations and government agencies, institutional 
repositories, research registries, and academic libraries 
(Stansfield, Dickson, and Bangpan 2016). Certain entries 
in Wikipedia can be used as starting points to locate asso-
ciations and experts in different disciplines (Spencer, 
Krige and Nair 2014). Deciding which grey literature 
websites should be listed in the planning document is 
informed by some knowledge of their content strengths. 
Many resources can be identified by using guides and 
structured checklists (see table 6.2), pinpoint Google 
search techniques (see appendix 2) and consultations 
with subject experts (Mahood, Van Eerd, and Irvin 2014).

Grey literature searching benefits from clear structure 
but may require some flexibility and accepting grey liter-
ature as it appears in the search, even if this appears to be 
unsystematic (Booth 2016). Serendipitous discovery 
methods such as cited reference searching and browsing 
should be viewed as part of the search strategy (Brien et al. 
2010; Hartling et al. 2016). Many searchers use multiple 
approaches to grey literature searching to narrow down 
and identify appropriate sources of information and web-
sites (Godin et al. 2015). Another way is to “pre-specify 
exactly what forms of literature are being sought and then 
[to] select sources and strategies for these specific forms” 
(Booth 2016, 7).

For example, searchers can create lists of publications 
that are important to the review, such as reviews, clinical 
trials, and policy reports, and which organizations are 
likely to produce, such as the Cochrane Collaboration, 
WHOICTRP, and the Canadian Centre for Policy Alter-
natives (Balshem et al. 2013; Booth 2016). Another way 
is to identify platforms or catalogs to search, such as spe-

cialist theses repositories, clinical trial registries, or 
library catalogs as well as relevant websites such as 
Theses Canada and Networked Digital Library of Theses 
and Dissertations where these documents are located (see 
table 6.5). To address local or regional issues in a research 
synthesis, Google searches within geographic regions 
can bolster other pinpoint strategies (Godin et al. 2015; 
see also appendix 2). Lists of grey literature producers, 
such as those curated by the New York Academy of Med-
icine, are useful in building lists of credible organizations 
and associations (see table 6.6).

Some documents considered partly grey are available 
in key open-access repositories such as PubMedCentral 
and BioMedCentral. Other important paper repositories 
such as arXiv and the Social Sciences Research Network 
aim to serve specific disciplines in the sciences and 
social sciences (Booth, Sutton, and Papaioannou 2016). 
When looking for grey literature, the searcher should 
both investigate well-respected universities or research 
centers known for conducting research pertaining to the 
discipline or topic, and conduct searches for materials in 
their library catalogs and within their institutional repos-
itories. Librarians and searchers will want to check librar-
ies locally for materials as well as those in larger unified 
catalogs such as WorldCat and AMICUS. Identifying 
resources may include a combination of electronic data-
bases, national registries of research, websites, and confer-
ence proceedings (Booth, Sutton, and Papaioannou 2016).

Relevant publications are found by visiting key pro-
ducers’ websites (Booth, Sutton, and Papaioannou  
2016). Nonprofit organizations as well as think tanks, 
businesses, and foundations produce a great deal of grey 
literature (Schöpfel and Farace 2011). Navigating the 
organization’s website and seeking menu-based options 
labeled “publications,” “reports,” or “documents” will be 
important. Look for a website’s site map to determine 
whether links to full text are provided. Advanced search 
screens in Google and Yahoo can be used to perform site 
searches for document types such as portable digital files, 
PowerPoints, and papers delivered at conferences (appen-
dix 2). When websites do not provide a good search 
facility or access to full documents to nonmembers (for 
example, conference websites), the searcher should con-
sider asking the site manager for assistance or speaking 
to a librarian about an interlibrary loan.

6.5.1 Finding and Mapping Resources

Finding and mapping a set of resources to a particular 
question involves browsing (or “surfing”) for information; 
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once websites are determined relevant, they should be 
listed on the planning document (Booth, Sutton, and 
Papaioannou 2016). The resources listed in table 6.2  
will assist in locating unpublished literature types such as 
dissertations, theses, and conference proceedings as well 
as key organizations, directories, and lists; they provide 
an idea about how to find journals, subject repositories in 
physics, chemistry, medicine, and psychology and insti-
tutional repositories at universities and research centers.

Refining and mapping topics to relevant resources is 
done in consultation with the review team (Brien et al. 
2010). To aid in listing resources in some priority order, 
librarians can use tiered-rating systems and Likert scales 
to evaluate online resources from somewhat important 
to highly important. Performing basic or simple test or 
“pilot” searches at top-tier or highly valued websites will 
provide a way to scan for materials and select search 
terms (Aromataris and Pearson 2014). As websites are 
considered irrelevant, they should be noted as such on the 
planning grid.

To address the potential for database and or searcher 
bias, searchers should aim to learn more about relevant 

resources beyond those purchased by their local libraries 
(Finfgeld-Connett and Johnson 2013). Some vendors 
of fee-based databases provide free trials of resources 
to be searched for a short period of time. Librarians 
possess a wide range of knowledge and of information 
sources and can help build lists of possible resources 
(Booth, Sutton, and Papaioannou 2016). Many librari-
ans will know about a range of resources and the extent 
of coverage within them (Rosenthal 1994). Some newer 
interdisciplinary topics will require extensive searches 
because the literature is widely dispersed across resources 
and databases (Bonato 2018).

Newly located grey literature should be evaluated the 
way other resources are (Tyndall 2010). Deciding which 
online sources and producers are credible is a challenge 
but an evaluation can be made based on authority, sponsor-
ship, place of the host organization, and affiliated agencies 
such as the sponsoring government or nongovernmental 
agency. Tyndall’s AACODS checklist is helpful in evaluat-
ing individual grey literature papers (2010); the National 
Library of Medicine in the United States offers a tutorial 
on how to evaluate websites in health and medicine, many 

Table 6.5 Identifying Resources by Method, Tools, and Types of Grey Literature

Method Tools (Examples) Used to Find

Contacting experts Email, Google Scholar, Twitter, Facebook, 
Academia.edu, university websites

Unpublished or in-process grey literature, 
information, data

Clinical trial registries WHO International Clinical Trials Registry 
Platform

Some unpublished research data, in-process 
studies and trials

Grey literature 
repositories

OpenGrey, local university and subject-based 
repositories

Some unpublished or in-process grey literature, 
information, data

Hand searching The searcher’s hands (manual methods), 
computer browsing screen by screen

Core journals, conference proceedings, open 
access journals not indexed in major 
bibliographic databases

Library catalogs U.S. Library of Congress, U.S. National 
Library of Medicine, local university 
libraries, national libraries and union 
catalogs such as WorldCat, AMICUS

Some grey literature and book chapters; 
unpublished or in-process grey literature, 
information, data

Reference list scanning The searcher’s eye (harvest references from 
relevant documents and bibliographies)

Some unpublished or in-process grey literature, 
information, data

Theses and institutional 
repositories

Theses Canada; PQDT Open, NTDLD, 
university repositories

Dissertations, theses, other academic outputs such 
as conference abstracts, posters, presentations

Web (general) searching Google, Google Scholar, Bing, Yahoo A range of grey literature, information, facts,  
or data

source: Author’s tabulation based on McArthur 2016.
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of which principles will apply across disciplines (https://
medlineplus.gov/webeval/webeval.html).

Some resources reported in languages other than English 
may be considered for certain topics and to avoid linguis-
tic bias, though what documents in foreign languages add 
to the research synthesis is not always clear (Song et al. 
2010). One group of researchers found that use of non- 
Western databases was essential because their topic—on 
faith-based interventions in mental health—encompassed 
many religions and languages (Wright, Cotrell, and Mir 
2014). Some topics in public policy and health technology 
assessment require the retrieval of papers from countries 
where policy documents such as drug monographs, gov-
ernment white papers, and research reports are published 
in languages other than English. Google Translate (a free 
web-based translation tool) can provide rough translations 

but will not be satisfactory for many topics. Searching 
Google in countries such as Canada, the United Kingdom, 
or Australia can assist in locating grey literature among a 
set of relevant national internet domains. To assist in locat-
ing these sites, see the Wikipedia list of Google domains 
(https://en.wikipedia.org/wiki/List_of_Google_domains).

6.6. DEVELOPING SEARCH STRATEGIES

Specialized search techniques can help ensure that a search 
is highly sensitive. For a good review of a topic, searches 
should never be confined to any single approach, set of 
documents, or geographic area. Searching many sources, 
including a range of databases, increases the likelihood of 
retrieving relevant records (Avenell, Handoll, and Grant 
2001; Grindlay, Brennan, and Dean 2012). Between thirty 

Table 6.6 Locating Credible Sources and Producers of Grey Literature

Searching for grey literature requires attention to the types of organizations likely to publish or investigate the same (or similar) 
research questions that you are trying to investigate. This list of grey literature producers illustrates the range of organizations 
producing grey literature around the world.

For more detail, consult GreySource - Index to Web based Resources in Grey Literature. This index is an international list 
organized by topics such as agriculture, environment, humanities and social science, biology and medicine, earth science, 
engineering, and more. The New York Academy of Medicine also keeps comprehensive lists of Grey Literature-Producing 
Organizations.

Types of grey literature producers

• Academic and research institutions
• Associations (annual conference proceedings)
• Charitable foundations, organizations, and non-profits
• Conferences and congresses
• Government agencies, departments and committees (for example, municipal, provincial, national)
• Intelligence agencies (for example, domestic, military, national security)
• International organizations and agencies
• Libraries, museums, archives

 Institutional repositories
 Theses and dissertations databases

• Market research firms
• Multinational companies
• Non-governmental organizations (NGOs)
• Private companies and agencies
• Professional organizations
• Public institutions
• Research centers and institutes
• Scientific laboratories
• Special interest groups / societies / foundations
• Statistical organizations
• Think tanks and policy institutes
• Universities and colleges

source: Author’s tabulation.
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and seventy websites may have to be searched, but the pre-
cise number of top sites may be lower (Pullin et al. 2013). 
In one study, an investment of effort was required across 
multiple web sources and yielded twenty-one grey 
reports—12.5 percent of the total publications in the 
review (Saleh, Ratajeski, and Bertolet 2014).

6.6.1 Competencies in Searching

Searching for grey literature should account for how doc-
uments are likely to be described; any free-text terms that 
appear in the title or abstracts of relevant items should be 
reflected in the search strings (Booth 2016). Given the 
limited number of words in a document or bibliographic 
record, authors will not capture every detail of their topic 
or methods in their descriptions (Whiting et al. 2008). 
Most websites provide a search field of some kind in 
which to enter search terms; in some cases, advanced 
search functions will also be an option. Many websites 
will allow limits by publication date, recently uploaded, 
popular documents on the site, and geographic region. 
Many website search engines cannot perform the complex 
queries performed in standard bibliographic databases. 
For example, some sites will not offer batch downloading, 
saved searches, or an alerting service as new materials are 
entered into the database.

Some search tools have prescribed limits on the number 
of search terms that can be entered. To search thoroughly, 
the searcher should aim to include the most relevant key-
words, phrases, and synonyms on the planning grid. Google  
Scholar, for example, has a limit of 256 characters 
(Bramer, Giustini, and Kramer 2016). It may be important 
to conduct specific field searching (searching in the “title” 
or author fields) to improve precision, and keep detailed 
documentation on what is working or not. To increase 
retrieval, combine variant terms and synonyms using OR. 
If necessary, the searcher should separate synonyms and 
use them separately or in combination and find out 
whether adjacency searching is possible on a given web-
site by using the NEAR or ADJ commands or by looking 
at the help pages or frequently-asked questions.

Search queries will need to be simplified at websites 
because the full strategies used in the bibliographic data-
bases are not always possible to replicate. Here, Occam’s 
razor (the law of parsimony) may be worth remembering: 
simple, short search strategies may be just as effective 
as more complex ones for identifying relevant papers 
(Finfgeld-Connett and Johnson 2013). For example, in a 
study of patients’ perceptions of living with a chronic 
health problem, researchers determined that three broad 
terms were as effective as more complex strategies 

(Flemming and Briggs 2007). Search terms should be 
entered in priority order and in varying combinations to 
search exhaustively.

In 2010, Jessie McGowan and her colleagues pub-
lished a tool to evaluate pre-planned searches in seven 
categories: translation of the search strategy; use of 
Boolean and proximity operators and subject headings; 
use of natural language or free-text; spelling syntax and 
line numbers; limits and filters and adapting the strategy 
to each new database. They produced a checklist of 
questions (and a 2016 update, in which one category was 
removed) to guide peer review of electronic search strat-
egies (PRESS) (McGowan et al. 2010, 2016b). Both are 
recommended as search strategies are refined; further, 
reflect on the ten key competencies in grey literature 
searching and consider the important skills required 
from the searcher pertaining to each (table 6.7).

Table 6.7  Ten Key Competencies in Searching  
for Grey Literature

 1.  Define grey literature and explain its characteristics 
vis-à-vis “published literature”

 2.  Develop grey literature search strategies and  
approaches that are reproducible

 3.  Identify key resources and websites to locate the 
most relevant grey literature

 4.  Undertake comprehensive searches using diverse 
tools, engines, and resources

 5.  Use hand searching, snowballing, and citation 
searching to increase sensitivity

 6.  Document and report the search process to meet  
required scientific standards

 7.  Manage citations using Endnote, Mendeley,  
RefWorks, or related tools

 8.  Budget for and estimate the costs associated with 
major grey literature searching

 9.  Understand review synthesis methods and commu-
nicate the value of grey literature to the research 
synthesis team (that is, to help minimize publication 
and linguistic bias, to avoid distorted view of 
literature)

10.  Develop strategies to communicate effectively with 
the research team throughout the entire research 
process

source: Author’s tabulation.
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6.6.2 Google Scholar in Searching

Google Scholar has an important place in grey literature 
searching (Haddaway et al. 2015; Bramer, Giustini, and 
Kramer 2016) especially in combination with bibliographic 
database searching (Bramer et al. 2017). Its initial role 
may be in searching broadly across the web to verify cita-
tions and inform the information-gathering (pre-search) 
phase (Bramer et al. 2013). Google Scholar can be used 
to locate highly cited and free documents rather than as a 
tool to conduct literature reviews (Martín-Martín, Orduna- 
Malea, Harzing et al. 2016; Bramer et al. 2013). Some 
problems with Google Scholar are due to its lack of search 
functionality and transparency of coverage (Sibbald et al. 
2015; Bramer, Giustini, and Kramer 2016). Another 
problem is that Google Scholar searches cannot be rerun 
reliably, which presents a challenge for reporting and rep-
licability (Bramer et al. 2013).

Google Scholar is thought to index “moderate amounts” 
of grey literature (Haddaway et al. 2015). Some research-
ers avoid scrolling through thousands of Google Scholar 
results by limiting themselves to the first two or three hun-
dred results (Haddaway et al. 2015). To capture relevant 
papers, some researchers limit screening to the first hun-
dred results (Godin et al. 2015). Others opt for as many as 
the first five hundred results in the hopes of finding rele-
vant papers (Bellefontaine and Lee 2014). Only the first 
thousand results of any search can be viewed in Google 
Scholar even when the search engine indicates its search 
results are much higher (Bramer, Giustini, and Kramer 
2016).

Google Scholar does not offer saved searching, search 
histories, or expert search commands. It does, however, 
offer an advanced search for guided use of Boolean com-
mands and field searching (Bellefontaine and Lee 2014). 
Search engines that search the deep web show some 
potential in locating grey literature (Speirs 2013; Rudesill, 
Caverlee, and Sui 2015; Olson 2013). All major web 
search engines—such as Google, Bing, and Yahoo—
cover less than 20 percent of the web in their results 
and little of the deep web, if at all. Each search engine 
therefore has limitations in grey literature searching 
(Bellefontaine and Lee 2014).

6.6.3  Hand Searching, Harvesting,  
and Altmetrics

Hand searching refers to the manual search of print jour-
nals to locate relevant articles and citations that have 

been missed in electronic searching (Booth, Sutton, and 
Papaioannou 2016). According to the Cochrane Hand-
book, “handsearching involves a manual page-by-page 
examination of the entire contents of a journal issue or 
conference proceedings to identify all eligible reports” 
(Lefebvre, Manheimer, and Glanville 2011, 6.2.2.1). The 
need to search issue by issue or page by page in key jour-
nals may need to be taken into account in search planning 
(Rothstein and Hopewell 2009).

Hand searching is recommended even when the jour-
nals identified for hand searching are indexed by the tra-
ditional biomedical databases (Helmer et al. 2001). Some 
studies comparing electronic searching with hand search-
ing found that little benefit was to be gained from hand 
searching (Rothstein and Hopewell 2009). It has been 
shown to be effective in finding additional papers in some 
studies but is time consuming (Armstrong et al. 2005). 
In an era when journals are “born digital” and digitized 
back to issue number one, it is fair to question whether 
hand searching should be adapted to online workflows 
or kept as a manual process, though this should be tested 
empirically.

A search filter, also known as a search hedge, consists 
of both controlled and uncontrolled terms that can be 
used to increase overall yield for a set of possibly rele-
vant documents that might not otherwise be found by 
hand. Similarly, a search filter is a combination of terms 
used in a single nested search query such as “teens OR 
teenagers OR adolescents” (Haynes et al. 1994). Search 
filters are thus pretested strategies designed to identify 
desired concepts from vast amounts of literature indexed 
in the traditional bibliographic databases (Lee et al. 2012). 
Customized filters can be used to locate papers by study 
design, by population, or within specific geographic areas. 
Search filters are useful when many synonymous terms, 
spelling variations, and different languages are part of the 
topic. Certain websites may not allow the use of search 
filters but each term or set of terms that make up the filter 
can be searched separately.

Snowballing (also known as reference harvesting, back-
ward searching, treeing through references, the ancestry 
approach or pearling) is a search technique used to track 
down references in relevant documents (Greenhalgh and 
Peacock 2005; Booth, Sutton, and Papaioannou 2016). 
The best starting point for reference harvesting is to iden-
tify a small group of relevant documents for review 
because they are more likely to cite papers similar in nature 
(Hinde and Spackman 2015). Searching reference lists is 
almost universally recommended as an effective way to 
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identify supplementary relevant materials. In one study, 
snowballing found 29.2 percent of all items retrieved for a 
review (Helmer et al. 2001). Snowballing is sometimes 
found to be more effective than other forms of searching 
(Hinde and Spackman 2015).

A few studies provide evidence of the effectiveness 
of reference harvesting. Trisha Greenhalgh and Richard 
Peacock searched the reference lists of previously identi-
fied papers that yielded the most (12 percent) of useful 
additional studies: reference harvesting proved effective 
in finding one useful paper for every fifteen minutes of 
searching (2005). Scanning references identified a quar-
ter of the potentially useful studies identified by means 
other than searching of electronic databases (Helmer 
et al. 2001).

Digital forms of reference searching and citation har-
vesting can increase the total number of papers. In 
PubMed, for example, the “Related Citations” feature 
leads to articles similar in subject content to the one 
viewed. In Google Scholar, the “Cited by” feature will 
point to potential grey literature among the references 
cited. Bibliographic coupling or co-citations in Scopus 
and Web of Science can be helpful in leading researchers 
to grey literature. One study finds that cited reference 
searching may actually yield more relevant studies than 
performing more database searching (Hartling et al. 
2016). Citation searching is widely viewed as a useful 
technique and may reduce overall search burden (Linder 
et al. 2015; Belter 2016).

Some bibliographic databases such as ERIC and 
CINAHL point searchers to possibly relevant materials 
based on the materials already viewed through features 
such as “Related articles” and “Cited within this database.” 
Innovative harvesting in some of the standard bibliographic 
databases now include altmetrics (nontraditional metrics), 
which refer to how many mentions a given paper has 
received, social exchanges about it on blogs, Twitter, 
Wikipedia, and Facebook, and the impact of these activi-
ties (Lindsay 2016). Altmetric.com, PlumAnalytics, and 
ImpactStory each currently offer this service within their 
own websites or as added features on various search 
engines and websites (Lindsay 2016). A related altmetrics 
trend measures the impact of individual articles by usage 
such as number of page views, citations, and downloads.

6.6.4 Identifying Experts to Increase Recall

Identifying experts in various disciplines is a proven 
method to increase search recall (Booth 2016). Experts 

are often able to identify specialist websites with relative 
ease and professional confidence (Adams, Smart, and 
Huff 2017). The number of content experts that should be 
contacted will vary depending on the scope of a project 
and its timelines (Godin et al. 2015). Asking colleagues 
and key experts about unpublished studies will lead to 
papers that even extensive database searching may fail to 
identify; requesting datasets directly from authors is also 
useful (Schroll, Bero, and Gøtzsche 2013). Author pro-
files can be created on Google Scholar (“Google Scholar 
Citations”) and may be helpful in tracking down experts 
and following their publication metrics (Giustini 2016). 
Informal channels of communication can sometimes be 
the only way to obtain unpublished datasets. Formal 
emails and letters of request can also help in identifying 
unpublished studies.

Online social sites, discussion forums, and blogs 
authored by scholars may provide useful information 
about experts and the most viewed or downloaded papers 
(Thelwall and Kousha 2015). Mendeley, Academia.edu 
and ResearchGate are social networks catering to aca-
demics who use them to create profiles and list their pub-
lications. They also provide platforms for researchers 
to load all kinds of published and unpublished papers 
(Bornmann and Haunschild 2015; Citrome 2014; Thelwall 
and Kousha 2015; Martín-Martín, Orduna-Malea, Ayllón 
et al. 2016). Academic social network sites are poten-
tially rich stores of grey literature and social discussion 
about unpublished research. Many experts load their pre-
prints to get feedback from peers, to interact, and to build 
their social networks (Martín-Martín, Orduna-Malea, 
Ayllón et al. 2016). The citation metrics gathered at the 
sites (as well as via Twitter) provide information about 
author impact factors, readership patterns, and whose 
research is being cited and by whom (Thelwall and Kousha 
2015). Invariably, these sites are useful in finding experts, 
contact information and grey papers and other materials.

6.6.5 When to Stop Searching

At some point in planning (and perhaps during the actual 
searches, or during an evaluation), it is wise to determine 
when to stop searching. Some researchers determine this 
stopping point based on an estimate of how close the 
searcher has come to finding everything relevant (Kastner 
et al. 2009). A priori stopping rules, and identifying a 
saturation point, are among the solutions proposed to 
help searchers identify a stopping point (Kastner, Straus, 
McKibbon et al. 2009; Booth 2010). Reasonable limits 
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should be placed on how many resources can be effec-
tively searched but currently there seems to be some dis-
agreement about when that point is reached (Hartling et al.  
2016). Stopping rules decided in advance of searching 
can be used to rationalize the decision to stop. For exam-
ple, there is no inherent value in continuing literature 
searches unless they improve sensitivity (Kastner et al. 
2009; Booth 2010).

Regardless of the type of research undertaken, ending 
the search for grey literature can be based on the judg-
ment of the searcher; the key is not to terminate a search 
too early. An attempt should be made to ensure that deci-
sions to stop searching are justified given the needs of the 
review (Booth 2010). In some cases, it is impossible to 
know what has not been found; accepting that no single 
review will be informative forever may be justification 
enough to stop searching (Booth 2010). In the end, the 
decision to stop will need to be documented and explained 
within the context of the review itself (Finfgeld-Connett 
and Johnson 2013). In the case of knowledge-building 
and theory-generating reviews, the key is saturation of 
concepts and the full explication of interrelationships 
among them (Strauss and Corbin 1998).

6.7 RECORDING AND REPORTING

Some researchers devise a robust system of recording 
searches to fit the individual project, relying on check-
lists, planning grids, Excel spreadsheets, or a combina-
tion of these (Godin et al. 2015; Chojecki and Tjosvold 
2016). Using Excel to record searches performed on web-
sites is not seamless and may require manual editing 
(Godin et al. 2015). To aid in accurate reporting, some 
searchers create Word documents and take screenshots of 
live searches, indicating the date and time when searches 
were performed and by whom.

The validity of a review can be evaluated in part  
on how explicit the searches for grey literature were 
(Hopewell, Clark, and Mallett 2005). Transparent and 
detailed reporting ensures that searches are reproducible. 
Searchers are required to provide enough detail to enable 
searches to be repeated later, tested, and updated as neces-
sary. In the internet era, several variables limit the repro-
ducibility of web searching due to the unpredictability of 
tools and ongoing changes to web content and addresses 
(Stansfield, Dickson, and Bangpan 2016; Briscoe 2015).

The PRISMA guidelines are explicit and helpful about 
recording and reporting searches for systematic reviews 
(Liberati et al. 2009), and can be applied to a grey litera-
ture searching (Godin et al. 2015). PRISMA stipulates 
that the following should be included: a description of all 

information sources in the searches, the name or names 
of those conducting the searches, the date the searches 
were performed, and a full search strategy of at least one 
database including all search terms and combinations 
(Liberati et al. 2009).

Claire Stansfield, Kelly Dickson, and Mukdarut Bang-
pan explore some of the challenges of conducting web-
site searches and emphasize systematic but practical 
record keeping (2016). Key information about search 
methods, sources, search queries, and results should be 
recorded (McArthur 2016). Web searching should be 
reported to an extent that search strategies are transparent 
and reproducible; the aim is to include complete, detailed 
search strategies (which in some instances can be copied 
and pasted) and the number of records retrieved. Other 
details such as hand searching, contact with experts, ref-
erence lists, and citation searching should also be 
included in planning documents.

6.8 CONCLUSION

This chapter has discussed the systematic retrieval of 
grey literature in support of the research synthesis and 
several current techniques to conduct it efficiently. The 
search for grey literature is a scientific undertaking and 
requires both adhering to a predetermined search plan 
and an awareness of a reliable set of strategies and prac-
tices to ensure that the search is thorough, systematic, 
unbiased, transparent, and clearly documented.

Whether a research synthesis requires an extensive and 
potentially costly search for grey literature is a question 
that depends on local resources and the goals of individual 
projects. The research synthesis team can determine the 
degree of comprehensiveness of grey literature searching 
taking into account the requirements of the review and its 
resources (Egger et al. 2003). To retrieve grey literature 
effectively when required—similar to what is conducted 
in standard bibliographic databases—structured check-
lists and research guides will help searchers retrieve grey 
literature and enhance the likelihood that the process will 
be efficient (McGowan 2016b; Vaska and Vaska 2016). 
Searches for the grey literature should be monitored and 
evaluated for efficiency throughout the process as import-
ant papers appear in the process and more targeted 
searches are performed. Above all, the searcher should be 
prepared to discover retrieval challenges that are encoun-
tered, especially those beyond the scope of topics covered 
in this chapter.

Expert searchers such as librarians and information 
specialists are critical contacts in systematic searching 
and in identifying sources of grey literature. The interpre-
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tive services of a librarian is critical at other points. As 
well as offering help to improve the process and sub-
stance of individual search strategies, librarians can assist 
researchers in selecting software programs for citation 
management and data management planning (for the 
value of the information specialist in the systematic 
review, see Wade et al. 2006). Librarians provide sup-
porting documentation for reviews, search tutorials, and 
subject guides (Vaska and Vaska 2016). They are indis-
pensable when assistance is needed for document deliv-
ery or interlibrary loan requests.

Retrieving grey literature, information, and data are 
complex and time-consuming tasks but rewarding scien-
tific activities in their own right. The search and retrieval 
of grey literature may be difficult to manage and docu-
ment but achieving this starts with a plan guided by 
emerging protocols from the literature. With the rise of the 
web, open access to research and data reporting require-
ments at grant-funding agencies worldwide, the expecta-
tion is that grey literature, information and data will play 
key roles in the synthesis of research in the social, behav-
ioral, and medical sciences well into the future.

Further research needs to identify better practices in 
grey literature searching. The requirements of system-
atic review searching can confound even the most well- 
informed searcher given the almost daily changes to 
search engines and how and where grey materials are 
produced. To ensure long-term access to and preservation 
of these materials, researchers should work with librari-
ans on solving some of the problems associated with 
finding grey literature. Despite the rise of the internet (or 
because of it) and the unprecedented production of scien-
tific information in the digital age, a lot of grey literature 
searching is overly inefficient and repetitive. Too much is 
left to serendipity even when the search is thoroughly 
planned and a librarian is consulted. The process of locat-
ing valuable, relevant grey papers among millions of dis-
parate web documents would benefit enormously from 
better cataloging and preservation practices well before 
the searcher looks for them in the research synthesis.

6.9  APPENDIX

6.9.1  Appendix 1. Case Study:  
Identifying Key Resources

Acupuncture in the Management of Drug  
and Alcohol Dependence

“Is acupuncture effective in managing drug and alcohol 
dependence?” The goal is to find as many randomized 

controlled trials (RCTs) as possible, perform a systematic 
review of the literature and a subsequent quantitative, 
meta-analysis.

Keywords and Phrases It is advisable to organize 
keywords, wildcards, and combinations before search-
ing. Most specialized databases will have different types 
of search interfaces and functionality, but be as system-
atic as possible. A range of possible keyword combina-
tions for this topic include acupuncture, meridian, 
acupressure, electroacupuncture, shiatsu, drug*, poly-
drug*, substance, alcohol, beer, wine, spirits, tranquilize, 
tranquilizer, narcotic, opiate, solvent, inhalant, street 
drug*, prescri*, non-prescri*, nonprescri*, abuse*, use*, 
usin*, misus*, utliz*, utilis*, depend, addict, illegal, 
illicit, habit*, withdraw*, behavio*, abstinen*, abstain*, 
abstention, rehab, intox*, detox, dual, diagnosis, and 
disorder.

Other Considerations

Synonyms, such as adolescents, teens, youth

Acronyms, such as AUD (alcohol use disorder), DUI 
(driving under the influence)

Differences in terminology across national boundaries, 
such as liquor, spirits

Differences in spellings, such as tranquilizer and  
tranquiliser

Old and new terminology, such as addiction and  
dependence

Brand and generic names, such as hydromorphone 
and dilaudid

Lay and medical terminology such as drunk and  
alcohol-dependent

Major Bibliographic Databases and Search Engines  
This list is not exhaustive and is meant to provide a start-
ing point for the published literature. In some cases, these 
resources will not be available at your institution and 
access to them will have to be worked out:

MEDLINE, PubMed, and Embase

Cochrane Database of Systematic Reviews

Cumulated index to nursing and allied health literature 
(CINAHL)

Google and Google Scholar

PsycINFO, Sociological Abstracts

PubMedCentral



120   SEARCHING THE LITERATURE

ScienceDirect

Academic Search Complete

Agricola

AMED (Allied and Complementary Medicine  
Database)

Key Websites and Online Resources Many of these 
resources will help locate unpublished studies and 
papers. Contacting relevant organizations will help in 
discovering what websites, search engines, and online 
resources exist (special deep web databases, library 
catalogs not crawled by Google, and so on). Most web-
sites now provide a jumping-off point for your search-
ing and are increasingly sophisticated even if you cannot 
perform the kind of structured searching you do in the 
major biblio graphic databases. If you are unfamiliar 
with the topic for the research synthesis and do not yet 
know which organizations exist in a given field, a num-
ber of subject guides and organizational directories are 
available to help focus search efforts and guide you 
along the way. Examples of relevant organizations 
include the following:

British Acupuncture Council http://www.acupuncture.
org.uk/

Canadian Interdisciplinary Network for Complemen-
tary and Alternative Medicine Research (IN-CAM), 
http://www.incamresearch.ca

National Acupuncture Detoxification Association 
(NADA), http://www.acudetox.com

National Center for Complementary and Integrative 
Health (NCCIH), https://nccih.nih.gov/health/ 
acupuncture

National Institute on Alcohol Abuse and Alcoholism 
(NIAAA), http://www.niaaa.nih.gov/

National Institute on Drug Abuse (NIDA), https://
www.drugabuse.gov/

Specialist Website and Database Examples These 
websites and specialized resources will further increase 
the comprehensiveness of grey literature searches:

AcuTrials®, http://acutrials.ocom.edu/

Acubase, http://www.acubase.fr/

Acubriefs, http://acubriefs.blogspot.ca/

Ageline, https://www.ebscohost.com/academic/ageline

Canadian Centre on Substance Abuse (CCSA), http://
www.ccsa.ca/Pages/default.aspx

Drug Database (Alcohol and other Drugs Council of 
Australia), https://www.informit.org/index-product- 
details/DRUG

Networked Digital Library of Theses and Dissertations 
(NDLTD), http://www.ndltd.org/

PEDro, https://www.pedro.org.au

Traditional Chinese Drug Database (TCDBASE), http://
tcm.cz3.nus.edu.sg/group/tcm-id/tcmid_ns.asp

Databases in the area of acupuncture and Traditional 
Chinese Medicine (TCM) are numerous, such as the 
Chinese Technical Periodicals (VIP), Chinese Biomedical 
Literature Database (CBM) and China National Knowl-
edge Infrastructure (CNKI). See, for example, http://
caod.oriprobe.com/packages/TCM.htm.

Library and Union Catalogs Library catalogs and 
discovery layers in academic, special, and public libraries 
are excellent sources of grey literature. Catalogs both 
provide access to local and regional materials and inform 
researchers that they exist. Library catalogs are fertile 
sources for bibliographic verification and resource dis-
covery in grey literature searching. Library catalogs are 
good sources of grey literature and often index books, 
dissertations, government, and technical reports, particu-
larly if the authors are affiliated with the parent organiza-
tion as scholars or researchers. The following are a few 
examples for the acupuncture topic:

AMICUS, http://amicus.collectionscanada.ca/aaweb/
aalogine.htm

Drug Policy Alliance, Lindesmith Library, http://www.
drugpolicy.org/resources-publications

Centre for Addiction and Mental Health Library, http://
www.camh.ca/en/education/about/services/camh_
library/Pages/camh_library.aspx

Your Local Library

National Research Council (NRC) library catalog, http:// 
cat.cisti.nrc.ca/search

WorldCat, https://www.worldcat.org/

Repositories (pre-prints, protocols, registries, 
research “in progress”) Here are a few examples for 
the acupuncture topic:

ClinicalTrials.gov, http://clinicaltrials.gov

Cog Prints, http://cogprints.org
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Defense Technical Information Network, http://stinet.
dtic.mil/dtic

Directory of Open Access Journals, http://www.doaj.org

Open Trials, http://opentrials.net

PROSPERO, University of York, National Institute of 
Health Research (UK), https://www.crd.york.ac.uk/
prospero

PubMedCentral, http://pubmedcentral.gov

Social Science Research Network (SSRN), https:// 
papers.ssrn.com/sol3/results.cfm

WHO International Clinical Trials Registry Platform, 
http://www.who.int/ictrp/en/

6.9.2  Appendix 2. Advanced Google  
Search Commands

Advanced Google search commands give you the ability 
to use more pinpoint search strategies to locate grey liter-
ature more efficiently. However, it may be necessary to 
repeat any Google searches because using the site: 
command may require double-checking at the website 
itself. To use the advanced search page at Google, see: 
https://www.google.ca/advanced_search.

Searching by Description Example

“Phrase” Forces a specific 
word order

“alcohol 
dependency”

Specific 
“word”

Quotation marks 
around a word 
turns off 
synonyms and 
spell checking

“addictions”

Site or 
domain 
search:

Search within a 
particular web-
site (gov.ca) or 
domain (.ca)

site:drugabuse.gov/ 
site:.gov
inurl:.ca

Filetype: Searches for a 
particular 
filetype

filetype:pdf,doc,pptx

Intitle: Searches only in 
the title

intitle: “systematic 
review”

For more information on advanced searching on Google 
and Google Scholar, see the Google Advanced Power 

Searching page: http://www.powersearchingwithgoogle.
com/course/aps/skills
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7.1 INTRODUCTION

If you were to gather a set of experts on research synthe-
sis and ask them to list the five most important issues 
affecting the typical systematic review and meta-analysis, 
study quality would surely be on the list. It would be 
because it is essentially a truism that study quality can 
affect study results, which can in turn affect the conclu-
sions drawn by the research synthesist. As a result, 
developing an explicit, transparent, and reproducible 
way of assessing study quality is an important goal for 
all research syntheses. Unfortunately, despite the general 
assumption that poor study quality positively biases 
effect sizes, the relationship between study quality and 
study results is not straightforward, and the implications 
of study quality for the results of a research synthesis are 
often not clear.

In this chapter, I make three points. First, a judgment 
of the quality of any given study is context dependent, in 
that it is a function of specific characteristics of research 
design and implementation that might be a threat to 
validity in the specific context of the studies in question. 
Second, in part because study quality is context depen-
dent, for many research questions there is very little 
empirical evidence addressing whether study quality 
indicators covary with effect sizes, and even less evi-
dence that the two are causally related. These facts have 
important implications for what we are able to say about 
the effects of study quality on the results of a research 
synthesis. The final point is that study quality is a multi-
dimensional construct. Therefore, attempts to arrive at a 
single number, score, or unitary judgment about the qual-
ity of a particular study are probably misguided, and 
could lead to unwarranted conclusions about the cumula-
tive results of a research literature.

7.2 WHAT IS STUDY QUALITY?

Study quality means different things to different people 
(Shadish 1989). A university administrator might say that 
a good study is one that results in a successful grant 
application. A teacher, human resource manager, or clini-
cal psychologist might say that a good study is one that 
results in knowledge that improves practice. A journal 
editor might say that a good study is one that is often 
cited; a journal peer reviewer might say that a good study 
is one that makes a theoretical contribution to the litera-
ture. All of these are valid in their context. In the context 
of a research synthesis, a good study is one in which the 

research methods used are well aligned to the research 
question under investigation.

The description of study quality shares two characteris-
tics with the notion of measurement validity. First, strictly 
speaking, the validity of a measure is neither absolute nor 
final. That is, even a measure that is well accepted in a 
field does not have perfect validity (so judgments of mea-
surement validity are never absolute) and researcher’s 
beliefs about a measure’s validity are never completely 
settled; they change as new applications of the measure 
reveal more about the value of its use (so validity is never 
final). Second, even measures that researchers believe are 
very likely to be highly valid are believed valid only for 
particular purposes. For example, experts in human intel-
ligence might believe that a certain IQ test produces a 
score that is likely to be a highly valid indicator of intelli-
gence; these same experts, however, are unlikely to 
believe that the score is a highly valid indicator of mar-
riage satisfaction. Like a measure being fit to its use, a 
study’s research design and implementation should be fit 
for the research question it is trying to answer.

One consequence of describing study quality as the 
degree of fit between research goals and research ques-
tions is that study quality considerations differ as a func-
tion of the nature of the research question and the 
audience for the research. The study quality dimensions 
relevant to synthesists who are analyzing lab-based 
experiments in social psychology differ somewhat from 
those relevant to synthesists analyzing classroom-based 
experiments, and both differ somewhat from the study 
quality dimensions relevant to synthesists analyzing pub-
lic polls. As a result, in this chapter I attempt to strike a 
balance between the need to speak to readers working in 
a variety of disciplines who might be working on differ-
ent types of syntheses, both of which have implications 
for the specific quality assessments that are done.

7.3  WHY BE CONCERNED ABOUT  
STUDY QUALITY?

There are two related reasons to be concerned about 
study quality in a research synthesis. First, it is a certainty 
that study quality will vary across the studies included in 
a review. This will occur even if the synthesists’ attempt 
to limit the extent of variability in the quality of included 
studies. For example, restricting included studies to only 
those using random assignment does not eliminate vari-
ability in study quality due to participant attrition, miss-
ing data, and so on.
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In addition, empirical evidence indicates that study 
effect sizes can vary as a function of study quality indica-
tors in some contexts. For example, Margaret Spinelli, 
Jean Endicott, and Raymond Goetz conducted a trial 
evaluating a treatment for postpartum depression (2015). 
They examined mood and global functioning ratings gen-
erated by independent assessors relative to those gener-
ated by the therapists delivering the intervention. Relative 
to the control group, the therapists delivering the inter-
vention consistently rated participants in the treatment 
condition as showing more improvement than the masked 
independent evaluators, suggesting the possibility that 
therapist ratings were biased by their expectancies.

Similarly, Will Shadish and his colleagues conducted an 
experiment in which participants were randomly assigned 
to be in either a randomized experiment or in a nonrandom-
ized experiment (2008). Participants in the randomized 
experiment were yet again randomly assigned to either a 
math or a vocabulary training session, and participants in 
the nonrandomized experiment were allowed to choose 
whether they would attend either math or vocabulary train-
ing. The results indicated that allowing participants to 
choose their condition (the nonrandomized experiment) 
was associated with a positive bias in effect sizes.

The studies by Spinelli and her colleagues (2015) and 
Shadish and his (2008) investigated the relationship 
between study quality indicators and effect size within a 
single sample of participants. Another strategy for examin-
ing the relationship between study quality and effect size is 
to use meta-analysis to compare the effect sizes obtained in 
studies that score well on a certain quality indicator to those 
that do not score well. Much of this work has been done in 
medicine and informed the development of the Cochrane 
Collaboration’s Risk of Bias tool (Higgins et al. 2011). 
Thomas Chalmers, Raymond Matta, Harry Smith, and 
Anna-Marie Kunzler offer a very early example (1977). 
These researchers examined the effect sizes obtained from 
studies of the use of anticoagulants (blood thinners) for 
patients who had experienced a heart attack. Although both 
randomized experiments and nonrandomized experiments 
suggested that anticoagulants are beneficial, the effect was 
notably larger in nonrandomized studies.

Since then, many individual studies and meta-analyses 
have examined the impact of study quality indicators, and 
this continues to be a fruitful area of research. In fact, 
Agnes Dechartres and her colleagues conducted a 
meta-analysis of meta-analyses, which they refer to as 
meta-epidemiological studies (2016). Collectively, they 
included fifty-six meta-epidemiological studies that in 

turn included more than three thousand meta-analyses, 
which were based on more than twenty-one thousand 
individual studies. They concluded that two design fea-
tures were associated with effect sizes across the synthe-
ses. The first was allocation concealment, or making sure 
that those randomizing participants to conditions cannot 
predict what the next assignment will be. The range of 
odds ratios was 0.63 to 1.02 in ten meta-syntheses of 
binary outcomes, and because the effect sizes were coded 
such that odds ratios below 1.0 suggested a positive ben-
efit, this result suggests a positive bias in effect sizes 
(that is, intervention effects were larger in studies that 
scored low on the allocation concealment dimension). 
The second was adequate randomized sequence genera-
tion. An example of a low-quality sequence generation 
might be using date of admission as the assignment 
mechanism (for example, patients admitted on an even 
date like the second or fourth of the month are assigned 
to the treatment condition). For this dimension, results 
again suggested a positive bias, with odds ratios ranging 
from 0.81 to 1.10.

One might infer from these examples that in medical 
contexts, low study quality upwardly biases effect size, 
that is, it makes intervention effects appear larger than 
they actually are. However, this is not universally true. To 
take one example, in the Dechartres meta-study, four syn-
theses of meta-analyses of continuous outcomes sug-
gested very little, if any, bias associated with sequence 
generation problems (2016). It is not immediately clear 
why, if sequence generation is associated with effect sizes, 
the relationship would only hold true for binary outcomes.  
To take another example from that study, participant drop-
out was assessed in two meta-analyses. The association 
between dropout and effect size was statistically signifi-
cant and negative in one (OR = 1.33), and not statistically 
significant and negative in another (OR = 1.07). These 
effect sizes are similar in magnitude, but in a different 
direction, to those observed for sequence generation. If 
dropout really is negatively related to effect size (that is, if 
more dropout is associated with smaller effects), the find-
ing runs counter to the general expectation that low qual-
ity results in a positive bias.

As another example of the context dependency of study 
quality assessments, Cathleen McHugh and I used 
meta-analysis to examine the effects of attrition in ran-
domized experiments in educational contexts (Valentine 
and McHugh 2007). We found little evidence that attrition 
biased effect sizes in these studies. However, the context 
does matter. Most of the studies included in this review 
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had three features that made it less likely that attrition 
biased effect size estimates. First, the studies were exper-
iments that were conducted using young schoolchildren 
(roughly ages six through twelve) for whom schooling 
was compulsory. In addition, the studies occurred in con-
texts in which average attendance rates were high (greater 
than 95 percent). Finally, most of the studies were con-
ducted in the United States, where it is not required to 
obtain participation consent for studies of everyday edu-
cation practice. As a result the students in these studies 
(and their parents) were likely unaware that they were 
even participating in an experiment. All three of these 
characteristics suggest that whether a given student is 
available for outcome measurement is probably the result 
of something functionally random (like being sick on a 
given day) and hence unrelated to whether the student was 
in the treatment or in the control condition. This empirical 
example does not mean that attrition does not affect effect 
sizes. It does suggest that while attrition has the potential 
to bias estimates of treatment effects, its influence may be 
stronger or weaker depending on a study’s context. Yet, 
attrition is addressed on almost all quality scales (more on 
this in the following section), and studies with “too much” 
attrition will usually be treated skeptically and perhaps 
even excluded from the review. This will happen even if 
attrition is actually unrelated to effect size in that context, 
thereby unnecessarily reducing the amount of information 
available for meta-analysis and the generalizability of the 
meta-analytic database. The problem highlighted by these 
examples is that an aspect of a study’s research design that 
positively biases effect sizes in one context might nega-
tively bias effect sizes in another context and have no 
effect in another context.

7.4 HOW NOT TO ADDRESS STUDY QUALITY

Given that dimensions related to study quality have the 
potential to be related to effect sizes, how then should 
synthesists address it in their reviews? Three common 
strategies are to deal with it minimally or not at all, to rely 
on the journal peer review process to weed out low-quality 
studies (operationally, to use only published studies), and 
to rely on scores derived from quality scales. All of these 
strategies have problems.

7.4.1 Not Addressing Study Quality

Blair Johnson and his colleagues examined two hundred 
research syntheses in the health promotion area, and found 

that about 20 percent of them did not explicitly mention 
methodological quality (2015). Similarly, Humam Saltaji 
and his colleagues examined just under a thousand synthe-
ses on topics related to oral health, and found that more 
than half (56 percent) did not formally assess study quality 
(2016). These findings should not be interpreted to mean 
that many research synthesists fail to deal with study 
quality at all, because in fact it turns out to be difficult to 
completely avoid study quality issues in a research syn-
thesis. For example, in their now-classic review of the 
relationship between class size and academic achieve-
ment, Gene Glass and Mary Lee Smith included studies 
“whether [or not] they employed rigorous empirical 
methods” (1979, 5), but did require that studies have a 
comparison group. In doing so, they eliminated from 
consideration studies that, for example, employed a sin-
gle group of students and then measured outcomes before 
and after reducing class size. Of course, this is in essence 
a study quality consideration because the excluded 
design leaves open a number of alternative explanations 
(such as normal student growth). Later I return to the 
methods that Glass and Smith used to address study 
quality. For now, the point is that almost all research syn-
thesists address study quality but not all do in an explicit, 
transparent, and reproducible way.

7.4.2 Peer Review as a Proxy for Study Quality

Historically, perhaps the most common strategy for 
addressing study quality in a research synthesis has been 
to rely on the peer review process to weed out low-quality 
studies. This is an easy to implement and appealing strat-
egy but it also has its drawbacks. It is appealing because 
one goal of peer review can be to keep suspect research 
out of academic journals. But it may not reveal the picture 
of the literature the synthesists want because the peer 
review process is not a perfect screen; readers of research 
have seen published studies that they thought were not 
very good, in part because peer reviewers have other cri-
teria that reports need to meet. As an example, journals are 
often interested in a study’s potential for advancing  
theory. Similarly, though becoming somewhat less com-
mon, some journals have formal or informal policies dis-
couraging replication research, expressing a preference 
for novelty over knowledge cumulation (see, for example, 
Kail 2012; Ritchie, Wiseman, and French 2012). In addi-
tion, journal editors and peer reviewers exhibit a prefer-
ence for studies that have statistically significant findings 
on their main outcomes. This latter concern is particularly 
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important and is part of the reason that publication bias is 
a problem (see also chapter 19, this volume).

Another reason that using peer review as a proxy for 
study quality can be flawed is that much good research 
gets produced that is never submitted for peer review. 
Not everyone has publication as a goal. For example, 
government agencies and nonprofit foundations, such as 
charities, often commission research that they then make 
available outside of peer-reviewed journals. Assuming 
that peer review results in only high-quality studies is a 
mistake and assuming that all good studies undergo peer 
review compounds that error (Glass 2000).

7.4.3 Study Quality Scales

Another popular approach is to use a scale that measures 
study quality. This approach is popular in part because it 
relieves some of the burden of figuring out what quality 
means for the research question guiding the synthesis. 
Most commonly, quality scales result in a single score 
that represents the quality of a study. This score is used as 
a weight in meta-analysis, a rare approach and not recom-
mended (see Ahn and Becker 2011), to set study inclu-
sion criteria, that is, the meta-analysis only includes studies 
that pass a certain score threshold, or used to categorize 
studies into high and low study quality groups.

All of these approaches are problematic because the 
scores produced by quality scales are likely error prone. 
That is, they introduce an additional source of measure-
ment error into analyses because the validity of quality 
scales has rarely been subject to empirical examination 
(see, for example, Crowe and Sheppard 2011). For exam-
ple, blood clots are a common and potentially serious 
complication of surgery. Peter Jüni and his colleagues 
found a systematic review and meta-analysis investigat-
ing the relative effectiveness of two different versions of 
a drug (low molecular weight heparin versus standard 
heparin) on the likelihood that surgery patients would 
develop post-operative blood clots (1999). They also 
located twenty-five quality scales, twenty-four of which 
were published in peer-reviewed medical journals. They 
then conducted twenty-five different meta-analyses, with 
each meta-analysis using one of the twenty-five quality 
scales. Specifically, they selected a quality scale and applied 
it to all of the studies in the original meta-analysis.  
They then categorized the studies in the meta-analysis as 
either high or low quality, and performed meta-analysis 
within each study quality category. They then examined 
the relative effectiveness of low molecular weight hepa-

rin relative to standard heparin in the high study quality 
and in the low study quality categories. This process was 
repeated for all twenty-five quality scales.

Jüni and colleagues (1999) found that in about half of 
the twenty-five meta-analyses, effect sizes were similar 
in the high and low study quality categories. In about a 
quarter of the meta-analyses, the high-quality studies 
suggested that low molecular weight heparin was more 
effective than standard heparin, while the low-quality 
studies suggested that low molecular weight heparin was 
no more effective than standard heparin. In the remaining 
meta-analyses, this pattern was reversed: the high-quality 
studies suggested that low molecular weight heparin 
was no more effective than standard heparin, while the 
low-quality studies suggested that low molecular weight 
heparin was more effective than standard heparin (for a 
similar example in studies of interventions for students 
with learning and other disabilities, see also Cook, Dupuis, 
and Jitendra 2015; for another example from medicine, 
Brouwers et al. 2005).

Jüni and his colleagues’ results suggest that the deci-
sion about the relative effectiveness of low molecular 
weight heparin depended on the quality scale chosen. 
Imagine surgeons are preparing for surgery and run 
across the original meta-analysis comparing the effects of 
low molecular weight versus standard heparin. The sur-
geons know that study quality is an important issue, so 
they find a study quality scale published in a recent med-
ical journal and apply it to the studies in the original 
meta-analysis, and base the decision about whether to 
give their patients low molecular weight or standard hep-
arin on what the “high-quality” studies suggest is the best 
course of action. The treatment decision is being driven 
in part by the quality scale that the surgeons choose to 
use; this choice was arbitrary, and it may have similarly 
arbitrary effects on treatment outcomes.

Why did the scales come to different conclusions about 
study quality? Harris Cooper and I suggest several rea-
sons (Valentine and Cooper 2008). First, the quality 
scales that Jüni and his colleagues collected differed in 
their comprehensiveness: the number of items ranged 
from three to thirty-four (1999). As a result, some scales 
were quite general and others more detailed. In addition, 
even when scales have a similar number of items the 
weights assigned to those items can vary dramatically. 
For example, one of the quality scales used by Jüni et al. 
allocated 15 percent of its total points to whether or not 
the study randomly placed patients into conditions, and  
5 percent of its total points to whether the outcome 
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assessors were unaware of the patients drug condition. 
Another quality scale with the same number of items 
reversed these weights (15 percent for masking outcome 
assessors, 5 percent for randomly assigning patients to 
conditions). This highlights a critical problem: the 
weights used in quality scales are highly arbitrary and 
almost certainly have no empirical justification. At best, 
they reflect judgments by the scale’s authors about the 
relative importance of the various dimensions included 
on the scale. These judgments are probably influenced by 
the particular contexts in which the authors work, so even 
if the weights are reasonable for the contexts with which 
the authors are familiar, they are less likely to be reason-
able for other contexts. At worst, the weights applied to 
study quality dimensions are essentially idiosyncratic to 
the scale’s authors.

As worrisome as these two issues are, an even bigger 
problem is that most study quality scales result in a single 
number that represents study quality. This means that two 
studies with very different strengths and weaknesses 
might receive the same score on the same scale. For exam-
ple, a study that implements a very solid research design 
on a sample that is quite unrepresentative of the popula-
tion of individuals for whom an intervention was devel-
oped might receive the same score as a study with a 
weaker research design but a much more representative 
sample. It is hard to imagine how both of these scores 
could be valid representations of study quality.

7.5 HOW TO ADDRESS STUDY QUALITY

When considering how to address study quality in your 
research synthesis, there are a few principles that should 
be kept in mind. Most can be inferred from the preceding 
discussion. First, study quality is a multidimensional con-
struct. As a result, it is best to refer to study quality dimen-
sions and their associated indicators rather than study 
quality, which implies a unitary judgment. In addition, in 
many research fields, it is difficult to determine whether a 
particular study quality indicator will positively bias 
effect size estimates, negatively bias effect size estimates, 
or have no consistent effect on effect size estimates.

These two principles suggest that synthesists proceed 
very cautiously when making judgments about study 
quality, and explicitly justify their reasoning to readers. 
They should exercise restraint when using study quality 
as a reason to exclude studies from your synthesis and 
making claims about the relationship between study qual-
ity indicators and effect size.

Finally, whether a given study quality indicator will be 
important depends on the research question asked, which 
is to say that study quality is context dependent. As a 
result, synthesists need to think deeply about how study 
quality indicators might operate in the context of their 
research question. Notions of internal, construct, and sta-
tistical conclusion validity can be especially helpful when 
thinking about study quality (Shadish, Cook, and Campbell 
2002).1 In this tradition, validity refers to the approximate 
truth of an inference or claim about a relationship (Cook 
and Campbell 1979; Shadish, Cook, and Campbell 2002). 
Different characteristics of a study’s design and imple-
mentation lead to inferences that have more or fewer chal-
lenges to valid along one or more dimensions. Factors that 
might lead to an incorrect inference are termed “threats to 
validity” or “plausible rival hypotheses.” Internal validity 
refers to the validity of inferences about whether some 
intervention or experimental manipulation has caused an 
observed change in an outcome. Threats to internal valid-
ity include any mechanism that might plausibly have 
caused the observed outcome even if the manipulation 
had never occurred. Construct validity refers to the 
extent to which the operational characteristics of manipu-
lations and outcome measures used in a study adequately 
represent the intended abstract categories. Researchers 
most often think of construct validity in terms of the out-
come measures. However, construct validity also refers to 
the adequacy of other labels used in the study, such as the 
manipulations and the labels applied to participants (for 
example, at-risk). As an example, a measure that purports 
to measure intelligence but actually measures academic 
achievement is mislabeled and hence, presents a construct 
validity problem. Statistical conclusion validity refers to 
evidence on the covariation between two variables (for 
example, a treatment assignment indicator and an out-
come) arising from a study. In the context of a research 
synthesis, the specific concern is about the effect size esti-
mate and its precision (for example, the latter can be 
greatly affected by violating the assumption of statistical 
independence; see Konstantopoulos and Hedges, this 
volume).

The task of a synthesist is to think deeply about the 
relevant validity considerations that might be operating 
in the context of the research question. An extended 
example might help. Recall that Will Shadish and his col-
leagues randomly assigned participants to be in either a 
randomized experiment or in a nonrandomized experi-
ment: specifically, participants in the nonrandomized part 
of the study were allowed to choose which tutorial to par-
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ticipate in (2008). Doing so allowed them to estimate the 
direction and magnitude of bias associated with the non-
randomized experiment. However, their primary interest 
was in identifying the conditions under which the non-
randomized experiment might generate results that 
approximated the randomized experiment. To do so, they 
collected data about participants’ math and vocabulary 
pretest scores, their topic preference, several personality 
characteristics, levels of math anxiety, and depression. 
They chose these variables because the theoretical and 
empirical literature suggested that these characteristics 
might be good predictors of which group a given partici-
pant would choose. Shadish and colleagues concluded 
that including these variables in the estimation model 
successfully removed most of the bias associated with 
self-selection (as opposed to random assignment) into 
study conditions.

From the standpoint of a research synthesis, the import-
ant point is that there are indicators related to the biases 
introduced by poor study design. However, because these 
will vary from research question to research question, at 
least one synthesis team member should be highly expert 
about the research problem.

That said, an important caveat is that it is possible 
that even within a particular research question, study 
quality indicators might play out in different ways in 
different studies in the same review. For example, con-
sider a synthesis that examines the effectiveness of a 
new drug relative to standard treatment. In some studies,  
patient socioeconomic status is related to drug choice and 
in others it is not. Socioeconomic status may be import-
ant because the higher price for the new drug will lead 
poorer people to choose the standard treatment. It might 
then be appropriate for the synthesists to downgrade non-
randomized studies if they do not control for well-mea-
sured socioeconomic status in the estimation model. 
However, if some nonrandomized studies were conducted 
in more affluent communities, then the likelihood that 
socioeconomic status biased results is much lower than it 
is in poorer communities, and the resulting quality judg-
ments might be in error. This is yet another reason to 
exercise restraint when making claims about the effects 
of study quality on study outcomes.

Ideas about which study quality indicators are most 
likely to matter can come from a number of sources, 
including relevant empirical research examining the rela-
tionship between study quality indicators and effect size, 
previous research (including qualitative research) on the 
research question, research methods textbooks, and study 

quality instruments like ROBINS-I (Sterne et al. 2016), 
the Study DIAD (Valentine and Cooper 2008), the 
Cochrane Risk of Bias tool (Higgins et al. 2011), and the 
RTI item bank (Vishwanathan and Berkman 2012). Fur-
thermore, scholars may have written about study quality 
indicators in a relevant context. As examples, see the 
What Works Clearinghouse’s evidence standards for edu-
cation (What Works Clearinghouse 2017), and the advice 
designed for specific types of education research, such as 
writing (see Graham and Harris, 2014).

Perhaps more important, research synthesists will often 
have formal hypotheses and informal hunches about the 
causes and consequences of variation on study quality 
dimensions. As an example, assume that a team of synthe-
sists believe that, for a synthesis on the effects of some 
drug, that adverse reactions to the active ingredient in a 
medication might lead to participant attrition and adverse 
reactions are more likely to occur among less healthy 
individuals. If true, it suggests that attrition should posi-
tively bias effect size (less healthy individuals are drop-
ping out of the treatment group at a rate greater than in 
the control group), and the synthesists would be well jus-
tified in scrutinizing attrition rates and how attrition was 
addressed in the analysis. Such hypotheses should be 
informed not only by statistical theory but also by empir-
ical research from the discipline in which the research 
synthesists are working.

In general, there are two types of quality indicators. 
First, some indicators relate to the choices made by 
researchers while designing their studies. For example, 
whether the study is a randomized or a nonrandomized 
experiment, and whether the researchers used outcome 
measures that produce reasonably valid scores are two 
often used indicators of quality. Another category of items 
relates to the choices that researchers made while analyz-
ing the results of their studies. How missing data were 
handled and the covariates included in an estimation 
model are examples of considerations in this category.

Occasionally, authors may report information in a way 
that allows synthesists to approximate or even exactly 
recreate the original data, which could then possibly 
allow them to reanalyze the data in a way they believe is 
more appropriate. For example, assume the synthesists 
believe that socioeconomic status is an important covari-
ate in nonrandomized experiments. A study involved col-
lecting this information but it was not included in the 
estimation model because the SES difference between 
the treatment and control groups was not statistically sig-
nificant. If the authors reported sufficient statistics the 
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synthesists will be able to recreate the underlying data 
and estimate the model with SES included. Similarly, and 
perhaps more likely, when a good pretest of an outcome 
exists it can often be helpful to compute a simple “differ-
ence in differences” effect size measure (that is, the post-
pre change in the intervention group minus the post-pre 
change in the comparison group) to reduce bias, and the 
needed descriptive statistics are frequently available.2

I have three general suggestions for addressing study 
quality in a research synthesis: set a few study inclusion 
criteria based on highly defensible study quality indicators; 
examine the interrelations between study quality indicators 
and other study characteristics; and test the relationship 
between study quality indicators and the effect size 
revealed in included studies.

7.5.1 Set Inclusion Criteria

Virtually all synthesists use at least some study quality 
criteria as screening tools. Depending on the stringency of 
these criteria, doing so can be thought of as either weeding 
out the weakest evidence or excluding all but the strongest 
evidence. As an example of weeding out the weakest evi-
dence, a synthesist investigating the effects of an interven-
tion might include all designs that have an intervention 
and a comparison group, but exclude one group pre-
test-posttest designs. As an example of excluding all but 
the strongest evidence, a synthesist might include only 
randomized experiments that experienced low attrition.

To begin, synthesists should be as inclusive as possible 
when setting study inclusion criteria based on study qual-
ity indicators. The inclusion criteria should be highly 
defensible, so that few researchers will question these 
decisions. This is because in many research contexts 
there is insufficient information to make a confident pre-
diction about the likely direction and magnitude of the 
relationship between a particular study quality indicator 
and effect size. Furthermore, assume there is good reason 
to believe that a certain study quality indicator does bias 
effect sizes. Including studies that score high and studies 
that score low on the study quality indicator will allow a 
test of this belief. And, there is nothing that compels syn-
thesists to group all of their included studies into a single 
meta-analysis. In many cases it might be reasonable to 
conduct separate meta-analyses by study quality indica-
tor (for example, conduct separate meta-analyses for ran-
domized and nonrandomized experiments).

Three considerations temper the use of an inclusive 
approach. First, although this is relatively rare, it might be 

the case that for a given research question, a very large 
number of studies scoring high on certain study quality 
indicators are available. If so, limiting the review to studies 
that score high on these study quality indicators is a viable 
option. Another circumstance that merits limiting included 
studies occurs when a field has settled questions about the 
direction of bias associated with a certain study quality 
indicator. For example, assume the primary outcome is 
one for which experts in the field have agreed should be 
measured in a certain way (for example, the field has 
agreed on a “gold standard” measurement or measure-
ments). In this case it seems reasonable to restrict the 
review to studies that follow these guidelines. Finally, all 
syntheses consume resources, and sometimes including a 
wide variety of studies can overwhelm those resources. In 
this case it might make sense to be more restrictive. That 
said, restrictions putatively done in the name of study 
quality should not serve to make things easier on the syn-
thesists at the expense of good work with a reasonable 
expenditure of resources.

7.5.2  Interrelations Between Indicators  
and Other Characteristics

Mark Lipsey and David Wilson assert that studies have 
“personalities” (2001). This is true in the sense that study 
characteristics tend to cluster together in a trait-like way. 
This fact is not limited to the interrelations between 
study quality indicators, but also extends to the relation-
ships between study quality indicators and substantively 
important characteristics of the studies. This problem 
relates to what Cooper refers to as the distinction between 
study-generated evidence and review-generated evidence 
(2017). Characteristics such as the nature of the sample 
and the duration of the intervention are either selectively 
chosen by researchers or dictated by context. They are 
not randomly assigned. As a result, any observed covari-
ation between study characteristics (including study 
quality indicators) and study outcomes could be the result 
of a causal relationship or evidence of a noncausal asso-
ciation (including a spurious relationship caused by an 
unmeasured third variable).

The interrelations between study quality indicators and 
study characteristics can be examined in a number of 
ways. One is to construct a correlation matrix with rele-
vant study characteristics. All variables need to be scaled 
so that the correlation coefficient is interpretable. For 
example, variables with multiple categories such as race/
ethnicity will not work—they need to be reduced to single 
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degree of freedom contrasts. And, the statistical signifi-
cance of tests should not be overinterpreted and even 
might be ignored; this is a case in which the size of the 
correlations matters much more than the statistical signif-
icance of the relationships. Another strategy is to create a 
cross-tabulation table that illustrates how important study 
features vary as a function of study quality indicators (for 
an example, see table 7.1).

7.5.3 Statistical Tests

In some cases, it will be possible to statistically test the 
relationships between study quality indicators and effect 
size. This is often referred to as moderator analysis, and 
it is the strategy that Glass and Smith argued ought to be 
used to address study quality (1979). Conceptually, mod-
erator analysis in a meta-analysis can be thought of as an 
extension of regression. Meta-analysts can take a univar-
iate approach by testing relationships between study 
quality indicators and effect size one at a time (analogous 
to simple regression), or a multivariate approach by test-
ing relationships between multiple study quality charac-
teristics and potentially other study characteristics (for 
example, variations in treatment) simultaneously (analo-
gous to multiple regression). Neither approach should be 
used when the number of studies is small, and the multi-
variate approach requires a relatively large number of 
studies. Unfortunately, it is not possible to quantify the 
terms small and relatively large. The definition of these 
terms depends on analytic choices, such as model choice, 
the within-study sample sizes, though the number of 
studies is more important, and on the spread of the covari-
ates, for example, if testing study design as a moderator, 
a 90–10 split in designs will require more studies than a 
50–50 split (see Hedges and Pigott 2004).

If using a univariate approach, perhaps because the 
number of studies is not large enough to support a multi-
variate analysis, the number of tests should be limited to 
avoid type I error inflation. One option is to test only the 
most important characteristics. It is best to identify these 
characteristics before looking at the data, and if identified 
after looking at the data, this should be disclosed to readers. 
Another strategy is to implement a correction for multiple 
hypothesis tests. Of course, both strategies can be used 
simultaneously. Conceptually, the univariate approach 
involves testing one relationship at a time, and this 
increases the likelihood that a particular relationship is 
either wholly or partly spurious.

Though requiring more data, the multivariate approach 
has the advantage of yielding effect size estimates that 
reflect statistical control over multiple specified study 
characteristics. As in multiple regression, the analysis 
can be done simultaneously (all covariates are modeled at 
the same time) or hierarchically. For example, the synthe-
sists might be interested in testing the effect of a collec-
tion of implementation indicators while controlling for 
several indicators of the validity of the randomization 
process, so they enter the randomization indicators as a 
block, and then the implementation indicators as another 
block. Doing so will allow the calculation the proportion 
of variance in study effect sizes explained by adding the 
implementation block, and will yield regression coeffi-
cients for the implementation indicators that control for 
the other study quality indicators.

Regardless of the approach taken, three additional 
points are worth making. First, determining the propor-
tion of variance explained (R2) in meta-regression is not 
straightforward. In a primary study, theoretically 100 per-
cent of the variance in observed outcomes is explainable. 
In a meta-analysis, some of the variance in observed 

Table 7.1. Example of Study Characteristics Cross-Tabulated by Study Design

Study Characteristic Randomized Not Randomized

Intervention duration (mean weeks)
Intervention intensity (mean minutes per week)
Intervention fidelity (percentage scoring high)
Low SES (percentage of sample)
Age (mean of sample)
Performing at grade level (percentage of sample)

10.2
55.8
41
66
10.2
72

16.5
56.1
22
45
10.2
84

source: Authors’ tabulation.
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outcomes (effect sizes) is due to random sampling error, 
and hence, is explainable by sampling theory only. As a 
result the R2 index has to be modified for use in meta-anal-
ysis by estimating and removing the sampling variance in 
effect sizes (for details, see Aloe, Becker, and Pigott 
2010). One implication of this is that the R2 reported by 
many statistical programs is not usable because it is an 
underestimate of the explainable variance.

Another important point is that low statistical power is 
often a concern in these analyses. This is another reason 
not to overinterpret the hypothesis tests. In this case, failure 
to reject the null hypothesis that different levels of a mod-
erator have different population values, it is possible that 
low statistical power concealed a positive result (for intro-
ductory treatments of statistical power in meta-analysis, 
see Hedges and Pigott 2001, 2004; Valentine, Pigott, and 
Rothstein 2010).

Finally, when examining whether study indicators are 
associated with study outcomes it is best seen as a pri-
marily descriptive (as opposed to inferential) exercise. In 
part this assertion rests on Cooper’s distinction between 
study-generated and review-generated evidence dis-
cussed earlier (2017). We are almost always working 
with review-generated evidence, and thus any resulting 
inferences are tentative at best. But, describing the differ-
ences associated with study quality indicators is import-
ant on its own. For example, assume that a meta-analysis 
reveals that randomized experiments were associated 
with smaller effects than nonrandomized experiments, 
and that the difference was statistically significant. If the 
effect sizes were d = +0.30 for randomized experiments 
and d = +0.40 for nonrandomized experiments, the two 
effect sizes probably have a roughly similar meaning. 
And even if the difference was not statistically signifi-
cant, if the effect sizes were d = +0.01 for randomized 
experiments and d = +0.30 for nonrandomized experi-
ments, this could be an important finding. Focusing on 
the underlying effect sizes (as opposed to the inferential 
test) is the best way to make sure that these differences 
are clear to readers.

7.6 CONCLUSION

This chapter provides an overview of several ways of 
addressing study quality in a research synthesis and offers 
three main points. First, study quality is context dependent. 
A feature of research design and implementation that might 
be a threat to validity in one context might be irrelevant in a 
different context. Second, in many research areas very little 

empirical evidence addresses whether study quality indica-
tors covary with effect sizes, and even less that the two are 
causally related. Finally, study quality is a multidimen-
sional construct. Taken together, these considerations sug-
gest that synthesists are often left to proceed without 
strong, context-independent guidance about how to 
address study quality. This uncertain situation can be 
uncomfortable, and lead synthesists to adopt strategies 
(such as using study quality scales to arrive at a single 
quality score) that are less helpful than they seem to be and 
may even be counterproductive.

A better approach is to carefully consider the study 
quality indicators likely to be important in the context of 
the research question. The most important of these indi-
cators might be used as study inclusion criteria. For 
study quality indicators not used as inclusion criteria, it 
will be important to carefully describe how they are 
related to each other and to other study characteristics. If 
possible, the relationship between study quality indica-
tors and study outcomes should be tested (remember that 
there must be a sufficient number of studies to do this). 
Taken together, this collection of strategies is the best 
way to balance the need to limit the potentially biasing 
effect of studies that score poorly on quality indicators 
with the reality that for most research questions the evi-
dence that study quality does bias study outcomes is not 
strong.

7.7 NOTES

1.  In general, considerations related to external validity 
should not be part of an assessment of the quality of 
different study dimensions. Although there are excep-
tions, in most cases external validity indicators will 
not bias effect size estimates. Instead, external validity 
indicators are usually addressed by including studies 
that match the desired population, intervention, and 
outcomes of interest.

2.  Two related points are worth highlighting. First, always 
be aware of the possibility of ecological bias, which 
refers to the situation in which a relationship found at 
one level, such as the meta-analytic, might not hold at 
another, such as the individual study (for more, see 
Berlin et al. 2002; Cooper and Patall 2009). A second 
point is that study authors may be willing to reanalyze 
data for you, for example by using your preferred 
missing data technique or by running a custom estima-
tion model. Increasingly, datasets are publicly avail-
able. For example, the Association for Psychological 
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Science awards an Open Data Badge to authors for 
publicly warehousing data and software code to allow 
others to attempt to reproduce the results (https://
www.psychologicalscience.org/publications/badges).
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8.1 INTRODUCTION

Research synthesis relies on information reported in a selec-
tion of studies on a topic of interest. When that information 
is captured in quantitative form, it can be used in a meta- 
analysis that subjects it to statistical analysis. This chapter 
examines the types of variables that can be coded from 
the source studies, outlines the kinds of relationships that 
can be examined in the meta-analysis of the resulting data, 
and identifies a range of analysis opportunities to stimu-
late thinking about what data might be used in a research 
synthesis and what sorts of questions might be addressed.

In particular, the variables that can be coded from the 
studies included in a meta-analysis can be divided into 
those representing study results in the form of effect sizes 
and those describing various characteristics of the studies 
that produced the results (study descriptors). These vari-
ables provide numerous analysis opportunities for the 
meta-analyst and, for discussion purposes in this chap-
ter, are organized into four categories. One is descriptive 
analysis, which portrays the nature of the studies included 
in the meta-analysis with regard to the distributions of effect 
sizes and the profile of study characteristics. The other 
three involve examination of interrelationships among the 
coded variables: among study descriptors, between study 
descriptors and effect sizes, and among effect sizes. Each of 
these has the potential to yield informative findings about 
the body of research synthesized in the meta-analysis.

8.1.1 Potentially Interesting Variables

Meta-analysis revolves around effect-size statistics that 
summarize the findings of each study of interest on such 
relationships as those between treatment conditions and 
outcomes or associations between variables. Effect sizes, 
therefore, provide one or more variables (typically depen-
dent variables) that are sure to be of interest in most 
meta-analyses. However, research studies have other char-
acteristics that also may be of interest. These include, for 
instance, the research designs and procedures used; the 
attributes of the participant samples; and features of the 
settings, personnel, activities, and circumstances involved. 
Such characteristics constitute a second major category of 
variables of potential interest. As a group, they are referred 
to as study descriptors.

8.1.2 Study Results

The quantitative findings of bodies of research appropri-
ate for meta-analysis may involve only a single variable 

examined in each study, such as the proportion of survey 
respondents who self-identify as political conservatives. 
Most often, however, they involve relationships between 
pairs of variables. These relationships may represent 
associations between variables measured on a sample of 
respondents, such as the relationship between religious 
affiliation and political conservatism. One of the vari-
ables may also represent a differentiation of respondents 
that is of particular interest, such as between treatment 
and control groups in experimental studies or between 
males and females in studies of gender differences. It is 
those relationships that are captured in the effect-size sta-
tistics commonly used in meta-analysis. As detailed else-
where in this volume (see chapter 11), effect sizes come 
in a variety of forms—correlation coefficients, standard-
ized differences between means, odds ratios, and so on—
depending on the nature of the quantitative study results 
they represent.

Whatever the issues to be addressed, one of the first 
challenges a meta-analyst faces is the likelihood that many 
of the studies of interest will report multiple quantitative 
findings relevant to those issues and thus yield multiple 
effect sizes that might be included in the analysis. If 
we define a study as a set of observations taken on a subject 
sample on one or more occasions, three possible forms of 
multiple effect sizes may be available: different measures, 
different subsamples, and different times of measurement. 
Each of these has implications for conceptualizing, coding, 
and analyzing effect sizes.

8.1.2.1 Effect Sizes for Multiple Measures Each 
study in a meta-analysis may report relationships of inter-
est on more than one measure. These relationships may 
involve different constructs, that is, different things being 
measured, such as academic achievement, attendance, and 
attitudes toward school. They may involve multiple mea-
sures of the same construct, such as achievement mea-
sured both by standardized achievement tests and grade 
point averages. A study of predictors of school achieve-
ment thus might report the correlations of age, gender, 
one or more measures of peer relations, and one or more 
measures of family structure with one or more measures 
of achievement. Each such correlation can be coded as a 
separate effect size. Similarly, a study of gender differ-
ences in aggressive behavior might compare males and 
females on physical aggression measured two ways, ver-
bal aggression measured three ways, and relational aggres-
sion measured one way, yielding six possible effect sizes. 
Moreover, the various studies eligible for a meta-analysis 
may differ among themselves in the type, number, and 
mix of measures that contribute to effect sizes.
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A meta-analyst must decide what constructs to define 
and what measures will be viewed as representing those 
constructs. Within that framework, a key question is what 
effect sizes to analyze for each relationship involving 
those constructs and measures. The basic options are 
threefold. One approach is to analyze effect sizes on all 
measures for all constructs in relatively undifferentiated 
form. This strategy would yield, in essence, a single global 
category of study results. For example, the outcome mea-
sures used in research on the effectiveness of psycho-
therapy show little commonality from study to study. A 
meta-analyst might, for some purposes, treat all these out-
comes as the same—that is, as instances of results rele-
vant to some general construct of personal functioning. 
An average over all the resulting effect sizes addresses the 
global question of whether psychotherapy has generally 
positive effects on the mix of measures typical to psycho-
therapy research. This is the approach that was used in the 
classic meta-analysis of research on psychotherapy effects 
(Smith and Glass 1977).

At the other extreme, effect sizes may be analyzed only 
when they relate to a particular measure of a construct 
of interest, that is, a specific operationalization of that 
construct or, perhaps, a few such specific operationaliza-
tions. Effect sizes would then be computed and analyzed 
separately for each such measure. Bradley Erford, Erin 
Johnson, and Gerta Bardoshi, for instance, conducted a 
meta-analysis of the psychometric properties of the Beck 
Depression Inventory that was appropriately limited to stud-
ies of that specific instrument (2016). Similarly, Michiel van 
Vreeswijk and Erik de Wilde focused their meta-analysis on 
differences between clinical and nonclinical groups on the 
Autobiographical Memory Test (AMT) (2004).

An intermediate strategy is for the meta-analyst to define 
one or more sets of constructs that include different opera-
tionalizations but distinguish different content domains 
of interest. Effect sizes for relationships involving those 
constructs would be coded and analyzed, but study results 
involving other constructs would be ignored. In a meta- 
analysis asking if physical activity attenuates the relation-
ship between sedentary time and mortality, for example, 
Ulf Ekelund and his colleagues focused exclusively on the 
constructs of physical activity, sitting time, and mortality 
(2016). They accepted a range of measures of each of these 
constructs, but their meta-analysis did not include any of 
the other constructs that also happened to be reported in the 
contributing studies.

Whether global or highly specific construct categories 
are defined for coding effect sizes, the meta-analyst is likely 

to find some studies that report results on multiple mea-
sures within a given construct category. In such cases, one 
of several approaches can be taken. The analyst can simply 
code and analyze all the effect sizes contributed to a cate-
gory, including multiple ones from the same study. This 
permits some studies to provide more effect sizes than 
others and, thus, to be overrepresented in the synthesis 
results. It also introduces statistical dependencies among 
the effect sizes because some of them are based on the 
same subject samples. These issues will have to be dealt 
with in the analysis (see chapter 13). Alternatively, criteria 
can be developed for selecting the single most appropriate 
measure within each construct category and ignoring the 
remainder (despite the loss of data that entails). Or multi-
ple effect sizes within a construct category can be averaged 
(perhaps using a weighted average) to yield a single mean 
or median effect size within that category for each study.

The most important consideration that must inform the 
approach a meta-analyst takes to the matter of study results 
embodied in multiple constructs and measures is the pur-
pose of the meta-analysis. For some purposes the study 
results of interest may involve only one construct, as when 
a meta-analysis of research evaluating educational innova-
tions focuses exclusively on achievement test results. For 
other purposes the meta-analyst may be interested in a 
broader range of study results and welcome diverse con-
structs and measures. For instance, achievement, atten-
dance, and social-emotional outcomes may all be of 
interest in a meta-analysis of research on an educational 
intervention. Having a clear view of the purposes of a 
meta-analysis and adopting criteria for selecting and 
categorizing effect-size statistics consistent with those 
purposes are fundamental requirements of a good meta- 
analysis. These steps define the effect sizes the meta-analyst 
will be able to analyze and, hence, shape the potential 
findings of the meta-analysis itself.

8.1.2.2 Effect Sizes for Subsamples In addition to 
overall results, many studies may report breakdowns for 
one or more participant subsamples. For example, a valida-
tion study of a personnel selection test might report test- 
criterion correlations for participants in different racial 
groups, or a study of the effects of drug counseling for teen-
agers might report results separately for males and females. 
Coding effect sizes for each subsample potentially permits 
a more discriminating analysis of the relationship between 
participant characteristics and study findings than can be 
obtained from overall study findings alone.

Two considerations bear on the potential utility of effect 
sizes from subsamples. First, the variable distinguishing 



144   CODING THE LITERATURE

subsamples must represent a dimension of potential inter-
est to the meta-analyst. Effect sizes computed separately 
for male and female subsamples, for instance, will be of 
concern only if there are theoretical, practical, or explor-
atory reasons to examine gender differences in the magni-
tude of effects. Second, a participant breakdown that is of 
interest must be reported widely enough to yield a large 
enough number of effect sizes to permit meaningful analy-
sis. If most studies do not report results separately for 
males and females, for example, the utility in coding effect 
sizes for those subsamples is limited.

As with effect sizes from multiple measures within a 
single study, effect sizes for multiple subsamples within  
a study pose issues of statistical dependency if the sub-
samples are not mutually exclusive—that is, if the sub-
samples share participants. Although the female subsample 
in a breakdown by gender would not share participants 
with the male subsample, it would almost certainly share 
participants with any subsample resulting from a break-
down by age. In addition, however, any feature shared by 
subsamples within a study—for example, being studied 
by the same investigator—can introduce statistical depen-
dencies into the effect sizes computed for those subsamples. 
Analysis of effect sizes based on subsamples, therefore, 
must be treated like any analysis that uses more than 
one effect size from each study and thus potentially vio-
lates assumptions of statistical independence. This may 
be addressed by separately meta-analyzing effect sizes 
from each overlapping subsample, or by using one of the 
specialized techniques for handling statistically dependent 
effect sizes (see chapter 13)

8.1.2.3 Effect Sizes for Different Times of Measure-
ment Some studies may report findings on the same 
variables measured on the same participant sample at 
different times. For example, a study of the effects of  
a smoking cessation program might report the outcome  
immediately after treatment and at six-month and one-year 
follow-ups. Such time-series information potentially 
permits an interesting analysis of temporal patterns in  
outcome—decay curves for the persistence of treatment 
effects, for example. Another situation that often pro-
duces effect sizes measured at different times on the 
same participant samples is meta-analysis of relation-
ships reported in longitudinal studies. A meta-analysis of 
risk factors for adolescent depression, for example, might 
involve effect sizes for the relationships of risk factors 
measured at different times during childhood to depres-
sion measured in adolescence.

As with effect sizes for subsamples, the meta-analyst 
must determine whether the relationships of interest 
reported at different times vary widely enough to yield 
enough effect-size data to be worth analyzing. Even in 
favorable circumstances, only a portion of the studies in a 
synthesis may provide measures at different time points. A 
related problem is that the intervals between times of mea-
surement may vary widely from study to study, making 
these results difficult to summarize across studies. If this 
occurs, one approach is for the meta-analyst to establish 
broad timing intervals and code each effect size in the cat-
egory it most closely fits. Another approach is to code the 
time of measurement for each result as an interval from 
some common reference point—for instance, the termina-
tion of treatment. Still another approach is to capture the 
time trends with a summary statistic such as the slope on 
the effect sizes over time. These techniques allow the 
meta-analyst to then analyze the functional relationship 
between the effect sizes and the time that has passed since 
the completion of treatment.

Because the participants at time 1 will be much the same 
(except for attrition) as those measured at a later time, the 
effect sizes for the two occasions will not be statistically 
independent. As with multiple measures or overlapping 
subsamples, these effect sizes cannot be included together 
in an analysis that assumes independent data points unless 
special adjustments are made.

8.1.2.4 The Array of Study Results As the previous 
discussion indicates, the quantitative results from a study 
selected for meta-analysis may be reported for multiple 
constructs, for multiple measures of each construct, for 
the total subject sample, for various subsamples, and for 
multiple times of measurement. To effectively represent 
key study results and support interesting analyses, the 
meta-analyst must establish conceptual categories for 
each of these dimensions. These categories will group 
effect sizes judged to be substantially similar for the pur-
poses of the meta-analysis, differentiate those believed 
to be importantly different, and ignore those judged to be 
irrelevant or uninteresting. Once these categories are 
developed, it should be possible to classify each effect 
size that can be coded from any study according to the 
type of construct, subsample, and time of measurement it 
represents. When enough studies yield comparable effect 
sizes, that set of results can be analyzed separately. Some 
studies will contribute only a single effect size (one mea-
sure, one sample, and one time) to the synthesis. Others 
will report more differentiated results and may yield a 
number of useful effect sizes.
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It follows that different studies may provide effect sizes 
for different analyses on different categories of effect sizes. 
Any analysis based on effect sizes from only a subset of 
the studies under investigation raises a question of the 
generalizability of the findings to the entire set because of 
the distinctive features that may characterize that subset. 
For instance, in a meta-analysis of the correlates of effec-
tive job performance, the subset of studies that break out 
results by age groups might be mostly those conducted in 
large corporations. What is learned from them about age 
differences might not apply to employees of small busi-
nesses. The meta-analyst needs to be attentive to such 
distinctions when interpreting the results of the analysis. 
Studies that report differentiated results, nonetheless, offer 
the meta-analyst the opportunity to conduct more probing 
analyses of the issues of interest. Including such differen-
tiation in a meta-analysis can add rich and useful detail to 
its findings.

8.1.3 Study Descriptors

Whatever the set of effect sizes under investigation, it is 
usually of interest to also examine matters related to the 
characteristics of the studies that yield those results. To 
accomplish this, the meta-analyst must identify and code 
information from each study about the particulars of its 
participants, methods, treatments, context, and the like. 
Meta-analysts have shown considerable diversity and 
ingenuity in the study characteristics they have coded 
and the coding schemes they have used. Specific discus-
sion of the development, application, and validation of 
coding schemes is provided elsewhere in this volume 
(see chapter 9). What is described here are the general 
types of study descriptors that the meta-analyst might 
consider coding into the meta-analytic database for use 
in one or more of the various kinds of analysis described 
later in this chapter.

To provide a rudimentary conceptual framework for 
study descriptors, we first assume that study results are 
determined conjointly by the nature of the substantive 
phenomenon under investigation and the nature of the 
methods used to study it. The variant of the phenomenon 
selected for study and the particular methods applied, in 
turn, may be influenced by the characteristics of the 
researcher and the research context. These latter charac-
teristics will be labeled as extrinsic factors because they 
are extrinsic to the substantive and methodological fac-
tors assumed to directly shape study results. In addition, 
the actual results and characteristics of a study must be 

fully and accurately reported for them to be validly coded 
in a synthesis. Various aspects of study reporting thus 
constitute a second type of extrinsic factor because they 
too may be associated with the study results represented 
in a synthesis though they are not assumed to directly 
shape those results.

This scheme, albeit somewhat crude, identifies four 
categories of study descriptors that may interest the 
meta-analyst: substantive features of the matter the studies 
investigate; particulars of the methods and procedures 
used to conduct those investigations; characteristics of the 
researcher and the research context; and attributes of the 
way the study is reported and the way it is coded. The most 
important of these, of course, are the features substantively 
pertinent to characterizing the phenomenon under investi-
gation. In this category are such matters as the nature of the 
treatment provided; the characteristics of the participants; 
the cultural, geographical, or temporal setting; and those 
other influences that might moderate the relationships 
under study. It is these variables that permit the meta- 
analyst to identify the extent to which differences in the 
results of studies are associated with differences in the sub-
stantive characteristics of the situations they investigate. 
From such information the analyst may be able to deter-
mine that one treatment variation is more effective than 
another (or more effective for one type of outcome), that a 
relationship holds for certain types of participants or cir-
cumstances but not for others, or that there is a develop-
mental sequence that yields different results at different 
time periods. Findings such as these, of course, result 
in better understanding of the nature of the phenomenon 
under study and are the objective of most syntheses.

Those study characteristics not related to the substan-
tive aspects of the phenomenon involve various possible 
sources of distortion, bias, or artifact in study results as 
they are presented in the original research or the coding 
for the meta-analysis. The most important features of 
this sort are methodological or procedural aspects of  
the manner in which the studies were conducted. These 
include variations in the designs, research procedures, 
quality of measures, and forms of data analysis that might 
yield different results even if every study were investi-
gating exactly the same phenomenon. A meta-analyst may 
be interested in examining the influence of method vari-
ables for two reasons. First, analysis of the relationships 
between method choices and study results provides useful 
information about which aspects of research procedures 
make the most difference and, hence, should be most 
carefully selected. Second, method differences confound 
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substantive comparisons among study results and may 
thus need to be included in the analysis as statistical 
control variables to help disentangle the influence of 
methods on those results.

Factors extrinsic to both the substantive phenomenon 
and the research methods include characteristics of the 
researcher (such as gender and disciplinary affiliation), 
the research circumstances (such as the nature of study 
sponsorship), and reporting (such as the form of publi-
cation). Such factors would not typically be expected to 
directly shape study results but nonetheless may be 
related to something that does and thereby will correlate 
with coded effect sizes. Whether a researcher is a psy-
chologist or a sociologist, for example, should not itself 
directly determine study results. Disciplinary affiliation 
may, however, influence methodological practices or the 
selection of variants of the phenomenon to study, which 
in turn, could affect study results.

Another type of extrinsic factor involves aspects of the 
reporting of study methods and results that might yield 
different values in the meta-analyst’s coding even if all 
studies were investigating the same phenomenon with the 
same methods. The available study documents may not 
report important details of the procedures, measures, treat-
ments, or results. This requires coders to use coding con-
ventions designed to yield the most likely option for the 
missing information (for example, if a study report does 
not say that random assignment was used, it probably was 
not) or to record missing values on items that, with better 
reporting, could be coded accurately. Insufficiencies in 
the information reported in a study, therefore, may 
influence the effect sizes coded or the representation of 
substantive and methodological features closely related 
to effect sizes in ways that distort the relationships of inter-
est to the meta-analysis. At the extreme, publication bias, 
in which results from entire studies are not reported or 
the reports are not accessible to the meta-analyst, can 
remove studies with distinctive characteristics from the 
meta-analysis leaving an unrepresentative sample available 
for analysis (see chapter 18 in this volume).

A meta-analyst who desires a full description of study 
characteristics will want to make some effort to identify and 
code all those factors thought to be potentially related to 
the study results of interest. From a practical perspective, 
the decision about what specific study characteristics to 
code will have to reconcile two competing considerations. 
First, research synthesis provides a service by documenting 
in detail the nature of the body of research bearing on a 
given issue. This consideration motivates a coding of a 

broad range of study characteristics for descriptive pur-
poses. On the other hand, many codable features of studies 
have limited value for anything but descriptive purposes: 
they may not be widely reported in the available research or 
may show little variation from study to study. Finally, of 
course, some study characteristics will simply not be ger-
mane to the meta-analyst’s purposes (though it may be dif-
ficult to specify in advance what will prove relevant and 
what will not). Documenting study characteristics that are 
poorly reported, lacking in variation, or irrelevant to present 
purposes surely has some value, as the next section argues. 
However, given the time-consuming and expensive nature 
of coding, the meta-analyst inevitably must find some bal-
ance between coding broadly for descriptive purposes and 
coding narrowly around the specific target issues of the 
particular meta-analysis.

8.2 ANALYSIS OPPORTUNITIES

A researcher embarks on a meta-analysis to answer certain 
questions by systematically coding the effect sizes and 
characteristics of studies selected to be relevant to those 
questions and then statistically analyzing the resulting 
data. Many technical issues are of course involved in the 
statistical analysis; they are discussed elsewhere in this 
volume. This chapter simply provides an overview of the 
various types of analysis and the kinds of insights they 
might yield. With such an overview in mind, the meta- 
analyst should be in a better position to know what sorts of 
questions might be answered and what data must be coded 
to address them.

Four generic forms of analysis are outlined here. The 
first, descriptive analysis, uses the coded variables to 
provide an overall picture of the nature of the research 
studies included in the meta-analysis. The other three 
forms of analysis examine relationships among coded 
variables. As set out, variables coded in a synthesis can 
be divided into those that describe study results (effect 
sizes) and those that describe study characteristics (study 
descriptors). Three general possibilities emerge from 
this scheme: analysis of the relationships among study 
descriptors, analysis of the relationships between study 
descriptors and effect sizes, and analysis of the relation-
ships among effect sizes.

8.2.1 Descriptive Analysis

By its nature, meta-analysis involves the collection of 
information describing key results and various important 
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attributes of the studies under investigation. Descriptive 
analysis of these data can provide an informative pic-
ture of the nature of the research selected for inclusion 
in the meta-analysis. It can also help identify issues that 
have already been sufficiently studied and gaps that 
need additional study. Further, it can highlight common 
methodological practices and provide a basis for assess-
ing the areas in which improvement is warranted. The 
descriptive information obtained in a meta-analysis deals 
with either study results or study descriptors. Each of 
these is considered in turn in the following sections.

8.2.1.1 Study Results Descriptive information about 
study results is almost universally reported in meta- 
analyses. The central focus, of course, is the distribution  
of effect sizes across studies. As noted earlier, there may 
be numerous categories of effect sizes; correspondingly, 
there may be numerous effect-size distributions to describe 
and compare (see chapters 11 and 12 in this volume).

A useful illustration of descriptive analysis of effect 
sizes occurs in a meta-analysis of eighty-four studies on 
the association of alcohol consumption and cardiovascu-
lar disease outcomes (Ronksley et al. 2011). The authors 
display the distributions of relative risk effect sizes in 
forest plots for six outcomes along with the mean effect 
sizes for each outcome. These displays allow the reader 
to assess the uniformity of the effects across studies as 
well as their central tendency. Furthermore, the associ-
ated numbers of effect sizes and confidence intervals, 
which were also reported, allow an appraisal of the depth 
and statistical precision of the available evidence for each 
mean effect size.

8.2.1.2 Study Descriptors Meta-analysts all too often 
report relatively little information about studies other 
than their results. It can be quite informative, however, to 
provide breakdowns of the coded variables that describe 
substantive study characteristics, study methods, and 
extrinsic factors such as publication source. This disclo-
sure accomplishes a dual purpose. First, it informs readers 
about the specific nature of the research that has been 
chosen for the meta-analysis so they may judge its com-
prehensiveness and biases. For example, knowing the 
proportion of unpublished studies, or studies conducted 
before a certain date, or studies with a particular type of 
design might be quite relevant to interpreting the findings 
of the meta-analysis. Also, meta-analysts frequently dis-
cover that studies do not adequately report some informa-
tion that is important to the synthesis. It is informative for 
readers to know the extent of missing data on various 
coded variables.

Second, summary statistics for study characteristics 
provide a general overview of the nature of the research 
available on the topic addressed. This overview allows 
readers to ascertain whether researchers have tended to 
use restricted designs, measures, samples, or treatments 
and what the gaps in coverage are. Careful description 
of the research literature establishes the basis for cri-
tique of research practices in a field and helps identify 
characteristics desirable for future research.

Valerie Henderson and her colleagues used this descrip-
tive approach to examine the methodological quality of 
preclinical research that uses animal models in cancer 
drug development (2015). Focusing on the preclinical 
efficacy studies of sunitinib, a drug widely used in cancer 
treatment, their meta-analysis summarized the character-
istics of the studies with regard to sample sizes, statistical 
power, random assignment, blinding to condition, statisti-
cal analysis, and a range of items related to external valid-
ity. This information was then used to assess the adequacy 
of the available studies and identify needed improvements 
in methodology and reporting.

It is evident that much can be learned from careful 
description of study results and characteristics in meta- 
analysis. Indeed, it can be argued that providing a broad 
description and appraisal of the nature and quality of the 
body of research under examination is fundamental to all 
other analyses that the meta-analyst might wish to con-
duct. Proper interpretation of those analyses depends 
critically on a clear understanding of the character and 
limitations of the primary research on which they are 
based. It follows that conducting and reporting a full 
descriptive analysis should be routine in meta-analysis.

8.2.2 Relationships Among Study Descriptors

The various descriptors that characterize the studies in a 
meta-analysis may themselves have interesting inter-
relationships. It is quite unlikely that study characteris-
tics will be randomly and independently distributed 
over the studies in a given research literature. More 
likely they will fall into patterns in which certain char-
acteristics tend to occur together. Many methodological 
and extrinsic features of studies may be of this sort. We 
might find, for example, that published studies are more 
likely to be federally funded and have authors with aca-
demic affiliations. Substantive study characteristics may 
also cluster in interesting ways, as when certain types of 
treatments are more frequently applied to certain types 
of participants.
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A more probing analysis of the interrelationships among 
study descriptors could focus on certain key study features 
and determine if they were functions of other temporally 
or logically prior features. For example, an analyst might 
use sample size as an outcome variable and examine the 
extent to which it is predictable from characteristics of the 
researcher and the nature of the research setting. Similarly, 
the meta-analyst could examine whether different treat-
ments or variants of a treatment used in different studies 
were a function of the characteristics of the participants 
to whom they were applied, the treatment setting, and so 
forth. Analysis of cross-study interrelationships among 
study descriptors has not often been explored in meta- 
analysis. Nonetheless, such analysis should be useful both 
for data reduction—that is, creation of composite moder-
ator variables—and to more fully describe the nature and 
patterns of research practices in an area of inquiry.

A distinctive aspect of analysis of the interrelations of 
study descriptors is that it does not involve the effect 
sizes that are central to most other forms of analysis in 
meta-analysis. An important implication of this feature is 
that the sampling unit for such analyses is the study itself, 
not the individual participant within a study. That is, fea-
tures such as the type of design chosen, nature of treatment 
applied, publication outlet, and other similar characteris-
tics usually describe the study, not the participants, and 
thus are not influenced by participant-level sampling error. 
This simplifies much of the statistical analysis when inves-
tigating these types of relationships because attention need 
not be paid to the varying number of participants repre-
sented in different studies.

8.2.3  Relationships Between Study Effect Sizes 
and Study Descriptors

The effect sizes that represent study results often show 
more variability within their respective categories than 
would be expected on the basis of sampling error alone (see 
chapter 12 of this volume). A natural and quite common 
question for the analyst is whether certain study descriptors 
are associated with the magnitude of the effects, that is, 
whether they are moderators of effect size. It is almost 
always appropriate for a synthesis to conduct a moderator 
analysis to identify at least some of the circumstances 
under which effect sizes are larger and smaller. Modera-
tor analysis is essentially correlational, examining the 
covariation of selected study descriptors and effect sizes, 
though it can be conducted in various statistical formats. In 
such analysis, the study effect sizes become the depen-

dent variables and the study descriptors become the inde-
pendent or predictor variables.

The three broad categories of study descriptors identified 
earlier—substantive aspects, study methods and proce-
dures, and extrinsic matters of research circumstances—are 
all potentially related to study effect sizes. The nature and 
interpretation of relationships involving descriptors from 
these three categories, however, is quite different.

8.2.3.1 Relationships with Extrinsic Variables Extrin-
sic variables, as defined earlier, are not generally assumed 
to directly shape actual study results even though they 
may differentiate studies that yield different effect sizes. 
In some instances, they may be marker variables associ-
ated, in turn, with research practices that do exercise 
direct influence on study results. It is commonly found in 
synthesis, for example, that published studies have larger 
effect sizes than unpublished studies (Rothstein, Sutton, 
and Borenstein 2005). Publication of a study, of course, 
does not itself inflate the effect sizes, but it may reflect 
the selection criteria and reporting proclivities of the 
authors, peer reviewers, and editors who decide whether 
and how a study will be published. Analysis of the rela-
tionship of extrinsic study variables to effect size, there-
fore, may reveal interesting aspects of research and 
publication practices in a field, but is limited in its ability 
to reveal why those practices are associated with different 
effect-size magnitudes.

A more dramatic example appeared in the literature 
some years ago. In a meta-analysis of gender differences in 
conformity, Alice Eagly and Linda Carli found that studies 
with a higher percentage of males among the authors were 
more likely to report greater conformity among females 
(1981). One might speculate that this reflects some bias 
exercised by male researchers, but it is also possible that 
the different results occurred because they tended to 
use different research methods than female researchers. 
Indeed, Betsy Becker demonstrated that male authorship 
was confounded with characteristics of the outcome mea-
sures and the number of confederates in the study (1986). 
Both of these method variables, in turn, were correlated 
with study effect sizes.

8.2.3.2 Relationships with Method Variables  
Re search methods and procedures constitute a particularly 
important category of moderator variables too often under-
represented in synthesis. Experience has shown that 
variation in study effect sizes is often associated with 
methodological variation among the studies (Lipsey 2003). 
One reason these relationships are interesting is that 
much can be learned from synthesis about the connection 



IDENTIFYING POTENTIALLY INTERESTING VARIABLES AND ANALYSIS OPPORTUNITIES   149

between researchers’ choice of methods and the results 
those methods yield. Such knowledge provides a basis for 
examining research methods to discover which aspects 
introduce the greatest bias or distortion into study results.

Investigation of a key method variable in their meta- 
analysis of studies of perceptual processing of human 
faces using sequential matching tasks, for example, 
allowed Jennifer Richler and Isabel Gauthier to identify 
differences in results for two forms of that task, referred 
to as the partial design and the complete design, that favored 
the complete design (2014). Similarly, Laim Dougherty 
and David Shuker demonstrated that the results of mate 
selection studies in behavioral ecology depended in part on 
whether respondents were given sequential options pre-
sented individually or multiple options presented simulta-
neously (2015). On measurement issues, Andres De Los 
Reyes and his colleagues documented the low levels of 
agreement between reports by patients, parents, and teachers 
on the mental health symptoms of children and adoles-
cents (2015). Findings such as these provide invaluable 
methodological information to researchers seeking to 
design valid research in their respective areas of study.

Another reason to be concerned about the relationship 
between methodological features of studies and effect 
sizes is that method differences may be correlated with 
substantive differences. In such confounded situations, a 
meta-analyst must be very careful not to attribute effect-
size differences to substantive factors when those factors 
are also related to methodological factors. For example, in 
a meta-analysis of interventions for juvenile offenders, 
Mark Lipsey (2003) found that such substantive character-
istics as the gender mix of the sample and the amount of 
treatment provided were not only related to the recidivism 
effect sizes but also to the type of research design used in 
the study (randomized or nonrandomized). Such con-
founding raises a question about whether the differential 
effects associated with gender and amount of treatment 
reflect real differences in treatment outcomes or only spu-
rious effects stemming from the correlated methodological 
differences. Meta-analysts may have some ability to disen-
tangle such confounding in their statistical analysis, but in 
any event should be alert to its occurrence and attempt to 
assess its influence on the results of the meta-analysis.

8.2.3.3 Relationships with Substantive Variables 
Once disentangled from method variables, the category 
of substantive variables is usually of most interest to the 
meta-analyst. Determining that effect size is associated 
with type of subjects, treatments, or settings often has 
considerable theoretical or practical importance. A case 

in point is a meta-analysis of the effects of school-based 
interventions for promoting social and emotional learning 
(Durlak et al. 2011). Moderator analysis revealed, first, that 
larger effect sizes were associated with programs for which 
no implementation problems were reported. In regard to the 
characteristics of the programs, effect sizes were larger for 
interventions that included four recommended practices: 
a sequential coordinated set of activities, active forms 
of learning, at least one program component devoted to 
developing personal or social skills, and targeting specific 
social-emotional skills.

When multiple classes of effect-size variables as well as 
multiple classes of substantive moderator variables are in 
play, quite a range of analyses of their interrelations is pos-
sible. For example, investigation can be made of the differ-
ent correlates of effects on different outcome constructs. 
Stephen Leff and his colleagues used this approach in a 
meta-analysis of the effects of different housing arrange-
ments for persons with mental illness (2009). They exam-
ined four different housing models in relation to seven 
different outcomes and then explored differential effects 
for subgroups distinguished by gender, race, and presence 
of co-occurring substance disorders. Subgroup differences 
themselves may be fruitful terrain for differentiation by 
substantive moderator variables. The meta-analysis con-
ducted by Emily Grijalva and her colleagues, for instance, 
investigated gender differences in narcissism (2015). They 
confirmed the widely held belief that men are more narcis-
sistic than women and found that pattern to be stable over 
time and age. They then went further and differentiated 
four forms of narcissism and found that the gender differ-
ence was pronounced for only two of them.

The opportunity to conduct systematic analysis of the 
relationships between study descriptors and effect sizes is 
one of the most attractive aspects of meta-analysis. How-
ever, certain limitations must be kept in mind. First, a 
meta-analysis can examine only those variables that can 
be coded from primary studies in essentially complete 
and accurate form. Second, a variable must show enough 
variation across studies for such analysis to be feasible 
and meaningful; for example, if nearly all the studies were 
conducted on males, an analysis of sex differences would 
not be possible. Third, this aspect of meta-analysis is a 
form of observational study, not experimental study. 
Many of the moderator variables that show relationships 
with effect size may also be related to each other. Con-
founded relationships of that sort are inherently ambigu-
ous with regard to which variables are the more influential 
ones or, indeed, whether their influence stems from other 
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unmeasured and unknown variables correlated with those 
examined. As noted, this situation is particularly prob-
lematic when method variables are confounded with 
substantive ones. Even without confounded characteris-
tics, however, the observational nature of meta-analysis 
tempers the confidence with which the analyst can describe 
the causal influence of study characteristics on their find-
ings (on the distinction between study-generated and syn-
thesis-generated evidence, see chapter 2).

8.2.4 Relationships Among Effect Sizes

Study findings in meta-analysis are reported most often 
either as an overall mean effect size or as mean effect sizes 
for various categories of results. The availability of multi-
ple classes of effect sizes offers the potential for informa-
tive analysis of the patterns of covariation among the effect 
sizes themselves. This can be especially fruitful when 
different effect sizes from the same studies represent quite 
different constructs. In that situation, a meta-analyst can 
examine whether the magnitude of effects on one construct 
is associated across studies with the magnitude of effects 
on another construct. Some studies of educational inter-
ventions, for instance, may measure effects on both achieve-
ment and student attitude toward instruction. Under such 
circumstances, a meta-analyst might wish to ask whether 
the intervention effects on achievement covary with the 
effects on attitude. That is, if an intervention increased  
the attitude scores for a sample of students, did it also 
improve their achievement scores and vice versa? However, 
a cross-study correlation, though potentially interest ing, 
does not necessarily imply a within-study relationship. 
Thus, achievement and attitude might covary across stud-
ies, but not covary among the students in the samples 
within the studies.

A simple example of relationships between effect sizes 
is found in the meta-analysis by van Vreeswijk and  
de Wilde (2004) of differences between clinical and non-
clinical groups on their scores on the AMT and on mea-
sures of depression. The AMT yields two scores, one on 
specific positive memories and one on negative over-
general memories, and effect sizes were coded for both. 
Cross-study correlations between the effect sizes showed 
that studies reporting large differences on specific positive 
memories between clinical and nonclinical groups tended 
to report small differences in depression scores. On the 
other hand, studies reporting large differences on nega-
tive overgeneral memories tended to also report large dif-
ferences on depression scores. This was taken as evidence 

that depressed mood might well mediate performance on 
the AMT.

An even more ambitious form of meta-analysis may be 
used to construct a correlation matrix that represents the 
interrelations among many variables in a research litera-
ture. Each study in such a synthesis contributes one or 
more effect sizes representing the correlation between two 
of the variables of interest. The resulting synthetic cor-
relation matrix can then be used to test multivariate path 
or structural equation models. An example of such an 
analysis is a meta-analysis of bivariate correlations coded 
from studies that conducted mediational analysis for the 
effects of mindfulness interventions on mental health and 
well-being (Gu et al. 2015). The authors then synthesized 
correlation matrices for the studies contributing relevant 
correlations and used meta-analytic structural equation 
modeling to test the mediational relationships of interest. 
Of seven candidate mediators, mindfulness and repetitive 
negative thinking were found to be significant mediators 
of mental health outcomes.

A potential problem in analyzing multiple categories of 
study results is that all categories of effects will not be 
reported by all studies. Thus, each synthesized effect size 
examining a relationship will most likely draw on a differ-
ent subset of studies creating uncertainty about their gen-
erality and comparability. This and related issues having 
to do with analyzing synthesized correlation matrices are 
discussed elsewhere in this volume (see chapter 16).

8.3 CONCLUSION

Meta-analysis can be thought of as a form of survey 
research in which the participants interviewed are not 
people but research reports. The meta-analyst prepares a 
questionnaire of items of interest, collects a sample of 
research reports, interacts with those reports to determine 
the appropriate response on each item, and analyzes 
the resulting data. The kinds of questions that can be 
addressed by meta-analysis of a given research literature 
are thus determined by the variables that the meta-analyst 
is able to code and the kinds of analyses that are possible 
given the nature of the resulting data.

This chapter examines the types of variables potentially 
available from research studies, the kinds of questions that 
might be addressed using those variables, and the forms of 
analysis that investigate those questions. Its purpose has 
been to provide an overview that will help the prospective 
meta-analyst select appropriate variables for coding and 
plan probing and interesting analyses of the resulting data. 
Contemporary meta-analysis often neglects important 
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variables and analysis opportunities. As a consequence, 
we learn less from such work than we might. Even worse, 
what we learn may be erroneous if confounds and alterna-
tive analysis models have been inadequately probed. Cur-
rent practice has only begun to explore the breadth and 
depth of knowledge that well-developed meta-analyses 
can potentially yield.
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9.1 INTRODUCTION

A research synthesist has collected a set of studies that 
address a similar research question and wishes to code 
the studies to create a dataset suitable for systematic 
review and meta-analysis. This task is analogous to inter-
viewing, but rather than a person being interviewed the 
study is. Interrogating might be a more apt description, 
though it is usually the coder who loses sleep because of 
the study and not the other way around. The goal of this 
chapter is to provide synthesists with practical advice on 
designing and developing a coding protocol suitable to 
this task. A coding protocol is both the coding forms, 
whether paper or computerized, and the coding manual 
providing instructions on how to apply coding form items 
to studies.

A well-designed coding protocol will describe the 
characteristics of the studies included in the research syn-
thesis and will capture the pertinent findings relevant to 
the research question in a fashion suitable for comparison 
and synthesis, ideally using meta-analysis. Stated differ-
ently, the goal of a good coding protocol is to encode 
information about the methodological aspects of the 
study, the characteristics of the participants, interventions 
or experimental manipulations, measured variables, and 
other theoretically relevant features of the study or its 
content. A coding protocol typically focuses on ways in 
which the studies may differ from one another. The 
research context may vary across studies, for example. 
Studies may use different operationalizations of one or 
more of the critical constructs. Capturing variations in 
settings, participants, methodology, experimental manip-

ulations, and measured variables is an important goal of 
the coding protocol not only for careful description but 
also for use in the analysis to explain variation in study 
findings (see chapter 8). More fundamentally, the coding 
protocol serves as the foundation for the transparency 
and replicability of the synthesis.

9.2  IMPORTANCE OF TRANSPARENCY  
AND REPLICABILITY

A core feature of the scientific method is study replicabil-
ity and reproducibility. Setting aside the possibility of 
fraud, any given study may have results that are simply 
inaccurate (that is, arrived at the incorrect conclusion) 
through no fault of the scientists conducting the work. The 
ability to replicate a study, either with identical methods 
or through intentional variation in the methodological 
approach, is key to establishing whether the results of a 
study are reproducible because it is through replication 
that the collective body of literature becomes more accu-
rate. Such replication requires transparency and full 
reporting of the methods used by a study.

The importance of replicability and reproducibility has 
taken center stage in recent years in both the physical and 
social sciences. The presidential address by Ralph Cicerone 
at the annual National Academy of Sciences meeting in 
2015 was on the topic of research reproducibility, replica-
bility, and reliability. In this address, Cicerone discussed 
the recent efforts at reproducing important findings in sev-
eral fields and the high failure rates of these efforts. The 
recent attempt to replicate one hundred experimental and 
correlational studies in psychology by the Open Science 
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Collaboration is an important example (2015). This study 
showed that replicated effects were, on average, half the 
size of original effects. Furthermore, only 39 percent of 
the findings from the original hundred studies were sub-
jectively judged as having been reproduced. Rather than 
an indictment on the field of psychology (or science more 
generally), this work reinforces the need for replications. 
As Cicerone points out, science is self-correcting but the 
process requires replications.

Research synthesis is critical to self-correction because 
it provides a credible method of assessing the reproduc-
ibility of results across a collection of studies that are 
either pure replications of one another, or are conceptual 
replications (that is, studies examining the same basic 
empirical relationship, albeit with different operational-
izations of key constructs and variation in method). That 
said, research synthesis is a scientific method and should 
itself also be held to the same standard. This can be 
achieved only through the use of transparent methods 
that are fully reported in sufficient detail to allow others 
to critically assess the procedures used (transparency) 
and to conduct an identical or similar study (replication) 
to establish the veracity of the original findings (repro-
ducibility). This should not be interpreted to imply that 
research synthesis is merely the technical application of a 
set of procedures. The numerous decisions made in the 
design and conduct of a research synthesis requires 
thoughtful scholarship. A high-quality research synthesis, 
therefore, explicates these decisions sufficiently to allow 
others to fully understand the basis for the findings and to 
be able to replicate the synthesis if they so desire.

The coding protocol that synthesists develop is a criti-
cal aspect of the transparency needed to enable replica-
tion. Beyond detailing how studies will be characterized, 
the coding protocol documents the procedures used to 
extract information from studies and gives guidance on 
how to translate the narrative information of a research 
report into a structured and (typically) quantitative form. 
Although few journals will publish a full coding proto-
col, these should be made available either electronically 
from the author or via a journal’s online supplemental 
materials.

Coding studies is challenging and requires subjective 
decisions. A decision that may on the surface seem 
straightforward, such as whether a study used random 
assignment to experimental conditions, often requires 
judgments based on incomplete information in the writ-
ten reports. One goal of a good coding protocol is to pro-
vide guidance to coders on how to handle these ambiguities. 

As a scientific activity, appropriately skilled and ade-
quately trained coders should be able to independently 
code a study and produce essentially the same coded 
data. Replication is not possible if only the author of the 
coding protocol can divine its nuances. In the absence of 
explicit coding criteria, researchers who claim to know a 
good study when they see one, or to know a good mea-
sure of leadership style by looking at the items, or to 
determine whether an intervention was implemented well 
by reading the report may be a good scholar, but they are 
not engaged in scientific research synthesis. Because it is 
impossible to know what criteria were invoked in making 
these judgments, her decisions lack transparency and 
cannot be replicated by others. The expertise of an expe-
rienced scholar should be reflected in the coding protocol 
(the specific coding items and decision rules for how to 
apply those items to specific studies) and not in opaque 
coding that cannot be scrutinized by others. For example, 
a “yes” and “no” coding item that asks whether a treat-
ment intervention was well implemented is vague and will 
almost certainly be coded inconsistently across coders. In 
contrast, a set of items that ask whether the reported dis-
cussed implementation fidelity, whether any data were 
collected regarding the integrity of the treatment, whether 
critical aspects of the treatment were delivered to at least 
a specified proportion of the participants, and so on 
increases transparency of the coding process and improves 
replicability across coders. Detailed coding guidelines 
should be developed for any item that requires judgment 
on the part of the coders.

9.3 CODING ELIGIBILITY CRITERIA

The potentially eligible studies that a synthesist identifies 
through the search and retrieval process should be coded 
against explicit eligibility criteria. Assessing each retrieved 
study against the elements of the eligibility criteria and 
recording this information on an eligibility screening 
form or into an eligibility database provides an important 
record of the nature of studies excluded from a research 
synthesis. Based on this information, the synthesist can 
report on the number of studies excluded and the reasons 
for the exclusions. Many journals now require a flow dia-
gram, such as the CONSORT, that details the number of 
studies excluded at various decision points (Moher et al. 
2001). I have found this type of information to be useful 
when responding to a colleague who questions why a par-
ticular study was not included in the synthesis, enhancing 
the transparency of the review.
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The eligibility criteria should flow naturally from the 
research question or purpose of the synthesis (see chapter 2). 
Your research question may be narrow or broad and this 
will be reflected in the eligibility criteria. For example, a 
research synthesis might focus narrowly on social psy-
chological laboratory studies of the relationship between 
alcohol and aggressive behavior that use the competitive 
reaction time paradigm, or on the effectiveness of a specific 
drug relative to a placebo for a clearly specified patient  
population and outcome. At the other end of the continuum 
would be a research syntheses focused on broad research 
questions such as the effect of class size on achievement 
or juvenile delinquency interventions on criminal behav-
ior. In each case, the eligibility criteria should clearly elu-
cidate the boundaries for the synthesis, indicating the 
characteristics studies must have to be included and char-
acteristics that would exclude studies.

9.3.1 Study Features to Be Explicitly Defined

Eligibility criteria should address several issues, including 
the defining feature of the studies of interest, the eligible 
research designs, any sample restrictions, required statis-
tical data, geographical and linguistic restrictions, and any 
time frame restriction. I briefly elaborate on each.

9.3.1.1 Defining Features of the Empirical Relation-
ship of Interest Research questions typically address a 
specific empirical relationship or empirical finding that is 
the defining feature of the studies included in the synthesis. 
Eligibility criteria should clearly elaborate on the nature of 
the empirical finding that defines the parameters for study 
inclusion. For example, a meta-analysis of the effectiveness 
of an intervention, such as cognitive-behavioral therapy for 
childhood anxiety, needs to clearly delineate the character-
istics that an intervention must have to be considered  
cognitive-behavioral. Similarly, a meta-analysis of group 
comparisons, such as the relative math achievement of 
boys and girls, needs to define the parameters of the 
groups being compared and the dependent variables of 
interest. The prior examples focused on an empirical rela-
tionship, such as the effect of an intervention or social 
policy on one or more outcomes or the correlation between 
an employment test and job performance. In some cases, 
a single statistical parameter may be of interest, such as 
the prevalence rate of alcohol or illegal drugs in homicide 
victims, although meta-analyses of this type are less  
common.

Specifying the defining features of the eligible studies 
involves specifying both the nature of an independent 

variable, such as an intervention or employment test, and 
one or more dependent variables. The level of detail 
needed to adequately define these will vary across syn-
theses. The more focused your synthesis, the easier it will 
be to clearly specify the construct boundaries. Broad syn-
theses will require more information to establish the 
guidelines for determining which studies to include and 
which to exclude.

9.3.1.2 Eligible Designs and Required Methods What  
is the basic research design that the studies have in com-
mon? If multiple design types are allowable, what are 
they? A research synthesis of intervention studies may be 
restricted to experimental (randomized) designs or may 
include quasi-experimental comparison group designs. 
Similarly, a synthesis of correlational studies may be 
restricted to cross-sectional designs, or only longitudinal 
designs, or it may include both types. Some research 
domains have a plethora of research designs examining 
the same empirical relationship. The eligibility criteria 
need to specify which of these designs will be included 
and which will not, and to provide a justification for both 
inclusion and any restrictions.

It is rarely adequate to simply list the eligible research 
designs, because design names may have different mean-
ings for scholars from different disciplinary back-
grounds. For example, I have seen authors state that quasi- 
experimental designs were eligible with no elaboration of 
what is meant. Are only comparison group designs eligi-
ble? What about one-group, before-and-after designs? 
Some view the latter as pre-experimental whereas others 
view the latter as a quasi-experimental design. Rather 
than quibbling over the correct definition, simply provide 
a description of what is meant by each type of eligible 
design unless the meaning is unmistakably clear. This is 
consistent with guidance in the Cochrane Handbook 
(Higgins and Green 2011, section 13.2.2).

It is easy to argue that only the most rigorous research 
designs should be included in a synthesis. There are trade-
offs, however, between rigor and inclusiveness. Trade-
offs need to be evaluated within the context of the research 
question and the broader goals of the synthesis. For exam-
ple, including only well-controlled experimental evalua-
tions of a social policy intervention may reduce external 
validity because the level of control needed to mount such 
a study may alter the nature of the intervention and the 
context within which the intervention occurs. In this situ-
ation, quasi-experimental comparison group studies may 
provide valuable information about the likely effects of 
the social policy in more natural settings (see chapter 7).
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9.3.1.3 Key Sample Features This criterion addresses 
the critical features of the sample or study participants. 
For example, are only studies involving humans eligible? 
In conducting a research synthesis of the effects of alcohol 
on aggressive behavior, Mark Lipsey and his colleagues 
find many studies involving fish—intoxicated fighting 
fish to be more precise (1997). Most syntheses of social 
science studies will not need to specify that they are 
restricted to studies of humans, but may well need to spec-
ify which age groups are eligible for inclusion and other 
characteristics of the sample, such as diagnostic status.  
A decision rule may need to be developed for handling 
studies with samples that include a small number of par-
ticipants outside the target sample. For example, studies 
of juvenile delinquency programs are not always clearly 
restricted to youth age twelve to eighteen. Some studies 
include a small number of nineteen- and twenty-year-olds. 
The sample criterion should specify how these ambiguous 
cases are to be handled. The researchers could decide to 
exclude these studies, to include them only if the results 
for youth age twelve to eighteen are presented separately, 
or to include them if the proportion of nineteen- and twenty- 
year-olds does not exceed some threshold value.

9.3.1.4 Required Statistical Data A frustrating aspect 
of conducting a meta-analysis is missing statistical data. 
It is common to find an otherwise eligible study that does 
not provide the statistical data needed for computing an 
effect size. It is often possible, particularly for more recent 
studies, to obtain missing information directly from the 
original authors. With some work, it is also often possible 
to reconfigure the data provided to compute an effect 
size, or at least a credible estimate (see Lipsey and  
Wilson 2001). However, at times the necessary statistical 
data are simply not available.

Eligibility criteria must indicate how to handle studies 
with inadequate data. There are several possibilities: 
excluding the study from the synthesis, including it either 
in the main analysis or as a sensitivity analysis (see chap-
ter 12) with some imputed effect-size value, or including 
it in the descriptive aspects of the synthesis but excluding 
it from the effect-size analyses. The advantages and dis-
advantages of different options are beyond the scope of 
this chapter but missing data are dealt with elsewhere in this 
volume (see chapter 17). It is recommended that missing 
data be included in some fashion even if simply in the 
descriptive systematic review rather than the meta-analytic 
synthesis.

9.3.1.5 Geographical and Linguistic Restrictions It 
is important to specify any geographical or linguistic 

restrictions for the synthesis. For example, will only 
English language reports be considered? Does the locale 
for the study matter? Youth engaged in delinquency is a 
universal problem: delinquent youth are found in every 
country and region of the world. However, the meaning 
of delinquency and the societal response to it are cultur-
ally embedded. Because they are, a research synthesis of 
juvenile delinquency programs needs to consider the rel-
evance of studies conducted outside the synthesist’s cul-
tural context. Any geographical or linguistic restriction 
should be based on theoretical and substantive issues. 
Many non-English journals provide an English abstract, 
enabling the identification of potentially relevant studies 
in these journals by those who are monolingual. Restrict-
ing a review to English-language reports may introduce  
a source of bias to the review because studies from 
non-English locales that are published in English may 
differ systematically from those published in the native 
language. For example, Peter Jüni and his colleagues find 
that non-English language trials tended be have a smaller 
mean effect (2002). However, Andra Morrison and her 
colleagues fail to find a consistent English language bias 
(2012). Free online translation programs may also be  
useful, at least for assessing eligibility (such as http://
www.freetranslation.com or http://translate.google.com).

9.3.1.6 Time Frame It is important that a synthesist 
specify the time frame for eligible studies. Further, the 
basis for this time frame should not be arbitrary or what is 
convenient for the authors. Issues to consider are whether 
studies prior to a particular date generalize to the current 
context and whether constructs with similar names have 
shifted in meaning enough over time to reduce compara-
bility. Similarly, social problems may evolve in ways that 
reduce the meaningfulness of older research to the pres-
ent. In some research domains, the decision regarding a 
time-frame restriction is easy: research on the topic began 
at a clearly defined historical point and only studies from 
that point forward are worth considering. In other research 
domains, a more theory-based argument may need to be 
put forth to justify a somewhat arbitrary cut point.

Whether the year of the report or year the data were 
collected is the critical issue. For some research domains, 
the two can be quite different. Unfortunately, it is not 
always possible to determine when data were collected, 
necessitating a decision rule for these cases.

I have often seen published meta-analyses that restrict 
the time frame to studies conducted or published after the 
date of a prior meta-analysis or widely cited synthesis. 
The logic seems to be to establish what the newer literature  
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“says” on the topic. This is sensible if the research in this 
area changed in some meaningful way following the pub-
lication of the synthesis. The goal should be to only 
exclude studies based on some meaningful substantive or 
methodological basis, not an arbitrary one such as the 
date of a prior synthesis.

I did not include publication type as an eligibility dimen-
sion in need of specification. A quality research synthesis 
will include all studies meeting the explicit eligibility  
criteria independent of publication status (for a com-
plete discussion of the publication selection bias issue, 
see chapter 18).

9.3.2 Refining Eligibility Criteria

It can be difficult to anticipate all essential dimensions to 
be specified in the eligibility criteria. I have had the expe-
rience of evaluating a study for inclusion and found that 
it does not fit with the literature being examined yet meets 
the eligibility criteria. This situation generally arises 
when the criteria are not specific enough in defining the 
essential features of the studies. In such cases, the criteria 
can be modified and reapplied to studies already evalu-
ated. It is important, however, that any refinement of the 
eligibility criteria not be motivated by a desire to include 
or exclude a particular study based on its findings. It is for 
this reason that the Cochrane Collaboration, an organiza-
tion devoted to the production of systematic reviews in 
health care, requires that any modifications to eligibility 
criteria made once study selection has begun be clearly 
explained and justified in the final report.

9.4 DEVELOPING A CODING PROTOCOL

Developing a good coding protocol is much like develop-
ing a good survey questionnaire: it requires a clear delin-
eation of what is important to measure and a willingness 
to revise and modify initial drafts. Before opening your 
favorite word processor and beginning to write, you need 
to list the constructs or study characteristics that are 
important to measure, much as one would when con-
structing a questionnaire. Many of these constructs may 
require multiple items. An overly general item is difficult 
to code reliably, as the generality allows each coder to 
interpret the item differently. For example, asking coders 
to evaluate the internal validity of a study on a 5-point 
scale is a more difficult coding task than asking a series 
of low inference questions related to internal validity, 
such as the nature of assignment to conditions, extent of 

differential attrition, the use of statistical adjustments to 
improve baseline equivalence, and the like. One can, of 
course, create composite scales from the individually 
coded items (for cautions regarding the use of quality 
scales, see chapter 7). After delineating the study charac-
teristics of interest, a synthesist should draft items for the 
coding protocol and circulate it to other research team 
members or research colleagues (particularly those with 
substantive knowledge of the research domain being syn-
thesized) for feedback. The protocol should be refined 
based on this feedback. The synthesist should also explore 
whether existing coding protocols have coding items and 
measures that fit the constructs of interest and, more 
important, whether they report any psychometrics for 
these items. Borrowing quality items from other synthe-
sist may not only help avoid reinventing the wheel but 
also enhance the overall quality of the coding items.

Sharon Brown, Sandra Upchurch, and Gayle Acton 
propose an alternative approach that derives the coding 
categories from the studies themselves (2003). Their 
method begins by listing the characteristics of the studies 
into a matrix reflecting the general dimensions of interest, 
such as participant type, variations in the treatment, and 
the like. This information is then examined to determine 
how best to categorize studies on these critical dimen-
sions. That is, rather than start with a priori notions of 
what to code based on the synthesist’s ideas about the lit-
erature, Brown and her colleagues recommend reading 
through the studies and extracting descriptive information 
about the essential characteristics of interest. The actual 
items and categories of the coding protocol are then based 
on this information. This approach may be particularly 
helpful in developing items designed to describe the more 
complex aspects of studies, such as treatment variations 
and operationalizations of dependent measures. However, 
doing so might miss theoretically relevant items that may 
not be evident from a reading of the eligible studies.

It is useful to think of a coding protocol in much the 
same way as any measure developed for a primary 
research study. Ideally, it will be valid and reliable: mea-
sure what it is intended to measure and do so consistently 
across studies. Validity and reliability can be enhanced by 
developing coding items that require as little inference as 
possible on the part of the coders and allow coders to 
record the requested information in a way that corre-
sponds closely to the way in which the characteristic of 
interest is typically described within the literature. For 
example, studies conducted in a school context may be 
more likely to report the grade range than the age of the 
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students. Thus, a coding form structured around the 
grades rather than the age of the sample will thus be  
easier to code and likely include fewer coding errors. The 
number of inference that a coder needs to make can be 
reduced by breaking apart the coding of complex study 
characteristics into a series of focused and simpler deci-
sions. For example, rather than having a single item 
reflecting degree of selection bias, a coding protocol 
could include a series of questions about each important 
aspect of selection bias, such as method of assignment to 
conditions, attrition (both overall and differential), similar-
ity of groups at baseline, and so forth. Each of these individ-
ual items requires fewer inferences. For closed-ended 
coding items (that is, items with a fixed set of options), the 
correspondence between the items and manner in which the 
item is described in the literature can be increased by devel-
oping the items from a sample of studies. Alternatively, an 
open-ended question can be used. With this approach, cod-
ers record the relevant information as it appears in the study 
report and specific coding items or categories are created 
from an examination of these open-ended responses (that 
is, the verbatim text extracted from the reports).

It is important to keep in mind the purpose that each 
coded construct serves as part of the research synthesis, 
as it is possible, and potentially wasteful, to code too 
many items. Some constructs may be important to code 
simply for their descriptive value, providing a basis for 
effectively summarizing the characteristics of the collec-
tion of studies. Other constructs are primarily coded for 
use as moderators in effect-size analyses. The number of 
possible moderator analyses is often limited unless the 
meta-analysis has a large number of studies. Thus it is 
wise to consider carefully the potential value of each item 
you plan to code. You can always return to the studies and 
code an additional item if it becomes necessary.

Although the specific items included in the coding proto-
col of each research synthesis vary, most address several 
general categories: report identification, study setting, par-
ticipants, methodology, treatment or experimental manipu-
lation, dependent measures, and effect-size data. I briefly 
discuss the types of information you might consider for 
each of these categories.

9.4.1 Types of Information to Code

9.4.1.1 Report Identification Although it is rather 
mundane, you will want to assign each study an identifi-
cation code. A complication is that some research studies 
are reported in multiple manuscripts (such as a journal 

article and technical report or multiple journal articles), 
and some written reports present the results from multi-
ple studies or experiments. The primary unit of analysis 
for a research synthesis will be an independent research 
study, that is, a study sample that does not overlap with 
the sample in another study in the review. For example, 
one report on an experimental study may provide data at 
posttest, whereas another report on the same sample may 
report data at follow-up. These two reports should be 
considered a single study, as should multiple publications 
that report different outcome measures on the same study 
sample. Because of the potential for multiple reports for 
a single study, the synthesist needs to create a system that 
allows tracking each manuscript and each research study. 
The coding forms should record basic information about 
the manuscript, such as the authors’ names, type of man-
uscript (journal article, dissertation, technical report, 
unpublished manuscript, and so on), year of publication, 
and year or years of data collection (if possible).

9.4.1.2 Study Setting Research is always conducted 
in a specific context and a synthesist may wish to code 
aspects of this setting. For example, it may be of value to 
record the geographic location where the study was con-
ducted, particularly if the synthesis includes studies from 
different countries or continents. The degree of specific-
ity with regard to geographic location will depend on the 
research question and nature of the included studies. 
Related to this would be the nature of the institution in 
which the study was conducted, such as a school, correc-
tional institution, or hospital. In some research areas, 
such as intervention studies, the research may vary in the 
degree of naturalness of the research setting. For example, 
an experimental test of child psychotherapy may occur 
entirely in a lab setting, such as the research lab of a clin-
ical psychology professor, and rely on participants 
recruited through newspaper ads or be set in a natural 
clinic setting involving participants seeking mental health 
services (for an example of a meta-analysis that com-
pared the results from children’s psychotherapy studies in 
the lab against those in mental health clinics, see Weisz, 
Weiss, and Donenberg. 1992). Other potentially interest-
ing contextual issues are the academic affiliation of the 
researcher (such as, disciplinary affiliation, in-house 
researcher or outside academic, and the like) and source 
of funding, if any. Each of these contextual issues may 
be related in some way to the findings. For example, 
researchers with a strong vested interest in the success of 
the program may report more positive findings than other 
researchers. Dennis Gorman provides a recent discussion 
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of this issue within the context of prevention research and 
provides evidence that conflicts of interest are related to 
reporting of more positive findings and the use of more 
flexible statistical methods (2016).

9.4.1.3 Participants Only in a very narrowly focused 
research synthesis will all of the subject samples be iden-
tical on essential characteristics. Thus, the coding proto-
col should include items that address the variations in 
participant samples that occur across the included stud-
ies. The aggregate nature of the data at the study level 
limits the ability to capture essential subject features. For 
example, age of the study sample is likely to be of interest. 
Study authors may report this information in a variety of 
ways, including the age range, the school grade or grades, 
the mean age, the median age, or they may make no men-
tion of age. The coding protocol needs to be able to 
accommodate these variations and have clear guidelines 
for coders on how to characterize the age of the study 
sample. For example, a synthesist may develop guidelines 
that indicate that if the mean age is not reported, it should 
be estimated from the age range or school grade (such as, 
a sample of kindergarten students in the United States 
could be coded as having an average age of 5.5). The 
specific sample characteristics coded should depend on 
the research question and the nature of the studies included, 
but other variables to consider are gender mix, racial mix, 
risk or severity level and how this was assessed or speci-
fied, any restrictions placed on subject selection (such as, 
clinical diagnosis), and motivation for participation in the 
study (such as, course credit, volunteers, court mandated, 
paid participants, and the like). It is also important to con-
sider whether the summary statistics adequately measure 
characteristic of interest and whether they are potentially 
biased. For example, mean age for samples of college 
students may be skewed by a small number of older stu-
dents. Knowing how best to capture sample characteris-
tics will depend on substantive knowledge of the research 
domain being synthesized.

9.4.1.4 Methodology Research studies included in 
your research synthesis will often vary in certain method-
ological features. Research synthesists will want to 
develop coding items to reflect that variability so that 
they can assess the influence of method variation on 
observed results. The importance of methodological fea-
tures in explaining variability in effects across studies has 
been well established empirically (Cheung and Slavin 
2015; Lipsey and Wilson 1993; Heinsman and Shadish 
1996; Shadish and Ragsdale 1996; Weisburd, Lum, and 
Petrosino 2001; Wilson and Lipsey 2001).

The focus in coding should be on the ways in which 
the studies in the sample differ methodologically. Things 
to consider coding include the basic research design, 
nature of assignment to conditions, subject and experi-
menter blinding, attrition from baseline (both overall and 
differential), crossovers, dropouts, other changes to assign-
ment, the nature of the control condition, and sampling 
methods. Each research domain will have unique method 
features of interest, and as such the features that should 
be coded will differ. For example, in conducting a 
meta-analysis of analog studies of the relationship between 
alcohol consumption and aggressive behavior, it would 
be important to code the method used to keep the partici-
pants unaware of their experimental condition. In other 
meta-analyses, coding the type of quasi-experimental 
design or whether the study used a between-subjects or 
within-subjects design might be essential. It is also criti-
cal to code items specifically related to methodological 
quality and risk of bias. The issues involved in assessing 
methodological quality are addressed in detail elsewhere 
in this volume (chapter 7).

9.4.1.5 Treatment or Experimental Manipulation  
If studies involve a treatment or experimental manipula-
tion, the synthesist will want to develop coding items to 
fully capture any differences between the studies in these 
features. It is useful to have one or more items that cap-
ture the general type or essential nature of the treatment 
or experimental manipulation in addition to more detailed 
codes. For example, the studies included in our meta-anal-
ysis of experimental studies on the effects of alcohol on 
aggressive behavior used one of two basic types of exper-
imental manipulations: a competitive-reaction time para-
digm or a teacher-learner paradigm (Lipsey et al. 1997). 
An initial coding item captured this distinction and  
additional items addressed other nuances within each 
paradigm. As an additional example, a meta-analysis of 
school-based drug and delinquency prevention programs 
first categorized the programs into basic types, such as 
instructional, cognitive-behavioral or behavioral model-
ing, and the like (Wilson, Gottfredson, and Najaka 2001). 
Additional coding items were used to evaluate the pres-
ence or absence of specific program elements. Other 
issues to consider are the amount and intensity of treat-
ment, who delivers the treatment, and how effective 
implementation of the treatment or experimental manip-
ulation was assessed. In my experience meta-analyzing 
treatment effectiveness research, study authors inade-
quately report on the implementation integrity of treat-
ment being evaluated. However, it may still be of interest 
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to document what is available and if possible examine 
whether effect size is related to the integrity of the treat-
ment or other experimental manipulation.

9.4.1.6 Dependent Measures Studies will have one 
or more measured variable. Not all measures used in a 
study will necessarily be relevant to the research ques-
tion. The coding manual therefore needs to clearly elabo-
rate a decision rule for determining which measures to 
code and which to ignore.

For each measure to be coded, a synthesist will want to 
develop items that capture the essential construct mea-
sured and the specific measure used. Note that different 
studies may operationalize a common construct differ-
ently. For example, the construct of depression may be 
operationalized as scores on the Hamilton Rating Scale 
for Depression, the Beck Depression Inventory, or a cli-
nician rating. A coding protocol should be designed to 
capture both the characteristics of the construct and its 
operationalization. It also may include other information 
about the measure, such as how the data were collected 
(such as self-report, observer rating, or clinical inter-
view), psychometric properties (such as reliability and 
validity), whether the measure was a composite scale or 
based on a single item, and the scale of the measure (that 
is, dichotomous, discrete ordinal, or continuous). In many 
situations it is also essential to know the timing of the 
measurement relative to the experimental manipulation 
or treatment (such as, baseline, three months, six months, 
twelve months, and the like). For measures of past behav-
ior, the reporting time frame would also be considered 
relevant. For example, participants in drug prevention 
studies are often asked to self-report their use of drugs 
over the past week, past month, and past year.

9.4.1.7 Effect Sizes The heart of a meta-analysis is 
the effect size because it encodes the essential research 
findings from the studies of interest. Often, the data 
reported in a study need to be reconfigured to compute 
the effect size of interest. For example, a study may only 
report data separately for boys and girls, but you might 
only be interested in the overall effect across both gen-
ders. In such cases you will need to properly aggregate 
the reported data to be able to compute your effect size. 
Similarly, a study may use a complex factorial design, of 
which you are only interested in a single factor. If so, you 
may need to compute the marginal means if they are not 
reported. In treatment effectiveness research, some pri-
mary authors will remove treatment dropouts from the 
analysis. However, you may be interested in an intent-to-
treat analysis and therefore may need to compute a 

weighted mean between the treatment completers and 
treatment dropouts to obtain the mean for those assigned 
to the treatment group. The coding protocol cannot antic-
ipate all of the potential statistical manipulations that you 
may need to make. A copy of these computations should 
be kept for reference, ideally in some computerized form 
such as a spreadsheet, an R script, or a simple text file. If 
the effect size was computed using software external to 
your main analysis software, such as an online effect-size 
calculator, notes should be kept on which computation 
method was used.

I have found it helpful to code the data on which the 
effect size is based in addition to the computed effect 
size. For example, for the standardized mean, difference 
effect size this would require recording the means, stan-
dard deviations or standard errors, and sample sizes for 
each condition. Other common data on which this effect 
size is based include the t-test and sample sizes and the 
exact p-value for the t-test and sample sizes. If dichoto-
mous outcomes are being coded, the frequencies or pro-
portions of successes or failures for each condition would 
need to be recorded. This does not exhaust the possibili-
ties but captures the common configurations for the com-
putation of the standardized mean difference (see Lipsey 
and Wilson 2001). For the remaining instances based on 
more complex situations, I recommend simply keeping 
track of the computational method. To assist in data 
cleanup, it is useful to record the page number of the man-
uscript where the effect size data can be found. Figure 9.1 
shows an example of an effect size coding form for a 
meta-analysis based on the standardized mean difference. 
Variations of this form could easily be created for other 
effect size types, such as the correlation coefficient, odds 
ratio, or risk ratio.

9.4.1.8 Confidence Ratings The inadequate report-
ing of information in studies will regularly frustrate syn-
thesists. Often this will simply mean that they must code 
an item as “cannot tell” or “missing.” However, at times 
information is provided but is inadequate or unclear. For 
example, a study may report the overall sample size but 
not the sample sizes for the individual groups. Based on 
the method of constructing the conditions, it may be  
reasonable to assume that conditions were of roughly 
equal size. In a meta-analysis of correctional boot-camps 
(MacKenzie, Wilson, and Kider 2001), several studies 
failed to mention whether the sample was all boys, all 
girls, or a mix. Given the context, that the samples were 
all boys seemed reasonably certain. A synthesist may 
wish to track the degree of uncertainty or confidence in 
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Figure 9.1. Sample Effect-Size Level Coding Form

source: Author’s tabulation.

EFFECT SIZE LEVEL CODING FORM

Code this sheet separately for each eligible effect size.

Identifying Information:

 1. Study (document) identifi er StudyID |___|___|___|

 2. Treatment-Control identifi er TxID |___|___|___|

 3. Outcome (dependent variable) identifi er OutID |___|___|___|

 4. Effect size identifi er ESID |___|___|___|

 5. Coder’s initials ESCoder |___|___|___|

 6. Date coded ESDate |___/___/___|

Effect Size Related Information:

 7. Pretest, posttest, or follow-up (1  pretest; 2  posttest; 3  follow-up) ES_Type |___|

 8. Weeks Post-Treatment Measured (code 999 if cannot tell) ES_Time |___|___|___|

 9. Direction of effect (1 favors treatment; 2 favors control; 3 neither) ESDirect |___|

Effect Size Data—All Effect Sizes:

10. Treatment group sample size ES_TxN |___|___|___|___|

11. Control group sample size ES_CgN |___|___|___|___|

Effect Size Data—Continuous Type Measures:

12. Treatment group mean ES_TxM |___|___.___|___|

13. Control Group mean ES_CgM |___|___.___|___|

14. Are the above means adjusted (for example, ANCOVA adjusted)? (1 yes; 0 no)   ES_MAdj |___|

15. Treatment group standard deviation ES_TxSD |___|___.___|___|

16. Control group standard deviation ES_CgSD |___|___.___|___|

17. t-value ES_t |___.___|___|___|

Effect Size Data—Dichotomous Measures:

18. Treatment group; number of failures (recidivators) ES_TxNf |___|___|___|___|

19. Control group; number failures (recidivators) ES_CgNf |___|___|___|___|

20. Treatment group; proportion failures ES_TxPf |___.___|___|

21. Control group; proportion failures ES_CgPf |___.___|___|

22. Are the above proportions adjusted for pretest variables? (1 yes; 0 no) ES_PAdj |___|

23. Logged odds-ratio ES_LgOdd |___.___|___|___|

24. Standard error of logged odds-ratio ES_SELgO |___.___|___|___|

25. Logged odds-ratio adjusted for covariates? (1 yes; 0 no) ES_OAdj |___|
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the information coded for key items, such as the data on 
which the effect size is based. For example, coders could 
rate on a 3-point or 5-point scale their confidence in the data 
on which the effect size is based, as shown in figure 9.1.

9.4.2 Iterative Refinement

An important component of good questionnaire develop-
ment is pilot testing. Similarly, pilot tests of the coding pro-
tocol should be conducted on a sample of studies to identify 
problem items and lack of fit between the coding categories 
and the characteristics of the studies. Synthesists should not 
start simply with the studies at the top of the pile. These are 
likely to be those that were easy to retrieve or were from the 
same bibliographic source, such as PsycNet or ERIC. Syn-
thesists want to ensure that the pilot test of the coding pro-
tocol is conducted on studies that represent the full range of 
characteristics of the sample, to the extent that this is possi-
ble. Although throwing out data coded as part of the pilot 
testing is not necessary, synthesists do need to recode any 
items that were refined or added as a result of the pilot test. 
The number of studies that need to be coded as part of the 
pilot phase will depend on the complexity of the research 
area and the skill and experience of the research team.

9.4.3 Structure of the Data

A complexity of meta-analytic data is its nested or hierar-
chical nature: multiple effect sizes nested within studies. 
The coding protocol must allow for this complexity. There 
are two general approaches to handling the nested nature of 

the data that can be adapted to any situation: a flat-file and 
a hierarchical or relational file structure. In the flat-file 
approach, a synthesist specifies or knows beforehand the 
nature and extent of the nesting and repeats the effect size 
variables the necessary number of times: for example, one 
set of variables for the first effect size of interest and another 
set for the second. This works well for a limited and highly 
structured nesting. In my experience, however, the number 
of effect sizes of interest per study is typically not known 
beforehand. A hierarchical or relational data structure  
creates separate data tables for each level of the hierarchy. 
In its simplest form, this would involve a study-level data 
table with one row per study and a related effect-size-level 
data table with one row per effect size. A study identifier 
links the two data tables. I illustrate each approach.

9.4.3.1 Flat File Approach The flat file approach 
creates a single data table with one row per study and as 
many columns as variables or coded items. It is suitable 
for situations in which the synthesist knows the maxi-
mum number of effect sizes per study that will be coded 
and can place each effect size in a distinct category. For 
example, suppose a synthesist is interested in meta- 
analyzing a collection of studies examining a new teach-
ing method. The outcomes of interest are math and verbal 
achievement as measured by a well-known standardized 
achievement test. In this case the synthesist could develop 
a coding protocol that has one set of effect-size items that 
addresses the math achievement outcome and another set 
that addresses the verbal achievement outcome. This 
approach has the advantage that all the data are contained 
within one data table. Also, with one row per study, only 

Figure 9.1. (Continued)

Effect Size Data—Hand Calculated:

26. Hand calculated d-type effect size ES_Hand1 |___.___|___|___|

27. Hand calculated standard error of the d-type effect size ES_Hand2 |___.___|___|___|

Effect Size Data Location

28. Page number where effect size data found ES_Pg |___|___|___|___|

Effect Size Confi dence

29. Confi dence in effect size value ES_Conf |___|
1. Highly Estimated—have N and crude p-value only,  for example, p<.10, or other limited information
2. Some Estimation—have complex but complete statistics; some uncertainty about precision of effect size 

or accuracy of information
3. No Estimation—have conventional statistical information and am confi dent in accuracy of information
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one effect size per study can be included in any single 
analysis, by design. The disadvantage is that the flat file 
approach becomes cumbersome as the number of effect 
sizes per study increases: wide data tables are difficult to 
work with. Also, any statistical manipulation of effect 
sizes, such as the application of the small sample size 
bias correction to standardized mean difference effect 
sizes needs to be performed separately for each addi-
tional effect size, because each effect size within a study 
is contained in a different column or variable within the 
dataset. Furthermore, even in this example with only two 
effect sizes, the number of columns can become rather 
large if it accommodates all of the data needed for com-
puting the two effect sizes.

9.4.3.2 Hierarchical or Relational File Approach  
The hierarchical or relational file approach creates separate 
data tables for each conceptually distinct level of data. Data 
that can be coded only a single time for a given study, such 
as the characteristics of the research methods, sampling 
procedures, study context, and experimental manipulation, 
are entered into a single study level data table. Data that 
change with each effect size are entered into a separate data 
table with one row per effect size. This data structure can 
accommodate any number of effect sizes per study.

In my experience, a minimum of three data tables is 
needed: a study level, a variable (measurement) level, and 
an effect-size level. In many research domains, a single 
variable may be measured at multiple time points, such as 
at baseline, posttest, and follow-up. Rather than code the 
features of the variable multiple times for each effect size, 
a synthesist can separate the variable coding items into 
their own data table and link that information to the effect-
size data table with a study identifier and a variable iden-
tifier. This simplifies coding and eases data cleanup.

In a more complex meta-analysis, additional data tables 
may be useful. For example, a separate sample level data 
table may be useful if you are interested in coding effects 
for subgroups of the total study sample, such as males and 
females. Not only does this structure reduce duplication of 
coding, it also facilitates the identification of all effects that 
are associated with a distinct subgroup, facilitating appro-
priate analysis.

This approach is shown in figure 9.2 for a meta-analysis 
of wilderness challenge programs for juvenile delinquents 
(Lipsey and Wilson 2001). These studies may each include 
any number of measures and each may be measured at 
multiple time points. The coding protocol was divided 
into three sets of items: those at the study level, that is, do 
not change for different outcomes; those that describe 

each variable used in the study; and those that encode 
each effect size. The effect-size data table includes a study 
identifier (Study_ID) and a variable identifier (DV_ID) 
that link each effect size row with the appropriate data in 
both the study-level and variable-level data tables. This 
approach also works well for meta-analyses of correla-
tional studies. However, rather than each effect size being 
associated with a single variable, it will be associated with 
two. In this way, you can efficiently code all correlations 
in a correlation matrix by first coding the characteristics of 
each measured variable and then simply indicate which 
pair of variables is associated with each correlation.

The hierarchical approach has the advantage of flexibil-
ity, simplified coding, and easier data cleanup. The dis-
advantage is the need to manipulate the data tables prior to 
analysis. The steps involved are merging the individual data 
tables into a single flat file, selecting a subset of effect sizes 
for analysis, and confirming that the selection algorithm 
yields or results in a single effect size per study. Because the 
effect size is in a single variable (one column of the data 
table), it is far easier to create a composite effect size within 
each study to maintain the one effect size per study restric-
tion. For example, you may wish to perform an analysis 
based on any achievement effect size within a study, averag-
ing multiple achievement effect sizes if they exist. This can 
easily be accomplished with a hierarchical data structure.

The principle of the hierarchical approach is to avoid 
coding the same information more than once. This helps 
reduce coding effort and coding errors. It also means that 
when doing data cleanup, corrections do not need to be 
repeated for each instance of the same bit of information.

9.4.4 Coding Forms and Coding Manual

It is often advantageous to develop both a coding manual 
and coding forms. The former is a detailed documenta-
tion of how to code each item and includes notes about 
decision rules developed as the synthesis team codes 
studies. A coding form, however, is designed for efficient 
recording of coded data. Figure 9.3 provides an example 
of the contents of a code manual for two items and the 
corresponding items on the coding form. Note that the 
coding form is decidedly light on information, providing 
just enough information for trained coders to know where 
to record relevant study data.

This approach offers several advantages. First, the syn-
thesists can annotate the coding manual as the team codes 
studies and that information does not become “trapped” 
in the coding form of a single study. Second, coding is 
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forms are used. I recommend that even if a synthesist 
does develop a database complete with data entry forms, 
they start with paper coding forms as the template. Paper 
coding forms are also easier to share with others who 
request a copy of your coding protocol. These paper 
forms should also provide clear information about the 
structure of the data files, including the field (or variable) 
names for each data table. These field names can be 
recovered from the database but are usually not visible on 
data entry forms.

9.5.1 Paper Forms

Paper coding forms, such as those shown in figure 9.1 and 
9.4, have the advantage of being simple to create and to use. 
There is also no need to worry about computer backups or 

STUDY_ID PUBYEAR MEANAGE TX_TYPE
001 1992 15.5 2
002 1988 15.4 1
003 2001 14.5 1

STUDY_ID DV_ID CONSTRUCT SOURCE
001 01 2 2
001 02 6 1
002 01 2 2
003 01 2 2
003 02 3 1
003 03 6 1

STUDY_ID ES_ID DV_ID FU_MONTHS TX_N CG_N ES

001 02 01 6  42 40 –.11
001 02 01 0 44 44 –.39

001 03 02 0 44 44 .10
001 04 02 6 42 39 .09
002 01 01 0 30 30 .34
002 02 01 12 30 26 .40
003 01 01 6 52 52 .12
003 02 02 6 51 50 .21
003 03 03 6 52 49 .33

Figure 9.2. Example of a Hierarchical Data Structure 

source: Author’s tabulation.
note: The boxes and arrows show the related data for study 001. The variables are: STUDY_ID = study 
identifier; PUBYEAR = publication year; MEANAGE = mean age of sample; TX_TYPE = treatment 
type; DV_ID = dependent variable identifier; CONSTRUCT = construct measured by the dependent 
variable; SOURCE = source of measure; ES_ID = effect size identifier; FU_MONTHS = months 
post-intervention; TX_N = treatment sample size; CG_N = control group sample size; ES = effect size.

more efficient because coders need to consult the manual 
only for cases where they are uncertain as to the correct 
way to code an item for a given study. Finally, coders can 
condense the coding forms in a matrix layout, as shown 
in figure 9.4, for efficient coding of measures and effect 
size data, or any other data items that may need to be 
coded multiple times for a single study. Notice that in 
figure 9.4, four effect sizes from a single study can be 
coded on a single page, simplifying the transfer of data 
from tables in reports onto the coding form.

9.5 CODING MECHANICS

At a mechanical level, studies can be coded on paper cod-
ing forms or directly into the computer in some fashion. 
The discussion so far has presumed that paper coding 
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Effect Size Data 

1. Study ID  |___|___|___| 

2. Outcome ID  |___|___|___| |___|___|___| |___|___|___| |___|___|___| 

3. ES ID  |___|___|___| |___|___|___| |___|___|___| |___|___|___| 

. . . 

30. Treatment N  |___|___|___| |___|___|___| |___|___|___| |___|___|___| 

31. Control N  |___|___|___| |___|___|___| |___|___|___| |___|___|___| 

32. Treatment mean |___|___.___|___| |___|___.___|___| |___|___.___|___| |___|___.___|___| 

33. Control mean |___|___.___|___| |___|___.___|___| |___|___.___|___| |___|___.___|___| 

34. Adjusted?  |___| |___| |___| |___| 

35. Treatment SD |___|___.___|___| |___|___.___|___| |___|___.___|___| |___|___.___|___| 

36. Control SD |___|___.___|___| |___|___.___|___| |___|___.___|___| |___|___.___|___| 

37.  t-value |___|___.___|___| |___|___.___|___| |___|___.___|___| |___|___.___|___| 

Figure 9.4. Example of a Matrix Layout

source: Author’s tabulation.
note: For a subset of items from an effect size coding form allowing up to four effect sizes per form.

Figure 9.3. Sample Coding Items

source: Author’s tabulation.
note: Variable names are shown in brackets. (Extracted from example used in Lipsey and Wilson, 2001, 
of a meta-analysis of challenge programs for juvenile delinquents.)

Sample Coding Items from Coding Form

____ ____ . ____ ____  4. Mean age of sample [MEANAGE]

____ 19. Occur in a wilderness setting?
 (1  yes; 0  no) [WILDNESS]

Sample Coding Items from Coding Manual

4. Mean age of sample. Specify the approximate or exact mean age at the beginning of 
the intervention. Code the best information available; estimate mean age from grade 
levels if necessary. If mean age cannot be determined, enter 99.99.

19. Did the program occur in a wilderness setting? Code as yes if the activities took 
place outdoors, even if the participants were camping in cabins or other buildings. 
Code as no if the activities took place indoors or used man-made contraptions.  
(1 = yes; 0 = no)
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database corruption. If the research synthesis involves a 
small number of studies, such as twenty or fewer, then 
paper coding forms are likely to be a good choice. How-
ever, with paper coding forms, coders must enter the data 
into a computer and manage all of the completed paper cod-
ing forms. Also, the comparison of double-coding for a 
large synthesis is more tedious when using paper forms.

When creating paper coding forms, a synthesist should 
always include the variable names that will be used in the 
statistical software program on the forms. Memory fades 
quickly. It can be a tedious task reconstructing which 
variables in a data file corresponded to specific items in a 
coding protocol. I also recommend that a synthesist place 
the fields for recording the data either down the left or 
right margin of the coding forms rather than scattered 
here and there across the page. This positioning has two 
advantages. First, it allows easy visual inspection of the 
forms to ensure that each item has been completed. Sec-
ond, data entry proceeds more smoothly because all data 
are in a column along either the left or the right margin.

9.5.2 Coding Directly into a Database Databases pro-
vide an alternative to paper coding forms and allow direct 
coding of studies into a computer, eliminating the need to 
transfer data from paper forms to computer files. Almost 
any modern database program can be used, such as File-
Maker Pro and Microsoft Access. Using a database for 
study coding has several advantages. First, a synthesist can 
specify allowable values for any given field (coded item), 
helping to enhance data accuracy. Second, databases save 
data as coders work, helping reduce the likelihood of data 
loss. Third, the data in most databases can easily be exported 
to any number of statistical software programs. Fourth, the 
synthesist can create data entry forms that look similar to 
paper coding forms, providing all of the same information 
about how to code an item that might be on a paper coding 
form. A simple example of a coding form in a database pro-
gram is shown in figure 9.5. Fifth, with a bit more effort, a 
synthesist can have the database compute effect sizes, at 
least for the more common statistical configurations. And 
sixth, data queries can be constructed to assess data consis-
tency, aiding in the process of data cleanup. The disadvan-
tages of using a database are the time, effort, and technical 
skills needed to create the database and design the data 
entry forms. For any reasonably large meta-analysis, the 
result is generally well worth the effort.

Synthesists may be willing to share databases that they 
have created. Even though some customization is gener-
ally needed, developing a database from an existing tem-
plate can be extremely useful, saving both time and effort.

9.5.3 Disadvantages of a Spreadsheet Spreadsheets, 
such as MS Excel or LibreOffice Calc, are extremely use-
ful programs. They are, however, not well suited for sys-
tematically coding meta-analytic data. The spreadsheet 
framework is rows and columns, columns representing 
different variables and rows representing different studies 
or effect sizes. This is similar to the typical flat file data 
table familiar to anyone accustomed to data analysis, and 
as such seems a natural fit with the task at hand. However, 
coding directly into a spreadsheet is different from basic 
data entry, where the data are already neatly organized on 
a survey form or other data instrument. Even in such a 
case, data entry using a spreadsheet is typically inefficient 
relative to creating a simple ASCII data file in a text editor 
or to using a database program. In coding studies, the order 
of items on a coding form never corresponds to the order of 
the information in a report. Thus coders generally “bounce 
around” the coding form, recording information as they 
find it. In a spreadsheet, doing so involves moving back 
and forth across the various columns used for the different 
coding items, and the number of columns needed typically 
far exceeds what can be easily displayed on a single com-
puter screen. Furthermore, the column headings are often 
cryptic given limited column width, providing scant infor-
mation on how to code an item. For example, it is difficult 
to display the values associated with a nominal scale in  
a spreadsheet (such as, 1 = randomized; 2 = quasi- 
experimental with baseline adjustment; and so forth). 
When using a spreadsheet, it is also quite easy to inadver-
tently change cells, overwriting previously coded data.

The disadvantages of the spreadsheet in this context lead 
me to strongly discourage its use. I recommend that you 
either use paper coding forms and then enter the data into 
your favorite statistical or meta-analytic software package 
(directly or by creating a raw ASCII datafile), or that you 
create a database with data entry forms. A spreadsheet may 
be serviceable for a meta-analysis with few studies and a 
smaller number of coded items, but it is still less than ideal.

9.6 TRAINING OF CODERS

Coding studies is a challenging, time-consuming, and 
tedious task. Most research syntheses will involve a 
research team, even if that team consists of only two  
people. The training of the coders is important to ensure the 
consistency and accuracy of the information extracted from 
the studies. Practice coding, regular meetings, coder spe-
cialization, and assessment of coder reliability all contrib-
ute to coder training and the quality of the final synthesis.
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9.7 PRACTICE CODING

William Stock recommends a training process that 
involves eight steps (1994). A central feature of this pro-
cess is practice coding of a sample of studies, comparing 
the results among all members of the research team, mod-
ifying coding items if necessary, and repeating this pro-
cess until good consistency across coders is achieved. 
Stock’s eight steps are as follows:

• The principal investigator provides an overview of 
the synthesis.

• Each item on a form and its description in the code 
book is read and discussed.

• The process for using the forms is described. This is 
the method chosen to organize forms so that the 

transition from coding to data entry and data man-
agement is facilitated, and should take into account 
studies that include reports for subsamples or mul-
tiple occasions or measures.

• A sample of five to ten studies is chosen to test the 
forms.

• A study is coded by everyone, each coder recording 
how long it takes to code each item. These time data 
are used to estimate how long it will take to code  
individual items, entire study reports, and the com-
plete synthesis.

• Coded forms are compared and discrepancies are 
identified and resolved.

• The forms and code book are revised as necessary.

Figure 9.5. Example of a Database Coding Form

source: Author’s tabulation.
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• Another study is coded and so on. Steps four 
through eight are repeated until apparent consensus 
is achieved. (134–35)

This process should be adapted to your specific needs. 
A small meta-analysis of five to fifteen studies may 
abbreviate this process by practice coding only two or 
three studies and then simply double-coding all studies to 
ensure coding reliability.

9.7.1 Regular Meetings

During the coding phase of a meta-analysis, coders should 
meet regularly to discuss coding difficulties. Discussing 
the difficult coding decisions provides an opportunity to 
develop a normative understanding of the application of 
coding rules among all coders. Synthesists should also 
annotate the coding manual during these meetings to ensure 
that decisions made about how to handle various study 
ambiguities are not forgotten and that similar studies 
encountered later in the coding process can be handled in 
a similar way.

9.7.2 Using Specialized Coders

A common mode of operation is for each coder to read 
through an entire study and code all aspects required by 
the synthesis. This approach presumes that all members 
of the research team have the same skills and can accu-
rately complete the entire protocol. However, colleagues 
and research assistants working on the meta-analysis may 
not have all of these skills. For example, a colleague with 
exceptional substantive and theoretical knowledge of the 
relevant research domain may not be facile with the com-
putation of effect sizes, particularly when it requires 
heavy manipulation of the statistical data presented. Sim-
ilarly, a research assistant with strong quantitative abili-
ties may not have adequate background training and 
experience to code substantive issues that require com-
plex judgments. In these situations, it may be advanta-
geous for coders to specialize, each completing a different 
section of the coding protocol. Coder specialization has 
the advantage of exploiting strengths to improving cod-
ing quality. It can also help address the problem of coder 
drift (that is, a change in the interpretation of coding 
items over time) because each coder will proceed more 
quickly through the studies, focusing on a smaller set of 
items. Finally, it is easier to keep coders who only code 
effect size data blind to other potentially important aspects 

of the study, such as the type of intervention, study 
authorship, and institutional affiliation.

9.7.3 Assessing Coding Reliability

The reliability of coding is critical to the quality of the 
research synthesis. Both intra- and interrater reliability 
are important. Intrarater reliability is the consistency of a 
single coder from occasion to occasion. A common prob-
lem in a research synthesis is coder drift: as more studies 
are coded, items are interpreted differently, resulting in 
coding inconsistencies. This is most likely to affect items 
that require judgment on the part of coders, such as an 
assessment of the similarity of groups at baseline. Purely 
factual items are less likely to suffer from coder drift. Intra-
rater reliability can be assessed by having coders recode 
studies they coded at some earlier point. Items that show 
low intrarater agreement might need to be recoded to 
improve accuracy.

Interrater reliability is the consistency of coding between 
different coders. It is assessed by having at least two dif-
ferent members of the synthesis team code a sample of 
the studies. Studies should be coded in a different order 
by the two coders. Once a sample of studies has been 
double coded, the two sets of results are compared. Reli-
ability is often computed as the percentage of agreement 
across the sample of studies. A weakness of this agree-
ment is that it is affected by the baserate, resulting in arti-
ficially high for items shared by most studies. Other 
reliability statistics, such as kappa or the intra class cor-
relation, can also be computed and are likely to be more 
informative (see chapter 10).

An important decision is whether to double code all 
studies or only a random sample of studies. Historically, 
the practice within the field of research synthesis has 
been to double-code all studies for a small meta-analysis 
but to only double code a random sample for a large 
meta-analysis. However, systematic reviews conducted 
for either Cochrane or the Campbell Collaboration are 
required to double code all information related to the out-
comes (that is, everything related to the effect sizes) and 
are strongly recommended to double-code all other study 
characteristics (Chandler et al. 2013). A study by Nina 
Buscemi and her colleagues finds that single data extraction 
produced more errors than double data extraction (2006). 
In this study, single data extraction still had two coders; 
the second coder, though, simply verified the coding of 
the first coder; that is, the verifier compared the coded 
information to information in the written manuscript. 
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Double data extraction was fully independent separate 
coding by two individuals. Best practice would thus dic-
tate double coding for all studies, particularly for all 
coded items relevant to the research synthesis and use a 
consensus process to resolve all coding differences.

A complication of determining the reliability of coded 
items stems from the dependent nature of some ques-
tions. How the synthesist answers one question often 
restricts the options for another. William Yeaton and Paul 
Wortman recommend that reliability estimates take into 
account this contingent nature of some items (1993). 
Ignoring this hierarchy of items may result in underesti-
mating the reliability of these contingent items. There-
fore, they recommend that for contingent items, reliability 
be assessed only when agreement has been reached on 
the higher order or more general item. Although this idea 
has merit, I am unaware of any research synthesis that 
has adopted it.

Items with low coder agreement are problematic 
because they reflect the difficulty coders had in assessing 
the item given the information available in the written 
report. The double coding and resolution of any coding 
differences enhance the reliability of the item, but the 
synthesist should consider whether the item needs to be 
rewritten to address coder confusion or to simplify coder 
judgments, possibly breaking a complex judgment into 
simpler judgments. This may require a another pass 
through the eligible studies to code any modified items. 
At a minimum, items with problematic coder agreement 
should be acknowledged when reporting the results of the 
meta-analysis.

9.7.4 Masking of Coders

In primary research it is often advisable to have partici-
pants unaware of the conditions of assignment. For 
example, in a randomized clinical trial of a new drug, it is 
common for participants to be kept uninformed as to 
whether they are receiving the new drug or a placebo. 
Similarly, keeping raters unaware of conditions, such as 
medical personnel evaluating a patient’s status, is also 
often advisable. A study may involve both of these methods 
(a double-blind study) to protect against both sources of 
potential bias.

There is an analog in meta-analysis. Might not coders 
be influenced in making quality judgments or other cod-
ing decisions about a study by knowledge of who con-
ducted the study, the author’s institutional affiliation, or 
the study findings? Well-known research teams might 

benefit from a positive bias and their counterparts may  
be challenged by a negative bias. Two decades ago,  
Alejandro Jadad and his colleagues examined the effect 
of masking on the ratings of study quality and found that 
masked assessment was more consistent than open 
assessment and resulted in lower quality ratings, suggest-
ing that some coders were affected by knowledge of  
the authors (1996). In another study, the University of 
Pennsylvania Meta-Analysis Blinding Study Group ran-
domly assigned pairs of coders to one of two conditions: 
unaware of author and author affiliation information or 
aware of such information (Berlin 1997). Of interest was 
the effect of masking on effect-size data. The study found 
no statistically or clinically meaningful difference in 
computed effect sizes. Thus, masked assessment may be 
beneficial for assessment of study quality but does not 
appear to matter for the coding of effect-size information. 
The latter is likely to generalize to the coding of other 
factual information.

At present, empirical evidence to provide clear guid-
ance on the value of masking study authorship and affili-
ation is scant. Unless the coders are already familiar with 
key studies in research domain of interest, then masking 
may be beneficial and fairly easy to implement. Clearly, 
more work is needed in this area.

9.8 COMMON MISTAKES

Novice research synthesists make several mistakes in 
designing coding protocols. These errors often stem from 
a failure to fully plan the analysis of the meta-analytic 
data. The most common and serious error is a failure to 
recognize the implications of the hierarchical nature of 
meta-analytic data. A large data file with a single row per 
effect size without codes to allow for the selection of inde-
pendent subsets of effect sizes for analysis leads to an 
unmanageable data structure. If synthesists are going to 
code multiple effect sizes per study, they need to think 
through how they are going to categorize them such that 
only one effect size (or a composite of multiple effect 
sizes) is selected for any given analysis. If this is not 
assured, the dependency in the results yields biased 
meta-analytic results, such as standard errors that are too 
small (for a discussion of this issue and a method for ana-
lyzing statistically dependent effect sizes, see chapter 13).

Another common error in coding is to underestimate 
the time, effort, and difficulty of coding studies for 
meta-analysis. Although it may be possible to code some 
studies in thirty minutes to an hour, I have spent as long 
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eight hours coding a single study. Dissertations and tech-
nical reports are often more time consuming than journal 
articles given their length and more complete reporting of 
analyses. Resolving differences between two (or more) 
versions of a study also adds to the coding burden.

Finally, as I mentioned earlier, individuals new to 
meta-analysis overestimate the level of detail that will be 
available in the individual studies and often try to code 
more items than are useful or ultimately used. During the 
development phase of the coding protocol, items for which 
information is rarely adequate should be eliminated unless 
it is of enough theoretical interest to document the inade-
quacy (for a different take on the issue, see chapter 8). Also, 
the synthesist should keep in mind that their ability to use 
items for moderator analyses will be limited by the size of 
the meta-analysis. Complex moderator analyses are simply 
not possible for a small meta-analysis, reducing the utility 
of a large number of variables coded for that purpose.

9.9 CONCLUSION

The goal of this chapter is to provide guidance on how to 
achieve a coding protocol that is replicable and trans-
parent and that captures essential information about the 
studies being synthesized. No matter how fancy the sta-
tistical analyses of effect sizes are or impressive the for-
est plots, the scientific credibility of a research synthesis 
rests of the ability of others to scrutinize how the data on 
which the results of the synthesis were generated. With-
out this transparency, a meta-analysis cannot be repli-
cated or adequately scrutinized. Science progresses not 
from an authoritarian proclamation of what is known on 
a topic but rather from a thoughtful, systematic, and 
empirical taking of stock of the evidence that is open to 
debate, discussion, and reanalysis. A detailed coding pro-
tocol is a key component of this process.

9.10 REFERENCES

Berlin, Jesse A. 1997. “Does Blinding Readers Affect the 
Results of Meta-Analysis?” Lancet 350(9072): 185–86.

Brown, Sharon A., Sandra L. Upchurch, and Gayle J. Acton. 
2003. “A Framework for Developing a Coding Scheme for 
Meta-Analysis.” Western Journal of Nursing Research 25(2): 
205–22.

Buscemi, Nina, Lisa Hartling, Ben Vandermeer, Lisa Tjosvold, 
and Terry P. Klassen 2006. “Single Data Extraction Generated 
More Errors than Double Data Extraction in Systematic 
Reviews.” Journal of Clinical Epidemiology 59(7): 697–703.

Chandler, Jackie, Rachel Churchill, Julian Higgins, Toby  
Lasserson, and David Tovey. 2013. “Methodological Stan-
dards for the Conduct of New Cochrane Intervention 
Reviews.” Version 2.3. Accessed December 4, 2018. http://
www.editorial-unit.cochrane.org/mecir.

Cheung, Alan C. K., and Robert E. Slavin. 2015. How Meth-
odological Features Affect Effect Sizes in Education. Best 
Evidence Encyclopedia (BEE): Empowering Educators 
with Evidence on Proven Programs. Baltimore, Md.: Johns 
Hopkins University Press.

Gorman, Dennis M. 2016. “Can We Trust Positive Findings 
of Intervention Research? The Role of Conflict of Interest.” 
Prevention Science 19(3): 295–305.

Heinsman, Donna T., and William B. Shadish 1996. “Assign-
ment Methods in Experimentation: When Do Nonrandom-
ized Experiments Approximate Answers from Randomized 
Experiments?” Psychological Methods 1(2): 154–69.

Higgins Julian P. T., and Sally Green, eds. 2011. “Cochrane 
Handbook for Systematic Reviews of Interventions, Ver-
sion 5.1.0.” The Cochrane Collaboration. Accessed Decem-
ber 4, 2018. http://www.handbook.cochrane.org.

Jadad, Alejandro R., R. Andrew Moore, Dawn Carroll, Crispin 
Jenkinson, D. John M. Reynolds, David J. Gavaghan, and 
Henry J. McQuay. 1996. “Assessing the Quality of Reports 
of Randomized Clinical Trials: Is Blinding Necessary?” 
Controlled Clinical Trials 17(1): 1–12.

Jüni, Peter, Franziska Holenstein, Jonathan Sterne,  
Christopher Bartlett, and Matthias Egger. 2002. “Direction 
and Impact of Language Bias in Meta-Analyses of Con-
trolled trials: Empirical Study.” International Journal of 
Epidemiology 31(1): 115–23.

Lipsey, Mark W., and David B. Wilson. 1993. “The Efficacy 
of Psychological, Educational, and Behavioral Treatment: 
Confirmation from Meta-Analysis.” American Psycholo-
gist 48(12): 1181–209.

———. 2001. Practical Meta-Analysis. Thousand Oaks, 
Calif.: Sage Publications.

Lipsey, Mark W., David B. Wilson, Mark A. Cohen, and James 
H. Derzon. 1997. “Is There a Causal Relationship Between 
Alcohol Use and Violence? A Synthesis of Evidence.” In 
Recent Developments in Alcoholism, vol. 13: Alcohol and 
Violence, edited by Marc Galanter. New York: Plenum.

MacKenzie, Doris L., David B. Wilson, and Susan Kider. 
2001. “Effects of Correctional Boot Camps on Offending.” 
Annals of the American Academy of Political and Social 
Science 578:126–43.

Moher, David, Kenneth F. Schulz, Douglas G. Altman, and 
Consort Group. 2001. “The CONSORT Statement: Revised 
Recommendations for Improving the Quality of Reports of 



172   CODING THE LITERATURE

Parallel-Group Randomised Trials.” The Lancet 357(9263): 
1191–94.

Morrison, Andra, Julie Polisena, Don Husereau, Kristen 
Moulton, Michelle Clark, Michelle Fiander, Monika 
Mierzwinski-Urban, Tammy Clifford, Brian Hutton, and 
Danielle Rabb. 2012. “The Effect of English-Language 
Restriction on Systematic Review-Based Meta-Analyses: 
A Systematic Review of Empirical Studies.” International 
Journal of Technology Assessment in Health Care 28(2): 
138–44.

Open Science Collaboration. 2015. “Estimating the Repro-
ducibility of Psychological Science.” Science 349(6251): 
p.aac4716.

Shadish, William R., and Kevin Ragsdale. 1996. “Random 
versus Nonrandom Assignment in Psychotherapy Experi-
ments: Do You Get the Same Answer?” Journal of Consult-
ing and Clinical Psychology 64(6): 1290–305.

Stock, William A. 1994. “Systematic Coding for Research 
Synthesis.” In The Handbook of Research Synthesis, edited 

by Harris Cooper and Larry V. Hedges. New York: Russell 
Sage Foundation.

Weisburd, David, Cynthia Lum, and Anthony Petrosino. 
2001. “Does Research Design Affect Study Outcomes in 
Criminal Justice?” Annals of the American Academy of 
Social and Political Sciences 578: 50–70.

Weisz, John R., Bahr Weiss, and Geri R. Donenberg. 1992. 
“The Lab Versus the Clinic: Effects of Child and Adolescent 
Psychotherapy.” American Psychologist 47(12): 1578–85.

Wilson, David B., Denise C. Gottfredson, and Stacy S. Najaka. 
2001. “School-Based Prevention of Problem Behaviors: A 
Meta-Analysis.” Journal of Quantitative Criminology 17(3): 
247–72.

Wilson, David B., and Mark W. Lipsey. 2001. “The Role of 
Method in Treatment Effectiveness Research: Evidence from 
Meta-Analysis.” Psychological Methods 6(4): 413–29.

Yeaton, William H., and Paul M. Wortman. 1993. “On the 
Reliability of Meta-Analytic Reviews: The Role of Intercoder 
Agreement.” Evaluation Review 17(3): 292–309.



173

10
EVALUATING CODING DECISIONS

 JACK L. VEVEA NICOLE A. M. ZELINSKY
 University of California, Merced University of California, Merced

ROBERT G. ORWIN
Westat

C O N T E N T S

10.1 Introduction 174
10.1.1 Standards for Reporting and Coding Evaluations 174

10.2 Sources of Error in Coding Decisions 175
10.2.1 Deficient Reporting in Primary Studies 175
10.2.2 Ambiguities in the Judgment Process 176
10.2.3 Coder Bias 177
10.2.4 Coder Mistakes 178

10.3 Strategies to Reduce Error 178
10.3.1 Contacting Original Investigators 178
10.3.2 Consulting External Literature 179
10.3.3 Training Coders 179
10.3.4 Pilot Testing the Coding Protocol 179
10.3.5 Revising the Coding Protocol 180
10.3.6 Possessing Substantive Expertise 180
10.3.7 Improving Primary Reporting 180
10.3.8 Using Averaged Ratings 180
10.3.9 Using Coder Consensus 181

10.4 Strategies to Assess or Control for Error 181
10.4.1 Reliability Assessment 181
10.4.1.1 Rationale 181
10.4.1.2 Across-the-Board Versus Per-Variable Agreement 182
10.4.1.3 Specific Indices of Interrater Reliability 183

10.4.1.3.1 Agreement Rate 183
10.4.1.3.2 Cohen’s Kappa and Weighted Kappa 184
10.4.1.3.3 Andrés and Marzo’s Delta 186
10.4.1.3.4 Krippendorff’s Alpha 186



174   CODING THE LITERATURE

10.1 INTRODUCTION

Coding is a critical part of research synthesis. It is an 
attempt to reduce a complex, messy, context-laden, and 
quantification-resistant reality to a matrix of numbers. 
Thus it will always remain a challenge to fit the numerical 
scheme to the reality, and the fit will never be perfect. Sys-
tematic strategies for evaluating coding decisions enable 
the synthesist to control for much of the error inherent in 
the process. When used in conjunction with other strate-
gies, they can help reduce error as well. This chapter dis-
cusses strategies to reduce error and to control for error 
and suggests further research to advance the theory and 
practice of this particular aspect of the synthesis process. 

To set the context, however, it is first useful to describe the 
sources of error in synthesis coding decisions.

10.1.1  Standards for Reporting  
and Coding Evaluations

Various agencies that oversee or make recommendations for 
the reporting of meta-analyses have added standards that 
encourage or require stringent reporting of information 
related to coding. For example, the American Psychological 
Association (2010) now includes in its publication man-
ual an appendix on meta-analysis reporting standards 
(MARS) that requires rigorous specification of coding 
categories, inclusion of information about the number of 
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coders and their qualifications, coding reliability and agree-
ment, and how discrepancies in coding are resolved (Jour-
nal Article Reporting Standards Working Group 2007). A 
document detailing Preferred Reporting Items for System-
atic Reviews and Meta-Analysis (the PRISMA statement), 
endorsed by numerous medical associations and journals, 
similarly encourages reporting on the number of people 
involved in data extraction, and whether consensus, coding 
training, or formal reliability assessments were used 
(Moher et al. 2009). Policies for reviews sanctioned by the 
Campbell Collaboration encourage at least two indepen-
dent coders and comparison of results (Steering Group of 
the Campbell Collaboration 2015). The Cochrane Collabo-
ration includes similar recommendations in its handbook 
(Higgins and Green 2011). It is clear, then, that evaluation 
of coding decisions has become a standard element in 
responsible reporting of meta-analyses.

10.2  SOURCES OF ERROR IN CODING DECISIONS

10.2.1  Deficient Reporting in Primary Studies

Reporting deficiencies in original studies present an obvi-
ous problem for the synthesist, to whom the research 
report is the sole documentation of what was done and 
what was found. Reporting quality of primary research 
studies has variously been called “shocking” (Light and 
Pillemer 1984), “deficient” (Orwin and Cordray 1985), 
and “appalling” (Oliver 1987).1 Inaccessible reporting 
can force the abandonment of a synthesis.2 Moreover, 
reporting of inaccurate information can result in a synthe-
sis that distorts the truth.

Virtually all write-ups will report some information 
poorly, but some will be so vague as to obscure what took 
place entirely (Oliver 1987). The absence of clear or uni-
versally accepted norms undoubtedly contributes to the 
variation, but other factors do as well: different emphases 
in training, scarcity of journal space, statistical mistakes, 
and poor writing. The consequences are differences in the 
completeness, accuracy, and clarity with which empirical 
research is reported.

Treatment regimens and subject characteristics cannot 
be accurately transcribed by the coder when inadequately 
reported by the original author. Similarly, methodologi-
cal features cannot be coded with certainty when research 
methods are poorly described. The immediate conse-
quence of coder uncertainty is coder error. One way to 
address such shortcomings is to agree on conventions for 
imputing guesses at the values of poorly reported data. 

For example, in one analysis, when an investigator was 
remiss in reporting the length of time the therapist had 
been practicing, the guessing convention for therapist 
experience assumed five years (Smith, Glass, and Miller 
1980). Such a device helps standardize decisions under 
uncertainty and therefore increases intercoder agreement. 
It is unknown whether it reduces coder error, however, 
because there is no external way to validate the accuracy 
of the convention. Furthermore, a guessing convention 
carries the possibility of bias in addition to error. Unlike 
pure observational error, which presumably distributes 
itself around the true value across coders, the convention- 
generated errors may not balance out, but consistently 
over- or underestimate the true value. This would happen, 
for example, if in reality the average PhD therapist had 
been practicing eight years, rather than five years as in 
the guessing convention. Guessing conventions artifi-
cially deflate true variance in coded variables, thereby 
diminishing the sensitivity of the analysis to detect rela-
tionships with other variables. Moreover, any systematic 
over- and underestimation of true values by guessing 
conventions exacerbates matters. Specifically, it creates a 
validity problem (for example, therapist experience as 
coded would not be a valid indicator of therapist experi-
ence). The use of a guessing convention based on mean 
imputation rather than a convenient choice presents sim-
ilar problems (Enders 2010). For that reason, imputation 
following guessing conventions should be considered a 
last resort. Modern multiple imputation approaches using 
maximum likelihood or Bayesian methods in this context 
would be a development worth considering (Schafer and 
Graham 2002).

An alternative to guessing conventions that often pro-
vides a better solution is simply to code the information 
as undetermined. When the variable is categorical, this 
has the effect of adding one more category to the possible 
levels of the moderator (for example, sex of sample pre-
dominantly female, predominantly male, mixed, or 
unknown). In the somewhat rarer case when the problem-
atic variable is continuous, the situation may be handled 
by dummy coding the availability of the information (0 = 
not available, 1 = available) and adding to the explana-
tory model both the dummy variable and the product of 
the dummy and the continuously coded variable. This has 
the effect of allowing the estimation of the variable’s 
impact on effect size when good information about the 
variable is available. Such practice is in keeping with the 
principle of preference for low-inference coding (see 
chapter 9).
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Through their influence on coding accuracy, deficien-
cies in reporting quality degrade the integrity of later 
analyses in predictable ways. Errors of observation in 
effect sizes destabilize parameter estimates and decrease 
statistical power, whereas errors of observation in inde-
pendent variables cause parameter estimates to be biased 
(Kerlinger and Pedhazur 1973). The severity of the nega-
tive impact from reporting problems depends on the 
nature of the variable being coded. Errors in effect sizes 
clearly have the potential for severe impact. The impact 
of errors in independent variables depends on the cen-
trality of the variable in the synthesist’s interests. For 
example, errors in type of experimental manipulation or 
severity of disease are likely more consequential than 
problems with incidental codes such as year of publica-
tion or institution of the first author.

10.2.2 Ambiguities in the Judgment Process

Coding difficulty reflects the complexity of the item to be 
coded, not simply the clarity with which it is reported. 
There is some relationship between reporting quality and 
the need for judgment calls, in that deficient reporting  
of study characteristics increases the need for judgment 
in coding. Many other variables, however, intrinsically 
require judgment regardless of reporting quality. In fact, 
more judgment can sometimes be necessary when report-
ing is thorough, because the coder has more information 
to weigh.

Numerous variables pose judgment problems for the 
coder. Consider, for example, treatment integrity (that is, 
the extent to which the delivered treatment measures up 
to the intended treatment). In the psychotherapy literature 
that Mary Smith, Gene Glass, and Thomas Miller synthe-
sized in 1980, attrition from treatment (but not from mea-
surement), spotty attendance, failure to meet advertised 
theoretical requirements, and assorted other implementa-
tion problems all potentially degraded treatment integ-
rity. The authors did not attempt to code treatment 
integrity per se, though they did code their degree of con-
fidence that the labels placed on therapies by authors 
described what actually transpired. In a reanalysis, Rob-
ert Orwin and David Cordray (1985) attempted to code 
integrity more globally, but without much success. The 
following examples (representing actual cases) point up 
some of the difficulties:

Case 1: The efficacy of ego therapy was tested against 
a placebo treatment and no-treatment controls. Sev-
eral participants did not attend every session; only 

those attending four or more sessions out of seven 
were posttested.

Case 2: The comparative efficacy of therapist- 
administered desensitization and self-administered 
desensitization was tested (relative to various con-
trol groups) for reducing public speaking anxiety. 
The therapists were advanced graduate students in 
clinical psychology who had been trained in the 
use of desensitization but were inexperienced in its 
application.

Case 3: The comparative effect of implosive therapy, 
eclectic verbal therapy, and bibliotherapy was tested 
for reducing fear of snakes. All eclectic verbal 
therapy was performed by Gene Glass, who has 
published several articles on implosive therapy.

Case 1 exemplifies by far the most common treatment 
integrity problem Orwin and Cordray encountered: the 
potential dilution of the treatment regimen by nonatten-
dance (1985). Here the coder must judge whether partic-
ipants with absentee rates up to 43 percent can be said to 
have received the intended treatment. If not, the coder 
needs to determine by how much was it degraded, and 
how this degradation affects the estimated effect size (a 
question made still more difficult by the authors’ failure 
to report the number of participants with nonattendance 
problems). That approach addresses the question “How 
effective was the therapy for people who completed treat-
ment?” A better question might focus on how effective 
the treatment is for those who begin it (intention to treat). 
If the interest is in outcomes for those participants who 
intended to complete the treatment, estimation of the 
amount of degradation is a secondary goal that may be 
appropriate for sensitivity analysis, but not for addressing 
the primary question about intent to treat. In case 2, the 
treatment as advertised is potentially degraded by the use 
of inexperienced treatment providers. The coder must 
judge whether the lack of practice made a difference and, 
if so, by how much. In case 3, the treatment provider’s 
motivation to maintain the integrity of the treatment 
comes into question. The coder must judge whether the 
apparent conflict of interest degraded the treatment and, 
if so, by how much (such as uninspired compliance or 
outright sabotage).

Theoretically, the need for judgment calls in coding 
such complex constructs could be eliminated by a coding 
algorithm that considered every possible contingency 
and provided the coder with explicit instructions in the 
event of each one, singly and in every combination. The 



EVALUATING CODING DECISIONS   177

Smith, Glass, and Miller algorithm for internal validity 
suggests an attempt at this (1980, 63–64). The compo-
nents of this decision rule represent generally accepted 
internal validity concerns. Yet in trying to apply it, Orwin 
and Cordray frequently find that it fails to accommodate 
several important contingencies and thus puts their own 
sense of the study’s internal validity in contradiction to 
the score yielded by the algorithm (see Orwin 1985). But 
the fault is not with the failure of the algorithm to include 
and instruct on all contingencies, for in practice that 
would not be possible. With a construct as complex as 
treatment integrity or internal validity, no amount of pre-
liminary work on the coding algorithm will eliminate the 
need for judgment calls. Indeed, the contingency instruc-
tions are judgment calls themselves, so at best the point 
of judgment has only been moved, not eliminated.3 
Never theless, when it is practical to modify the coding 
protocol so as to accommodate exceptional contingen-
cies, the practice of striving for low-inference definitions 
of complex constructs may be advantageous, if only as an 
aid to coding reliability.

Other examples abound. David Terpstra reports per-
fect coding reliability in his synthesis of organization 
development research (1981). R. J. Bullock and Daniel  
Svyantek’s replication reports numerous problems with 
both reliability and validity (1985). Specifically, they 
report that problems occurred in the coding of the 
dependent variable, where coding required a great deal 
of subjectivity. Similarly, Joanmarie McGuire and her 
colleagues were unable to achieve adequate intercoder 
agreement on methodological quality despite having 
methodologically sophisticated coders, written coding 
instructions, and clearly reported study methods (1985; 
see also chapter 7). As noted previously, coding difficulty 
reflects the complexity of the item to be coded, not just 
the clarity with which it is reported. One solution to this 
problem that has gained favor is using low-inference cri-
teria to assess such issues as study quality or implemen-
tation fidelity.4 To the degree that constructs such as study 
quality of implementation fidelity can be reduced to 
unambiguous, directly observable criteria, both the valid-
ity and the reliability of these measures may be enhanced 
(see, for example, Valentine and Cooper 2008).

Inherent ambiguities affect more fundamental coding 
decisions than what values to code, such as what effect 
sizes to include. Bert Green and Judith Hall observe that 
synthesists are divided as to whether to use multiple out-
comes per group comparison (1984). As others show, the 
so-called conceptual redundancy rule—the process used 

in the original Smith, Glass, and Miller psychotherapy 
synthesis for determining which of multiple effect sizes 
within a given study should be counted in determining 
overall effect size—can be interpreted quite differently 
by different coders (Orwin and Cordray 1985; Matt 1989; 
Smith, Glass, and Miller 1980).5 In recoding a twenty-
five-study sample from the original Smith, Glass, and 
Miller psychotherapy data, four independent coders 
extracted 81, 159, 172, and 165 effect sizes, respectively 
(Smith, Glass, and Miller 1980; Orwin and Cordray 
1985; Matt 1989). The corresponding average effect sizes 
were d = 0.90, 0.47, 0.68, and 0.49. Thus, although the 
coders were attempting to follow the same decision rule 
for extracting effect sizes, both the number of effect sizes 
and the resulting findings varied by a factor of two. Using 
the same set of printed guidelines on conceptual redun-
dancy, the coders still disagreed substantially. Not sur-
prisingly, coder disagreement on which effect sizes to 
include led to more discrepant results than coder dis-
agreement on effect size computations once the set of 
effect sizes had been decided on (Matt 1989). Again, 
more clarity in the decision rule might have better guided 
the judgment process, but it is unlikely that it could have 
eliminated the need for judgment.

Additional inclusion rules can compensate for the 
lack of agreement stemming from the conceptual redun-
dancy rule. In this case, for instance, the synthesis can 
be restricted to that subset of nonredundant effect sizes 
on which all or at least most coders agree (Orwin and 
Cordray 1985). This has the effect of eliminating poten-
tially questionable effect sizes. In still another variation, 
David Shapiro and Diana Shapiro retained all measures 
except those permitting only a “relatively imprecise” 
effect-size estimate (1982, 589). These were discarded 
if, in the coders’ view, the study provided more com-
plete data on enough other measures. Georg Matt pres-
ents additional rules for selecting effect sizes (1989; see 
also chapter 8).

10.2.3 Coder Bias

An additional error source is coder bias (such as for or 
against a given therapy). A coder with an agenda is not a 
good coder, especially for items that require an inference. 
The ideal coder is totally unbiased and expert in the con-
tent area, but such a coder is difficult to find. Some would 
argue that by definition, it is impossible. Expertise carries 
the baggage of opinions, and keeping those opinions out 
of coding decisions—many of which are by definition 
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judgmental—is difficult. Ambiguities in the judgment 
process and coder bias are related in that ambiguity 
creates a hospitable environment for bias to creep in 
unnoticed.

Sometimes bias is more blatant. In a synthesis of the 
effects of school desegregation on African American 
achievement, a panel of six experts convened by the 
National Institute of Education independently analyzed 
the same set of studies, obtaining different results and 
reaching different conclusions (Wortman and Bryant 
1985). Panelists excluded studies, substituted alternative 
control groups, and sought missing information from 
authors in accordance with their prior beliefs on the 
effectiveness of desegregation. Even after discussion, the 
panel “disbanded with their initial views intact” (315).

One approach to reducing bias is to keep coders selec-
tively blind to information that triggers bias. Thomas 
Chalmers and his colleagues had two coders inde-
pendently code papers in random order, with the methods 
sections separated from the results (1987).6 In addition, 
papers were photocopied in such a way that the coders 
could not determine their origins. Harold Sacks and his 
colleagues suggest that this is an ideal way to control for 
this type of bias, but note that it is rarely done (1987). In 
the eighty-six meta-analyses of randomized clinical trials 
analyzed, none were successfully blinded (three showed 
evidence of attempts). The rationale for such masking is 
exactly the same as in primary studies: to reduce experi-
menter expectancy effects and related artifacts. It is con-
sistent with the central theme of this book, that research 
synthesis is a scientific endeavor subject to the same rig-
orous standards as primary research.

In practice, such masking procedures are difficult to 
implement, and hence are rarely followed. Two other 
approaches can help to minimize the impact of coder 
bias. First, to the degree possible, it is best to identify 
how issues such as implementation fidelity and study 
quality will be defined in advance of data collection; this 
helps prevent creating definitions in such a way that par-
ticular individual studies supporting a particular view-
point will be favored. Second, there is growing agreement 
that a preference for low-inference coding is helpful with 
coder bias. To the degree that issues such as study quality 
can be objectified by criteria like experimenter masking, 
psychometric properties of measures, impact rating of 
journal, Carnegie status of primary authors’ institutions, 
and so on, subjectivity is abated, leaving less opportunity 
for bias (for more discussion of low-inference coding, see 
chapters 7 and 9).

10.2.4 Coder Mistakes

Of course, coders can be unbiased in the sense of holding 
no prior views about the likely outcomes of the research 
being coded, and still make systematic mistakes— 
systematic in the statistical sense of nonrandom error. 
The problem is by no means unique to synthesis coding. 
In their analysis of errors in the extraction of epidemio-
logical data from patient records, Ralph Horwitz and 
Eunice Yu find that most coding errors occurred because 
the data extractor simply failed to find information that 
was present in the medical record (1984). Additional errors 
were made when information was correctly extracted but 
the coding criteria were incorrectly applied.

The synthesis coding process is also subject to the same 
range of simple coder mistakes as any other coding pro-
cess, including slips of the pencil and keyboard errors. 
It is particularly vulnerable to the effects of boredom, 
fatigue, and so on. In a synthesis of any size, many hours 
are required, often over a period of months, to code a set 
of studies.

10.3 STRATEGIES TO REDUCE ERROR

Here we discuss nine strategies that potentially reduce 
error: contacting original investigators, consulting exter-
nal literature, training coders, pilot testing the coding pro-
tocol, revising the coding protocol, possessing substantive 
expertise, improving primary reporting, using averaged 
ratings, and seeking coder consensus. Although reducing 
coding error is distinct from evaluating coding decisions, 
it is the higher purpose that evaluation of coding decisions 
serves, and hence merits discussion in this context.

10.3.1 Contacting Original Investigators

An apparent solution to the problem of missing or unclear 
information is to contact the original investigators in the 
hope of retrieving or clarifying it. This becomes labor 
intensive when the number of studies is large, so it is pru-
dent to consider the odds of successful retrieval. The 
investigators have to be alive; they need to be located; 
they have to have collected the information in the first 
place; they need to have kept it; and they have to be will-
ing and able to provide it. Janet Hyde’s 1981 synthesis of 
cognitive gender differences is informative here. Rather 
than trying to estimate effect sizes from incomplete infor-
mation, she wrote to the authors. Of the fifty-three studies 
in her database, eighteen lacked the necessary means and 
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standard deviations. Although all eighteen authors were 
located, only seven responded, and only two were able to 
supply the information. Furthermore, the successful con-
tact rate may have been atypically high because the topic 
of cognitive gender differences at that time was relatively 
young; studies that predated the synthesis by more than 
fifteen years were rare. Of course, Hyde’s final success 
rate could have been still worse had more esoteric infor-
mation than means and standard deviations been sought. 
As Richard Light and David Pillemer note, the chance of 
success probably depends quite idiosyncratically on the 
field, the investigators, and other factors such as the dates 
of the studies (1984).7

10.3.2 Consulting External Literature

A subset of the information of interest to the synthesist is 
theoretically obtainable from other published sources if 
omitted or obscured in the reports. For one variable, 
experimenter affiliation (training), Smith, Glass, and 
Miller exercised this option in their original 1980 psy-
chotherapy synthesis, and others have since then. When 
the experimenter’s affiliation was not evident from the 
report, the American Psychological Association directory 
was consulted. In their reanalysis of the same data, Orwin 
and Cordray attempted to get the reliability of the out-
come measure, when not extractable from the report, 
from the Mental Measurements Yearbook (Orwin and 
Cordray 1985; Buros 1978). The strategy was unsuccess-
ful for a number of reasons. Many measures were not 
included in the yearbook (for example, less-established 
personality inventories, experimenter-developed conve-
nience scales); when measures were included, a discus-
sion of reliability was frequently omitted; when measures 
were reviewed and a discussion of reliability included, 
the range of estimates was sometimes too wide to be use-
ful; and when measures were included, reliability dis-
cussed, and an interpretable range of values provided, 
they were not always generalizable to the population 
sampled for the psychotherapy study. Contacting test 
developers directly would provide more information than 
consulting the Mental Measurements Yearbook, but reli-
abilities of experimenter-developed convenience scales 
are not obtainable this way. Nor could the problem of 
generalizing to different populations be resolved.

The use of external sources may be more successful 
with other variables. For example, detailed information 
needed for effect-size calculations may be available in a 
dissertation, but not in the final, shorter publication of the 

research. A technical report may contain more detail than 
the published paper. Manuals for large data sets such as 
the National Assessment of Educational Progress or the 
Early Childhood Longitudinal Study are likely to present 
details not reported in a paper. However, the proportion 
of variables that are potentially retrievable via those strat-
egies will typically be small. For example, of the more 
than fifty variables coded in the Smith, Glass, and Miller 
study, experimenter allegiance appeared to be the only 
variable other than experimenter affiliation that might be 
deducible through an external published source.

10.3.3 Training Coders

Given the importance and complexity of the coding task, 
the need for solid coder training as an error-reduction 
strategy is self-evident (for more, see chapter 9). The 
training should include a phase in which coders are made 
familiar with the project and the coding protocol. Ideally, 
all coders who will be involved in the project should 
independently code a subset of studies selected to exem-
plify particularly challenging coding problems. The pro-
cess of jointly examining the results sensitizes the coders 
to the possibility of coder variability and provides a vehi-
cle for training in how to resolve the issues that have been 
identified as most likely to present difficulties. It may 
sometimes be practical to merge this training phase with 
the process of developing and pilot testing the coding 
protocol. Moreover, if the protocol is revised, the need 
for appropriate retraining is evident.

10.3.4 Pilot Testing the Coding Protocol

Piloting the coding protocol for a synthesis is no less 
essential than piloting any treatment or measurement pro-
tocol in primary research. First, it supplies coders with 
direct experience in applying the conventions and deci-
sion rules of the process before coding the main sample, 
which is necessary to minimize learning effects. Second, 
it assesses whether a coder’s basic interpretations of con-
ventions and decision rules are consistent with the syn-
thesist’s intent and with the other coders’ intent. This is 
necessary to preclude underestimating attainable levels 
of interrater reliabilities. Third, it can identify inadequa-
cies in the protocol, such as the need for additional cate-
gories for particular variables or additional variables to 
adequately map the studies.

Bullock and Svyantek took the concept of pilot testing 
a step further in their reanalysis of a prior synthesis of the 
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organization development literature (1985). After divid-
ing the sixteen years of the study period in half, each 
author independently coded the first half so as to develop 
reliability estimates as well as resolve preliminary coding 
problems. After examining their work, along with each 
instance of disagreement, the authors attempted to 
improve interrater reliability by developing more explicit 
decision rules for the same coding scheme. The more 
explicit rules were then applied to the studies from the 
second half of the time period. (The first half was also 
recoded in accordance with the revised protocol.) Agree-
ment was higher in the second half on six of seven vari-
ables tested, sometimes remarkably so (for example, 
agreement on sample size increased from 70 to 94 per-
cent). It is not clear why the authors halved the sample by 
period rather than randomly, given that using period 
introduced a potential confound into the explanation of 
improvement. Improved quality of reporting in studies 
from the second half of the time period could account for 
much of the improvement in interrater reliability.8 The 
distinction between what these authors did from what is 
typically done is that the preliminary codings were per-
formed on a large enough subset of studies to yield reli-
able quantitative estimates of agreement. This enabled an 
empirical validation that agreement had indeed improved 
on the second half.

10.3.5 Revising the Coding Protocol

On occasion, inadequacies in the coding protocol will not 
be identified in the pilot testing phase. Indeed, the 
Cochrane Handbook of Systematic Reviews states that it is 
rare that a coding form does not require modification after 
piloting (Higgins and Green 2011). It may be, for exam-
ple, that in the course of coding the fiftieth study, a coder 
becomes aware of an ambiguity in a categorical coding 
scheme that requires attention. It may come to the atten-
tion of those monitoring the coding process as a result of 
checks on coder reliability, such as a check for coder drift 
or a consensus discussion (for more, see chapter 9). When 
a coder modifies the way in which the coding protocol is 
used, it is important to identify that change and assess 
whether the modification is appropriate. If it is deemed 
appropriate, then the coding protocol is changed, and one 
must take steps to ensure the uniform (across coders and 
studies) and retroactive implementation of the change. 
Following such a practice will ultimately result in higher 
quality, more consistent coding than would be obtained if 
coders continued to use the original coding form.

10.3.6 Possessing Substantive Expertise

Substantive expertise will not reduce the need for judg-
ment calls but should increase their accuracy. Numerous 
authors have stressed the need for substantive expertise, 
and with good reason: The synthesist who possesses it 
makes more informed and thoughtful judgments at all 
levels. Still, scholars with comparable expertise disagree 
frequently on matters of judgment in the social sciences 
and elsewhere, particularly when they bring preexisting 
biases, as noted earlier. Substantive expertise informs 
judgment, but will not guarantee that the right call was 
made. Employing low-inference coding protocols will 
reduce, but not eliminate, the need for expertise. We also 
note that low-inference codes often require a great deal of 
expertise to develop.

10.3.7 Improving Primary Reporting

Although the individual synthesist can do nothing about 
improving primary reporting, social science publications 
can do something to reduce error in synthesis coding. 
There is evidence of progress in this regard. A recent 
effort on the part of the American Psychological Associ-
ation to encourage full reporting of descriptive statis-
tics and effect sizes (Journal Article Reporting Standards 
Working Group 2007) resulted in the addition of an 
appendix on reporting standards to the current edition of 
the Publication Manual (American Psychological Asso-
ciation 2010). A similar policy has been adopted by a 
number of prominent journals in the medical field, in the 
form of the Consolidated Standards of Reporting Trials 
(CONSORT) (see Begg et al. 1996; Moher et al. 2001).

Research about the impact of these standards on actual 
practice is sparse at best. Lucy Turner and her colleagues 
report improved reporting in journals that have endorsed 
the CONSORT statement, but also note room for consid-
erable further improvement (2012). Similar empirical work 
evaluating the guidelines suggested in the Journal Article 
Reporting Standards appears to be lacking.

10.3.8 Using Averaged Ratings

It is a psychometric truism that averages of multiple inde-
pendent ratings will improve reliability (and therefore 
reduce error) relative to individual ratings. In principle, 
then, it is desirable for the synthesist to use such averages 
whenever possible. Two practical problems limit the appli-
cability of this principle. First, the resources required to 
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double- or triple-code the entire set of studies can be sub-
stantial, particularly when the number of studies is large or 
the coding form is extensive. Second, many variables of 
interest in a typical synthesis are categorical, and therefore 
cannot be readily averaged across raters. For example, 
“therapy modality” from Smith, Glass, and Miller (1980) 
could be coded as individual, group, family, mixed, auto-
mated, or other. It is not clear how a mean rating would be 
possible for such a variable (with at least three coders, a 
median or a modal rating might make sense).

The first problem can be ameliorated by targeting for 
multiple coding only those variables that are known in 
advance to be both important to the analysis and prone 
to high error rates. Effect size and internal validity, for 
example, are two variables that would meet both crite-
ria. The foreknowledge to select the variables can fre-
quently be acquired through a targeted review of existing 
research, as well as through the synthesist’s own pilot test 
(Cordray and Sonnefeld 1985). The second problem is 
more structural, being a property of the categorical mea-
sure. A commonsense solution might be, again, to target 
only those variables that are both important to the analy-
sis and error-prone and have each coded by three raters. 
Three raters would permit a “majority rule” in the event 
that unanimity was not achieved. If the three coders 
selected three different responses—that is, there was no 
majority—the synthesist should probably consider revis-
ing how it is treated in the protocol.

10.3.9 Using Coder Consensus

Many meta-analyses are relatively limited in their scope, 
involving only a few effect sizes and potential explana-
tory variables. This situation is particularly common for 
syntheses of medical clinical trials, where the tendency is 
to focus on narrowly defined questions. Often under such 
circumstances it is possible to arrange for every study to 
be coded by two or more independent coders. When that 
occurs, it is appropriate to have periodic discussions 
during which consensus is sought if it is not already pres-
ent. It may be the case that, where there is disagreement, 
one coder has noticed a detail that the others have missed, 
and that when the detail is described, all will concur with 
the minority coder. In that respect, consensus discussions 
may represent a distinct advantage over strategies such as 
averaging or majority rule, where the correct minority 
opinion would be obscured or overruled.

The consensus approach is not without pitfalls. It 
may be impractical or impossible to implement for 

projects of large scope. The consensus meeting may 
present opportunities for systematic coder bias that 
would not otherwise arise. One particularly insidious 
form of such bias occurs if there is a tendency for coders  
to defer to the most senior, who may be the most likely to 
have a conscious or unconscious agenda for the analysis. 
Nevertheless, coder consensus can be a highly effective 
approach. Indeed, it is common practice; of the twelve 
meta-analyses published in Psychological Bulletin in 
2006 that reported any measure of rater agreement, half 
also mentioned that all disagreements were resolved, 
either by consensus or by appeal to a principal investiga-
tor. By the time of the third edition of this volume, report-
ing practices had changed. In forty-eight meta-analyses 
published in Psychological Bulletin during 2014 and 
2015, forty reported double coding for at least some vari-
ables, and thirty-three of those reported resolution of 
conflicts by discussion.

10.4  STRATEGIES TO ASSESS OR CONTROL  
FOR ERROR

It is always better to improve the accuracy of measure-
ment than to control or correct for measurement error 
after the fact. For example, methods such as the correc-
tion for attenuation from measurement error, though use-
ful, tend to overcorrect for error, because the reliability 
estimates they use in the denominator often are biased 
downward. Yet strategies to control for error are neces-
sary because, as documented earlier in this chapter, strat-
egies to reduce error can succeed only to a limited 
degree. Whether because of deficient reporting quality, 
the limits of coder judgment, or a combination of the 
two, there will always be residual error that cannot be 
eliminated. The question then becomes how to address 
the error. This may be accomplished either through 
direct attempts at control (for example, employing reli-
ability assessment or confidence ratings as covariates), 
or through sensitivity analyses that can account for the 
possible impact of coding error.

10.4.1 Reliability Assessment

10.4.1.1 Rationale As in primary research applica-
tions, the amount of observer error in research synthesis 
can be at least partially estimated via one or more forms 
of interrater reliability (IRR). The reanalysis of the Smith, 
Glass, and Miller psychotherapy data suggests that failing 
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to assess IRR and to consider it in subsequent analyses 
can yield misleading results (Orwin and Cordray 1985).

In the original synthesis of psychotherapy outcomes, a 
sixteen-variable simultaneous multiple regression analy-
sis was used to predict outcomes. Identical regressions 
were run within three treatment classes and six subclasses, 
as defined through multidimensional scaling techniques 
with the assistance of substantive experts (see Smith, 
Glass, and Miller 1980). Orwin and Cordray recoded a 
sample of studies from the original synthesis and com-
puted IRRs (1985). They then reran the original regression 
analyses with corrections for attenuation. Approximately 
twice per class and twice per subclass, on average, cor-
rections based on one or more reliability estimates caused 
the sign of an uncorrected predictor’s coefficient to reverse. 
The implication of a sign reversal (when significant) is that 
interpretation of the uncorrected coefficient would have 
led to an incorrect conclusion regarding the direction of 
the predictor’s influence on the effect size. In every run in 
every class and subclass, the reliability correction altered 
the ranking of the predictors in their capacity to account 
for variance in effect size.

At least two of the major conclusions of the original 
study were brought into question by these findings. The 
first was that the study disconfirmed allegations by critics 
of psychotherapy that poor-quality research methods have 
accounted for observed positive outcomes.

That conclusion was based on the trivial amount of 
observed correlation (r = 0.03) between internal validity 
and effect size, which was taken as evidence that design 
quality had no effect. The reanalyses suggested that 
unreliability may have so seriously attenuated both the 
bivariate correlation between the two variables and the 
contribution of internal validity to the regression equa-
tions that only an unrealistically large relationship could 
have been detected. The reliability of internal validity may 
have been as low as 0.36 (Orwin and Cordray 1985).9

The second Smith, Glass, and Miller conclusion—
bearing another look in light of these reanalyses—was 
that the outcomes of psychotherapy treatments cannot be 
very accurately predicted from characteristics of studies. 
Although the reliability-corrected regressions do not 
account for enough additional variance in effect size  
to claim “very accurate” prediction, they do improve 
the situation. It would be likely to improve still more 
with better-specified models, at least to the extent that 
reporting quality and coder judgment would permit them. 
Although unreliability alone cannot explain the poor per-
formance of the Smith, Glass, and Miller model, it could 
be part of a larger process that does.

Unreliability in the primary study’s dependent mea-
sure attenuates not only relationships with effect size, 
but the effect-size estimate itself. Under classical test 
theory assumptions, measurement error has no effect on 
the means of the treatment and comparison groups, but 
increases the within-group variance. In 1985, Larry 
Hedges and Ingram Olkin showed that under that model, 
the true effect size for a given study is equal to the 
observed effect size over the square root of the reliabil-
ity of the dependent measure. If the dependent measure 
had a reliability of 0.70, for example, the estimated true 
effect size would equal the observed effect size times 
1/0.701/2, so the observed effect size would under estimate 
the true effect size by 16 percent. Error in coding effect-
size estimates, then, exacerbates the problem by increas-
ing the variance of the effect-size distribution at the 
aggregate level.

Despite wide recognition by writers on research syn-
thesis of the need to assess IRR, in practice addressing 
coder reliability has always been problematic but is 
becoming less so. For example, only 29 percent of the 
meta-analyses published in Psychological Bulletin from 
1986 through 1988 reported a measure of coder reliabil-
ity (Yeaton and Wortman 1993). By 2006, a survey of the 
nineteen meta-analytic papers that appeared in Psycho-
logical Bulletin that year suggests that although the situ-
ation had changed for the better, double coding was still 
far from standard practice. Seven of the nineteen papers 
presented no information on coding reliability, and only 
eight reported on the reliability of coding for all vari-
ables. Interestingly, only three papers reported that effect-
size estimates were double coded. By 2014–2015, forty 
of forty-eight published papers reported double coding 
for at least some of the variables and thirty-four reported 
the use of reliability statistics. Given the high methodo-
logical standards of Psychological Bulletin relative to 
many other social research journals that publish meta- 
analyses, the field-wide percentage may be significantly 
lower; nevertheless, the trend appears to be toward more 
frequent double coding.

10.4.1.2 Across-the-Board Versus Per-Variable 
Agreement Smith, Glass, and Miller’s reliability assess-
ment consisted of the computation of a simple agreement 
rate across all variables in an abbreviated coding form, 
which came to 92 percent (1980). According to William 
Stock and his colleagues, who examined the practice of 
synthesists regarding interrater reliabilities, subsequent 
synthesists did much the same thing, if that much (1982). 
That is, a single agreement rate, falling somewhere 
between 0.7 and 1.0, is the extent of what typically gets 
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reported. That picture has improved in the interval since 
1982. Thirty-four meta-analyses published in Psycholog-
ical Bulletin in 2014 and 2015 reported some form of 
interrater reliability statistics. Of those, only seven papers 
reported a single overall value, as opposed to fourteen that 
reported at least some coding reliability results for indi-
vidual variables. Ten articles reported a range of reliability 
coefficients. The remaining three reported perfect reli-
ability after differences were resolved, with no informa-
tion about initial coding reliability.

There are at least two major problems with this prac-
tice. First, it makes little psychometric sense. The coding 
form is simply a list of items; it is not a multi-item mea-
sure of a trait, such that a total-scale reliability would be 
meaningful. Some items, such as publication date, will 
have very high interrater agreement, whereas others, such 
as internal validity, may not. Particularly if reliabilities are 
to be meaningfully incorporated into subsequent analyses 
(for example, by correcting correlation matrices for atten-
uation), it is this variation that needs to be recognized. In 
their 1985 reanalysis of the 1980 Smith, Glass, and Miller 
psychotherapy data, Orwin and Cordray replicated an 
equivalently high overall agreement rate. However, agree-
ment across individual variables ranged from 0.24 to 
1.00 (other indices of IRR showed similar variability).

Second, an across-the-board reliability fails to inform 
the synthesist of specific variables needing refinement or 
replacement. Thus, an opportunity to improve the process 
is lost. In sum, the synthesist should assess IRR on a per- 
variable basis. In addition, the reliability of scales con-
structed from several variables by the meta-analyst should 
be assessed. We discourage the common practice of 
reporting a single summary reliability across a number 
of items.

10.4.1.3 Specific Indices of Interrater Reliability  
Laurel Oliver notes that authorities do not agree on the 
best index of IRR to use in coding syntheses (1987). This 
presentation does not attempt to resolve all the controver-
sies, but will—it is hoped—provide enough of a founda-
tion for the synthesist who is not a statistician to make 
informed choices. Six indices are presented: agreement 
rate, kappa and weighted kappa, delta, Krippendorff’s 
alpha, intercoder correlation, and intraclass correlation. The 
discussion of each will include a description (including for-
mulas when possible), a computational illustration, and  
a discussion of strengths and limitations in the context  
of research synthesis. The following section covers the 
selection, interpretation, and reporting of IRR indices.

10.4.1.3.1 Agreement Rate. Percentage agreement, 
alternately called agreement rate (AR), has been the most 

widely used index of IRR in research synthesis. The for-
mula for AR is as follows:

 
=AR

number of observations agreed upon

total number of observations
.
 

(10.1)

Table 10.1 presents a hypothetical data set that might 
have been created had three coders independently rated 
twenty-five studies on a three-point study characteristic 
(two of which we use for the following examples). For 
example, if this variable was the internal validity scale 
from the 1980 Smith, Glass, and Miller study, a rating of 
1 = low, 2 = medium, and 3 = high. As shown, the first 
two coders agreed in fifteen cases out of twenty-five, so 
AR = 0.60.

AR is computationally simple and intuitively interpre-
table, being basically a batting average. Yet numerous 
writers on observational measurement have discussed the 

Table 10.1 Illustrative Data: Ratings of Studies

Coder

Study 1 2 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

3
3
2
3
1
3
2
1
2
2
2
3
3
2
1
1
3
2
2
3
2
1
3
3
2

2
1
2
2
1
1
2
1
2
1
2
3
1
1
1
1
3
2
2
1
1
1
2
3
2

3
1
2
3
1
3
1
1
1
3
2
3
2
1
1
2
1
2
2
1
2
3
2
3
3

source: Authors’ compilation.



184   CODING THE LITERATURE

pitfalls of using it (Cohen 1960; Hartmann 1977; Light 
1971; Scott 1955). When variables are categorical (the 
usual application), the main problem is chance agree-
ment, particularly when response marginal totals are 
extreme. For example, the expected agreement between 
two raters on a yes-no item in which each rater’s marginal 
response rate is 10 to 90 percent would be 82 percent by 
chance alone (Hartmann 1977). In other words, these  
raters could post a respectable (by most standards) inter-
rater reliability simply by guessing without ever having 
observed an actual case. Extreme marginal response rates 
are commonplace in many contexts (for example, psychi-
atric diagnosis of low-prevalence disorders), including 
research synthesis (see, for example, historical effects in 
Kulik, Kulik, and Cohen 1979; design validity in Smith 
1980). Additional problems arise when marginal response 
rates differ across raters (Cohen 1960).

When applied to ordinal (as opposed to nominal) cate-
gorical variables, AR has an additional drawback: the 
inability to discriminate between degrees of disagree-
ment. In Smith, Glass, and Miller’s three-point internal 
validity scale (low, medium, high), for example, a low-
high interrater pattern indicates greater disagreement 
than a low-medium or medium-high pattern does, yet a 
simple AR registers identical disagreement for all three 
patterns (1980). The situation is taken to the extreme with 
quantitative variables.

10.4.1.3.2 Cohen’s Kappa and Weighted Kappa. Var-
ious statistics have been proposed for categorical data to 
improve on AR, particularly with regard to removing 
chance agreement (see Light 1971). Of these, Cohen’s 
kappa (κ) has frequently received high marks (Cohen 
1960; Fleiss, Cohen, and Everett 1969; Hartmann 1977; 
Light 1971; Shrout, Spitzer, and Fleiss 1987). The param-
eter κ is defined as the proportion of the best possible 
improvement over chance that is actually obtained by the 
raters (Shrout, Spitzer, and Fleiss 1987). The formula for 
the estimate K of kappa computed from a sample is as 
follows:

 
= −

−
K

P P

P1
,o e

e  
(10.2)

where Po and Pe are the observed and expected agreement 
rates, respectively. The observed agreement rate is the 
proportion of the total count for which there is perfect 
agreement between raters (that is, the sum of the diago-
nals in the contingency table divided by the total count). 
The expected agreement rate is the sum of the expected 

agreement cell probabilities, which are computed exactly 
as in a chi-square test of association. That is,
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(10.3)

where n is the number of observations, C is the number of 
response categories, and ni• and n•i are the observed row 
and column marginal totals for response i for raters 1 
and 2, respectively. The formula for the estimate of 
weighted kappa (Kw) is as follows:

 
= −

Σ
Σ

K
w P

w P
1 ,w

ij ij oij

ij ij oij  
(10.4)

where wij is the disagreement level assigned to the cell at 
the intersection of row i, column j, and Poij and Peij are the 
observed and expected proportions, respectively, in 
row i and column j. For weighted kappa, proportions are 
calculated for every cell combination instead of only 
combinations on the diagonal. In this case, the formulas 
for the proportions change slightly to Poij = nij/n for 

each observed proportion and ∑= • •P
n

n n
1

eij i jij2  for 

each expected proportion. If regular (unweighted) K is 
re-expressed as 1 – Do/De, where Do and De are observed 
and expected proportions of disagreement, it can be seen 
that K is a special case of Kw in which all disagreement 
weights equal 1.

Panel A of table 10.2 shows the cell counts and mar-
ginal totals from the illustrative data shown in table 10.1. 
Panel B shows the observed and expected proportions  
in all cells. For simple kappa, the sum of the diagonal 
expected proportions in the table is Pe = [(12)(5) +  
(10)(10) + (3)(10)] / (25)2 = 0.304. The proportion of 
observed agreement, Po, is the sum of the diagonal of 
observed proportions (5 + 7 + 3) / 25 = 0.6, so that kappa 
is K = (0.6 – 0.304) / (1 – 0.304) = 0.43. Thus, chance- 
corrected agreement in this example is slightly less than 
half of what it could have been.

To compute Kw, the weights (wij) must be assigned 
first. Agreement cells (the diagonals) are assigned 
weights of 0. With a three-point scale such as this one, 
some logical weights would be 2 for the low-high inter-
rater pattern and 1 for the low-medium and medium-high 
patterns, although other weights are possible of course. 
Those weights are shown in panel C of table 10.2. 
Once the weights are determined, the observed and 
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expected proportions are calculated for each cell. For 

the cell at row 1 and column 2, = =P
3

25
0.12o12  and 

= ∗ =P
1

25
12 10 0.192e12 2 . Those values and all other pro-

portions are shown in panel B. Summing across the ele-
ments of wijPoij products for each cell yields Σ wijPoij = 0.56. 
Similarly, summing across the wijPeij produces Σ wijPeij = 
0.912. Then, Kw = 1 – 0.56 / 0.912 = 0.39. In this case, a 
relatively modest percentage of disagreements (four of ten) 
were by two scale points, as one would hope to be the 
case with a 3-point scale. Consequently, Kw is only slightly 
lower than K. With more scale points, the difference will 
generally be larger.

As is evident from the formula for K, chance agreement 
is directly removed from both numerator and denomina-
tor. Kappa has other desirable properties:

It is a true reliability statistic, which in large samples is 
equivalent to the intraclass correlation coefficient 
(discussed later in this section; see also Fleiss and 
Cohen 1973).

Because Pe is computed from observed marginal totals, 
no assumption of identical marginal totals across raters 
(required with certain earlier statistics) is needed.

It can be generalized to multiple (that is, more than two) 
raters (Fleiss 1971; Light 1971).

It can be weighted to reflect varying degrees of dis-
agreement (Cohen 1968), for example, for the Smith, 
Glass, and Miller trichotomous internal validity vari-
able mentioned earlier.

Large-sample standard errors have been derived for both 
K and Kw (Fleiss, Cohen, and Everett 1969), thus per-
mitting the use of significance tests and confidence 
intervals.

It takes on negative values when agreement is less than 
chance (range is –1 to 1), thus indicating the presence 
of systematic disagreement as well as agreement.

It can be adapted to stratified reliability designs 
(Shrout, Spitzer, and Fleiss 1987).

Thus, K is not a single index, but rather a family of indices 
that can be adapted to various circumstances.

One issue that the analyst must keep in mind is that 
indices such as K may not be well estimated with the 
sample sizes available for some meta-analyses. Asymp-
totic standard errors for K and weighted K are available 
(Fleiss, Cohen, and Everett 1969); these may be rela-
tively large unless the number of studies coded is high. It 

Table 10.2  Illustrative Data: Cell Counts and Marginal Totals

Coder 1

Value 1 2 3 Sum

A: Observed cell counts

Coder 2
1
2
3

Sum

5
0
0
5

 3
 7
 0
10

 4
 3
 3
10

12
10
 3
25

B: Observed (expected) cell proportions

Coder 2
1
2
3

.200 (.096)

.000 (.080)

.000 (.024)

.120 (.192)

.280 (.160)

.000 (.048)

.160 (.192)

.120 (.160)

.120 (.048)

C: Weights

Coder 2
1
2
3

0
1
2

 1
 0
 1

 2
 1
 0

source: Authors’ compilation.
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is impossible to provide a simple rule of thumb for a 
minimum sample size because the standard errors depend 
partly on the cell proportions. However, it is noteworthy 
that for the data from table 10.1 (which produced an esti-
mate of K = 0.43), the standard error is 0.12, leading to a 
95 percent confidence interval from 0.19 to 0.67. For the 
example provided in the original paper on asymptotic 
standard errors (Fleiss, Cohen, and Everett 1969), a sam-
ple size of 60 would be required for the standard error of 
unweighted K to be as low as 0.10. Hence, for the num-
bers of studies present in many meta-analyses, there may 
be very little information about coding reliability.

Although K and Kw resolve most of the problems of 
AR, potential problems remain if observations are con-
centrated in only a few cells (Jones et al. 1983). This cir-
cumstance increases the probability that a high proportion 
of scores will be assigned to one or two rating categories 
and that other categories receive small or nonexistent 
proportions. Allan Jones and his colleagues and others, 
such as Nancy Burton (1981), argue that this distribution 
violates the assumption on which K and Kw are based, 
reducing the usefulness of the information. In a similar 
vein, Grover Whitehurst notes that K is sensitive to the 
degree of disagreement between raters, which is desir-
able, but also remarkably sensitive to the distribution of 
ratings, which he argued was not desirable (1984). A 
highly skewed distribution of ratings will yield high esti-
mates of chance agreement in just those cells in which 
obtained agreement is also high. This makes for low 
estimates of true agreement in the face of high levels of 
obtained agreement and, consequently, low estimates of 
IRR. As noted earlier, the phenomenon is common in 
psychiatric diagnosis when prevalence is low and has 
been termed the base-rate problem with K (Carey and 
Gottesman 1978).

However, others view this as a case of shooting the 
messenger (see for example, Shrout, Spitzer, and Fleiss 
1987). As they see it, the observation that low base rates 
decrease K is not an indictment of K, but rather represents 
the real problem of making distinctions in increasingly 
homogeneous populations. Similarly, Rebecca Zwick 
questions whether the sensitivity of K to the shape of the 
marginal distributions is necessarily undesirable: if cases 
are concentrated into a small number of categories, it is 
less demonstrable that coders can reliably discriminate 
among all C categories, and the IRR coefficient should 
reflect this (1988). Finally, there is no mathematical 
necessity for small K values with low base rates (the 
maximum value of K remains at 1.0 even when the base 

rate is low) and high Ks have in fact been demonstrated 
empirically with base rates as low as 2 percent (American 
Psychiatric Association 1980).

10.4.1.3.3 Andrés and Marzo’s Delta. One measure 
of agreement that addresses the base-rate problem of 
kappa (if, indeed, that is a problem) adapts theory from 
guessing corrections in multiple-choice testing (Andrés 
and Marzo 2004). The proposed index (Δ̂) has one some-
what more relaxed assumption than K—nonconcordance 
rather than independence of raters. In addition to allow-
ing an assessment of the concordance of multiple raters, 
the index can be computed specifying one rater as a gold 
standard. It depends, however, on an assumed probability 
model that describes how raters choose among the options. 
Moreover, the index lacks a closed-form solution, relying 
instead on iterative maximum likelihood estimation (for 
which software is readily available). Nonetheless, the 
approach does have the advantage of tending to agree 
with K in the absence of the base-rate problem, and tend-
ing to produce higher values that may be more representa-
tive of actual coder agreement when the base-rate problem 
is present. For the example of table 10.2 (for which 
unweighted K was 0.43), the value of delta-hat is 0.41.

10.4.1.3.4 Krippendorff’s Alpha. From the domain of 
content analysis, Klaus Krippendorff offers a generaliz-
able reliability coefficient that can apply to any number 
of raters and any type of data, including missing values 
(2011). In general, the statistic takes the form of

 
α = − D

D
1 ,O

E  
(10.5)

where DO and DE are observed and expected disagree-
ment rates, respectively. This notation echoes that used to 
describe unweighted kappa. In the case of Krippendorff’s 
alpha, the functional definitions of DO and DE differ from 
those for kappa. The question of exactly what form these 
disagreement rates take is a complicated function of the 
level of measurement of the data. However, Krippendorff 
argues that the statistic provides a general one-size-fits-all 
coefficient that simultaneously corrects for chance agree-
ment, data type, and sample size (2011). Although the sta-
tistic is used most frequently in purely qualitative studies, it 
is seeing increasing use in meta-analyses in the social sci-
ences (see, for example, Mares and Pan 2013; Vukasović 
and Bratko 2015). For the data in table 10.1, the value of 
Krippendorff’s alpha is 0.403 if the data are treated as 
nominal, 0.278 if ordinal, and 0.311 if ratio.
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10.4.1.3.5 Intercoder Correlation. K and its alterna-
tives were designed for categorical data and are not appro-
priate for continuous variables, to which we now turn. 
Numerous statistics have been suggested to assess IRR 
on continuous variables as well. One of the more popular 
is the common Pearson correlation coefficient (r), some-
times called the intercoder correlation in this context. 
Pearson r is as follows:
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(10.6)

where (Xi,Yi) are the n pairs of values, and sX and sY are the 
standard deviations of the two variables computed using n  
in the denominator. With more than two coders, this index 
is generally obtained by calculating r across all pairs of 
coders rating the phenomenon (Jones et al. 1983). The 
resulting correlations can then be averaged to determine 
an overall value.

For the continuous examples, we can think of our 
ratings in table 10.1 as continuous instead of categorical. 
Then, X

–
 and Y

–
 are 2.2 and 1.64, and sX and sY are 0.75 and 

0.69, respectively, and n is 25. Plugging the values into 
equation 10.5, r = 5.8 / 12.94 = 0.45. In practice, the syn-
thesist will only rarely need to calculate r by hand, as all 
standard statistical packages and many hand calculators 
compute it.

The use of Pearson r with observational data to esti-
mate IRRs is analogous to its use in education to estimate 
test reliabilities when parallel test forms are available (see 
Stanley 1971). Thus it bears the same relationship to for-
mal reliability theory.10 The Pearson r also has some draw-
backs. First, although it describes the degree to which the 
scores produced by each coder covary, it says nothing 
about the degree to which the scores themselves are iden-
tical. In principle, this means that coders can produce high 
rs without actually agreeing on any scores. Conversely, an 
increase in absolute agreement could actually reduce r if 
the disagreement had been part of a consistent disagree-
ment pattern (for example, one rater rating targets consis-
tently lower than the other).11 If the IRR estimate will be 
used only to adjust subsequent analyses, this may not be 
particularly important. If it will be used to diagnose coder 
consistency in interpreting instructions (for example, 
instructions for extracting effect sizes), it can be quite 
important. Second, the between-coders variance is always 
removed in computing the product-moment formula. 
Robert Ebel notes that this is especially problematic when 

comparisons are made among single raw scores assigned 
to different subjects by different coders—in research syn-
thesis, of course, the subject is the individual study (1951).

10.4.1.3.6 Intraclass Correlation. Analogous to the 
concepts of true score and error in classical reliability 
theory, the intraclass correlation (rI) is computed as a 
ratio of the variance of interest over the sum of the vari-
ance of interest plus error. Ebel suggests that rI was pref-
erable to Pearson r as an index of IRR with continuous 
variables because it permits the researcher to choose 
whether to include the between-raters variance in the 
error term (1951).

Like K, rI is not a single index but a family of indices 
that permit great flexibility in matching the form of the 
reliability index to the reliability design used by the  
synthesist; here we mean design in the sense used in 
Cronbach’s generalizability (G) theory (see Cronbach 
et al. 1972). Generalizability theory enables the analyst 
to isolate different sources of variation in the measure-
ment, for example, forms or occasions, and to estimate 
their magnitude using the analysis of variance (Shavelson 
and Webb 1991). The reliability design as discussed here 
is a special case of the one-facet G study, in which coders 
are the facet (Shrout and Fleiss 1979).

So far, the running example has been discussed in 
terms of twenty-five studies being coded by two coders, 
but in fact at least three reliability designs share this 
description.

Design 1: Each study is rated by a different pair of 
coders, randomly selected from a larger population 
of coders (one-way random-effects model).

Design 2: A random pair of coders is selected from a 
larger population, and each coder rates all twenty- 
five studies (two-way random-effects model).

Design 3: All twenty-five studies are rated by each of 
the same pair of coders, who are the only coders of 
interest (two-way mixed-effects model).

Designs 1 and 2 are common in research synthesis. 
Although actual random selection of coders is rare, the 
synthesist’s usual intent is that those selected represent, at 
least in principle, a larger population of coders who might 
have been selected. Whether explicitly stated or not, syn-
thesists typically present their substantive findings as 
generalizable across that population. The findings will 
hold little scientific interest if, say, only a particular sub-
set of graduate students at a particular university can 
reproduce them. Design 3 will hold in rare instances in 
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which the specific coders selected are the population of 
interest and can therefore be modeled as a fixed effect. 
This could happen if, for example, the coders are a spe-
cially convened panel of all known experts in the content 
area (for example, the Wortman and Bryant school deseg-
regation synthesis described earlier might have met this 
criterion).

Each design requires a different form of rI, based on a 
different analysis of variance (ANOVA) structure. These 
forms for the running example are estimated as follows:
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where BMS and WMS are the between-studies and within- 
study mean squares, respectively, and CMS and EMS are 
the between-coders and residual (error) mean square 
components, resulting from the partitioning of the within- 
study sum of squares (for a full discussion of the statis-
tical models underlying the estimates, see Shrout and 
Fleiss 1979).12

The next step is the computation of sums of squares 
and mean squares from the coder data (for computational 
details, see any standard statistics text, for example, Hays 
1994). Table 10.3 shows the various mean squares and 
their associated degrees of freedom for the data from 
table 10.1. That approach to the problem can handle only 
balanced designs (that is, ones in which the same raters 

rate the same studies). Plugging the values into equations 
10.7, 10.8, and 10.9 yields the following results:

r

r

r

design 1 0.28,

design 2 0.35,

design 3 0.44.

I

I

I

( )

( )

( )

=

=

=

On average, rI (design 1) will give smaller values than 
rI (design 2) or rI (design 3) for the same set of data 
(Shrout and Fleiss 1979).

More modern mixed-model approaches circumvent 
the need for a balanced design and allow use with alter-
native, non-normal distributions (Marcoulides 1990). 
Using maximum likelihood estimation instead of ANOVA 
loosens the restrictions of our assumptions, often with 
few drawbacks (Donner and Koval 1980). Instead of 
mean squares, the mixed-model intraclass correlation can 
be calculated as a ratio of variance components:
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σ
σ + σ
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Study Error
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2 2

 
(10.10)

where σ2
Study is the variance component estimated from 

study-related variance and σ2
Error is the estimated residual 

error. The variance component for design 1 is taken from 
a model in which only the studies are treated as random 
effects. For design 2, the regression model treats both 
studies and raters as random effects. For design 3, studies 
are treated as random effects and raters are treated as 
fixed effects. Each model results in different values for 
the variance components, but regardless of the model 
intended, all three designs employ the same equation for 
the intraclass correlation (but for specific components of 
the estimated residual error between designs, see McGraw 
and Wong 1996, table 4).

When its assumptions are met, the rI family has been 
mathematically shown to provide appropriate estimates 
of classical reliability for the IRR case (Lord and Novick 
1968). Its flexibility and linkage into G theory also argue 
in its favor.13 Perhaps most important, its different variants 
reinforce the idea that a good IRR assessment requires the 
synthesist to think through the appropriate IRR design, 
not just calculate reliability statistics. Like K, it requires 
substantial between-items variance to show a significant 
indication of agreement. As with K, some writers consider 
rI to be less useful as an index of IRR when the distri-
butions are concentrated in a small range (for example, 

Table 10.3  Analysis of Variance for Illustrative Ratings

Source of Variance
Degrees of 
Freedom

Mean  
Squares

Between-studies (BMS) 24  .78

Within-study (EMS)
Between-coders (CMS)
Residual (EMS)

25
 1
24

 .44
3.92
 .30

source: Authors’ compilation.
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Jones et al. 1983). The arguments and counterarguments 
on this issue are essentially as described for K.

10.4.1.4 Selecting, Interpreting, and Reporting Inter-
rater Reliability Indices With the exception of AR, the 
indices presented in the previous section have appealing 
psychometric properties as reliability measures and, when 
properly applied, can be recommended for use in evaluat-
ing coding decisions. The AR was included because of 
its simplicity and widespread use by research synthesis 
practitioners, but for the reasons discussed earlier, it cannot 
be recommended as highly. These six indices by no means 
exhaust all those proposed in the literature for assessing 
IRR. Most of these, such as Finn’s r (Whitehurst 1984), 
Yule’s Y (Spitznagel and Helzer 1985), Maxwell’s RE 
(Janes 1979), and Scott’s π (Zwick 1988), were proposed 
to improve on perceived shortcomings of the indices pre-
sented here, in particular the rI, and K family. Interested 
readers can explore that literature and draw their own 
conclusions. They should keep in mind, however, that the 
prevailing view among statisticians is that, to date, alter-
natives to rI and K are not improvements, but in fact pro-
pose misleading solutions to misunderstood problems 
(see, for example, Cicchetti 1985 on Whitehurst 1984; 
Shrout, Spitzer, and Fleiss 1987 on Spitznagel and Helzer 
1985). The synthesist who sticks to the appropriate form 
of K for categorical variables and the appropriate model 
of rI for continuous variables will be on solid ground. 
Either AR or r can be used to supplement K and rI for the 
purpose of computing multiple indices for sensitivity 
analysis. The synthesist who chooses to rely on one of the 
less common alternatives (such as delta) would be wise 
to first become intimately familiar with its strengths and 
weaknesses and should probably anticipate defending the 
choice. The defense is likely to be viewed more favorably 

if the alternative approach is used to supplement one of 
the more usual indexes.

Once an index is selected and computed, the obvious 
question is how large it should be. The answer is less obvi-
ous. For r, 0.80 is considered adequate by many psycho-
metricians (for example, Nunnally 1978), and at that level 
correlations between variables are attenuated very little by 
measurement error. Rules of thumb have also been sug-
gested and used for K and rI (Fleiss 1981; Cicchetti and 
Sparrow 1981).

These benchmarks, however, were suggested for eval-
uating IRR of psychiatric diagnoses, and their appropri-
ateness for synthesis coding decisions is not clear. Indeed, 
general caution is usually appropriate about statistical rules 
of thumb that are not tied to a specific context; for that 
reason, we believe it inappropriate to provide them here 
(for a similar take on the inappropriateness of context- 
independent rules of thumb, see chapter 7).

The issue of how large is large enough is further com-
plicated by distributional variation. The running example 
showed how the different indices varied for a particular 
data set, but not how they vary over different conditions. 
Allan Jones and his colleagues systematically compare 
the results obtained when these indices are applied to a 
common set of ratings under various distributional assump-
tions (1983). Four raters rated job descriptions using a 
questionnaire designed and widely used (and validated) 
for that purpose. Most ratings were on six-point Likert-
type scales with specific anchors for each point; a few 
were dichotomous. The K, Kw, AR, r (in the form of aver-
age pairwise correlations), and rI were computed on each 
item. Aggregated across items, K and Kw yielded the low-
est estimates of IRR, producing median values of 0.19 and 
0.22, respectively. The AR yielded the highest, with a 

Table 10.4 Estimates of Interrater Agreement for Different Types of Data Distributions

Distributional Conditions Kappa
Weighted 

Kappa
Agreement 

Rate
Average 

Correlation
Intraclass 

Correlation

Variations in ratings across jobs and high agreement 
among raters

.43 .45 .88  .79  .74

Variations in ratings across jobs and low agreement 
among raters

.01 .04 .16  .13  .05

Little variation in ratings across jobs and high agreement 
among raters

.04 .04 .77 –.01 –.03

source: Jones et al. 1983.
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median value of 0.63; r and rI occupied an intermediate 
position, with median values of 0.51 and 0.39, respec-
tively. For the reasons noted earlier, an overall aggregate 
agreement index is not particularly meaningful for evalu-
ating coding decisions, but is still useful for illustrating 
the wide variation among indices.

To examine the effect of the distributions of individual 
items on the variation across indices, sample items rep-
resenting three conditions were analyzed: high variation 
across ratings and high agreement across raters, high 
variation across ratings and low agreement across raters, 
and low variation across ratings and high agreement 
across raters. As shown in table 10.4, the effects can be 
substantial, in particular under the third condition, where 
AR registered 77 percent agreement, but the other indices 
suggested no agreement beyond chance. With moderate 
to high variance, it makes far less difference which index 
is used. Therefore, Jones and his colleagues argue, a 
proper interpretation of the different indices—including 
whether they are large enough—requires an understand-
ing of the actual distributions of the data (1983).

It should be evident by now that the indices are not 
directly comparable; indeed the range of their metrics is 
not the same across all measures. For example, correla-
tions range from –1 to 1 where negative values indicate 
extreme disagreement. On the other hand, kappa and 
Krippendorff’s alpha range from –1 to 1, with negative 
values meaning that raters are agreeing beyond expecta-
tion. Other metrics such as AR and delta range from 
0 to 1. It is therefore essential that synthesists report not 
only their IRR values, but the indices used to compute 
them. To give the reader the full picture, it would also be 
wise to include information about the raters’ base rates, 
as William Grove and his colleagues suggest, particularly 
when they are very low or very high (1981).

10.4.1.5 Assessing Coder Drift Whatever index of 
IRR is chosen, the synthesist cannot assume that IRR will 
remain stable throughout the coding period, particularly 
when the number of studies to code is large. As Gregg 
Jackson notes, coder instability arises because many hours 
are required, often over a period of months, to code a set 
of studies (1980). When the coding is lengthy, IRR may 
change over time, and a single assessment may not be 
adequate.

Orwin and Cordray assess coder drift in their 1985 
reanalysis of the 1980 Smith, Glass, and Miller psycho-
therapy synthesis. Before coding, the twenty-five reports 
in the main sample were randomly ordered, with coders 
instructed to adhere to the resulting sequence. It was 

assumed, given the random ordering, that any trend in 
IRRs over reports would be attributable to changes in 
coders over time (for example, practice or boredom).14 
Equating for order permits this trend to be detected and, 
if desired, removed.

Following the completion of coding, a per-case agree-
ment rate was computed, consisting of the number of 
variables agreed on divided by the number of variables 
coded.15 In itself, per-case agreement rate is not particu-
larly meaningful because it weights observations on all 
variables equally and is sensitive to the particular subset 
of variables (considered here as sampled from a larger 
domain) constituting the coding form. Change in this 
indicator over time is meaningful, however, because it 
speaks to the stability of agreement. Per-case agreement 
rate was plotted against case sequence, and little if any 
drift was observed. The absence of significant correlation 
between the two variables substantiated this conclusion. 
In regression terms, increasing the case sequence by one 
resulted in a decrease of the agreement rate by less than 
one-tenth of 1 percent (b = –0.09). From this exercise, it 
was concluded that further consideration of coder drift 
was unnecessary in the synthesis. However, there is no 
reason to presume that this finding would generalize to 
other syntheses. Coder drift will be more of a concern in 
some syntheses than in others and needs to be assessed 
on a case-by-case basis. In cases where coder drift is evi-
dent, some combination of revisiting the coding scheme, 
retraining coders, and attempting to reach consensus can 
be useful.

The drift assessment could also be integrated into the 
main IRR assessment with a G theory approach. The one-
facet G study with coders as the facet could be expanded 
to a two-facet G study with time (if measured continu-
ously) or occasions (if measured discretely) as the second 
facet. This would permit the computation of a single IRR 
coefficient that captured the variance contributed by each 
facet, as well as by their interaction.

10.4.2 Confidence Ratings

10.4.2.1 Rationale As a strategy for evaluating coding 
decisions, IRR is indirect. Directly, it assesses only coder 
disagreement, which in turn is an indicator of coder uncer-
tainty, but a flawed one. It is desirable, therefore, to seek 
more direct methods of assessing the accuracy of the num-
bers gleaned from reports. Tagging each number with a 
confidence rating is one such method. It is based on the 
premise that questionable information should not be 
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discarded, and should not be allowed to freely mingle with 
less questionable information, as is usually done. The for-
mer procedure wastes information, which though flawed 
may be the best available on a given variable, whereas the 
latter injects noise at best and bias at worst into a system 
already beset by both problems. With confidence ratings, 
questionable information can be described as such, and 
both data point and descriptor entered into the database.

In other contexts, confidence ratings and facsimiles 
(for example, adequacy ratings, certainty ratings) have 
been around for some time. In his international compara-
tive political parties project, Kenneth Janda constructed 
an adequacy-confidence scale to evaluate data quality 
(1970). Similarly, it is not unusual to find interviewer con-
fidence ratings embedded in questionnaires. In the Addic-
tion Severity Index, for example, interviewers provided 
confidence ratings of the accuracy of patient responses 
(McLellan et al. 1988). Specifically, they coded whether 
in their view the information was significantly distorted 
by the patient’s misrepresentation or the patient’s inability 
to understand.

Two early meta-analyses are used to illustrate how some 
of the preceding issues can be assessed. One integrates 
the literature on the effects of psychotherapy (Smith and 
Glass 1977; Smith, Glass, and Miller 1980). Another is 
devoted to the influence of class size on achievement 
(Glass and Smith 1979). For both, the data files were 
obtained and subjected to reanalysis (Cordray and Orwin 
1981; Orwin and Cordray 1985). In examining the pri-
mary studies, these authors were careful to note (for some 
variables) how the data were obtained. For example, in 
the class size study, the actual number of students enrolled 
in each class was not always reported directly, so the values 
recorded in the synthesis were not always based on equally 
accurate information. In response, Glass and Smith included 
a second variable that scored the perceived accuracy of 
the numbers recorded. Unfortunately, the accuracy scales 
were never used in the analysis (Gene Glass, personal 
communication, August 1981). Similarly, in the psycho-
therapy study, source of IQ and confidence of treatment 
classifications were also coded and not used.

The synthesis of class size and achievement compared 
smaller and larger classes on achievement (Glass and 
Smith 1979). After assigning each comparison an effect 
size, the authors regressed effect size on three variables: 
the size of the smaller class (S), the size of the smaller 
class squared (S2), and the difference between the larger 
class and smaller class (L—S). This procedure was done 
for the total database and for several subdivisions of the 

data, one of which was well controlled versus poorly con-
trolled studies. Cordray and Orwin reran the regressions 
as originally reported, except that a dummy variable for 
overall accuracy was added to the equations (1981). The 
results are presented in table 10.5. Most remarkable is that 
accuracy made its only nontrivial contribution in well con-
trolled studies. A possible explanation is that differential 
accuracy in the reporting of class sizes is only one of many 
method factors operating in poorly controlled studies (and 
in the entire sample, as well-controlled studies are a 
minority) and that these mask the influence of accuracy by 
interacting with it in unknown ways or by inflating error 
variance. In any event, the considerable influence of accu-
racy in well-controlled studies suggested that it does matter, 
at least under some circumstances.

In the synthesis of psychotherapy outcomes described 
earlier, an identical simultaneous multiple regression analy-
sis was run within each treatment class and subclass, but 
with a different orientation. Rather than specifying the 
treatment in the model and crosscutting by nontreatment 
characteristics, as with class size, the nontreatment charac-
teristics (diagnosis, method of client solicitation, and so on) 
were included in the model. Orwin and Cordray recoded 
twenty variables and found that across items, high confi-
dence proportions ranged from 1.00 for comparison type 
and location down to 0.09 for therapist experience (1985; 
for selection criteria, see Orwin 1983). Across studies, the 
proportion of variables coded with certainty or near cer-
tainty ranged from 52 to 83 percent. At the opposite pole, 
the proportion of guesses ranged from 0 to 25 percent.

The effect of confidence on reliabilities was remark-
able; for example, the mean AR for high confidence 

Table 10.5  Comparison of R2 for Original Glass and 
Smith (1979) Class Size Regression (R1

2)  
and Original with Accuracy Added (R2

2)

R1
2 R2

2 R2
2 – R1

2

Total sample  
(n = 699)

.1799 .1845 .0046, F(1, 694) = 3.94*

Well-controlled 
studies (n = 110)

.3797 .4273 .0476, F(1, 105) = 8.73*

Poorly controlled 
studies (n = 338)

.0363 .0369 .0006, F(1, 333) = 0.65

source: Cordray and Orwin 1981.

*p < .05
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observations more than doubled that for low confidence 
observations (0.92 versus 0.44). As to the effect of confi-
dence on relationships between variables, 82 percent of 
the correlations increased in absolute value when observa-
tions rated with low and medium confidence were removed. 
More over, all correlations with effect size increased. The 
special importance of these should be self-evident; the 
relationships between study characteristics and effect 
size were a major focus of the original study (and are in 
research synthesis generally). The absolute values of cor-
relations increased by an average of 0.15 (0.21–0.36), or 
in relative terms, 71 percent.

Questions posed by these findings include how credible 
the lack of observed relationship between therapist expe-
rience and effect size can be when therapist experience 
is extracted from only one in ten reports with confidence. 
Even for variables averaging considerably higher con-
fidence ratings, the depression of IRRs and consequent 
attenuation of observed relationships between variables is 
evident. There are plausible alternative explanations for 
individual variables. For example, the outcome measures 
that are easiest to classify could also be the most reliable. 
In such circumstance, the outcome type effect-size relation-
ship should be stronger for high confidence observations 
simply because the less reliable outcome types have been 
weeded out. An explanation like this can be plausible for 
individual variables, but cannot account for the generally 
consistent and nontrivial strengthening of observed rela-
tionships throughout the system. Each study in the sample 
has its own pattern of well-reported and poorly reported 
variables; there was not a particular subset of studies, 
presumably different from the rest, that chronically fell 
out when high confidence observations were isolated. 
Consequently, any alternative explanation must be indi-
vidually tailored to a particular relationship. Postulating a 
separate ad hoc explanation for each relationship would 
be unparsimonious to say the least.

10.4.2.2 Empirical Distinctness from Reliability It 
was argued previously that confidence judgments pro-
vide a more direct method of evaluating coding decisions 
than does IRR. It is therefore useful to ask whether this 
conceptual distinctness is supported by an empirical 
distinctness.

Table 10.6 presents agreement rates by level of confi-
dence for the complete set of variables (K = 25) to which 
confidence judgments were applied. The table indicates 
that interrater agreement is neither guaranteed by high 
confidence nor precluded by low confidence. Yet it also 
shows that confidence and agreement are associated. 

Whereas table 10.6 shows the nonduplicativeness of con-
fidence and agreement on a per-variable basis, table 10.7 
shows this nonduplicativeness across variables. To cal-
culate the values in table 10.7, variables were first rank 
ordered by the proportion of observations in which confi-
dence was judged as high. As is clear in the table, the cor-
relation between the two sets of rankings was modest, 
regardless of the reliability estimate selected. Although 
some of the low correlations could be attributed to attenu-
ation or poor validity, it is probable that each measure has 
something unique to contribute. Even if they represented 
exactly the same construct, it would be valuable to include 
both in the analysis.

10.4.2.3 Methods for Assessing Coder Confidence  
There is no set method for assessing confidence. Orwin 
and Cordray used a single confidence item for each vari-
able (1985). This is not to imply that confidence is uni-
dimensional; no doubt it is a complex composite of 
numerous factors. These factors can interact in various 
ways to affect the coder’s ultimate confidence judgment, 
but Orwin and Cordray did not attempt to spell out rules 
for handling the many contingencies that arise. Confi-
dence judgments reflected the overall pattern of informa-
tion as deemed appropriate by the coder.

Alternative schemes are of course possible. One might 
use two confidence judgments per data point—one rating 
confidence in the accuracy or completeness of the infor-
mation as reported and the other rating confidence in the 
coding interpretation applied to that information. The use 
of two or more such ratings explicitly recognizes multiple 
sources of error in the coding process (as described earlier) 
and makes some attempt to isolate them. More involved 
schemes, such as Janda’s, might also be attempted, partic-
ularly if information is being sought from multiple sources. 
As noted, Janda constructed an adequacy-confidence scale 
to evaluate data quality (1970). The scale was designed to 
reflect four factors considered important in determining 
the researchers’ belief in the accuracy of the coded variable 
values: the number of sources providing relevant informa-
tion for the coding decision, the proportion of agreement 
to disagreement in the information reported by different 
sources, the degree of discrepancy among sources when 
disagreement exists, and the credibility attached to the 
various sources of information. An adequacy-confidence 
value was then assigned to each recorded variable value.

Along with the question of what specific indicators of 
confidence to use is the question of how to scale them. 
Orwin and Cordray pilot tested a 5-point scale (1 = low,  
. . . , 5 = high) for each confidence rating, fashioned  
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Table 10.6 Agreement Rate by Level of Confidence

Low Medium High

Experimenter affiliation
Blinding
Diagnosis
Client IQ
Client age
Client source
Client assessment
Therapist assessment
Internal validity
Treatment mortality
Comparison mortality
Comparison type
Control group type
Experimenter allegiance
Modality
Location
Therapist experience
Outcome type
Follow-up
Reactivity
Client participation
Setting type
Treatment integrity
Comparison group contamination
Outcome Rxx

1.00 (14)
.83 (6)

—
1.00 (11)
1.00 (1)

—
—

.00 (15)
—

.00 (4)

.00 (4)
—
—

.10 (10)
—
—

.55 (55)

.00 (1)

.00 (2)

.83 (6)
1.00 (1)

—
.60 (10)
.30 (37)
.13 (150)

1.00 (37)
.91 (66)

1.00 (12)
.18 (74)
.68 (50)

1.00 (10)
.53 (17)
.67 (18)
.52 (27)

1.00 (1)
1.00 (1)
—
.00 (9)
.64 (36)
.33 (4)
—
.56 (57)
.00 (11)
.92 (47)
.28 (65)
.67 (3)
.40 (15)
.83 (60)
.32 (50)
.56 (70)

.95 (75)

.93 (44)

.99 (114)
1.00 (41)
.83 (75)
.89 (116)
.98 (103)
.75 (93)
.88 (93)
.94 (121)
.93 (121)

1.00 (126)
.69 (114)

1.00 (80)
1.00 (122)
1.00 (126)
1.00 (11)
.92 (114)
.83 (75)
.94 (47)

1.00 (122)
.99 (111)

1.00 (56)
1.00 (39)
.92 (38)

source: Orwin 1983.

note: Selected variables from Smith, Glass, and Miller (1980) (n = 126). Sample sizes in parentheses.

Table 10.7 Spearman Rank Order Correlations

r RHO

All variables (K = 25)
Agreement rate .71

Variables for which kappa was computed (K = 20)
Agreement rate
Kappa

.71

.62

Variables for which intercoder correlation was computed (K = 15)
Agreement rate
Intercoder rate

.81

.67

Variables for which all three estimates were computed (K = 10)
Agreement rate
Kappa

.73

.79

Intercoder correlation .66

source: Authors’ compilation.

note: Between confidence and interrater agreement for selected variables from Smith, 
Glass, and Miller (1980).
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after the Smith, Glass, and Miller confidence of treat-
ment classification variable (1980). Analysis of the pilot 
results revealed that five levels of confidence were not 
being discriminated. Specifically, the choices of 2 versus 
3 and 3 versus 4 seemed to be made arbitrarily. The five 
categories were then collapsed into three for the main 
study. In addition, each category was labeled with a ver-
bal descriptor to concretize it and minimize coder drift: 
3 = certain or almost certain, 2 = more likely than not, 
1 = guess (see Kazdin 1977). Discrepancies were resolved 
through discussion. The 3-point confidence scale was 
simple yet adequate for its intended purpose—to estab-
lish a mechanism for discerning high-quality from lesser- 
quality information in the conduct of subsequent analyses.

There is a larger question about how confidence rat-
ings should be used in a meta-analysis. One may use such 
ratings to adjust the score on a scale through a weighting 
mechanism, or one may include the confidence ratings as 
moderators. Both approaches have advantages and dis-
advantages. For the first, the weighting mechanism is arbi-
trary to some degree. In contrast, including confidence 
ratings as covariates in the analysis is straightforward, but 
can easily result in too many variables, which will not be 
the case for weighting (for further arguments against 
weighting, specifically of study effects, see chapter 7). 
Further, a confidence rating system cannot apply to dis-
crete variables. For continuous variables, any weighting 
scheme will have weights confounded with individual 
raters’ use of the confidence scale. Because of those issues, 
we recommend that any use of confidence ratings be con-
fined to sensitivity analyses. If changes in findings are sub-
stantial as a result, one should still report original analysis, 
but qualify it by reference to the sensitivity analysis.

10.4.3 Sensitivity Analysis

10.4.3.1 Rationale Sensitivity analysis can assess 
robust ness and bound uncertainty. It has been a part of 
research synthesis at least since the original Smith and 
Glass psychotherapy study (1977). Glass’s position of 
including methodologically flawed studies was attacked 
by his critics as implicitly advocating the abandonment 
of critical judgment (for example, Eyesenck 1978). He 
rebutted these and related charges on multiple grounds, 
but the most enduring was the argument that meta-analysis 
does not ignore methodological quality, but instead pres-
ents a way of determining empirically whether particular 
methodological threats systematically influence outcomes. 
Glass’s indicators of quality (for example, the 3-point 

internal validity scale) were crude then and appear even 
cruder in retrospect, and may not have been at all suc-
cessful in what they were attempting to do.16 The princi-
ple, however—that of empirically assessing covariance 
of quality and research findings rather than assuming it a 
priori—was perfectly sensible and consistent with norms 
of scientific inquiry. In essence, the question was whether 
research findings were sensitive to variations in method-
ological quality. If not, lesser-quality studies can be ana-
lyzed along with high-quality studies, with consequent 
increase in power, generalizability, and so on. The worst-
case scenario—that lesser-quality studies produce system-
atically different results and cannot be used—is no worse 
than had the synthesist followed the advice of the critics 
and excluded those studies a priori.

The general issue of sensitivity analysis in research syn-
thesis is discussed in chapter 13. This chapter focuses on 
applying the logic of sensitivity analysis to the evaluation 
of coding decisions.

10.4.3.2 Multiple Ratings of Ambiguous Items The 
sources of error identified earlier (for example, deficient 
reporting, ambiguities of judgment) are not randomly 
dispersed across all variables. The synthesist frequently 
knows at the outset which variables will be problematic. 
If not, a well-designed pilot test will identify them. For 
those variables, multiple ratings should be considered. Like 
multiple measures in other contexts, multiple ratings help 
guard against biases stemming from a particular way of 
assessing the phenomenon (monomethod bias) and can 
set up sensitivity analyses to determine if the choice 
of rating makes any difference. Mary Smith’s synthesis 
of sex bias is an example (1980). When an investigator 
reported only their significant effect, Smith entered an 
effect size of 0 for the remaining effects. Aware of the 
pitfalls of this approach, she alternately used a different 
procedure and deleted these cases. Neither changed the 
overall mean effect size by more than a small fraction. In 
their synthesis of sex differences, Alice Eagly and Linda 
Carli took the problem of unreported nonsignificant effects 
a step further (1981). Noting that the majority of these 
(fifteen of sixteen) tended in the positive (female) direc-
tion, they reasoned that setting effect size at 0 would lead 
to an underestimation of the true mean effect size, whereas 
deleting them would lead to overestimation. They there-
fore did both to be confident of at least bracketing the true 
value. They also used two indicators of researcher’s sex 
(an important variable in this area), overall percentage 
of male authors, and sex of first author. These were found 
to differ only slightly in their correlations with outcome. 
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Each of these examples illustrates sensitivity analysis 
directed at specific rival hypotheses. It should be evident 
that many opportunities exist for thoughtful sensitivity 
analyses in the evaluation of coding decisions and that 
these do not require specialized technical expertise;  
conscientiousness and common sense will frequently 
suffice.

10.4.3.3 Multiple Measures of Interrater Agreement  
As described earlier, the choice of IRR index can have 
a significant effect on the reliability estimate obtained. 
Although the guidelines presented earlier should narrow 
the range of choices, they may not uniquely identify the best 
one. Computing multiple indices is therefore warranted.

In their 1985 reanalysis of the 1980 Smith, Glass, and 
Miller psychotherapy data, Orwin and Cordray computed 
multiple estimates of IRR for each variable. For contin-
uous variables, AR and r were computed (rI was not 
computed, but could have been). For ordinal categorical 
variables, AR, r, and Kw were computed. For nominal cat-
egorical variables, AR and K were computed; when nom-
inal variables were dichotomous, r (in the form of phi) 
was also computed. Four regressions were then run, each 

using a different set of reliability estimates. The first used 
the highest estimate available for each variable. Its pur-
pose was to provide a lower bound on the amount of 
change produced by disattenuation. The second and third 
runs were successively more liberal (for details, see Orwin 
and Cordray 1985). A final run, intended as the most lib-
eral credible analysis, disattenuated the criterion variable 
(effect size) as well as the predictors. The reliability esti-
mates for the four runs are shown in table 10.8.

10.4.3.4 Isolating Questionable Variables Both IRRs  
and confidence ratings are useful tools for flagging vari-
ables that may be inappropriate for use as meta-analytic 
predictors of effect size. In the Orwin and Cordray study, 
for example, the therapist experience variable was coded 
with high confidence in only 9 percent of the studies, was 
“guessed” in 45 percent, and had an IRR (using Pearson r) 
of 0.56 (1985). Such numbers would clearly suggest the 
exercise of caution in further use of that variable. Con-
ducting analyses with and without it, and comparing the 
results, would be a logical first step.

In regard to both cases and variables, the finding of sig-
nificant differences between inclusion and exclusion does 

Table 10.8 Reliability Estimates

Variable Run 1 Run 2 Run 3 Run 4

Diagnosis: neurotic, phobic, or depressive
Diagnosis: delinquent, felon, or habituée
Diagnosis: psychotic
Clients self-presented
Clients solicited
Individual therapy
Group therapy
Client IQ
Client agea

Therapist experience × neurotic diagnosis
Therapist experience × delinquent diagnosis
Internal validity
Follow-up timeb

Outcome typec

Reactivityd

ES

.98
1.00
1.00
.97
.93

1.00
.98
.69
.99
.76

1.00
.76
.99
.87
.57

1.00

.98
1.00
1.00
.57
.86

1.00
.96
.69
.99
.75

1.00
.71
.99
.70
.56

1.00

.89
1.00
1.00
.71
.81
.85
.94
.60
.91
.70

1.00
.42
.95
.76
.57

1.00

.89
1.00
1.00
.71
.81
.85
.94
.60
.91
.70

1.00
.42
.95
.76
.57
.78

source: Orwin and Cordray 1985.

notes: Reliability-corrected regression runs on the Smith, Glass, and Miller (1980) psychotherapy data.
aTransformed age = (age – 25)(|age – 25|)1/2.
bTransformed follow-up = (follow-up)1/2.
c“Other” category removed for purpose of dichotomization.
dTransformed reactivity = (reactivity)2.25.
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not automatically argue for outright exclusion; rather, it 
alerts the analyst that mindless inclusion is not warranted. 
As in primary research, the common practices of dropping 
cases, dropping variables, and working from a missing- 
data correlation matrix result in loss of information, loss 
of statistical power and precision, and biased estimates 
when, as is frequently the case, the occurrence of missing 
data is nonrandom (Enders 2010). Therefore, more sophis-
ticated approaches are preferable when feasible (for more 
on the treatment of missing data in research synthesis, see 
chapter 17).

10.5  EXAMPLES OF VARIOUS ANALYSES,  
WITH CODE

This section illustrates how to conduct various reliabil-
ity calculations using, where possible, the statistical soft-
ware R (R Core Team 2017). R is an extendable statistics 
program for which various user-supplied packages have 
been implemented. Many of the interrater reliability statis-
tics are available in the package “irr” by Matthias Gamer 
and his colleagues (2012). The two exceptions are Andrés 
and Marzo’s Delta, which requires special software, and 
the mixed-model computation of the intraclass correla-
tion, which uses the R package “lme4” package (Bates 
et al. 2015). The R Core Team’s website supplies an intro-
duction to the basics, and this section assumes basic famil-
iarity with the program such as can be obtained from that 
source. In order to run the examples, the user will need to 
install the irr package, which is easily accomplished using a 
pull-down menu in R. The illustrations continue to use the 
data from table 10.1 with either two or three coders depend-
ing on the example.

10.5.1 Categorical Variables

Although various methods exist in R for reading data 
from files, for the sake of simplicity the data here are 
entered from the keyboard by creating a vector of data for 
each rater and binding the columns of the table together. We 
create objects that we named TwoCategoricalRaters and  
ThreeCategoricalRaters, for which TwoCategoricalRaters  
is the first two columns of the table, and ThreeCategorical 
Raters is the complete table.

> Rater1 <- c(3,3,2,3,1,3,2,1,2,2,2,3,3,2,
1,1,3,2,2,3,2,1,3,3,2)
> Rater2 <- c(2,1,2,2,1,1,2,1,2,1,2,3,1,1,
1,1,3,2,2,1,1,1,2,3,2)

> Rater3 <- c(3,1,2,3,1,3,1,1,1,3,2,3,2,1,
1,2,1,2,2,1,2,3,2,3,3)
> TwoCategoricalRaters 
<- cbind(Rater1,Rater1)
> TwoCategoricalRaters

[1,]
[2,]
[3,]
  

[23,]
[24,]
[25,]

Rater1
3
3
2


3
3
2

Rater2
2
1
2


2
3
2

>
> ThreeCategoricalRaters 
<- cbind(Rater1,Rater2,Rater3)
> ThreeCategoricalRaters

[1,]
[2,]
[3,]


[23,]
[24,]
[25,]

Rater1
3
3
2


3
3
2

Rater2
2
1
2


2
3
2

Rater3
3
1
2


2
3
3

10.5.1.1 Agreement Rate The “agree” function in the 
irr package calculates percentage of agreement. It can 
be applied to any number of raters. First, we observe the 
agreement rate for the two real raters.

> library(irr)
Loading required package: lpSolve
> agree(TwoCategoricalRaters)
Percentage agreement (Tolerance=0)

 Subjects = 25
 Raters = 2
%-agree = 60

Note that the agreement rate is 60 percent. The agree-
ment rate for the three-rater table is somewhat lower, in 
part because it represents the percentage of cases for 
which all three raters agree, a more stringent hurdle.

> agree(ThreeCategoricalRaters)
Percentage agreement (Tolerance=0)

 Subjects = 25
 Raters = 3
%-agree = 36
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10.5.1.2 Cohen’s Kappa and Weighted Kappa  
Cohen’s kappa for two raters is available in the irr pack-
age through the kappa2 function. This calculates the 
unweighted form of kappa.

> library(irr)
Loading required package: lpSolve
> kappa2(TwoCategoricalRaters)
Cohen’s Kappa for 2 Raters (Weights: 
unweighted)

 Subjects = 25
 Raters = 2
 Kappa = 0.425

 z = 3.51
 p-value = 0.000455

Note that kappa is 0.425. If one attempts to apply 
kappa2 to more than two raters, the function returns an 
informative error message.

> kappa2(ThreeCategoricalRaters)
Error in kappa2(ThreeCategoricalRaters) :
 Number of raters exceeds 2. Try kappam. 
fleiss or kappam.light.

As the message suggests, Fleiss’s kappa for more than 
two raters is available:

> kappam.fleiss(ThreeCategoricalRaters)
Fleiss’ Kappa for m Raters

 Subjects = 25
 Raters = 3
 Kappa = 0.315

 z = 3.85
 p-value = 0.00012

Similar to agreement rate, coding reliability is lower 
for the three-rater data. It is also possible to calculate 
Light’s kappa, which is the average of all possible two-
rater kappas:

> kappam.light(ThreeCategoricalRaters)
Light’s Kappa for m Raters

Subjects = 25
Raters = 3
Kappa = 0.328

z = 5.86
p-value = 4.74e-09

The kappa2 function can also calculate weighted kappa 
by specifying a weight argument. The most likely value 
for weight is equal but weights based on squared distance 
are also available with the value squared.

> kappa2(TwoCategoricalRaters,”equal”)
Cohen’s Kappa for 2 Raters (Weights: 
equal)

 Subjects = 25
 Raters = 2
 Kappa = 0.386

 z = 3.22
 p-value = 0.00126

10.5.1.3 Andrés and Marzo’s Delta Andrés and 
Marzo’s (2004) delta is not implemented in any avail-
able R package. A program executable on Windows 
computers is available online (see http://www.ugr.es/ 
∼bioest/Delta.exe). The graphical interface involves a 
number of screens and is not amenable to presentation 
in text. For the two-rater data set, delta is 0.410 with a 
standard error of 0.131.

10.5.1.4 Krippendorff’s Alpha The irr package imple-
ments Krippendorff’s alpha. However, the package expects 
a matrix in which rows represent raters, not columns, so 
that the data matrix must be transposed using R’s t func-
tion. The calculation of Krippendorff’s alpha depends 
on the level of measurement of the variable being coded. 
The default is nominal, which is not appropriate here, but 
we calculate it to illustrate the syntax before we change 
to ordinal:

> library(irr)
Loading required package: lpSolve
> kripp.alpha(t(TwoCategoricalRaters))
 Krippendorff’s alpha

 Subjects = 25
 Raters = 2
 alpha = 0.403

> kripp.alpha(t(TwoCategoricalRaters), 
method=”ordinal”)
Krippendorff’s alpha

 Subjects = 25
 Raters = 2
 alpha = 0.278
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Note that the function can be applied seamlessly to 
multiple-rater problems:

> kripp.alpha(t(ThreeCategoricalRaters))
Krippendorff’s alpha

 Subjects = 25
 Raters = 3
 alpha = 0.32

> kripp.alpha(t(ThreeCategoricalRaters), 
method=”ordinal”)
Krippendorff’s alpha

 Subjects = 25
 Raters = 3
 alpha = 0.256

10.5.2 Continuous Variables

As previously, we use the same ratings from table 10.1 but 
treat them as continuous variables in this section. We 
create objects containing the first two columns and all 
three columns to illustrate analyses with two and more 
than two raters:

> TwoContinuousRaters

[1,]
[2,]
[3,]
  

[23,]
[24,]
[25,]

Rater1
3
3
2


3
3
2

Rater2
2
1
2


2
3
2

> ThreeContinuousRaters <- cbind(Rater1, 
Rater2,Rater3) 

> ThreeContinuousRaters

[1,]
[2,]
[3,]
  

[23,]
[24,]
[25,]

Rater1
3
3
2


3
3
2

Rater2
2
1
2


2
3
2

Rater3
3
1
2


2
3
3

10.5.2.1 Intercoder Correlation The R program con-
tains a built-in function, cor, that calculates the Pearson 
product-moment correlation:

> cor(Rater1,Rater2)
[1] 0.4520228

> cor(TwoContinuousRaters)

Rater1
Rater2

Rater1
1.0000000
0.4520228

Rater2
0.4520228
1.0000000

With the irr package, it is possible to calculate the 
mean correlation for more than two raters:

> library(irr)
Loading required package: lpSolve

> meancor(ThreeContinuousRaters)
 Mean of bivariate correlations R

 Subjects = 25
 Raters = 3
 R = 0.331

 z = 1.55
 p-value = 0.121

10.5.2.2 Krippendorff’s Alpha Krippendorff’s alpha,  
applied to categorical data with the default nominal level 
of measurement in section 10.5.1.4, may also be applied to 
continuous data by specifying a higher level of measure-
ment. In the current example, the variable now represents a 
ratio level measurement. Once again, the function for 
Krippendorff’s alpha expects the transposition of the data 
matrix.

> library(irr)
Loading required package: lpSolve

> kripp.alpha(t(TwoContinuousRaters), 
method=”ratio”)
 Krippendorff’s alpha

 Subjects = 25
 Raters = 2
 alpha = 0.311

> kripp.alpha(t(ThreeContinuousRaters), 
method=”ratio”)
 Krippendorff’s alpha

 Subjects = 25
 Raters = 3
 alpha = 0.268

10.5.2.3 Intraclass Correlation The irr package also 
provides a function icc to calculate intraclass correlations. 
The function can take various arguments to specify dif-
ferent modes of icc calculation. For the present example 
(and for most applications in the area of coding reliabil-
ity), the default one-way option is correct.
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> library(irr)
Loading required package: lpSolve
> icc(TwoContinuousRaters)
Single Score Intraclass Correlation

 Model: oneway
 Type : consistency

 Subjects = 25
 Raters = 2
 ICC(1) = 0.278

 F-Test, H0: r0 = 0 ; H1: r0 > 0
  F(24,25) = 1.77 , p = 0.0818

 95%-Confidence Interval for ICC Population 
Values:
 –0.118 < ICC < 0.599
> icc(ThreeContinuousRaters)
Single Score Intraclass Correlation

  Model: oneway
  Type : consistency

  Subjects = 25
 Raters = 3
 ICC(1) = 0.265

 F-Test, H0: r0 = 0 ; H1: r0 > 0
  F(24,50) = 2.08 , p = 0.0144

 95%-Confidence Interval for ICC Population 
Values:
0.026 < ICC < 0.53

An alternative to the ANOVA-based estimation from the 
irr package is to use the lme4 package, which can calculate 
variances for an intraclass correlation through a mixed 
model. This has the advantage of being able to handle 
codings with missing values or unbalanced designs.

> library(lme4)
>
> Rater1NA <- c(3,3,2,3,NA,3,2,1,2,2,NA,3,
3,2,1,1,3,2,2,3,2,1,3,NA,2)
> Rater2NA <- c(2,1,NA,2,1,1,2,1,2,1,2,3, 
1,1,NA,1,3,2,2,1,1,1,2,3,2)
> Rater3NA <- c(3,1,2,3,1,3,1,1,NA,3,2,3, 
2,1,1,2,1,2,2,1,2,3,2,3,3)

Instead of combining the ratings into a matrix, this pack-
age expects a data frame in which one column contains 
all ratings and values in adjacent columns represent the 
rater and study corresponding to each value.

> Ratings <- c(Rater1NA,Rater2NA,Rater3NA)
> Study <- c(1:25,1:25,1:25)
> Rater <- c(rep(1,25),rep(2,25),rep(3,25))
> RaterData <- data.frame(Ratings,Study, 
Rater)
> ICCInput <- RaterData[complete.cases 
(RaterData),]
> ICCInput

1
2
3
4


71
72
73
74
75

Ratings
3
3
2
3


2
3
2
3
3

Study
1
2
3
4


21
22
23
24
25

Rater
1
1
1
1


3
3
3
3
3

> ICCOutput <- lmer(data = ICCInput,  
formula = “Ratings ∼ (1 | Study)”)

Once the package estimates the variance components, 
we can calculate the ICC manually.

> StudyVariance <- data.frame(VarCorr 
(ICCOutput))$vcov[1]
> ErrorVariance <- data.frame(VarCorr 
(ICCOutput))$vcov[2]
> ICCValue <- StudyVariance/(StudyVariance+ 
ErrorVariance)
> ICCValue
[1] 0.1794355

10.6. SUGGESTIONS FOR FURTHER RESEARCH

10.6.1  Investigating the Antecedents  
of Coder Reliability

Georg Matt points out that synthesists need to become 
more aware, and take deliberate account, of the multiple 
processes associated with uncertainty in reading, under-
standing, and interpreting research reports (1989). But in 
keeping with the scientific endeavor principle, they also 
need to begin to move beyond observation of these phe-
nomena and toward explanation. For example, further 
research on evaluating coding decisions in meta-analysis 
should look beyond how to assess IRR toward better 
classification and understanding of why coders disagree. 
Evidence from other fields could probably inform some 
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initial hypotheses. Horwitz and Yu conducted detailed 
analyses of errors in the extraction of epidemiological 
data from patient records and suggested a rough taxon-
omy of six error categories (1984). Of the six, four were 
errors in the actual data extraction, and two were errors in 
the interpretation of the extracted data. The two interpre-
tation errors were incorrect interpretation of criteria and 
correct interpretation of criteria, but inconsistent applica-
tion. Note the similarity between these types of errors and 
the types of judgment errors described earlier in regard to 
coding in research synthesis.

When the coder must make judgment calls, the ratio-
nale for each judgment should be documented. In this 
way, we can begin to formulate a general theory of the 
coder judgment process. For complex yet critical vari-
ables like effect size, interim codes should be recorded. 
One code might simply indicate what was reported in the 
original study. A second code might indicate what deci-
sion rule was invoked in further interpretation of the  
data point. A third code—representing the endpoint and 
the variable of interest to the synthesis (effect size, for  
example)—would be the number that results from the 
coder’s application of that interpretation. Coder disagree-
ment on the third code would no longer be a black box, 
but could be readily traced to its source. Coder disagree-
ment could then be broken down to its component parts 
(that is, the errors could be partitioned by source), facili-
tating diagnosis much like a failure analysis in engineer-
ing or computer programming. The detailed documentation 
of coding decision rules could be made for examination and 
reanaly sis by other researchers (much as the list of included 
studies is currently), including any estimation procedures 
used for missing or incomplete data (for an example, see 
Bullock and Svyantek 1985). An understanding of the 
taxonomy of processes associated with coding errors 
could, in principle, identify variables to be experimentally 
manipulated. Theoretical models would then be experi-
mentally investigated, and non-experimental data sub-
jected to modern causal models, leading to informed 
strategies for reducing and controlling error rates.

10.6.2 Assessing Time and Necessity

The coding stage of research synthesis is time consuming 
and tedious, and in many instances additional efforts to 
evaluate coding decisions further lengthen and compli-
cate it. The time and resources of practicing synthesists is 
limited, and they would likely want answers to two ques-

tions before selecting a given strategy: How much time 
will it take? How necessary is it?

The time issue has not been systematically studied. 
Orwin and Cordray included a small time-of-task side 
study and concluded that the marginal cost in time of 
augmenting the task as they did (double codings plus 
confidence ratings) was quite small given the number of 
additions involved and the distinct impact they had on the 
analytic results (1985). In part, this is because though 
double coding a study approximately doubles the time 
required to code it, in an actual synthesis only a sample 
of studies may be double coded. In a synthesis the size of 
Smith, Glass, and Miller’s, the double coding of twenty- 
five representative studies would increase the total number 
of studies coded by only 5 percent. When a particular 
approach to reliability assessment leads to low occur-
rence rates or restricted range on key variables over-
sampling techniques can be used. Research that estimated 
how often oversampling was required would in itself be 
useful. Other possibilities are easy to envision. In short, 
this is an area of considerable practical importance that 
has not been seriously examined to date.

The question of necessity could be studied the same way 
that methodological artifacts of primary research have been 
studied. For example, a handful of syntheses have used 
coder masking techniques, as described earlier. Keeping 
coders unaware of hypotheses or other information is an 
additional complication that adds to the cost of the effort 
and may have unintended side effects. An empirical test of 
the effect of selective masking on research synthesis coding 
would be a useful contribution, as such studies have been in 
primary research, to determine whether the particular arti-
fact that masking is intended to guard against (coder bias) is 
real or imaginary, large or trivial, and so forth. As was the 
case with pretest sensitization and Hawthorne effects in the 
evaluation literature (Shadish, Cook, and Campbell 2002), 
research may show that some suspected artifacts in synthe-
sis coding are only that—perfectly plausible yet not much 
in evidence when subjected to empirical scrutiny. In reality, 
few artifacts will be universally present or absent, but rather 
will interact with the topic area (for example, coder gender 
is more likely to matter when the topic is sex differences 
than when it is acid rain) or with other factors. Research 
could shed more light on these interactions as well. In sum, 
additional efforts to assess both the time and need for spe-
cific methods of evaluating coding decisions could signifi-
cantly help the practicing synthesist make cost-effective 
choices in the synthesis design.
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10.7 NOTES

 1.  Significant reporting deficiencies, and their deleteri-
ous effect on research synthesis, are not confined 
to social research areas (see, for example, synthesis 
work on the effectiveness of coronary artery bypass 
surgery in Wortman and Yeaton 1985).

 2.  For example, Laurel Oliver reported on a colleague 
who attempted to apply a meta-analytic approach to 
research on senior leadership, but gave up after find-
ing that only 10 percent of the eligible studies con-
tained enough data to sustain the synthesis (1987).

 3.  That detailed criteria for decisions fail to eliminate 
coder disagreement should not be surprising, even 
if all known contingencies are incorporated (for an 
analog from coding patient records in epidemiology, 
see Horwitz and Yu 1984).

 4.  Low-inference variables are those for which coding 
is possible based on simple observation with little or 
no need for subjective judgment.

 5.  Specifically, this rule aims to exclude effect sizes 
based on redundant outcome measures. A measure 
was judged to be redundant if it matched another in 
outcome type, reactivity, follow-up time, and magni-
tude of effect.

 6.  The Chalmers review was actually a review of repli-
cate meta-analyses rather than a meta-analysis per se 
(that is, the individual studies were meta-analyses), 
but the principle is equally applicable to meta-analysis 
proper (1987).

 7.  Here, and elsewhere in the chapter, we rely on meta- 
analytic work in the most recent complete year of 
Psychological Bulletin as a barometer of current 
practice.

 8.  Such improvement is quite plausible. For example, 
Orwin finds that measures of reporting quality were 
positively correlated with publication date in the 1980 
Smith, Glass, and Miller psychotherapy data (1983).

 9.  There is nothing anomalous about the present coders’ 
relative lack of agreement on internal validity; lack 
of consensus on ratings of research quality is com-
monplace (for an example within meta-analysis, see 
Stock et al. 1982).

10.  This desirable characteristic has led some writers 
(for example, Hartmann 1977) to advocate extend-
ing the use of r, in the form of the phi coefficient (f ), 
to reliability estimation of dichotomous items: f  = 
(BC − AD)/((A +B)(C + D)(A + C)(B + D))1/2, where 

A, B, C, and D represent the frequencies in the first 
through fourth quadrants of the resulting 2 × 2 table.

11.  This phenomenon is easily demonstrated with the 
illustrative data; the details are left to the reader as an 
exercise.

12.  The general forms of the equations are

r
BMS WMS

BMS k WMS

r
BMS EMS

BMS k EMS k CMS EMS n

r
BMS EMS

BMS k EMS

design 1
1

,

design 2
1

,

design 3
1

,

I

I

I

( )

( )

( )

( )

( ) ( )

( )

= −
+ −

= −
+ − + −

= −
+ −

where k is the number of coders rating each study 
and n is the number of studies.

13.  rI is closely related to the coefficient of generaliz-
ability and index of dependability used in G theory 
(Shavelson and Webb 1991).

14.  Training and piloting were completed before the rater 
drift assessment began, to avoid picking up obvious 
training effects.

15.  The term case is used rather than study because a 
study can have multiple cases (one for each effect 
size). The term observation refers to the value 
assigned to a particular variable within a case.

16.  Chapter 10 shows how the state of the art has evolved 
(see also U.S. General Accounting Office 1989, 
appendix II).
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11.1 INTRODUCTION

In any meta-analysis, we start with summary data from 
each study and use this summary data to compute an effect 
size for that study. An effect size is a number that reflects 
the magnitude of the relationship between two variables. 
For example, if a study reports the mean and standard 
deviation for the treated and control groups, we might com-
pute the standardized mean difference between groups. 
Or, if a study reports the number of events and non-
events in two groups, we might compute an odds ratio. It 
is these effect sizes that serve as the unit of currency in the 
meta-analysis.

Consider figure 11.1, the forest plot of a fictional 
meta-analysis to assess the impact of an intervention. In 
this plot each study is represented by a square, bounded 
on either side by a confidence interval. The location of 

each square on the horizontal axis represents the effect 
size for that study. The confidence interval represents the 
precision with which the effect size has been estimated, 
and the size of each square is proportional to the weight 
that will be assigned to the study when computing the 
combined effect. This figure also functions as the outline 
for this chapter, in which we discuss what these items 
mean and how they are computed.

11.1.1 Effect Sizes and Treatment Effects

Meta-analyses in medicine often refer to the effect size 
as a treatment effect, a term sometimes assumed to refer 
to odds ratios, risk ratios, or risk differences, which are 
common in meta-analyses that deal with medical inter-
ventions. Similarly, meta-analyses in the social sciences 
often refer to the effect size simply as an effect size, 
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which is sometimes assumed to refer to standardized 
mean differences or to correlations, which are common 
in social science meta-analyses.

In fact, though, both terms can refer to any of these indi-
ces, and the distinction between these terms lies not in the 
index itself but rather in the nature of the study. Effect size 
is appropriate when the index is used to quantify the rela-
tionship between any two variables or a difference between 
any two groups. By contrast, treatment effect is appropri-
ate only for an index used to quantify the impact of a delib-
erate intervention. Thus, the difference between males and 
females could be called an effect size only, while the dif-
ference between treated and control groups could be called 
either an effect size or a treatment effect. The classification 
of an index as an effect size or a treatment effect has no 
bearing on the computations, however.

Four major considerations should drive the choice of an 
effect-size index. The first is that the effect sizes from the 
different studies should be comparable to one another in 
the sense that they measure (at least approximately) the 
same thing. That is, the effect size should not depend on 
aspects of study design that may vary from study to study 
(such as sample size or whether covariates are used). The 

second is that the effect size should be substantively inter-
pretable. This means that researchers in the substantive 
area of the work represented in the synthesis should find 
the effect size meaningful. The third is that estimates 
of the effect size should be computable from the infor-
mation that is likely to be reported in published research 
reports. That is, it should not require the reanalysis of 
the raw data. The fourth is that the effect size should 
have good technical properties. For example, its sampling 
distribution should be known so that variances and confi-
dence intervals can be computed.

11.1.2 Effect Sizes Rather than p-Values

Reports of primary research typically include the p-value 
corresponding to a test of significance. This p-value 
reflects the likelihood that the sample would have yielded 
the observed effect, or one more extreme, if the null 
hypothesis was true.

Researchers often use the p-value as a surrogate for 
the effect size, with a significant p-value taken to imply 
a large effect and a nonsignificant p-value taken to imply 
a trivial effect. In fact, however, while the p-value is 
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partly a function of effect size, it is also partly a function 
of sample size. A p-value of 0.01 could reflect a large 
effect but could also reflect a trivial effect in a large sample. 
Conversely, a p-value of 0.20 could reflect a trivial effect 
but could also reflect a large effect in a small sample. In 
figure 11.1, for example, study A has a p-value of 0.12 
and study B has a p-value of 0.01, but it is study A that 
has the larger effect size (0.40 versus 0.20) (see, for 
example Borenstein 1994, 1997, 2000).

In primary studies, we can avoid this kind of confusion 
by reporting the effect size and the precision separately. 
The former gives us a pure estimate of the effect in the 
sample, and the latter gives us a range for the effect in the 
population. Similarly, in a meta-analysis, we need to work 
with a pure measure of the effect size from each primary 
study to determine if the effects are consistent, and to 
compute a combined estimate of the effect across studies. 
Here, the precision of each effect is used to assign a weight 
to that effect in these analyses.

11.1.3  Effect-Size Parameters and Sample 
Estimates of Effect Sizes

Throughout this chapter, we make the distinction between 
an underlying effect-size parameter (denoted here by the 
Greek letter λ) and the sample estimate of that parameter 
(denoted here by T).

If a study had an infinitely large sample size, it would 
yield an effect size T that was identical to the population 
parameter λ. In fact, though, sample sizes are finite and so 
the effect-size estimate T always differs from λ by some 
amount. The value of T will vary from sample to sample, 
and the distribution of these values is the sampling distri-
bution of T. Statistical theory allows us to compute the 
variance of the effect-size estimates.

11.1.4 Variance of Effect-Size Estimates

A dominant factor in the variance of T is the sample size, 
larger studies having a smaller variance and yielding a 
more precise estimate of the effect-size parameter. The 
use of a matched design or the inclusion of a covariate to 
reduce the error term will usually lead to a lower variance 
and more precise estimate. Additionally, the variance of 
any given effect size is affected by specific factors that 
vary from one effect size index to the next.

Most effect-size estimates used in meta-analysis are 
approximately normally distributed with mean λ. Thus 
the sampling distribution of an effect-size estimate T is 

determined by the standard error or the variance (which 
is simply the square of the standard error).

When our focus is on the effect size for a single study, 
we generally work with the standard error of the effect 
size, which in turn may be used to compute confidence 
intervals about the effect size. In figure 11.1, for example, 
study E has four times the sample size of study C  
(400 versus 100). Its standard error (the square root of 
the variance) is therefore half as large (0.10 versus 0.20) 
and its confidence interval half as wide as that of study C. 
(In this example, all other factors that could affect the 
precision were held constant).

By contrast, in a meta-analysis we work primarily with 
the variance rather than the standard error. In a fixed- 
effect analysis, for example, we weight by the inverse 
variance, or 1/V. In figure 11.1, study E has four times 
the sample size of study C (400 versus 100) and its vari-
ance is therefore one-fourth as large (0.01 versus 0.04). 
The square representing study E has four times the area as 
the one for study C, reflecting the fact that it will be 
assigned four times as much weight in the analysis.

11.1.5  Effect-Size Estimates from  
Reported Information

When researchers have access to a full set of summary 
data such as means, standard deviations, and sample size 
for each group, the computation of the effect size and its 
variance is relatively straightforward. In practice, how-
ever, researchers will often find themselves working with 
only partial data. For example, a paper may publish only 
the p-value and sample size from a test of significance, 
leaving it to the meta-analyst to back-compute the effect 
size and variance. For this reason, each of the following 
sections includes a table that shows how to compute the 
effect size and variance from some of the more common 
reporting formats. For additional information on comput-
ing effect sizes from partial information, see the section 
on resources at the end of this chapter.

11.2  EFFECT SIZES FOR A COMPARISON  
OF MEANS

Suppose that we want to compare the mean for two pop-
ulations, or for one population at two points in time. 
Two options for an effect size are the raw mean differ-
ence and the standardized mean difference. We intro-
duce each of these indices and then discuss how to 
choose between them.
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11.2.1 Raw (Unstandardized) Mean Difference D

Let µ1 and µ2 be the population means of two groups (or 
of one group at two points in time). The population mean 
difference is defined as

. (11.1)1 2µ µ∆ = −

Whereas the effect size D is the true (population) value 
(the effect size parameter), any study yields an effect-size 
estimate D that is based on the observed means and is an 
estimate of the true effect size. Note that we use uppercase D 
for the estimate of the raw mean difference, whereas we 
will use lowercase d for the estimate of the standardized 
mean difference (below). Here, we show how to compute D 
from studies that use two independent groups, and from 
studies that use matched groups or a pre-post design.

11.2.1.1 Computing D, Independent Groups Let 
Y
–

1 and Y
–

2 be the sample means of the two independent 
groups. Then D is the sample mean difference, namely

D Y Y . (11.2)1 2= −

Let S1 and S2 be the sample standard deviations of the 
two groups, and n1 and n2 be the sample size in the two 
groups. If we assume that the two population standard 
deviations are the same (as is assumed in most parametric 
data analysis techniques), so that s1 = s2 = s, then the 
estimate of the variance of D is

V
n n

n n
S , (11.3)D Pooled

1 2

1 2

2= +

where

S
n S n S

n n

1 1

2
. (11.4)Pooled
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If we don’t assume that the two population standard devi-
ations are the same, then the estimate of the variance of D is

V
S

n

S

n
. (11.5)D

1
2

1

2
2

2

= +

In either case, the standard error of D is then the square 
root of VD,

=SE V . (11.6)D D

For example, suppose that a study has sample means  
Y1 = 103, Y2 = 100, sample standard deviations S1 = 5.5,  
S2 = 4.5, and sample sizes n1 = n2 = 50. The raw mean 
difference D is

= − =D 103 100 3.000.

If we assume that ν2
1 = ν2

2, then the pooled standard 
deviation within groups is

( ) ( )
= − × + − ×

+ −
=

S
50 1 5.5 50 1 4.5

50 50 2

5.0249,

Within

2 2

with the variance and standard error of D given by

= +
×

× =V
50 50

50 50
5.0249 1.0100D

2

and

= =SE 1.0100 1.0050.D

If we do not assume that ν2
1 = ν2

2, then the variance and 
standard error of D are given by

= + =V
5.5

50

4.5

50
1.0100D

2 2

and

= =SE 1.0100 1.0050.D

In this example, both formulas yield the same result because 
n1 = n2.

11.2.1.2 Computing D, Matched Groups or Pre-
Post Scores Let Y

–
1 and Y

–
2 be the sample means of two 

matched groups. Then D is the sample mean difference, 
namely,

D Y Y . (11.7)1 2= −

Let S1 and S2 be the sample standard deviations of the 
two groups, and n be the number of matched pairs. The 
standard deviation of the paired differences is given by

= + − × × ×S S S r S S2 , (11.8)Difference 1
2

2
2

1 2
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where r is the correlation between “siblings” in matched 
pairs. As r moves toward 1.0, the standard error of the 
difference will decrease.

If S1 = S2 then (11.8) simplifies to

S S r2 1 . (11.9)Difference Pooled
2 ( )= × −

In either case, the variance of D is computed as

V
S

n
, (11.10)D

Difference
2

=

and the standard error is then

=SE V . (11.11)D D

For example, suppose that a study has sample means  
Y1 = 105, Y2 = 100, sample standard deviations S1 = 10,  
S2 = 10, and sample sizes = 50 pairs of scores. The cor-
relation between the two sets of scores is 0.50. The raw 
mean difference D is

= − =D 105 100 5.000.

The variance and standard error of D are given by

= =V
10

50
2.000D

2

and

= =SE 2 1.4142.D

In the calculation of VD, SDifference is computed using

S 10 10 2 0.50 10 10 10, (11.12)Difference
2 2= + − × × × =

or

S 2 10 1 0.50 10. (11.13)Difference
2 ( )= × − =

The formulas for matched designs apply to pre-post 
designs as well. The pre- and post-means correspond to 
the group means in the matched groups, n is the number 
of subjects, and r is the correlation between pre-scores 
and post-scores.

11.2.2  STANDARDIZED MEAN DIFFERENCE d  
AND g

Let µ1 and s1 be the mean and standard deviation of one 
population, and let µ2 and s2 be the mean and standard 
deviation of a second population. If the two population 
standard deviations are the same (as is assumed in most 
parametric data analysis techniques), so that s1 = s2 = s, 
then the population standardized mean difference (the 
standardized mean difference parameter) is defined as

. (11.14)1 2δ µ µ
σ

= −

Whereas the effect-size d is the true or population 
value, any study yields an effect size that is an estimate of 
the true effect size. We present two versions of this esti-
mate, d and Hedges’ g. Both are intended to estimate d, 
but the estimate called d has a bias, and tends to exagger-
ate the absolute value of d. The estimate called Hedges’ g 
removes most of this bias. Note that we use lowercase d 
for the standardized mean difference, whereas we used 
uppercase D for the raw mean difference.

Here, we show how to compute d and g from studies 
that use two independent groups, from studies that use 
matched groups or a pre-post design, and from studies 
that employed analysis of covariance.

11.2.2.1 Computing d and g, Independent Groups  
We can estimate the standardized mean difference (d ) 
from studies that use two independent groups as

d
Y Y

S
. (11.15)

Within

1 2= −

In the numerator, Y
–

1 and Y
–

2 are the sample means in the 
two groups. In the denominator, SWithin is the within-groups 
standard deviation, pooled across groups,

S
n S n S

n n

1 1

2
, (11.16)Within

1 1
2

2 2
2

1 2

( ) ( )= − + −
+ −

where n1, n2 are the sample size in the two groups, and 
S1, S2 are the standard deviations in the two groups.  
The reason we pool the two sample estimates of the 
standard deviation is that even if we assume that the under-
lying population standard deviations are the same (that is 
s1 = s2 = s), it is unlikely that the sample estimates S1 
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and S2 will be identical. By pooling the two estimates of 
the standard deviation, we obtain a more precise esti-
mate of their common value.

The variance of d is given (to a very good approxima-
tion) by

( )
= + +

+
V

n n

n n

d

n n2
. (11.17)d

1 2

1 2

2

1 2

In this equation, the first term on the right expresses  
the contribution to the overall uncertainty of d due to the 
uncertainty in the estimate of the mean difference, the 
numerator in (11.15), and the second expresses contribu-
tion of the uncertainty in the estimate of SWithin, the 
denominator in (11.15).

The standard error of d is the square root of Vd,

SE V . (11.18)d d=

It turns out that d has a slight bias, tending to overesti-
mate the absolute value of d in small samples. If we mul-
tiply d by a correction factor, we get an unbiased estimate, 
called Hedges’ g. The correction factor (J) depends on 
the degrees of freedom. Concretely,

J df
df

1
3

4 1
. (11.19)( ) = −

−

In this expression, df is the degrees of freedom used to 
estimate SWithin, which for two independent groups is n1 + 
n2 − 2. Then,

g J df d , (11.20)( )=

V J df V (11.21)g d
2[ ]( )=

and

SE V . (11.22)g g=

For example, suppose a study has sample means  
Y1 = 103, Y2 = 100, sample standard deviations S1 = 5.5, 
S2 = 4.5, and sample sizes n1 = n2 = 50. We would esti-
mate the pooled-within-groups standard deviation as

( ) ( )
= − × + − ×

+ −
=S

50 1 5.5 50 1 4.5

50 50 2
5.0249.Within

2 2

Then,

= − =d
103 100

5.0249
0.5970,

( )
= +

×
+

+
=V

50 50

50 50

0.5970

2 50 50
0.0418,d

2

and

= =SE 0.0418 0.2045.d

The correction factor J, Hedges’ g, its variance and 
standard error are given by

( )+ − = −
× −





 =J 50 50 2 1

3

4 98 1
0.9923,

= × =g 0.9923 0.5970 0.5924,

= × =V 0.9923 0.0418 0.0412,g
2

and

= =SE 0.0412 .2030.g

The correction factor J is always less than 1.0, and so 
g will always be less than d in absolute value, and the 
variance of g will always be less than the variance of d. 
However, J will be very close to 1.0 unless the degrees of 
freedom are very low (say, less than 10) and so (as in this 
example) the difference is usually trivial.

Some slightly different expressions for the variance of d 
(and g) have been given by different authors and even by 
the same authors at different times. For example, the 
denominator of the second term of the variance of d is 
given here as 2(n1 + n2). This expression is obtained by 
one method (assuming the n’s become large with d fixed). 
An alternate derivation (assuming n’s become large with 

δn  fixed) leads to a denominator in the second term that 
is slightly different, namely 2(n1 + n2 –2). Unless n1 and 
n2 are very small, these expressions will be almost identi-
cal. Similarly, the expression given here for the variance 
of g is J2 times the variance of d, but many authors ignore 
the J2 term because it is so close to unity in most cases. 
Again, although it is preferable to include this correction 
factor, including this factor is likely to make little practi-
cal difference.
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Table 11.1 provides formulas for computing d and its 
variance for independent groups, working from informa-
tion that may be reported in a published paper.

11.2.2.2 Computing d and g, Pre-Post Scores or 
Matched Groups We can estimate the standardized 
mean difference (d ) from studies that used matched 
groups or pre-post scores in one group. We compute d 
using

d
Y Y

S
. (11.23)

Within

1 2= −

This is the same formula as for independent groups 
(11.15). If the study reports SPre and SPost then we can esti-
mate SWithin using

S
S S

2
. (11.24)Within

Pre Post
2 2

= +

However, some studies will not report SPre and SPost. 
Rather, they will report the standard deviation of the dif-
ference, SDifference. In this case we can impute SWithin using

S
S

r2 1
, (11.25)Within

Difference

( )
=

−

where r is the correlation between pairs of observations 
(for example, the correlation between pretest and posttest). 
Then we can apply (11.15) to compute d. The variance 
of d is given by

V
n

d

n
r

1

2
2 1 , (11.26)d

2

( )= +



 −

where n is the number of pairs. The standard error of d is 
just the square root of Vd,

SE V . (11.27)d d=

Table 11.1 Computing d, Independent Groups

Reported Computation of Needed Quantities

Y
–

1, Y
–

2 SPooled, n1, n2 ( )
=

−
=

+
+

+
d

Y Y

S
v

n n

n n

d

n n
,

2Pooled

1 2 1 2

1 2

2

1 2

t, n1, n2 ( )
=

+
=

+
+

+
d t

n n

n n
v

n n

n n

d

n n
,

2
1 2

1 2

1 2

1 2

2

1 2

F, n1, n2

( )
( )

= ±
+

=
+

+
+

d
F n n

n n
v

n n

n n

d

n n
,

2
1 2

1 2

1 2

1 2

2

1 2

p(one-tailed), n1, n2 ( )
( )

= ±
+

=
+

+
+

−d t p
n n

n n
v

n n

n n

d

n n
,

2
1 1 2

1 2

1 2

1 2

2

1 2

p(two-tailed), n1, n2 ( ) ( )
= ±

+
=

+
+

+
−d t

p n n

n n
v

n n

n n

d

n n2
,

2
1 1 2

1 2

1 2

1 2

2

1 2

source: Authors’ tabulation.
note: The function t–1(p) is the inverse of the cumulative distribution function of  
Student’s t with n1 + n2 – 2 degrees of freedom. Many computer programs and 
spreadsheets provide functions that can be used to compute t − 1. Assume n1 = n2 = 
10, so that df = 18. Then, in Excel, for example, if the reported p-value is 0.05  
(two-tailed) TINV(p,df) = TINV(0.05,18) will return the required value (2.1009). If 
the reported p-value is 0.05 (one-tailed), TINV(2p,df) = TINV(0.10,18) will return 
the required value 1.7341. The F in row 3 is the F-statistic from a one-way analysis 
of variance. In rows 3 through 5, the sign of d must reflect the direction of the mean 
difference.
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Because the correlation between pretest and posttest 
scores is required to impute the standard deviation 
within groups from the standard deviation of the differ-
ence, we must assume that this correlation is known  
or can be estimated with high precision. Often, the 
researcher will need to use data from other sources to 
estimate this correlation. If the correlation is not known 
precisely, one could work with a range of plausible cor-
relations, and use a sensitivity analysis to see how these 
affect the results.

To compute Hedges’ g and associated statistics we 
would use formulas (11.23) through (11.27). The degrees 
of freedom for computing J is n−1, where n is the number 
of pairs.

For example, suppose that a study has pretest and 
posttest sample means Y1 = 103, Y2 = 100, sample stan-
dard deviation of the difference SDifference = 5.5, and sample 
size n = 50 and a correlation between pretest and posttest 
of r = 0.70.

The standard deviation within groups is imputed from 
the standard deviation of the difference by

( )
=

−
=S

5.5

2 1 0.7
7.1000.Within

Then d, its variance and standard error are computed as

= − =d
103 100

7.1000
0.4225,

( )( )= +
×





 − =v

1

50

0.4225

2 50
2 1 0.7 0.0131,d

2

and

= =SE 0.0131 .1145.d

The correction factor J, Hedges’ g, its variance and 
standard error are given by

( )− = −
× −





 =J n 1 1

3

4 49 1
0.9846,

= × =g 0.9846 0.4225 0.4160,

V 0.9846 0.0131 0.0127,g
2= × =

and

= =SE 0.0127 0.1127.g

Table 11.2 provides formulas for computing d and its 
variance for matched groups, working from information 
that may be reported in a published paper.

11.2.2.3 Computing d and g, Analysis of Covari-
ance We can estimate the standardized mean difference 
(d) from studies that used analysis of covariance. The for-
mulas for the sample estimate of d is

d
Y Y

S
. (11.28)

Adjusted Adjusted

Within

1 2= −

This is similar to the formula for independent groups 
(11.15), but with two differences. The first difference is in 
the numerator, where we use adjusted means rather than 
raw means. This has no impact on the expected value of 
the mean difference but increases precision and possibly 
removes bias due to pretest differences.

The second is in the mechanism used to compute SWithin. 
When we were working with independent groups the  
natural unit of deviation was the unadjusted standard 
deviation within groups. Therefore, this value is typically 
reported or easily imputed. By contrast, the test statistics 
used in the analysis of covariance involve the adjusted 
standard deviation (typically smaller than the unadjusted 
value since variance explained by covariates has been 
removed). Therefore, to compute d from this kind of 
study, we need to impute the unadjusted standard devia-
tion within groups. We can do this using

S
S

R1
, (11.29)Within

Adjusted

2
=

−

where SAdjusted is the covariate-adjusted standard deviation 
and R is the covariate outcome correlation (or multiple 
correlation if there is more than one covariate). Note the 
similarity to (11.25) which we used to impute SWithin from 
SDifference in matched studies. Equivalently, SWithin may be 
computed as

S
MSW

R1
, (11.30)Within

Adjusted
2=

−

where MSWAdjusted is the covariate-adjusted mean square 
within treatment groups.
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The variance of d is given by

V
n n R

n n

d

n n

1

2
, (11.31)d

1 2
2

1 2

2

1 2

( )( )
( )

= + − +
+

where n1 and n2 are the sample size in each group, and R 
is the multiple correlation between the covariates and the 
outcome.

To compute Hedges’ g and associated statistics we 
would use formulas (11.19) through (11.22). The degrees 
of freedom for computing J is n1 + n2 – 2 – q, where n1 
and n2 are the number of subjects in each group, 2 is the 
number of groups, and q is the number of covariates. For 
example, suppose that a study has sample means Y1 = 103, 
Y2 = 100, sample standard deviations SAdjusted = 5.5, and 
sample sizes n1 = n2 = 50. Suppose that we know that the 
covariate outcome correlation for the single covariate 
(so that q = 1) is R = 0.70.

The unadjusted standard deviation within groups is 
imputed from SAdjusted by

=
−

=S
S

1 0.7
7.7015.Within

Adjusted

2

Then d, its variance and standard error are computed as

= − =d
103 100

7.7015
0.3895,

( )( )
( )

= + −
×

+
+ − −

=V
50 50 1 0.7

50 50

0.3895

2 50 50 2 1
0.0222,d

2 2

and

= =SE 0.0222 .1490.d

The correction factor J, Hedges’ g, its variance and 
standard error are given by

( )+ − − = −
× −





 =J 50 50 2 1 1

3

4 97 1
0.9922,

Table 11.2 Computing d, Matched Groups

Reported Computation of Needed Quantities

Y
–

1, Y
–

2 SDifference, r, n (number of pairs) ( ) ( )=
−





− = +



 −d

Y Y

S
r v

n

d

n
r2 1 ,

1

2
2 1

Difference

1 2
2

t (from paired t-test), r, n
( )

( )=
−

= +



 −d t

r

n
v

n

d

n
r

2 1
,

1

2
2 1

2

F (from repeated measures ANOVA), r, n
( )

( )= ±
−

= +



 −d

F r

n
v

n

d

n
r

2 1
,

1

2
2 1

2

p (one-tailed), r, n ( )
( )

( )= ±
−

= +



 −−d t p

r

n
v

n

d

n
r

2 1
,

1

2
2 11

2

p (two-tailed), r, n ( ) ( )
( )= ±

−
= +



 −−d t

p r

n
v

n

d

n
r

2

2 1
,

1

2
2 11

2

source: Authors’ tabulation.
note: The function t–1(p) is the inverse of the cumulative distribution function of Student’s t with n − 1 degrees of 
freedom. Many computer programs and spreadsheets provide functions that can be used to compute t–1. Assume  
n = 19, so that df = 18. Then, in Excel, for example, if the reported p-value is 0.05 (2-tailed),  
TINV(p,df) = TINV(0.05,18) will return the required value (2.1009). If the reported p-value is 0.05 (1-tailed), 
TINV(2p,df) = TINV(0.10,18) will return the required value 1.7341. The F in row 3 of the table is the F-statistic from 
a one-way repeated measures analysis of variance. In rows 3 through 5, the sign of d must reflect the direction of 
the mean difference.



EFFECT SIZES FOR META-ANALYSIS   217

= × =g 0.9922 0.3895 0.3834,

= × =V 0.9922 0.0222 0.0219,g
2

and

= =S 0.0219 .1480.g

Table 11.3 provides formulas for computing d and its 
variance for analysis of covariance, working from infor-
mation that may be reported in a published paper.

11.2.3 Direction of the Effect

The discussion that follows applies to all the effect-size 
indices in this section—that is, D, d, and g.

The direction of the effect (for example, group 1 versus 
group 2 or group 2 versus group 1) is arbitrary, except 
that it must be consistent from one study to the next. That 
is, if a mean difference above 0 in study A indicates that 
group 1 did better, then a mean difference above 0 in 

studies B, C, . . . must also indicate that group 1 did bet-
ter. Although the direction is arbitrary, several useful con-
ventions make it easier to interpret the results.

When we are comparing treated versus control, it is 
conventional to compute the difference as treatment 
minus control. For a pre- or post-design this would be 
post minus pre. When we follow this convention, the 
direction of the effect will be as follows: if the treatment 
increases the mean score, the mean difference will be 
positive; if the treatment decreases the mean score, the 
mean difference will be negative.

As a general rule, it is a good idea to follow this con-
vention because the results will follow the usual pattern. 
For example, if the treatment is intended to boost scores, 
we expect to see the mean difference to right of zero. 
Similarly, if the treatment is intended to lower scores, we 
expect to see the mean difference to the left of zero.

Although the convention is therefore useful, it is arbi-
trary. If we chose to reverse the position of the two 
groups, the effect-size format would change but the sub-
stantive meaning would remain the same. Concretely, the 

Table 11.3 Computing d, Independent Groups Using ANCOVA

Reported Computation of Needed Quantities

Y
–

1, Y
–

2 SPooled, n1, n2, R, q =
−

d
Y Y

S
,

Adjusted Adjusted

Pooled

1 2 ( )( )
( )

=
+ −

+
+

v
n n R

n n

d

n n

1

2
1 2

2

1 2

2

1 2

t (from ANCOVA), n1, n2, R, q
( )( )

( )
=

+
− =

+ −
+

+
d t

n n

n n
R v

n n R

n n

d

n n
1 ,

1

2
1 2

1 2

2 1 2
2

1 2

2

1 2

F (from ANCOVA), n1, n2, R, q
( )( ) ( )

( )
= ±

+
− =

+ −
+

+
d

F n n

n n
R v

n n R

n n

d

n n
1 ,

1

2
1 2

1 2

2 1 2
2

1 2

2

1 2

p (1-tailed, from ANCOVA), n1, n2, R, q
( )

( ) ( )
( )

= ±
+

− =
+ −

+
+

−d t p
n n

n n
R v

n n R

n n

d

n n
1 ,

1

2
1 1 2

1 2

2 1 2
2

1 2

2

1 2

p (2-tailed, from ANCOVA), n1, n2, R, q ( ) ( )( )
( )

= ±
+

− =
+ −

+
+

−d t
p n n

n n
R v

n n R

n n

d

n n2
1 ,

1

2
1 1 2

1 2

2 1 2
2

1 2

2

1 2

source: Authors’ tabulation.
note: The function t–1(p) is the inverse of the cumulative distribution function of Student’s t with n1 + n2 – 2 – q degrees of freedom, 
q is the number of covariates, and R is the covariate outcome correlation or multiple correlation. Many computer programs and 
spreadsheets provide functions that can be used to compute t–1. Assume n1 = n2 = 11, and q = 2, so that df = 18. Then, in Excel, for 
example, if the reported p-value is 0.05 (2-tailed), TINV(p,df) = TINV(0.05,18) will return the required value (2.1009). If the 
reported p-value is 0.05 (1-tailed), TINV(2p,df ) = TINV(0.10,18) will return the required value 1.7341. The F in row 3 of the table 
is the F-statistic from a one-way analysis of covariance. In rows 3 through 5, the sign of d must reflect the direction of the mean 
difference.
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three effects sizes would be modified as follows. If we 
switched the position of the two groups, the new raw 
mean difference would be

D D , (11.32)New Old= −

the standardized mean difference would be

d d , (11.33)New Old= −

and Hedges’ g would be

g g . (11.34)New Old= −

That the decision to put one group or the other first is 
arbitrary, is especially important when we are compar-
ing two active treatments, rather than a treatment and a 
control. If some studies compute A minus B and others 
compute B minus A, we need to ensure that all the 
results are in the same direction before we enter them 
into the meta-analysis. We could apply formulas (11.32) 
to (11.34) to the effect size and confidence interval as 
needed, to reverse the direction of the effect for any 
given study.

11.2.4 Choosing an Index

If all studies employed the same scale to measure out-
come, we have the option of using either the raw mean 
difference D or the standardized mean difference d (or g). 
If some studies used one scale but other studies used an 

alternate scale, then we must use the standardized mean 
difference.

Consider the fictional example displayed in table 11.4. 
These studies compare the level of pain reported by 
patients who have been randomized to either treatment or 
control conditions. The first four studies assess pain on a 
scale that ranges from 0 to 100 with a standard deviation 
of 20 points. The next four assess pain on a scale that 
ranges from 0 to 10 with a standard deviation of 2 points. 
Columns show the raw mean difference (D), the stan-
dardized mean difference (d), and the standardized mean 
difference (g) for each study.

The treatment’s impact is identical in all eight studies. 
For the first set of studies, the mean difference is consis-
tently 10 points; for the second set, it is consistently  
1 point.

If we were to run an analysis using only the first four 
studies, we could use either the raw mean difference or the 
standardized mean difference. Similarly, if we were to run 
an analysis using only the last four studies, we could use 
either the raw mean or the standardized mean difference.

However, if we wanted to run an analysis that includes 
all eight studies, we could not use the raw mean difference 
because doing so would make it appear as if the effect size 
were ten times larger in some studies than others. Rather, 
we would use the standardized mean difference, which 
reports the effect size in standard deviations. In the first set 
of studies, the standard deviation is 20, so a difference of 
10 points is 0.50 standard deviations. In the second set, 
the standard deviation is 2, so a difference of 1 point is 
0.50 standard deviations. If we use these values in the 

Table 11.4 Fictional Studies: Computing D, d, and g

Study
Mean 

(Treated)
Mean 

(Control) S1 = S2 n1 = n2

Mean 
Difference (D)

Standardized 
Mean 

Difference (d)

Standardized 
Mean 

Difference (g)

1 40 50 20 20 –10 –0.500 –0.490
2 40 50 20 20 –10 –0.500 –0.490
3 40 50 20 20 –10 –0.500 –0.490
4 40 50 20 20 –10 –0.500 –0.490
5 4 5 2 20 –1 –0.500 –0.490
6 4 5 2 20 –1 –0.500 –0.490
7 4 5 2 20 –1 –0.500 –0.490
8 4 5 2 20 –1 –0.500 –0.490

source: Authors’ tabulation.
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analysis, the effect size for all the studies is the same. In 
any set of real studies, of course, the effect size will vary—
but that will be due to real differences in the effects and to 
sampling error rather than to the use of different scales.

As before, if all studies use the same scale, we have 
the option of using either the raw mean difference or the 
standardized mean difference. In that case, we should 
choose the more intuitive scale. If the scale is based on a 
physical measurement (such as blood pressure) or is 
used widely (such as a national test for student achieve-
ment), the raw scale will generally be more intuitive. By 
contrast, if the test is less well known, then the standard-
ized mean difference will generally be more intuitive. In 
some fields (such as education research) the standard-
ized mean difference is ubiquitous, and will often be the 
first choice.

To this point, we have focused on choosing between the 
raw mean difference and the standardized mean differ-
ence. If we select the latter, we still need to choose 
between d and g. These are both estimating the same 
value: one (d) tends to overestimate that value (to push it 
further from zero) and the other (g) removes most of this 
bias. Therefore, if we have the option to use either, g is 
generally the better choice. However, we can only com-
pute g if we know the sample size in each group, and thus 
in some cases that is not an option. As a practical matter, 
unless the sample size is less than 10, the difference 
between d and g is usually trivial. In table 11.4, where the 
sample size is 20 per group, the correct estimate (g) is 
0.49, but the biased estimate (d) is 0.50.

11.2.5  Understanding Raw Mean Difference  
and Standardized Mean Difference

The effect size index D is an intuitive index—it’s simply 
the difference between two means. As such, researchers 
and consumers tend to be comfortable with this index. We 
understand how to interpret a difference in means, and if 
the difference is on a meaningful scale (which it should 
be) we understand the substantive implication of the dif-
ference. If we are told that an intervention increases the 
mean score on a national math test by 50 points, we under-
stand what that means for the students.

The standardized mean difference is also an intuitive 
index, once we become familiar with it. It is also the dif-
ference between two means—except that this time, it is on 
a standardized scale (Hedges and Olkin 1985). The example 
is a case in point. In the first set of studies, the treatment 
bumped up the score by 0.50 standard deviations. In the 

second set, the treatment bumped up the score by 0.50 
standard deviations. Because the standardized mean dif-
ference is based on the standard deviation, we can map the 
results to any other scale. In our example, the standard-
ized mean difference is 0.50 standard deviations.  
If we normally use a scale with a standard deviation of  
20 points, this corresponds to a difference of 10 points.

A key advantage of the standardized mean difference 
is the fact that it is widely used, and not tied to any 
scale. This allows us to view the results of our interven-
tion in the context of other interventions. For example, 
if we are working in a field where most effects fall in the 
range of 0.20 to 0.80, we know immediately what it 
means if our intervention yields an effect size of (for 
example) 0.50 or 0.90.

Various researchers have suggested other ways to think 
of the standardized mean difference. Hedges and Olkin 
explain that this index reflects the extent to which the two 
groups represent distinct clusters, even if the scales do not 
measure precisely the same thing (1985). Cohen shows 
several ways that we can translate the standardized 
mean difference into the amount of overlap or nonoverlap 
between the groups (1969, 1977). Various scholars explore 
similar ideas (see Borenstein 2019; Glass, McGaw, and 
Smith 1981; Glass 1976; Hedges and Olkin 1985, 2016). 
Jeffrey Valentine and Ariel Aloe suggest that we can use 
the standardized mean difference to predict the number 
needed to treat (2016). Larry Hedges and Ingram Olkin 
(1985) and Robert Grissom and John Kim (2012) show 
how to compute d for non-normal distributions or from 
nonparametric data. Elsewhere, we also show how to 
compute d from an array of study designs.

We need now to highlight a few issues that may not be 
obvious. We define the standardized mean as

δ µ µ
σ

= −
,1 2

which is estimated using

= −
d

Y Y

S
.

Within

1 2

In these formulas, we standardize by the standard devi-
ation within groups. When a study reports a different 
standard deviation (such as the standard deviation of the 
difference, or the standard deviation adjusted for covari-
ates) we do not use that standard deviation in the formula. 
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Rather, we impute the standard deviation within groups, 
using either equation (11.25) or equation (11.29), as 
detailed earlier, and then use that value in the formula.

It is possible to define an index that would standardize 
by another standard deviation, and later in this chapter, 
when we cover multilevel studies, we discuss cases 
where we might want to do so. However, it is critical to 
understand that the index created in this way would be a 
different index than the one discussed here. Such an 
index could not be combined with d in an analysis, and 
could not be used to put the results in the context of other 
studies that reported d. To do so would be akin to using 
feet as the unit of measurement in some studies and 
meters as the unit of measurement in others.

We said at the outset that we can use the raw mean dif-
ference only if all studies use the same scale. However, 
cases in which different scales are measuring precisely the 
same thing, except in different metrics, are an exception. 
For example, suppose that some studies report the outcome 
in days while others report the outcome in hours. To con-
vert the former to the latter we simply multiply the mean 
difference and the standard deviation by twenty-four. This 
works in this example because the two scales are measur-
ing precisely the same thing, and we know the conversion 
factor. In other cases (such as the example of the pain 
scales, or scales to measure achievement or depression) 
the scales are not measuring precisely the same thing, and 
no conversion factor exists. In those cases, the only option 
is to use the standardized mean difference.

We noted that we can use the raw mean difference only 
if all studies used the same scale. Additionally, it is best 
to use the raw mean difference only if the standard devi-
ation is roughly comparable across studies. If the stan-
dard deviation varies dramatically, it is probably better to 
use the standardized mean difference.

Finally, we note that the standardized mean difference 
allows us to work with studies that used different scales by 
converting these scales into a common metric. It does noth-
ing to change the meaning of the scales. We assume that all 
scales are addressing the same fundamental question.

11.3 CORRELATIONS

11.3.1 Correlation as an Effect Size

Some studies report their results as correlation coefficients. 
When this is the case, the correlation itself will usually 
serve as the effect-size index. The correlation coefficient is 
an intuitive measure that, like d, has been standardized to 
take account of different metrics in the original scales. The 
population parameter is denoted by r.

A correlation can take on any value between −1.0 and 
+1.0 (inclusive). A correlation of zero indicates no rela-
tionship between the variables. A correlation less than 
zero indicates that a high value of one variable is associ-
ated with a low value of the other. A correlation greater 
than zero indicates that a high value of one variable is 
associated with a high value of the other. The direction of 
the correlation must have the same meaning in all studies. 
If some studies report the correlation between education 
and the number of items correct, but others report the cor-
relation between education and number of mistakes on a 
test, we would need to reverse the sign on one of these 
effects to make them comparable.

Although we often think of a correlation as applying to 
two continuous variables, it is also possible to compute a 
correlation between a dichotomous variable and a contin-
uous variable. For example, we can code control and 
treatment as 0 and 1. A positive correlation tells us that 
the treated group scored higher, and a negative correla-
tion tells us that the treated group scored lower.

Correlations are a key effect size in industrial orga-
nizational psychology. The use of correlations in this 
field is discussed in detail elsewhere in this volume 
(chapter 15).

11.3.1.1 Computing r The estimate of the correlation 
parameter r is simply the sample correlation coefficient, 
r. The variance of r is approximately

v
r

n

1

1
, (11.35)r

2 2( )
= −

−

where n is the sample size.
Most meta-analysts do not perform syntheses on the 

correlation coefficient itself because the variance depends 
so strongly on the correlation (see, however, Hunter and 
Schmidt 2015; chapter 15). Rather, the correlation is con-
verted to the Fisher’s z scale (not to be confused with the 
z-score used with significance tests), and all analyses are 
performed using the transformed values. The results, 
such as the combined effect and its confidence interval, 
would then be converted back to correlations for presen-
tation. This is analogous to the procedure used with odds 
ratios or risk ratios where all analyses are performed 
using log transformed values, and then converted back to 
the original metric.

The transformation from sample correlation r to 
Fisher’s z is given by

z
r

r
0.5 ln

1

1
. (11.36)( )= × +

−
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The variance of Fisher’s z is (to an excellent 
approximation)

v
n

1

3
, (11.37)z =

−

with standard error

SE V . (11.38)z z=

The effect size z and its variance would be used in the 
analysis, which would yield a combined effect, confi-
dence limits, and so on, in the Fisher’s z metric. We could 
then convert each of these values back to correlation units 
using

r
e

e

1

1
(11.39)

z

z

2

2= −
+

where ex = exp(x) is the exponential (anti-log) function. 
For example, if a study reports a correlation of 0.50 with 
a sample size of 100, we would compute

= × +
−





 =z 0.5 ln

1 0.5

1 0.5
0.5493,

=
−

=v
1

100 3
0.0103,z

and

= =SE 0.0103 0.1015.z

To convert the Fisher’s z value back to a correlation, 
we would use

= −
+

=
( )

( )r
e

e

1

1
0.5000.

2 0.5493

2 0.5493

Table 11.5 provides formulas for computing r and its 
variance, working from information that may be reported 
in a published paper.

11.3.1.2 Understanding r The correlation coefficient 
is commonly used in primary studies, and as such is an 

Table 11.5 Computing r

Reported Computation of Needed Quantities

r, n ( )( )
=

−
−

=
+
−

=
−

v
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n
z

r

r
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1

1
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3
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1
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3
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3
r z
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source: Authors’ tabulation.
note: The function t–1(p) is the inverse of the cumulative distribution function of Student’s t with  
n – 2 degrees of freedom. Many computer programs and spreadsheets provide functions that can  
be used to compute t–1. Assume n = 20, so that df = 18. Then, in Excel, for example, if the reported 
p-value is 0.05 (2-tailed), TINV(p,df ) = TINV(0.05,18) will return the required value (2.1009).  
If the reported p-value is 0.05 (1-tailed), TINV(2p,df ) = TINV(0.10,18) will return the required  
value 1.7341.
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intuitive metric for expressing an effect size (for additional 
insights, see Rosenthal and Rubin 1979, 1982; Rosenthal, 
Rosnow, and Rubin 2000; Rosnow, Rosenthal, and Rubin 
2000; Hunter and Schmidt 2015).

11.4 EFFECT SIZES FOR COMPARING RISKS

This section deals exclusively with prospective stud-
ies. Retrospective (case-control studies) are addressed 
elsewhere.

Consider a study that compares the risk in two groups. 
We use the term risk as shorthand for the presence of an 
event, but this discussion applies also when the event is 
not a risk but instead a positive outcome. In either case, 
three options for the effect size are the risk difference, the 
risk ratio, and the odds ratio.

Table 11.6 shows the notation that we will use through-
out this section. The rows identify the group, while 
the columns identify the outcome. This yields a 2 × 2 
table with cells A, B, C, D; these labels will be used in the 
formulas.

If the risk (or probability) of an event in the two popu-
lations are p1 and p2, natural estimates of these parame-
ters are given by

p
A

n
p

C

n
, . (11.40)1

1
2

2

= =

We will use a fictional study (table 11.7) as the example 
in this section. In this example, patients are randomly 

assigned to either Treated or Control conditions, and we 
record the number of deaths in each group.

There are 100 patients in each group. There are five 
deaths in the treated group and ten deaths in the control 
group, so the risks in the two groups are estimated as

p p
5

100
0.05,

10

100
0.10.1 2= = = =

11.4.1 The Risk Difference

The risk difference (D) is defined as the difference in 
probabilities (or risks) in the two groups. Let p1 be the 
risk of an event in group 1, and p2 be the risk of the event 
in group 2. Then the risk difference D, is defined as

. (11.41)1 2π π∆ = −

Whereas the effect-size D is the true (population) 
value, any study yields an effect-size RD that is based on 
the observed risks and is an estimate of the true effect 
size. To estimate RD we can use

RD p p . (11.42)1 2= −

Using the notation in table 11.6, we estimate RD as

RD
A

n

C

n
, (11.43)

1 2

= −

with approximate variance and standard error

V
AB

n

CD

n
(11.44)RD

1
3

2
3= +

and

SE V . (11.45)RD RD=

Using the data in table 11.7, the risk difference RD is

= − = −RD
5

100

10

100
0.05,

with approximate variance and standard error

= × + × =V
5 95

100

10 90

100
0.0014RD 3 3

Table 11.6 Cells for a Prospective Study

Events Nonevents Total

Group 1 A B n1

Group 2 C D n2

source: Authors’ tabulation.

Table 11.7 Data from a Fictional Prospective Study

Dead Alive Total

Treated  5 95 100
Control 10 90 100

source: Authors’ tabulation.
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and

= =SE 0.0014 0.0374.RD

The risk difference can take any value from –1 to +1. A 
risk difference of 0 indicates that the two risks are equal. Risk 
differences above 0 indicate that the risk in group 1 is higher 
than the risk in group 2, and risk differences below 0 indi-
cate that the risk in group 1 is lower than the risk in group 2.

The direction of effect is arbitrary, except that it must 
be consistent from one study to the next. That is, if a risk 
difference above 0 in study A indicates that group 1 did 
better, then a risk difference above 0 in studies B, C, . . . 
must also indicate that group 1 did better.

When the event rate in either (or both) groups is zero 
we can compute the risk difference but cannot compute 
the variance. Therefore, we compute the risk difference 
using the original data. Then we add the value 0.5 to each 
cell, and use these modified values to compute the vari-
ance. The same rule applies when the event rate in either 
(or both) groups is 100 percent.

Table 11.8 provides formulas for computing the risk 
difference and its variance, working from information 
that may be reported in a published paper.

11.4.2 Risk Ratio

The risk ratio (λ) (also called the relative risk) is defined 
as the ratio of the probabilities (or risks) in the two 

groups. Let p1 be the risk of an event in group 1, and p2 
be the risk of the event in group 2. Then the risk ratio λ, 
is defined as

. (11.46)1

2

θ π
π

=

Whereas the effect-size λ is the true (population) value, 
any study yields an effect-size RR that is based on the 
observed risks and is an estimate of the true effect size. 
To estimate RR, we can use

RR
p

p
. (11.47)1

2

=

Using the notation in table 11.6, we estimate RR as

RR
A n

C n
. (11.48)1

2

=

We do not use the risk ratio itself in the computations. 
Instead, we convert the risk ratio to log units, perform all 
computations using the log units, and then convert the 
results back into risk ratio units for the report.

The log of the risk ratio is

RR RRln ln , (11.49)( )=

Table 11.8 Computing Risk Difference, Independent Groups in Prospective Study

Reported Computation of Needed Quantities

A, B, C, D = − = +RD
A

n

C

n
V

AB

n

CD

n
, RD

1 2 1
3

2
3

p1, p2, n1, n2

( ) ( )
= − =

−
+

−
RD P P V

P P

n

P P

n
,

1 1
RD1 2

1 1

1

2 2

2

RD, UDRD, LLRD, ClLevel ( ) ( ) ( )= =
− − −

RD V
UL LL

Z

UL RD

Z

RD LL

Z
Given,

2
or orRD

RD RD RD RD
2 2 2

source: Authors’ tabulation.
note: The cells (A, B, C, D) are defined in table 11.6. In row 1, if any cell (A, B, C, or D) has a value of zero, use the original 
values to compute the risk difference. Then add 0.5 to all cells, and use these modified values to compute the variance.  
In row 2, if P1 = 0, P1 = 1, P2 = 0, or P2 = 1, use the original values to compute the risk difference. Then, 

replace P1 with 
+
+

P n

n

0.5

1
1 1

1
, n1 with n1 + 1, P2 with 

+
+

P n

n

0.5

1
2 2

2
, and n2 with n2 + 1, and use these modified values to 

compute the variance. In row 3, for the 95 percent confidence interval, the Z-value would be 1.96.
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with approximate variance and standard error

V
A n C n

1 1 1 1
(11.50)lnRR

1 2

= − + −

and

SE V . (11.51)RR RRln ln=

After we compute the mean effect size in log units we 
convert that value to risk ratio units using

RR RRexp ln . (11.52)( )=

This formula is applied to all the associated statistics 
(such as the bounds of the confidence interval) as well.

Using the data in table 11.7, the risk ratio RR is

= =RR
5 100

10 100
0.500.

In log units, the risk ratio is

( )= = −lnRR ln 0.500 0.69,

with variance and standard error

= − + − =V
1

5

1

100

1

10

1

100
0.28lnRR

and

= =SE 0.28 0.5291.lnRR

The risk ratio can take any value greater than 0. A risk 
ratio of 1 indicates that the two risks are equal. Risk ratios 
above 1 indicate that the risk in group 1 is higher than the 
risk in group 2, and risk ratios below 1 indicate that the 
risk in group 1 is lower than the risk in group 2.

The direction of effect is arbitrary, except that it must 
be consistent from one study to the next. That is, if a risk 
ratio less than 1 in study A indicates that group 1 did  
better, then a risk ratio less than 1 in studies B, C, . . . 
must also indicate that group 1 did better.

The decision about which outcome is the event and 
which is the nonevent can have major implications for 

the risk ratio. For example, the treatment may appear to 
have a major impact on the risk of dying but almost no 
impact on the risk of surviving. We discuss this later in 
the chapter.

When one cell has zero events we add 0.5 to all four 
cells, and use these adjusted numbers to compute both 
the effect size and the variance (for other options, see 
Sweeting, Sutton, and Lambert 2004).

When two cells have zero events, the study provides 
no useful information; we therefore omit it from the 
analysis. This might seem counterintuitive, given that  
a study with zero events in both groups might seem to 
suggest that the risk is comparable in the two groups. In 
fact, though, this outcome is compatible with a risk ratio 
from near zero to near infinity, and so the only option is 
to exclude the study from the analysis. (Other options 
exist in a Bayesian analysis, but that is beyond the scope 
of this chapter.)

The same idea applies when all subjects (rather than 
none) have the event. If 100 percent of subjects in one 
group have the event, we add 0.5 to all cells. If 100 per-
cent of subjects in both groups have the event, we 
exclude the study from the analysis.

Table 11.9 provides formulas for computing the risk 
ratio and its variance, working from information that may 
be reported in a published paper.

11.4.3 Odds Ratio

The odds ratio (w) is defined as the ratio of the odds in the 
two groups, where the odds in any group is the ratio of an 
event to a nonevent in that group.

Let κ1 be the risk of the event in group 1. The odds in 
group 1 are defined as κ1/(1 – κ1). Similarly, let κ2 be the 
risk of the event in group 2. The odds in group 2 are 
defined as κ2/(1 – κ2).

Then, the odds ratio is defined as

1

1
, (11.53)1 1

2 2

( )
( )

ω = π − π
π − π

which is computationally identical to

( )
( )

ω = π − π
π − π

1

1
. (11.54)1 2

2 1

Whereas the effect-size w is the true (population) 
value, any study yields an effect-size OR that is based on 
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the observed risks and is an estimate of the true effect 
size. To estimate OR we can use

( )
( )

= −
−

OR
p 1 p

p 1 p
(11.55)1 1

2 2

or

( )
( )

= −
−

OR
p 1 p

p 1 p
. (11.56)1 2

2 1

Using the notation in table 11.6, we estimate OR as

OR
A n C n

C n A n

A n C

C n A

AD

BC

1

1
. (11.57)1 2

2 1

2

2

( )( )
( )( )

( )
( )

= −
−

= −
−

=

We do not use the odds ratio itself in the computa-
tions. Instead, we convert the odds ratio to log units, 
perform all computations using the log units, and then 
convert the results back into odds ratio units for the 
report.

The log of the odds ratio is

OR ORln ln , (11.58)( )=

with approximate variance and standard error

V
A B C D

1 1 1 1
(11.59)lnOR = + + +

and

SE V . (11.60)OR ORln ln=

After we compute the mean effect size in log units we 
convert that value to odds ratio units using

OR ORexp ln . (11.61)( )=

This formula is applied to the all associated statistics 
(such as the bounds of the confidence interval) as well.

Using the data in table 11.7, the odds ratio OR is

= ×
×

=OR
5 90

10 95
0.474.

In log units, the odds ratio is

( )= = −lnOR ln 0.474 0.75,

Table 11.9 Computing Risk Ratio, Independent Groups in Prospective Study

Reported Computation of Needed Quantities

A, B, C, D ( )= = = − + −RR
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C n
lnRR RR V
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2
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lnRR RR lnRR RR

lnRR
lnRR lnRR lnRR lnRR

2 2 2

source: Authors’ tabulation.
note: The cells (A, B, C, D) are defined in table 11.6. Note that we do not compute a variance for the risk ratio. 
Rather, all calculations are carried out on the log values. In row 1, if A = 0 and C = 0, or if B = 0 and D = 0, then  
the study carries no information about the risk ratio, and the study would be excluded from the meta-analysis. In row 1, 
if any cell (A, B, C, or D) has a value of zero, add 0.5 to all cells, and use these modified values to compute  
the risk ratio, log risk ratio, and variance. In row 2, If P1 = 0, P1 = 1, P2 = 0, or P2 = 1, replace P1 with 

+
+

P n

n

0.5

1
1 1

1
, n1 with n1 + 1, P2 with 

+
+

P n

n

0.5

1
2 2

2
, and n2 with n2 + 1, and use these modified values to compute the 

risk ratio, log risk ratio, and variance. In row 2, if P1 = 0 and P2 = 0, then the study carries no information about the 
risk ratio, and the study would be excluded from the meta-analysis. In row 3, for the 95 percent confidence interval, 
the Z-value would be 1.96.
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with variance and standard error

= + + + =V
1

5

1

95

1

10

1

90
0.32lnOR

and

= =SE 0.32 0.5657.lnOR

As was true for the risk ratio, the odds ratio can take 
any value greater than 0. An odds ratio of 1 indicates that 
the two odds are equal. Odds ratios above 1 indicate that 
the odds in group 1 is higher than the odds in group 2, and 
odds ratios below 1 indicate that the odds in group 1 are 
lower than the odds in group 2.

The direction of effect is arbitrary, except that it must 
be consistent from one study to the next. That is, if an 
odds ratio less than 1 in study A indicates that group 1 did 
better, then an odds ratio less than 1 in studies B, C, . . . 
must also indicate that group 1 did better.

When one cell has zero events, we add 0.5 to all four 
cells, and use these adjusted numbers to compute both the 
effect size and the variance (for other options, see Sweeting, 
Sutton, and Lambert 2004).

When two cells have zero events, the study provides 
no useful information; we therefore omit it from the 

analysis. This might seem counterintuitive, given that a 
study with zero events in both groups might seem to sug-
gest that the odds are comparable in the two groups. In 
fact, though, this outcome is compatible with an odds 
ratio from near zero to near infinity, and so the only 
option is to exclude the study from the analysis. (Other 
options exist in a Bayesian analysis, which is beyond the 
scope of this chapter.)

The same idea applies when all subjects (rather than 
none) have the event. If 100 percent of subjects in one 
group have the event, we add 0.5 to all cells. If 100 per-
cent of subjects in both groups have the event, we exclude 
the study from the analysis.

When many studies in the analysis have zero events in 
one group, it may be preferable to use an alternate method 
for computing the variance of the odds ratio, which is 
beyond the scope of this chapter (Altman, Deeks, and 
Sackett 1998).

Table 11.10 provides formulas for computing the odds 
ratio and its variance, working from information that may 
be reported in a published paper.

11.4.4 Direction of the Effect

The direction of the effect is arbitrary except that it must 
be consistent from one study to the next. That is, if a risk 
difference above 0 in study A indicates that group 1 did 

Table 11.10 Computing Odds Ratio, Independent Groups in a Prospective Study

Reported Computation of Needed Quantities

A, B, C, D ( )= = = + + +OR
AD

BC
lnOR OR V

A B C D
, ln

1 1 1 1
lnOR

p1, p2, n1, n2

( )
( ) ( ) ( )

( )=
−
−

= = +
−

+ +
−

OR
P P

P P
lnOR OR V

n P n P n P n P

1

1
ln

1 1

1

1 1

1
lnOR

1 2

2 1 1 1 1 1 2 2 2 2

OR, UDOR, LLOR, ClLevel

( ) ( )( )
( ) ( )( )= = = =

= − − −

OR lnOR OR LL LL UL

V
UL LL

Z

UL lnOR

Z

lnOR LL

Z

Given ln ln ln UL

2
or or

lnOR OR OR

lnOR
lnOR lnOR lnOR lnOR

ln OR

2 2 2

source: Authors’ tabulation.
note: The cells (A, B, C, D) are defined in table 11.6. Note that we do not compute a variance for the odds ratio. Rather, all 
calculations are carried out on the log values. If any cell (A, B, C, or D) has a value of zero, add 0.5 to all cells, and use these 
modified values to compute the odds ratio, log odds ratio, and variance. If A = 0 and C = 0, or if B = 0 and  
D = 0, then the study carries no information about the odds ratio, and the study would be excluded from the meta-analysis. 

If P1 = 0, P1 = 1, P2 = 0, or P2 = 1, replace P1 with 
+
+

P n

n

0.5

1
1 1

1
, n1 with n1 + 1, P2 with 

+
+

P n

n

0.5

1
2 2

2
, and n2 with n2 + 1, and use

these modified values to compute the odds ratio, log odds ratio, and variance. If P1 = 0 and P2 = 0, or if P1 = 1 and  
P2 = 1, then the study carries no information about the odds ratio, and the study would be excluded from the meta-analysis. In 
row 3, for the 95 percent confidence interval, the Z-value would be 1.96.
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better, then a risk difference above 0 in studies B, C, . . . 
must also indicate that group 1 did better. The same 
would apply to a risk ratio (above or below 1) and an 
odds ratio (above or below 1). Although the direction is 
arbitrary, some useful conventions make it easier to inter-
pret the results.

In table 11.6, we have put treatment before control, and 
events before nonevents. When we structure the table this 
way, the value in cell A will be the number of events in 
the treatment group.

When we follow this convention, the direction of the 
effect will match the following pattern. If the treatment 
reduces the probability of the event, the risk difference 
will be negative, the risk ratio will be less than 1, and the 
odds ratio will be less than 1. If the treatment increases 
the probability of the event, the risk difference will be 
positive, the risk ratio will be greater than 1, and the odds 
ratio will be greater than 1.

As a general rule, following this convention is advis-
able because the results will follow the usual pattern. For 
example, if the treatment is intended to prevent death, we 
expect to see the risk ratio to the left of 1. Similarly, if the 
treatment is intended to promote good breathing, we 
expect to see the risk ratio to the right of 1.

Although the convention is therefore useful, it is arbi-
trary. If we choose to reverse the position of the two rows 
(the groups), keeping the columns unchanged, the effect-
size format would change but the substantive meaning 
would remain the same. Concretely, if cell A was events in 
the control group rather than events in the treatment group, 
the three effects sizes would be modified as follows.

If we switched the position of the two groups, the new 
risk difference would be

RD RD . (11.62)New Old= −

In our example, the risk difference would switch from 
–0.05 to +0.05. Rather than saying that the risk in one 
group is 5 points lower, we would be saying that the risk 
in the other group is 5 points higher—which is essentially 
the same thing.

If we switched the position of the two groups, the new 
risk ratio would be

RR
RR

1
. (11.63)New

Old

=

In our example, the risk ratio would switch from 0.50 to 
2.0. Rather than saying that risk in one group is half as 

high, we would be saying that the risk in the other group 
is twice as high—which is essentially the same thing

If we switched the position of the two groups, the new 
odds ratio would be

OR
OR

1
. (11.64)New

Old

=

In our example, the odds ratio would switch from 0.47 to 
2.11. In round numbers, rather than saying that odds in 
one group is half as high, we would be saying that the 
odds in the other group is twice as high—which is essen-
tially the same thing.

That the decision to put one group or the other on top 
is arbitrary is especially important when we are compar-
ing two active treatments rather than a treatment and a 
control. If some studies put treatment 1 in the top row for 
the computations, and others put treatment 2 on the top 
row, we need to ensure that all the results are in the same 
direction before we enter them into the meta-analysis. We 
could apply these formulas to the effect size and confi-
dence interval for any study to reverse the direction of the 
effect.

Although it is thus a simple matter to reverse the direc-
tion of the effect when some studies have reversed the 
position of the rows, the situation is more complicated 
when it comes to the columns. We discuss that in the fol-
lowing section.

11.4.5 What Is an Event?

As noted, we speak about the risk of an event, but we 
are actually talking about the likelihood of an event, 
and the event can be something that we would prefer to 
avoid or something that we would prefer to see happen. 
If we are looking at an intervention to prevent death, 
the event can be either death or survival. If we are look-
ing at an intervention to keep students in school, the 
event can be either that the student drops out or gradu-
ates. So, we need to give some thought into what we 
mean by an event.

In table 11.7 we presented results for a fictional study. 
The outcome was mortality, and we chose to define the 
event as death. Table 11.11 shows the same data, but this 
time we chose to define the event as being alive. Note 
that alive now appears in column 1, and corresponds to 
cells A and C rather than cells B and D in the table.

Each group includes one hundred patients. Because 
ninety-five survivors are in the treated group and ninety 
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are in the control group, the risks in the two groups are 
estimated as

p p
95

100
0.95,

90

100
0.90.1 2= = = =

The risk difference would be

= − = +RD
95

100

90

100
0.05.

In our example, the risk difference would switch from 
–0.05 to +0.05. Rather than saying that the risk of death 
in the treated group is 5 points lower, we would be saying 
that the probability of survival in the treated group is  
5 points higher—which is essentially the same thing. In 
fact, we can convert between the RD in two tables by 
using the formula

RD RD . (11.65)Survival Death= −

We will skip over the risk ratio for a moment and pro-
ceed to the odds ratio. If we chose to define survival (rather 
than death) as the event, the new odds ratio would be

= ×
×

=OR
95 10

5 90
2.11.

This is related to the earlier value by the formula

OR
OR

1
. (11.66)Survival

Death

=

In our example, the odds ratio would switch from 0.47 to 
2.11. In round numbers, rather than saying that odds in of 
dying in the treated group is half as high, we would be 
saying that the odds of surviving in the treated group is 
twice as high—which is essentially the same thing.

The situation is different for the risk ratio. Using the 
data in table 11.7, if we choose death as the event, the risk 
ratio is

= =RR
5 100

10 100
0.500.

By contrast, if we choose survival as the event  
(table 11.11), the risk ratio is

= =RR
95 100

90 100
1.056.

The first approach tells us that the treatment reduces 
the risk of death by 50 percent; the second tells us that the 
treatment increases the probability of survival by about  
5 percent. These are clearly not the same thing. Thus, 
how we choose to define the event can have a substantial 
impact on the magnitude of the effect size.

Less obvious but also important for the risk ratio, the 
definition of event also affects the weight assigned to 
each study. Note that cells A and C (reflecting the event) 
appear twice in the formula for the variance (as them-
selves and also as components of the sample size). By 
contrast, cells B and D appear only once (as components 
of the sample size). A study that gets a certain amount of 
weight when we assess the impact of treatment on death 
could thus get less (or more) weight if we assess the 
impact of treatment on survival.

A consensus on whether we should be using one out-
come or the other as the event is common. However, 
when a consensus is lacking, we need to be aware of the 
potential pitfall and might want to avoid using the risk 
ratio. If we do use it, we should be clear about the reason 
for choosing one outcome or the other. We should also be 
explicit that this has an impact on the results.

In sum, we should generally follow the convention of 
putting treated before control and events before non-
events, as shown in table 11.6. When we follow this con-
vention, the direction of results will follow an expected 
pattern and be more intuitive.

If some studies computed the effect size by switching 
the sequence of rows, we will need to switch the direction 
of the effect. We can do this using equation (11.62) for 
the risk difference, (11.63) for the risk ratio, or (11.64) for 
the odds ratio.

If some studies have switched the polarity of the event 
(using survival rather than death as the event), we will 

Table 11.11 Event Is “Alive” Rather than “Dead”

Alive Dead Total

Treated 95  5 100
Control 90 10 100

source: Authors’ tabulation.



EFFECT SIZES FOR META-ANALYSIS   229

also need to switch the direction of the effect. We can do 
this using formula (11.62) for the risk difference or for-
mula (11.64) for the odds ratio. However, for the risk 
ratio, we cannot use (11.63). Instead, we would need to 
have enough information to reconstruct the 2 × 2 table, 
and then compute the new risk ratio from that.

11.4.6 Choosing Among Indices

To this point, we have introduced three indices for studies 
that compare risks in two groups. In any given analysis, 
we need to choose among them.

We start by considering the risk difference and the risk 
ratio. The risk difference is an absolute measure and the 
risk ratio is a relative measure. The risk difference is thus 
quite sensitive to baseline risk and the risk ratio less so.

Consider a series of studies that assess the utility of a vac-
cine to prevent a mosquito-borne illness. In this example, we 
assume that the baseline risk of the disease ranges from  
80 percent in countries where the mosquito is prevalent to  
2 percent in locations where the mosquito is rare. We also 
assume that the vaccine consistently reduces the risk of 
infection by 50 percent. Table 11.12 shows the results for a 
series of five fictional studies based on these assumptions.

In a high-risk population (first row), the vaccine reduces 
the risk of infection from 80 percent to 40 percent. The 
risk ratio is 0.50, and the risk difference is 0.40. In a low-
risk population (last row), the vaccine reduces the risk of 
infection from 2 percent to 1 percent. The risk ratio is 
0.50, and the risk difference is 0.01.

In this example, the risk ratio is unaffected by the base-
line risk: it is 0.50 in all the populations. In contrast, the 
risk difference is strongly affected by the baseline risk, 
varying from –0.40 in the high-risk population to –0.01 in 
the low-risk population. Which of these numbers is more 
relevant? The answer depends on our goals. If we want to 

talk about the utility of the vaccine in general, the relevant 
number is the risk ratio, precisely because it is not strongly 
affected by baseline risk. Conversely, if we want to talk 
about the utility of the vaccine for a specific person, then 
the relevant number is the risk difference, precisely 
because it is strongly related to the baseline risk. We might 
also want to report both, to address both goals.

If we were working with a single study, the choice of an 
effect size would end there. In contrast, when we are 
working with all these studies, in a meta-analysis, the pro-
cess is a little more complicated. In this example, the risk 
difference shows substantial variation, and the risk ratio 
shows none. Consider how this affects our options.

Case 1. If we want to report the risk ratio, it is clear that 
we should run the analysis using the risk ratio. We would 
get a precise estimate of the effect (precise because there’s 
no variation in the effect size). The summary effect would 
be especially useful given the lack of variation in the 
effect (it applies consistently).

Case 2. If we want to report the risk difference, the 
obvious option would be to run the analysis using the risk 
difference. This would probably be the preferred option if 
the baseline risk were consistent across studies. In contrast, 
for the example in table 11.12, it might make more sense  
to run the analysis using the risk ratio, and then to use the 
summary effect size to predict the risk difference for any 
given baseline risk. Concretely, the risk difference is given by

RD p RR1 1 , (11.67)c ( )( )= − −

where pc is the risk in the control group. If the risk ratio is 
0.50, then for a population where the baseline risk is 0.20, 
the risk difference would be

RD 0.20 1 0.50 1 0.10. (11.68)( )( )= − − = −

Table 11.12 Fictional Studies, Baseline Risk Varies and Risk Ratio Constant

Study Risk (Treated) Risk (Control) Risk Difference Risk Ratio Odds Ratio NNT

1 0.40 0.80 –0.40 0.50 0.167 2.5
2 0.20 0.40 –0.20 0.50 0.375 5.0
3 0.10 0.20 –0.10 0.50 0.444 10.0
4 0.05 0.10 –0.05 0.50 0.474 20.0
5 0.01 0.02 –0.01 0.50 0.495 100.0

source: Authors’ tabulation.
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This approach makes sense in this example because 
the risk ratio is relatively constant and the baseline risk 
varies across studies. In an analysis where either condi-
tion does not hold true, it might be preferable to work 
directly with the risk difference. The key point is that it 
is important think about the choice of an effect size in 
this context.

Until now, we have focused on the risk difference and 
the risk ratio. Researchers and clinicians tend to prefer 
these two indices because they are relatively intuitive 
relative to the odds ratio. In contrast, epidemiologists 
tend to prefer the odds ratio because it has useful statis-
tical properties. Unlike the risk ratio and the risk differ-
ence, the odds ratio is not constrained by base rate and 
(regardless of the base rate) can take on any value greater 
than 0. It is possible to compute a meaningful odds ratio 
from a case-control study as well as from a prospective 
study. This is especially important in a meta-analysis, 
where we might be working with both types of studies. It 
may be possible to incorporate odds ratios from logistic 
regression. Finally, when we are working with the odds 
ratio, the decision about how to define the event (success 
or failure) is not critical (for additional insights into 
effect sizes for binary outcomes, see Grissom and Kim  
2012; Borenstein et al. 2009; Rothman 2012; Sanchez- 
Meca, Marin-Martinez, and Moscoso 2003; Grant 2014; 
Deeks and Altman 2001; Fleiss, Levin, and Paik 2003; 
Deeks 2002).

11.4.7  Odds and Risk Ratios  
in the Same Analysis

When the event rate is low (less than 10 percent), the 
risk ratio and odds ratio tend to have comparable values. 
Our example, when the event rate is 5 percent in one 
group and 10 percent in the other, is a case in point. The 
risk ratio is 0.50 and the odds ratio is 0.47, and these 
values are fairly close to each other. For this reason, 
some researchers assume that it is acceptable to include 
both indices in the same analysis. In fact, though, includ-
ing risk ratios and odds ratios in the same analysis is a 
mistake because the two indices are measuring funda-
mentally different things. If we are going to report on 
the magnitude of the effect, we need to have a clear nar-
rative of what that effect means. The summary effect 
can be the ratio of two risks or of two odds. But the 
same number cannot represent both because they are not 
the same thing (Altman, Deeks, and Sackett 1998; 
Zhang and Yu 1998).

Although it is always a mistake to include the two indi-
ces in the same analysis, the ramifications of the mistake 
will vary. In some cases, such as study 5 in table 11.12, 
the values may be comparable, and thus the results may 
be reasonably correct. In other cases, study 1 in table 11.12, 
the values will differ substantially and the results would 
be meaningless.

We cannot simply insert an odds ratio into an analysis 
as though it were a risk ratio. However, we may be able 
to convert an odds ratio to a risk ratio and then use the 
risk ratio in the analysis. If we start with the odds ratio 
and we know the baseline risk, we can compute the risk 
ratio using

RR
OR

p OR p1
. (11.69)

c c( ) ( )
=

− + ×

We would then apply the same formula to the lower and 
upper limits of the confidence interval to get the lower 
and upper limit for the risk ratio confidence interval. 
Table 11.9 shows how to proceed from there.

11.4.8  Risk and Hazard Ratios  
in the Same Analysis

Researchers sometimes ask whether it is acceptable to 
combine risk ratios and hazard ratios in the same analy-
sis. The risk ratio is based on the risk of an event during 
a given time span. The hazard ratio is based on that risk 
but also takes into account the timing of the event within 
the time span. In many cases, it would make sense to say 
that the two are measuring the same thing, albeit with 
different levels of nuance. In these cases, it would make 
sense to include both in the same analysis. The only pro-
vision is that then we would compute the variance of 
each index using the formulas that are appropriate for 
that index (for details on computing the variance for haz-
ard ratios, see Parmar, Torri, and Stewart 1998; Michiels 
et al. 2005).

11.4.9 Number Needed to Treat

When we compare the risk of an event in two groups, a 
useful index for expressing the utility of a treatment is 
the number needed to treat (NNT). An NNT of 2 tells us 
that we expect one person to benefit for every two people 
who are treated. An NNT of 100 tells us that we expect 
one person to benefit for every hundred people who are 
treated.
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We cannot perform an analysis directly using the NNT. 
Instead, we could perform an analysis using the risk dif-
ference to obtain the mean RD along with lower and 
upper confidence limits. Then we would convert each of 
these values to an NNT.

The NNT would be estimated using

=NNT
1

RD
. (11.70)

Like the risk difference, the NNT it is strongly related 
to the baseline risk. In table 11.12, the baseline risk for 
the first study is 0.80, the risk difference is −0.40, and 
the NNT is

=
−

=NNT
1

0.40
2.5.

By contrast, the baseline risk for the last study is 0.02, 
the risk difference is −0.40, and the NNT is

=
−

=NNT
1

0.01
100.

For this reason, if we do elect to report the NNT, we 
would do so in the context of the baseline risk.

It is common to report the NNT when the analysis is 
based on the risk difference, but we might also report it if 
the analysis is based on a risk ratio. If the risk ratio is 
relatively constant across baseline risks, we could use the 
risk ratio to compute the risk difference for any given 
baseline risk, using formula (11.67). Then we could use 
(11.70) to compute the corresponding NNT.

When used properly, the NNT can be an effective tool 
for communicating the risks and benefits of treatment. 
However, as with any effect-size index, proper use is 
critical (for a more complete discussion of the NNT, see 
Altman and Deeks 2002; Alderson and Deeks 2004;  
Altman 1998; Cook and Sackett 1995; Chatellier et al. 
1996; D’Amico, Deeks, and Altman 1999; Ebrahim 2001; 
McAlister 2001, 2008; Stang, Poole, and Bender 2010; 
and Wen, Badgett, and Cornell 2005).

11.5  INDEPENDENT GROUPS FOR A  
RETROSPECTIVE (CASE-CONTROL) STUDY

When we are working with prospective studies, we can 
choose to use the risk difference, the risk ratio, or the odds 

ratio, as discussed. By contrast, when we are working with 
retrospective (case-control) studies the only appropriate 
index is the odds ratio, as discussed here.

A retrospective study with two groups (cases and con-
trols) and a binary exposure can be represented as in 
table 11.13, and data for a fictional study in table 11.14.

The sample sizes in a case-control study are defined  
as the number of cases and the number of controls rather 
than the numbers exposed (for example, to treatment) or 
unexposed. The mathematical computations are identi-
cal, but the meaning of some of the numbers is different.

The odds ratio may be computed using

OR
AD

BC
. (11.71)=

In log units, the odds ratio is

lnOR ORln , (11.72)( )=

with approximate variance and standard error

V
A B C D

1 1 1 1
(11.73)lnOR = + + +

Table 11.13 Cells for a Case-Control 
Study

Cases Controls

Exposed A B
Unexposed C D
Total m1 m2

source: Authors’ tabulation.

Table 11.14 Data from Fictional  
Case-Control Study

Cases Controls

Exposed 25 20
Unexposed 75 80
Total m1 m2

source: Authors’ tabulation.
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and

SE V . (11.74)lnOR lnOR=

After we compute the mean effect size in log units we 
convert that value to odds ratio units using

OR ORexp ln (11.75)( )=

This formula is applied to all the associated statistics 
(such as the bounds of the confidence interval) as well.

Using the data in table 11.7, the odds ratio is

= ×
×

=OR
25 80

20 75
1.333.

In log units, the odds ratio is

( )= =lnOR ln 1.333 0.29,

with approximate variance and standard error

= + + + =V
1

25

1

20

1

75

1

80
0.12lnOR

and

= =SE 0.12 0.34.lnOR

Table 11.15 shows how to compute the odds ratio from 
some of the statistics that may be reported for a retrospec-
tive study.

In the section on odds ratios for prospective studies, 
we discuss the issues of how to change the direction  
of the effect, how to define an event, and how to  
deal with empty cells in the 2 × 2 table. The same rules 
apply here.

Although the odds ratio has the same technical mean-
ing when based on a prospective or a retrospective study, 
the study design still determines what we can learn from 
the index. A prospective randomized study can be gener-
ally be used to test for a causal relationship, but a retro-
spective study generally cannot.

11.6 CONVERTING EFFECT SIZES

Suppose that some studies report the means for two 
groups, and we compute a standardized mean differ-
ence. Other studies report the risks in two groups, and 

Table 11.15 Computing Odds Ratio, Independent Groups in Retrospective Study

Reported Computation of Needed Quantities

A, B, C, D ( )= = = + + +OR
AD

BC
lnOR OR V

A B C D
ln

1 1 1 1
lnOR

p1, p2, m1, m2

( )
( ) ( ) ( )

( )=
−
−

= = + +
−

+
−
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p p

p p
lnOR OR V

m p m p m p m p

1

1
ln

1 1 1

1

1

1
lnOR

1 2

2 1 1 1 2 2 1 1 2 2

OR, UDOR, LLOR, ClLevel OR lnOR OR LL LL

V
UL LL

Z

UL lnOR

Z

lnOR LL

Z

Given ln ln UL ln UL

2
or or

lnOR OR

lnOR
lnOR lnOR lnOR lnOR

lnOR OR

2 2 2( ) ( )( )
( ) ( )( )= = = =

= − − −

source: Authors’ tabulation.
note: The cells (A, B, C, D) are defined in table 11.13. Note that we do not compute a variance for the odds ratio. Rather, all cal-
culations are carried out on the log values. If any cell (A, B, C, or D) has a value of zero, add 0.5 to all cells, and use these modified 
values to compute the odds ratio, log odds ratio, and variance. If A = 0 and C = 0, or if B = 0 and D = 0, then the study carries no 
information about the odds ratio, and the study would be excluded from the meta-analysis. If p1 = 0, p1 = 1, 

p2 = 0, or p2 = 1, replace p1 with 
+
+

P m

m

0.5

1
1 1

1
, m1 with m1 + 1, p2 with 

+
+

P m

m

0.5

1
2 2

2
, and m2 with m2 + 1, and use these modified 

values to compute the odds ratio, log odds ratio, and variance. If p1 = 0 and p2 = 0, or if p1 = 1 and p2 = 1, then the study carries no 
information about the odds ratio, and the study would be excluded from the meta-analysis. In row 3, for the 95 percent confidence 
interval, the Z-value would be 1.96.
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we compute an odds ratio. Still others report a correla-
tion. Is it possible to include all of these studies in the 
same analysis? Technically, it is possible to include all of 
these studies in the same analysis. In this section, we 
provide formulas that allow us to convert any of these 
indices to a common index. We therefore could convert 
all the effects to a standardized mean difference (or odds 
ratio, or correlation) and then run the analysis using this 
index (see figure 11.2).

Although no technical barrier prevents including all 
the studies in the same analysis, we need to ask whether 
this is a good idea. Later, we show how to approach that 
question.

11.6.1 Log Odds Ratio to d

We can convert from a log odds ratio [ln(o)] to the stan-
dardized mean difference d using

d
ORln 3

, (11.76)
π

( )
=

where p is the mathematical constant (approximately 
3.14159). The variance of d would then be

V
V3

, (11.77)d
ORln
2π

= ( )

where Vln(o) is the variance of the log odds ratio. This 
method was originally proposed in 1995 but variations 
have been proposed since then (Hasselblad and Hedges 
1995; Sanchez-Meca, Marin-Martinez, and Moscoso 
2003; Whitehead 2002; Chinn 2000).

For example, if the log odds ratio were ln(o) = 0.9070 
with a variance of vln(o) = 0.0676, then

= =d
0.9070 3

3.1416
0.5000,

with variance

= × =v
3 0.0676

3.1416
0.0205.d 2

Binary
data

Continuous data
Correlational

data

Log odds
ratio

Standardized mean difference
(Cohen’s d )

Correlation

Bias-corrected
standardized mean difference

(Hedges’ g) 

Figure 11.2 Schematic of Effect-Size Index Conversion Process

source: Authors’ tabulation.
note: This schematic outlines the mechanism for incorporating multiple kinds of data in the  
same meta-analysis. First, each study is used to compute an effect size and variance in its “native” 
index—log odds ratio for binary data, d for continuous data, and r for correlational data. Then, we 
convert all of these indices to a common index, which would be either the log odds ratio, d, or r. If the 
final index is d, we can move from there to Hedges’ g. This common index and its variance are then 
used in the analysis.
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11.6.2 d to Log Odds Ratio

We can convert from the standardized mean difference d 
to the log odds ratio [ln(o)] using

OR
d

ln
3

, (11.78)
π( ) =

where p is the mathematical constant (approximately 
3.14159). The variance of ln(o) would then be

V
v

3
. (11.79)OR

d
ln

2π=( )

For example, if d = 0.5000 and Vd = 0.0205 then

�( ) = =ORln
3.1415 0.5000

3
0.9069

and

�= =( )v
3.1415 0.0205

3
0.0674.oln

2

11.6.3 Converting from r to d

We convert from a correlation (r) to a standardized mean 
difference (d) using

d
r

r

2

1
, (11.80)

2
=

−

and the variance of d computed in this way (converted 
from r) is

v
v

r

4

1
. (11.81)d

r

2 3( )
=

−

For example, if r = 0.50 and Vr = 0.0058, then

= ×
−

=d
2 0.500

1 0.500
1.1547,

2

and the variance of d is

( )
= ×

−
=v

4 0.0058

1 0.50
0.0550.d 2 3

11.6.4 Converting from d to r

We can convert from a standardized mean difference 
(d) to a correlation (r) using

r
d

d a
, (11.82)

2
=

+

where a is a correction factor for cases where n1 ≠ n2,

a
n n

n n
. (11.83)1 2

2

1 2

( )= +

The correction factor a is based on the ratio of n1 to n2, 
rather than the absolute values of these numbers. There-
fore, if n1 and n2 are not known precisely, use n1 = n2, 
which will yield a = 4. The variance of r computed in this 
way (converted from d) is

a

d a
v

v
. (11.84)r

d
2

2 3( )
=

+

For example, if n1 = n2, d = 1.1547 and Vd = 0.0550, 
then

=
+

=r
1.1547

1.1547 4
0.5000,

2

and the variance of r converted from d will be

( )
= ×

+
=v

4 0.0550

1.1547 4
0.0058.r

2

2 3

11.7  COMPUTING d FROM  
CLUSTER-RANDOMIZED STUDIES

Studies with nested designs are frequently used to evaluate 
the effects of social treatments (such as interventions, 
products, or technologies in education or public health). 
One common nested design assigns entire sites (often 
classrooms, schools, clinics, or communities) to the same 
treatment group, with different sites assigned to different 
treatments. Experiments with designs of this type are also 
called group-randomized or cluster-randomized designs 
because sites such as schools or communities correspond 
to statistical clusters. In experimental design terminology, 
these designs are designs involving clusters as nested 
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factors. Nested factors are groupings of individuals that 
occur only within one treatment condition, such as schools 
or communities in designs that assign whole schools or 
communities to treatments.

In this section, we deal only with continuous outcomes 
and the standardized mean difference. Analogous meth-
ods exist for use when other effect sizes are used (such as 
risk differences of odds ratios) are not discussed here. An 
approximate method for adjusting the variances of effect 
sizes for the effects of clustering is to multiply the vari-
ance of the effect size that would be computed if there is 
no clustering by a design effect associated with the par-
ticular clustered sampling design.

The most widely used designs (or at least the designs 
most widely acknowledged in analyses) are designs with 
one level of nesting (so called two-level designs). In such 
designs, individuals are sampled by first sampling exist-
ing groups of individuals (such as classrooms, schools, 
communities, or hospitals), then individuals are sampled 
within the groups. In such designs, whole groups are 
assigned to treatments.

Earlier, we introduced the standardized mean differ-
ence, defined as

µ µ
σ

δ = −1 2

and estimated using

= −
d

Y Y

S
.

Within

1 2

In that discussion, we were working with trials that had 
one level of sampling. We therefore had no need to fur-
ther define d—it is the difference in means divided by the 
standard deviation within groups. By contrast, in a multi-
level study there are several possible standard deviations 
to use in the denominator, and each yields a variant of d. 
Therefore, we use a subscript to identify each variant.

We can standardize by the standard deviation within 
groups within clusters, in which case the effect size would 
be dW. We can standardize by the standard deviation 
between clusters, in which case the effect size would be dB. 
We can also standardize by the total standard deviation 
(within groups across clusters), in which case the effect 
size would be dT. Each of these is a different index. The 
one we are calling dW is the one that corresponds to the 
index called (simply) d earlier in this chapter. If we 

wanted to include studies that employed simple random-
ization and cluster randomization in the same analysis, we 
would need to use dW (Hedges 2007, 2011; Spybrook, 
Hedges, and Borenstein 2014).

11.7.1 Model and Notation

The data structure of cluster-randomized trials is more 
complex than individually randomized trials. To ade-
quately define effect sizes, we need to first describe the 
notation we will use in this section. Let YT

ij (i = 1, . . . , mT; 
j = 1, . . . , n) and YC

ij (i = 1, . . . , mC; j = 1, . . . , n) be the 
jth observation in the ith cluster in the treatment and con-
trol groups respectively. We will have mT clusters in the 
treatment group, mC clusters in the control group, and a 
total of M = mT + mC clusters with n observations each. 
Thus the sample size is NT = mTn in the treatment group, 
NC = mCn in the control group, and the total sample size is 
N = NT + NC.

Let Y
–

i•
T (i = 1, . . . , mT) and Y

–
C
ii• (i = 1, . . . , mC) be the 

means of the ith cluster in the treatment and control 
groups, respectively. In addition, let Y

–
T
•• and Y

–
C
•• be the 

overall (grand) means in the treatment and control groups, 
respectively. Define the (pooled) within-cluster sample 
variance S2

W via

∑∑ ∑∑ ( )( )
=

− + −

−

•
==

•
==S

Y Y Y Y

N M
w
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T

i
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n
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m
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and the total pooled within-treatment group variance 
ST

2 via

∑∑ ∑∑ ( )( )
=
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Suppose that observations within the treatment and 
control group clusters are normally distributed about 
cluster means µi

T and µi
C with a common within-cluster 

variance ν2
W. That is

µ σ( ) = =Y N i m j n~ , , 1, . . . , ; 1, . . . ,ij
T

i
T

w
T2

and

µ σ( ) = =Y N i m j n~ , 1, . . . , ; 1, . . . , .ij
C

i
C

w
C2
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Suppose further that the clusters have random effects 
(for example, are considered a sample from a population 
of clusters) so that the cluster means themselves have a 
normal sampling distribution with means µT

⊄ and µC
⊄ and 

common variance sB
2. That is,

N i m~ , , 1, . . . ,i
T T

B
T2µ µ σ( ) =•

and

N i m~ , , 1, . . . , .i
C C

B
C2µ µ σ( ) =•

Note that in this formulation, s B
2 represents true varia-

tion of the population means of clusters over and above 
the variation in sample means that would be expected 
from variation in the sampling of observations into 
clusters.

These assumptions correspond to the usual assump-
tions that would be made in the analysis of a cluster- 
randomized trial by a hierarchical linear models analysis, 
an analysis of variance (with treatment as a fixed effect 
and cluster as a nested random effect), or a t-test using the 
cluster means in treatment and control group as the unit 
of analysis.

Note on the assumption of equal sample sizes. Most 
studies are planned with the intention of equal sample 
sizes in each cluster, which is simpler and maximizes sta-
tistical power. Although the eventual data collected may 
not have exactly equal sample sizes, sizes are often nearly 
equal. As a practical matter, exact cluster sizes are fre-
quently not reported, so the research reviewer often has 
access only to the average sample sizes and thus may 
have to proceed as if sample sizes are equal. In this chap-
ter, we present results assuming equal sample sizes (for 
the analogous results when cluster sample sizes are 
unequal, see Hedges 2007).

In principle, there are three within-treatment group 
standard deviations, sB, sW, and sT, the latter defined by

σ σ σ= + .T B W
2 2 2

In most educational data when clusters are schools, s B
2 

is considerably smaller than s 2
W. Obviously, if the 

between-cluster variance s B
2 is small, then s T

2 will be 
similar to s 2

W.

11.7.2  Intraclass Correlation with One Level  
of Nesting

A parameter that summarizes the relationship between 
the three variances is called the intraclass correlation r. It 
is defined by

. (11.85)B

B W

B

T

2

2 2

2

2ρ σ
σ σ

σ
σ

=
+

=

The intraclass correlation r can be used to obtain one 
of these variances from any of the others, given that  
s B

2 = rs T
2 and s 2

W = (1 – r)s T
2 = (1 – r)s B

2 /r.

11.7.3 Primary Analyses 

Many analyses reported in the literature fail to take the 
effects of clustering into account or take clustering into 
account by analyzing cluster means as the raw data. In 
either case, the treatment effect (the mean difference 
between treatment and control groups), the standard devia-
tions S2

W and S2
T, and the sample sizes may be reported (or 

deduced from information that is reported). In other cases, 
the analysis reported may have taken clustering into account 
by treating clusters as random effects. Such an analysis 
(such as using the program HLM, SAS Proc Mixed, or the 
STATA routine XTMixed) usually yields direct estimates of 
the treatment effect b and the variance components s B

2 and 
s 2

W and their standard errors. This information can be used 
to calculate both the effect size and its approximate stan-
dard error. Let ν̂B

2 and ν̂2
W be the estimates of s B

2 and s 2
W and 

let V(b), V(ν̂B
2) and V(ν̂2

W) be their variances (the square of 
their standard errors). Generally, V(ν̂2

W) depends primarily 
on the number of individuals and V(ν̂B

2) depends primarily 
on the number of clusters. Because the number of individu-
als typically greatly exceeds the number of clusters, V(ν̂2

W) 
will be so much smaller than V(ν̂B

2) that V(ν̂2
W) can be 

considered negligible.

11.7.4 Effect Sizes with One Level of Nesting

In designs with one level of nesting (two-level designs), 
there are three possible standardized mean difference 
parameters corresponding to the three different standard 
deviations. The choice of one of these effect sizes should 
be determined on the basis of the inference of interest to 
the researcher. If the effect-size measures are to be used 
in meta-analysis, an important inference goal may be to 
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estimate parameters that are comparable with those that 
can be estimated in other studies. In such cases, the stan-
dard deviation may be chosen to be the same kind of stan-
dard deviation used in the effect sizes of other studies to 
which this study will be compared. We focus on three 
effect sizes that seem likely to be the most useful (mean-
ing, the most widely used).

If sW ≠ 0 (and hence r ≠ 1), one effect-size parameter 
has the form

δ µ µ
σ

= −• • . (11.86)W

T C

W

This effect size might be of interest, for example, in a 
meta-analysis where the other studies with which the cur-
rent study is compared are typically single-site studies. In 
such studies dW may (implicitly) be the effect size esti-
mated and hence dW might be the effect size most compa-
rable with that in other studies.

A second effect-size parameter is of the form

δ µ µ
σ

= −• • . (11.87)T

T C

T

This effect size might be of interest in a meta-analysis 
where the other studies are multisite studies or studies 
that sample from a broader population but do not include 
clusters in the sampling design (this would typically 
imply that they used an individual rather than a cluster 
assignment strategy). In such cases, dT might be the most 
comparable with the effect sizes in other studies.

If sB ≠ 0 (and hence r ≠ 0), a third possible effect-size 
parameter would be

δ µ µ
σ

= −• • . (11.88)B

T C

B

but this parameter is seldom used in practice and is not 
discussed here (for a discussion, see Hedges 2007).

Note that if all of the effect sizes are defined (that is, if 
0 < r < 1), and r is known, any one of these effect sizes 
may be obtained from any of the others. In particular, 
both dW and dT can be obtained from dB and r because

1 1
(11.89)W B

Tδ δ ρ
ρ

δ
ρ

=
−

=
−

and

1 . (11.90)T B Wδ δ ρ δ ρ= = −

11.7.5 Estimation of dW

We start with estimation of dW, which is the most straight-
forward. If r ≠ 1 (so that sW ≠ 0 and dW is defined), the 
estimate

d
Y Y

S
(11.91)W

T C

W

= −•• ••

is a consistent estimator of dW, which is approximately 
normally distributed about dW. The (estimated) variance 
of dW is

v
N N

N N

n d

N M

1 1

1 2
. (11.92)W

T C

T C
W
2ρ

ρ
( )

( )
= +





+ −
−







+
−

Note that the presence of the factor (1 – r) in the 
denominator of the first term is possible since dW is 
defined only if r ≠ 1.

Note that if r = 0 and there is no clustering, equation 
(11.92) reduces to the variance of a mean difference divided 
by a standard deviation with (N – M) degrees of freedom. 
The leading term of the variance in equation (11.92) arises 
from uncertainty in the mean difference. Note that it is  
[1 + (n – 1)r]/(1 – r)] as large as would be expected if 
there were no clustering in the sample (that is if r = 0). 
Thus [1 + (n – 1)r]/(1 – r)] is a kind of variance inflation 
factor for the variance of the effect-size estimate dW.

When the analysis properly accounts for clustering by 
treating the clusters as having random effects, and an esti-
mate b of the treatment effect, its variance V(b), and an 
estimate ν̂2

W of the variance component s 2
W is available (for 

example, from an HLM analysis), the estimate of dW is

d
b
ˆ

. (11.93)W
Wσ

=

The approximate variance of the estimate given in (11.93) is

v
V b

ˆ
. (11.94)W

W
2σ

( )
=
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11.7.6 Estimation of dT

A consistent estimate of dT using the intraclass correla-
tion is

d
Y Y

S

n

N
1

2 1

2
, (11.95)T

T C

T

ρ( )
= −





− −
−

•• ••

which is normally distributed in large samples with (an 
estimated) variance of

ρ

ρ ρ
ρ ρ

ρ[ ]
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Note that if r = 0 and there is no clustering, dT 
reduces to the conventional standardized mean dif-
ference and equation (11.96) reduces to the usual 
expression for the variance of the standardized mean 
difference.

The leading term of the variance in equation (11.96) 
arises from uncertainty in the mean difference. Note that 
this leading term is [1 + (n – 1)r] as large as would be 
expected if there were no clustering in the sample (that is 
if r = 0). The expression [1 + (n – 1)r] is the variance 
inflation factor mentioned by Allan Donner and Neil Klar 
(2000) and the design effect mentioned by Leslie Kish 
(1965) for the variance of means in clustered samples and 
also corresponds to a variance inflation factor for the 
effect-size estimates like dT.

11.7.7 Confidence Intervals for dW, dB, and dT

The results in this paper can also be used to compute 
confidence intervals for effect sizes. If d is any one of the 
effect sizes mentioned, d is a corresponding estimate, 
and vd is the estimated variance of d, then a 100(1 – a) 
percent confidence interval for d based on d and vd  
is given by

d c v d c v , (11.97)a d a d2 2− ≤ δ ≤ +

where ca/2 is the 100(1 – a/2) percent point of the stan-
dard normal distribution (for example, 1.96 for a/2 = 
0.05/2 = 0.025).

11.7.8 Applications in Meta-Analysis

This section is intended to be useful in deciding what 
effect sizes might be desirable to use in studies with 
nested designs. The results in this chapter can be used to 
produce effect-size estimates and their variances from 
studies that report (incorrectly analyzed) experiments as 
if there were no nested factors. The required means, stan-
dard deviations, and sample sizes can usually be extracted 
from what may be reported.

Suppose it is decided that the effect-size dT is appropri-
ate because most other studies both assign and sample 
individually from a clustered population. Suppose that 
the data are analyzed by ignoring clustering, then the test 
statistic is likely to be either

=
+

−





•• ••
t

N N

N N

Y Y

S

T C

T C

T C

T

or F = t2. Either can be solved for

−





•• ••Y Y

S
,

T C

T

which can then be inserted into equation (11.95) along 
with r to obtain dT. This estimate (dT) of dT can then be 
inserted into equation (11.96) to obtain vT, an estimate of 
the variance of dT.

Alternatively, suppose it is decided that the effect-size 
dW is appropriate because most other studies involve only 
a single site. We may begin by computing dT and vT as 
before. Because we want an estimate of dW, not dT, we use 
the fact given in equation (11.89) that

δ δ ρ= −1W T

and therefore

d 1 (11.98)T ρ−

is an estimate of dW with a variance of

v 1 . (11.99)T ρ( )−

Example. An evaluation of the connected mathematics 
curriculum reported by James Ridgway and colleagues 
(2002) compared the achievement of mT = 18 classrooms 
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of sixth-grade students who used connected mathematics 
with that of mC = 9 classrooms in a comparison group 
that did not use connected mathematics. In this quasi- 
experimental design the clusters were classrooms. The 
cluster sizes were not identical but the average cluster 
size in the treatment groups was NT/mT = 338/18 = 18.8 
and NC/mC 162/18 = 18 in the control group. The exact 
sizes of all the clusters were not reported, but here we treat 
the cluster sizes as if they were equal and choose n = 18 as 
a slightly conservative sample size. The mean difference 
between treatment and control groups is Y

–
T
•• – Y

–
C
•• = 1.9,  

the pooled within-groups standard deviation ST = 12.37. 
This evaluation involved sites in all regions of the 
country and it was intended to be nationally representa-
tive. Ridgway and colleagues did not give an estimate of 
the intraclass correlation based on their sample. Larry 
Hedges and Eric Hedberg (2007) provide an estimate of 
the grade 6 intraclass correlation in mathematics achieve-
ment for the nation as a whole (based on a national prob-
ability sample) of 0.264 with a standard error of 0.019. 
For this example, I assume that the intraclass correlation 
is identical to that estimate, namely r = 0.264.

Suppose that the analysis ignored clustering and 
compared the mean of all the students in the treatment 
with the mean of all the students in the control group. 
This leads to a value of the standardized mean differ-
ence of

− =•• ••Y Y

S
0.1536,

T C

T

which is not an estimate of any of the three effect sizes 
considered here. If an estimate of the effect-size dT is 
desired, and we had imputed an intraclass correlation of 
r = 0.264, then we use equation (11.95) to obtain

( )( )= =d 0.1536 0.9907 0.1522.T

The effect-size estimate is very close to the original 
standardized mean difference even though the amount of 
clustering in this case is not small. However, this amount 
of clustering has a substantial effect on the variance of 
the effect-size estimate. The variance of the standardized 
mean difference ignoring clustering is

� ( )
+ +

+ −
=324 162

324 162

0.1531

2 324 162 2
0.009259.

2

However, computing the variance of dT using equation 
(11.96) with r = 0.264, we obtain a variance estimate of 
0.050865, which is 549 percent of the variance ignoring 
clustering. A 95 percent confidence interval for dT is 
given by

δ− = − ≤ ≤

+ =

0.2899 0.1522 1.96 0.050865 0.1522

1.96 0.050865 0.5942.

T

If clustering had been ignored, the confidence interval for 
the population effect size would have been –0.0350 to 
0.3422.

If we wanted to estimate dW, then an estimate of dW 
given by expression(11.98) is

−
=0.1522

1 0.264
0.1774,

with variance given by expression (11.99) as

( )− =0.050865 1 0.264 0.06911,

and a 95 percent confidence interval for dW based on 
(11.97) would be

δ− = − ≤ ≤

+ =

0.3379 0.1774 1.96 0.06911 0.1774

1.96 0.06911 0.6926.

W

11.8  COMBINING DATA FROM DIFFERENT 
TYPES OF STUDIES

We have now showed how to compute the same effect-
size index from studies that use different designs. For 
example, we can compute d from studies that use two 
independent groups, a pre- or post-design, analysis of 
covariance, and cluster-randomized studies. We also 
showed how to convert across effect sizes—such as from 
an odds ratio to standardized mean difference. Although it 
is technically possible to make these conversions, we need 
to consider when it is a good idea to do so. The decision 
must be made on a case-by-case basis, and our goal here 
is to provide some context for making this decision.

The goal of a random-effects meta-analysis is not to 
include a set of identical studies. Instead, we include studies 
that may differ in a myriad of ways but nevertheless 
address the same fundamental question. For example, 
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suppose that we are testing the impact of tutoring on stu-
dents. Some studies enroll freshmen and some enroll 
sophomores. Can we include both kinds of studies in the 
analysis? If we feel that they are addressing the same fun-
damental question, then the answer is yes. Otherwise, the 
answer is no. Suppose that some studies tutor the students 
for sixty minutes a day and some for ninety minutes. Can 
we include both kinds of studies in the analysis? If we feel 
that they are addressing the same fundamental question, 
then the answer is yes Otherwise, it is no.

The same logic applies when we turn to the way we 
assess outcome. Suppose some studies measure math 
skill using one test, and others use another. We decide 
that these tests are (or are not) addressing the same fun-
damental question. Suppose that we are comparing the 
risk of an event in two groups. If two studies have dif-
ferent follow-up periods, then the “risk of an event” 
really has a different meaning in the two studies, and 
we need to decide whether both are addressing the 
same fundamental question.

We typically make these kinds of decisions implicitly, 
as part of the inclusion-exclusion process. We have cho-
sen to make this explicit here because it provides context 
for thinking about the question at hand. The decision that 
it is okay (or not) to include different study designs or 
different types of data in the same analysis is simply 
another variant of the decision process outlined for popu-
lations, protocols, and the like.

Suppose that some studies compared two independent 
groups, and others compared pre- and post-scores for the 
same group. In some cases (when the change from pre- to 
post- is almost certainly the result of the intervention), we 
might decide that including both kinds of studies in the 
same analysis is fine. In other cases, when the change 
could be due to external factors, we might decide not to 
include them in the same analysis. Our decision thus 
hinges on the question of whether the two designs are 
addressing the same fundamental question.

Suppose that some studies compared the means in two 
groups and that others compared the risk. In some cases, 
if the risk and the mean are capturing the same funda-
mental issue, we might decide that including both kinds 
of studies in the same analysis is fine. In other cases, 
when the outcome must be seen as a dichotomy, we might 
decide not to. Again, our decision hinges on the question 
of whether the two designs are addressing the same fun-
damental question.

The one rule that cannot be violated is that the effect-
size index used in the analysis must be essentially the 

same for all studies. Thus, we would never include two 
versions of the standardized mean difference, when one 
is standardized by the standard deviation within groups 
and the other by that between groups. Similarly, we 
would never include odds ratios and risk ratios. (A possi-
ble exception for the risk ratio and hazard ratio was dis-
cussed earlier).

In this discussion, different study designs refers to 
instances in which, for example, one study uses indepen-
dent groups and another uses a pre-post design or matched 
groups. It does not refer to instances when one study was 
a randomized trial (or quasi-experimental study) and 
another observational. In general, these two kinds of 
studies will be addressing fundamentally different ques-
tions; it would not be appropriate to include them in the 
same analysis.

11.9 CONCLUSION

In this chapter, we address the calculation of effect-size 
estimates and their sampling distributions, a technical 
exercise that depends on statistical theory. Equally import-
ant is the interpretation of effect sizes, a process that 
requires human judgment and that is not amenable to 
technical solutions (Cooper 2008).

To understand the substantive implications of an effect 
size, we need to look at the effect size in context. For 
example, to judge whether the effect of an intervention is 
large enough to be important, it may be helpful to com-
pare it with the effects of related interventions that are 
appropriate for the same population and have similar 
characteristics (such as cost or complexity). Compendia 
of effect sizes from various interventions may be helpful 
in making such comparisons (for example, Lipsey and 
Wilson 1993).

Alternatively, it may be helpful to compare an effect 
size to other effect sizes that are well understood concep-
tually. For example, one might compare an educational 
effect size to the effect size corresponding to one year of 
growth. Even here, however, context is crucial. For 
example, one year’s growth in achievement from kinder-
garten to grade 1 corresponds approximately to a d of 1.0, 
whereas one year’s growth in achievement from grade 
eleven to grade twelve corresponds to a d of about 0.1 
(see, for example, Bloom et al. 2008; Hill et al. 2008; or 
Lipsey et al. 2012).

Technical methods can help with the interpretation 
of effect sizes in one limited way. They can permit 
effect sizes computed in one metric (such as a correla-



EFFECT SIZES FOR META-ANALYSIS   241

tion coefficient) to be expressed in another (such as a 
standardized mean difference or an odds ratio). Such 
reexpression can make it easier to compare the effect with 
other effect sizes that may be known to the analyst and be 
judged to be relevant (Rosenthal and Rubin 1979, 1982).

11.10 RESOURCES

Most of the formulas discussed in 11.2 to 11.6 have been 
implemented in the computer program Comprehensive 
Meta-Analysis. The formulas discussed in 11.7 have 
been implemented in the computer program Computing 
Effect-Sizes for Cluster-Randomized Studies. For infor-
mation on these programs, contact the first author at  
Biostat100@gmail.com.

Parts of this chapter have been adapted from the book 
Computing Effect Sizes for Meta-Analysis (Borenstein 
et al. 2019).
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12.1 INTRODUCTION

In this chapter, three general classes of fixed-effects and 
random-effects models are presented. One class of mod-
els is appropriate for estimating the mean effect across 
studies. Two other classes of models are appropriate 
when examining the relation between independent (study 
characteristic) variables and effect size. One of these is 
appropriate when the independent (study characteristic) 
variables are categorical. It is analogous to the analysis of 
variance but is adapted to the special characteristics of 
effect-size estimates. The other of these is appropriate for 
either discrete or continuous independent (study charac-
teristic) variables and therefore technically includes the 
first class as a special case. This class is analogous to 

multiple regression analysis for effect sizes. In all three 
cases, we describe the models along with procedures for 
estimation and hypothesis testing. Although some formu-
las for hand computation are given, we stress computa-
tion via widely available packaged computer programs.

Tests of goodness of fit are given for each fixed-effect 
model. They test the notion that there is no more variabil-
ity in the observed effect sizes than would be expected if 
all (100 percent) of the variation in effect-size parame-
ters is “explained” by the data analysis model (the predic-
tor variables). These tests can be conceived as tests of 
“model specification.” That is, if a fixed-effects model 
explains all of the variation in effect-size parameters, the 
(fixed-effect) model is appropriate. Models that are well 
specified can provide a strong basis for inference about 
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effect sizes in fixed-effects models but are not essential 
for inference from them. If differences between studies 
that lead to differences in effects are not regarded as ran-
dom (for example, if they are regarded as consequences 
of purposeful design decisions) then fixed-effects meth-
ods are appropriate for the analysis. Similarly, fixed- 
effects analyses are appropriate if the inferences desired 
are regarded as conditional—applying only to observed 
studies under examination.

12.2 ESTIMATING THE MEAN EFFECT

The simplest meta-analytic analysis is estimating the 
mean effect from a series of independent studies. Both 
fixed- and random-effects statistical methods are available 
for studying the variation in effects. The choice of which 
to use is sometimes a contentious issue in both meta-analy-
sis as well as primary analysis of data. The choice of statis-
tical procedures should primarily be determined by the 
kinds of inference the synthesist wishes to make. Two dif-
ferent inference models are available, sometimes called 
conditional and unconditional inference (see, for exam-
ple, Hedges and Vevea 1998). The conditional inference 
model attempts to make inference about the relation 
between covariates and the effect-size parameters in the 
sample of studies that are observed. In contrast, the uncon-
ditional inference model attempts to make inferences 
about the relation between covariates and the effect-size 
parameters in the population of studies from which the 
observed studies are considered to be a representative 
sample. Fixed-effects statistical procedures are well suited 
to drawing conditional inferences, inferences about the 
observed studies (see, for example, Hedges and Vevea 
1998). Fixed-effects statistical procedures may also be a 
reasonable choice when the number of studies is too small 
to support the effective use of mixed- or random-effects 
models. Random- or mixed-effects statistical procedures 
are well suited to drawing unconditional inferences (infer-
ences about the population of studies from which the 
observed studies are randomly selected). We use the terms 
random effects and mixed effects interchangeably.

12.2.1 Fixed-Effects Models

Suppose that the data to be combined arise from a series 
of k independent studies, in which the ith study reports 
one observed effect size Ti, with population effect size qi, 
and variance vi. Thus, the data to be combined consist of 
k effect size estimates T1, . . . , Tk of parameters q1, . . . , 
qk, and variances v1, . . . , vk. Under the fixed effects 

model, we assume q1 = . . . = qk = q, a common effect size. 
Then a general formula for the weighted average effect 
size over those studies is

T

w T

w
, (12.1)

i i
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k
1

1

∑

∑
=•

=

=

where wi is a weight assigned to the ith study that is 
defined in equation (12.2).

When all observed effect-size indicators estimate a 
single population parameter, as is hypothesized under a 
fixed-effects model, then T

–
• is an unbiased estimate of the 

population parameter q. In equation (12.1), Ti may be esti-
mated by any specific effect size statistic.

The weights that minimize the variance of T
–

• are 
inversely proportional to the conditional variance (the 
square of the standard error) in each study:

w
v

1
. (12.2)i

i

=

Formulas for the conditional variances, vi, vary for differ-
ent effect-size indices but they are presented in chapter 
11. However, they share in common the fact that condi-
tional variance is inversely proportional to within-study 
sample size—the larger the sample, the smaller the vari-
ance, so the more precise the estimate of effect size 
should be. Hence, larger weights are assigned to effect 
sizes from studies that have larger within-study sample 
sizes. Of course, equation (12.2) defines the optimal 
weights assuming we know the conditional variances, 
vi, for each study. In practice we must estimate those 
variances (v̂ i), so we can only estimate these optimal 
weights (ŵi).

Given the use of weights as defined in (12.2), the aver-
age effect size T

–
• has conditional variance v•, which itself 

is a function of the conditional variances of each effect 
size being combined:

v
v

1

1
. (12.3)
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The square root of v• is the standard error of estimate 
of the average effect size. Multiplying the standard 
error by an appropriate critical value Ca, and adding and  
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subtracting the resulting product to T
–

•, yields the (95 per-
cent) confidence interval for q :

T C T C (12.4)− ≤ θ ≤ +• α • α

Ca is often the unit normal Ca = 1.96 for a two-tailed test 
at α = .05; but better type I error control and better cover-
age probability of the confidence interval may occur if Ca 
is student’s t-statistic at k – 1 degrees of freedom. In 
either case, if the confidence interval does not contain 
zero, we reject the null hypothesis that the population 
effect size q is zero. Equivalently, we may test the null 
hypothesis that q = 0 with the statistic

Z
T
v

, (12.5)= •

•

where |T
–

•| is the absolute value of the weighted average 
effect size over studies (given by equation 12.1). Under 
(12.5), T

–
• differs from zero if Z exceeds 1.96, the 95 per-

cent two-tailed critical value of the standard normal 
distribution.

A test of the assumption of equation (12.1) that studies 
do, in fact, share a common population effect size uses 
the following homogeneity test statistic:
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A computationally convenient form of (12.6) is
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If Q exceeds the upper-tail critical value of chi-square at 
k – 1 degrees of freedom, the observed variance in study 
effect sizes is significantly greater than we would expect 
by chance if all studies shared a common population 
effect size. If homogeneity is rejected, T

–
• should not be 

interpreted as an estimate of a single effect parameter q 
that gave rise to the sample observations, but rather sim-
ply as describing a mean of observed effect sizes, or as 
estimating a (weighted) mean q, which may, of course, be 

of practical interest in a particular research synthesis. If Q 
is rejected, the researcher may wish to disaggregate study 
effect sizes by grouping studies into appropriate catego-
ries or to use regression techniques to account for vari-
ance among the qi. These latter techniques are discussed 
in subsequent sections of this chapter, as are methods for 
conducting sensitivity analyses that help examine the 
influence of particular studies on combined effect size 
estimates and on heterogeneity.

Q is a diagnostic tool to help researchers know 
whether they have, to put it in the vernacular, “accounted 
for all the variance” in the effect sizes they are studying. 
Experience has shown that Q is usually rejected in most 
simple fixed-effects univariate analyses—for example, 
when the researcher simply lumps all studies into one 
category or contrasts one category of studies, such as 
randomized experiments, with another category of studies,  
such as quasi-experiments. In such simple category sys-
tems, rejection of homogeneity makes eminent theoreti-
cal sense! Each simple categorical analysis can be 
thought of as the researcher’s theoretical model about 
what variables account for the variance in effect sizes. 
We would rarely expect that just one variable, or even 
just two or three variables, would be sufficient to account 
for all observed variance. The phenomena we study are 
usually far more complex than that. Often, extensive 
multivariate analyses are required to model these phe-
nomena successfully. In essence, then, the variables that 
a researcher uses to categorize or predict effect sizes can 
be considered to be the model that the researcher has 
specified about what variables generated study outcome. 
The Q statistic tells whether that model specification is 
statistically adequate. Thus, homogeneity tests can serve 
a valuable diagnostic function.

A useful supplement to Q is the descriptive statistic:

I
Q k

Q
100%

1
, (12.8)2 �

( )
=

− −





which describes the percentage of the total variance in 
effect-size estimates that is due to variance among the 
effect-size parameters (Higgins and Thompson 2002; 
Higgins et al. 2003). Negative values of I2 are set to zero. 
Values of I2 are not affected by the numbers of studies or the 
effect-size metric. Julian Higgins and Simon Thompson 
(2002) suggest the following approximate guidelines for 
interpreting this statistic: I2 = 25% (small heterogeneity), 
I2 = 50% (medium heterogeneity), and I2 = 75% (large 
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heterogeneity). We recommend using I2 as a descriptive 
statistic without the confidence intervals to supplement Q 
rather than to replace Q.

Example. Alice Eagly and Linda Carli (1981) reported 
a synthesis of ten studies of gender differences in confor-
mity using the so-called fictitious norm group paradigm. 
The effect sizes were standardized mean differences. 
Table 12.1 presents sums necessary to do the fixed effects 
computations. (Throughout this chapter, results will vary 
slightly depending on the number of decimals used in the 
computations.) The weighted average effect-size estimate 
is computed using (12.1) as T

–
• = 34.649/279.161 = 0.124, 

and the variance is computed from (12.3) as v• = 1/279.161 
= 0.00358, which corresponds to a standard error of 

0.00358  = 0.060. We test the significance of this effect 
size in either of two equivalent ways: by computing the 
95 percent confidence interval using (12.4), which in this 
case ranges from 0.124 – 1.96 0.00358  = 0.007 to 0.124 
+ 1.96 0.00358  = 0.241, which does include zero in the 
confidence interval, and by computing the statistic Z 
using (12.5), which yields Z = |0.124|/ 0.00358  = 2.074, 
which exceeds the 1.96 critical value at a = 0.05. Hence 
we conclude that there is a positive average gender differ-
ence in conformity. However, homogeneity of effect size 
is rejected in this data, with the computational version of 
equation (12.6) yielding Q = 36.076 – [(34.649)2/279.161] 
= 31.775, which exceeds 21.67, the 99 percent critical 
value of the chi-square distribution for 10 – 1 = 9 degrees of 
freedom, so we reject homogeneity of effect sizes at  
p < .01. Similarly, using equation (12.7) we compute  
I2 = 100% × [31.775 – (10 – 1)]/31.775 = 71.6%, suggesting 
nearly three quarters of the variation in effect sizes is due to 
real heterogeneity of the effect-size parameters. Hence, we 
might assume that other variables could be necessary to 
fully explain the variance in these effect sizes; subsequent 
sections in this chapter will explore such possibilities.

12.2.2 Random-Effects Models

Under a fixed-effects model, the effect-size statistics, Ti, 
from k studies estimate a population parameter q1 = . . . = qk 
= q. The estimate Ti in any given study differs from the q 
due to sampling error, or what we have referred to as condi-
tional variability; that is, because a given study used a  
sample of subjects from the population, the estimate of Ti 
computed for that sample will differ somewhat from q for 
the population.

Under a random effects model, qi is not fixed but is 
itself random and has its own distribution. Hence, total 

variability of an observed study effect size estimate vi
* 

reflects both conditional variation vi of that effect size 
around each population qi and random variation t 2 of the 
individual qi around the mean population effect size:

v v* . (12.9)i i
2= + τ

In this equation, we will refer to t 2 as either the between- 
studies variance or the variance component (others some-
times refer to this as random-effects variance); to vi as either 
within-study variance or the conditional variance of Ti (the 
variance of an observed effect size conditional on q being 
fixed at the value of qi; others sometimes call this estima-
tion variance); and to vi

* as the unconditional variance of 
an observed effect size Ti (others sometimes call this the 
variance of estimated effects). If the between-studies 
variance is zero, then the equations of the random-effects 
model reduce to those of the fixed-effects model, with 
unconditional variability of an observed effect size [vi

*] 
hypothesized to be due entirely to conditional variability 
[vi] (to sampling error).

Once the researcher decides to use a random-effects 
analysis, a first task is to determine whether or not the 
variance component differs significantly from zero and, 
if it does, then to estimate its magnitude. Estimating the 
variance component can be done in many different ways 
(Viechtbauer 2005). This unbiased sample estimate of the 
variance component will sometimes be negative, even 
though the population variance component must be a 
positive number. In these cases, it is customary to fix the 
component to zero.

The most common method for estimating the variance 
component begins with Q as defined in equation (12.6). 
The expected value of Q is

E Q c k 1 ,2τ{ } ( )= + −

where

c w w w . (12.10)i i
i

k

i
i

k

i

k
2

1 11
∑ ∑∑= − 



= ==

Solving for t 2 and substituting Q for its expectation gives 
an estimator of the variance component:

Q k cˆ 1 , (12.11)2τ [ ]( )= − −

which is set to zero if it is negative.
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Alternative estimators, such as the restricted maximum 
likelihood estimator described by Wolfgang Viechtbauer 
(2005) tends to perform better than (12.11), but must be 
estimated with an iterative procedure which is imple-
mented in several software packages.

The random effects weighted mean of T1, . . . , Tk, T
–
*, 

is an estimate of µq, the average of the random effects in 
the population; v*, the variance of T

–
* (the square root of 

v* is the standard error of T
–
*); and random-effects confi-

dence limits qL and qU for µq by multiplying the standard 
error by an appropriate critical value (often, 1.96 at  
a = .05), and adding and subtracting the resulting product 
from T

–
*. In general, the computations follow (12.1) to 

(12.5), except that the following unconditional variance 
estimate is used in (12.2) through (12.5) in place of the 
conditional variances outlined in the fixed-effects models:

v v* , (12.12)i i
2τ= +

where t 2 is the variance component estimate yielded by 
(12.11) and vi is the conditional variance of Ti. The square 
root of the variance component describes the standard 
deviation of the distribution of effect parameters. Multi-
plying that standard deviation by 1.96 (or an appropriate 
critical value of t), and adding and subtracting the result 
from the average random-effect size T

–
*, yields the limits 

of an approximate 95 percent confidence interval. All 
these random-effects analyses assume that the random 
effects are normally distributed with constant variance, 
an assumption that is particularly difficult to assess when 
the number of studies is small.

Example. We apply these procedures to the data from 
ten studies on the effects of gender differences in confor-
mity. Table 12.1 provides the sums necessary to perform 
the random-effects calculations. To compute the sample 
estimate of the variance component we first compute the 
constant c using (12.10) to obtain c = 279.161 – 2613.652 
= 269.798. Then we compute the variance component 
estimate using (12.11) as τ̂2 = [31.775–(10–1)]/269.795 = 
0.084. Using this value of t 2 we then compute the ran-
dom effects weights wi*. The estimate of the random 
effects average effect size is T

–
*• = 23.056/151.865 = 0.152 

with a variance of v*• = 1/151.865 = 0.00658, which cor-
responds to a standard error of 0.00658  = 0.081. The 
limits of the 95 percent confidence interval ranges from 
0.152 – 1.96 0.00658  = –0.007 to 0.152 + 1.96 0.00658  
= 0.311, which includes zero in the confidence interval, 
and the statistic Z = |0.152|/ 0.00658  = 1.871, which does 
not exceed the 1.96, the α = 0.05 critical value of the 

standard normal distribution. Hence, unlike in the fixed- 
effects analysis, we do not conclude that there is a non-
zero average gender difference in conformity.

12.3 ANALYSIS OF VARIANCE FOR EFFECT SIZES

One of the most common situations in research synthesis 
arises when the effect sizes can be sorted into indepen-
dent groups according to one or more characteristics of the 
studies generating them. The analytic questions are whether 
the groups’ (average) population effect sizes vary and 
whether the groups are internally homogeneous, that is, 
whether the effect sizes vary within the groups. Alterna-
tively, we could describe the situation as one of exploring 
the relationship between a categorical independent vari-
able (such as one grouping variable) and the effect-size 
estimates (the outcome). This is the situation addressed 
by analysis of variance in experimental data. This section 
describes an analog to the one-factor analysis of variance 
for effect sizes. Extensions of these methods to more than 
one categorical independent variable are available but are 
usually handled in meta-analysis by using the multiple 
regression methods. Our numerical examples in this chap-
ter use effect-size estimates that are standardized mean dif-
ferences (for technical details, see Hedges 1982a; Hedges 
and Olkin 1985).

12.3.1 Fixed-Effects Analyses

Situations frequently arise in which we wish to determine 
whether a particular discrete characteristic of studies is 
related to an outcome (effect-size estimates). For example, 
we may want to know whether the type of treatment is 
related to the treatment’s effect or whether all variations 
of the treatment produce essentially the same effect. The 
effect-sizes analog to one-factor analysis of variance is 
designed to answer just such questions.

12.3.1.1 Notation In the discussion of the one-factor 
model, we use a notation emphasizing that the independent 
effect-size estimates fall into p groups, defined a priori by 
the independent (grouping) variable. Suppose that there 
are p distinct groups of effects with m1 effects in the first 
group, m2 effects in the second group, . . . , and mp effects 
in the pth group and a total of k = m1 + . . . + mp effect sizes 
overall. Denote the jth effect parameter in the ith group by 
qij and its estimate by Tij with (conditional) variance vij. 
That is, Tij estimates qij with standard error vij . In most 
cases, vij will actually be an estimated variance that is a 
function of the within-study sample size and the effect-size 
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estimate in study j. However, unless the within-study sam-
ple size is exceptionally small we can treat vij as known. 
Therefore, in the rest of this chapter we assume that vij is 
known for each study. The sample data from the collection 
of studies can be represented as in table 12.2.

12.3.1.2 Means Making use of the dot notation from 
the analysis of variance, define the group mean effect 
estimate for the ith group T

–
i• by

T

w T

w
i p, 1, . . . , , (12.13)i

ij ij
j

m

ij
j

m
1

1

i

i

∑

∑
= =•

=

=

where the weight wij is simply the reciprocal of the variance 
of Tij,

w v1 . (12.14)ij ij=

The grand weighted mean T
–

•• is

T

w T

w
. (12.15)

ij ij
j

m

i

p

ij
j

m

i

p
11

11

i

i

∑∑

∑∑
=••

==

==

The grand mean T
–

•• could also be seen as the weighted 
mean of the group means T

–
1•, . . . , T

–
p•

T

w T

w
, (12.16)

i i
i

p

i
i

p
1

1

∑

∑
=••

• •
=

•
=

where the weight wi• is just the sum of the weights for the 
ith group

w w w. . . .i i im1 i
= + +•

Thus, T
–

i• is simply the weighted mean that would be 
computed by applying formula (12.1) to the studies in 
group i and T

–
•• is the weighted mean that would be obtained 

by applying formula (12.1) to all of the studies. If all of the 
studies in group i estimate a common effect-size parameter 
qi•, that is, if qi1 = qi2 = . . . = qimi

 = qi•, then T
–

i• estimates qi•. 
If the studies within the ith group do not estimate a com-
mon effect parameter, then T

–
i• estimates the weighted mean 

of the effect-size parameters qij given by

q
qw

w
i p, 1, . . . , . (12.17)i

ij ij
j

m

ij
j

m
1

1

i

i

∑

∑
= =•

=

=

Similarly, if all of the studies in the collection estimate a 
common parameter q–••, that is if q11 = . . . = q1m1

 = q21 = . . .  
= qpmp

 = q–••, then T
–

•• estimates q–••. If the studies do not all 
estimate the parameter, then T

–
•• can be seen as an estimate 

of a weighted mean q–•• of the effect parameters given by

q
qw

w
. (12.18)

ij ij
j

m

i

p

ij
j

m

i

p
11

11

i

i
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∑∑
=••

==

==

Table 12.2  Effect Size Estimates and Sampling  
Variances for p Groups of Studies

Effect Size Estimates Variances

Group 1
 Study 1
 Study 2
 .
 .
 .
 Study m1

T11

T12

.

.

.
T1m1

v11

v12

.

.

.
v1m1

Group 2
 Study 1
 Study 2
 .
 .
 .
 Study m2

T21

T22

.

.

.
T2m2

v21

v22

.

.

.
v2m2

.

.

.

Group p
 Study 1
 Study 2
 .
 .
 .
 Study mp

Tp1

Tp2

.

.

.
Tpmp

vp1

vp2

.

.

.
vpmp

source: Authors’ compilation.
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Alternatively q–•• can be viewed as a weighted mean of 
the q–i•:

q
qw

w
,

i i
i

p

i
i

p
1

1

∑

∑
=••

• •
=

•
=

where wi• is just the sum of the weights wij for the ith group 
as in the alternate expression for T

–
•• above.

12.3.1.3 Standard Errors The sampling variances 
v1∉, . . . , vp• of the group mean effect estimates T

–
1•, . . . , T

–
p• 

are given by the reciprocals of the sums of the weights in 
each group, that is

v
w

i p
1

, 1, . . . . (12.19)i

ij
j

m

1

i

∑
= =•

=

Similarly the sampling variance v•• of the grand 
weighted mean T

–
•• is given by the reciprocal of the sum 

of all the weights or

v
w

1
. (12.20)

ij
j

m

i

p

11

i

∑∑
=••

==

The standard errors of the group mean effect estimates 
T
–

i• and the grand mean T
–

•• are just the square roots of 
their respective sampling variances.

12.3.1.4 Tests and Confidence Intervals The group 
means T

–
1•, . . . , T

–
p• are assumed to be normally distributed 

about the respective effect-size parameters q–i•, . . . , q
–

p•  
that they estimate. The fact that these means are normally 
distributed with the variances given in (12.18) leads to 
rather straightforward procedures for constructing tests 
and confidence intervals. For example, to test whether the 
ith group mean effect q–i• differs from a predefined con-
stant q0 (for example, to test whether q–i• – q0 = 0) by 
testing the null hypothesis

q qH : ,i i0 0=•

use the statistic

q
Z

T

v
(12.21)i

i

i

0= −•

•

and reject H0 at level a (that is, decide that the effect 
parameter differs from q0) if the absolute value of Zi 
exceeds the 100a percent critical value of the standard 
normal distribution. For example, for a two-sided test 
that q–i• = 0 at a =.05 level of significance, reject the null 
hypothesis if the absolute value of Z exceeds 1.96. 
When there is only one group of studies, this test is 
identical to that described earlier in this chapter and 
given in (12.5).

Confidence intervals for the group mean effect q–i• can 
be computed by multiplying the standard error •vi  by 
the appropriate two-tailed critical value of the standard 
normal distribution (Ca =1.96 for a = 0.05 and 95 per-
cent confidence intervals) then adding and subtracting 
this amount from the weighted mean effect size T

–
i•. 

Thus the 100(1 – a) percent confidence interval for q–i• is 
given by

qa aT C v T C v . (12.22)i i i i i− ≤ ≤ +• • • • •

Example. Return to the ten studies of gender differ-
ences in conformity using the so-called fictitious norm 
group paradigm. The effect sizes were standardized mean 
differences classified into three groups on the basis of the 
percentage of male authors of the research report. Group 1  
consisted of two studies having 25 percent of male 
authorship, group 2 consisted of a single study in which 
50 percent of the authors were male, and group 3 con-
sisted of seven studies with all male authorship. The data 
are presented in table 12.3.

The effect-size estimate Tij for each study, its vari-
ance vij, the weight wij = 1/vij, wijTij, and wijT2

ij (which 
will be used later) are presented in table 12.3. Using the 
sums for each group from table 12.3, the weighted 
mean of effect sizes for the three classes T

–
1•, T

–
2•, and 

T
–

3• are given by

T

T

T

9.320 63.895 0.146,

13.636 45.455 0.300,

57.605 169.811 0.339,

1

2

3

= − = −

= − = −

= =

•

•

•

and the weighted grand mean effect size is

T 34.649 279.161 0.124.= =••
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The variances v1•, v2•, and v3• of T
–

1•, T
–

2•, and T
–

3• are 
given by

v

v

v

1 63.895 0.016,

1 45.455 0.022,

1 169.811 0.006,

1

2

3

= =

= =

= =

•

•

•

and the variance v•• of T
–

•• is

v 1 279.161 0.00358.= =••

Using formula (12.22) with C.05 = 1.960, the limits of 
the 95 percent confidence interval for the group mean 
parameter q–1• are given by

0.146 1.960 0.016 0.146 0.245.− ± = − ±

Thus the 95 percent confidence interval for q–1• is 
given by

q0.391 0.099.1− ≤ ≤•

Because this confidence interval contains zero, or alter-
nately, because the test statistic

Z 0.146 0.016 1.960,1 = − <

we cannot reject the hypothesis that q–1• = 0 at the a = 0.05 
level of significance. Similarly 95 percent confidence 
intervals for the group mean parameters q–2• and q–3• are 
given by

q0.591 0.300 1.960 0.022 0.300

1.960 0.022 0.009

2− = − − ≤ ≤ −

+ = −

•

and

q0.189 0.339 1.960 0.006 0.339

1.960 0.006 0.489.

3= − ≤ ≤

+ =

•

Thus we see that the mean effect size for group 2 is 
significantly less than zero that for group 3 is significantly 
greater than zero and that for group 1 was not significantly 
different from zero.

12.3.1.5 Tests of Heterogeneity In the analysis of 
variance, tests for systematic sources of variance are 
constructed from sums of squared deviations from 
means. That the effects due to different sources of vari-
ance partition the sums of squares leads to the interpreta-
tion that the total variation about the grand mean is 
partitioned into parts that arise from between-group and 
within-group sources. The analysis of variance for effect 
sizes has a similar interpretation. The total heterogeneity  
statistic

Table 12.3 Data for the Male-Authorship Example

Study % Male Authors Group # of Items T v w wT wT2

1
2
3
4
5
6
7
8
9
10

   25%
 25
 50
100
100
100
100
100
100
100

1
1
2
3
3
3
3
3
3
3

 2
 2
 2
38
30
45
45
45
 5
 5

–0.330
0.070

–0.300
0.350
0.700
0.850
0.400
0.480
0.370

–0.060

0.029
0.034
0.022
0.016
0.066
0.218
0.045
0.069
0.051
0.032

34.483
29.412
45.455
62.500
15.152

4.587
22.222
14.493
19.608
31.250

–11.379
2.059

–13.636
21.875
10.606
3.899
8.889
6.957
7.255

–1.875

3.755
0.144
4.091
7.656
7.424
3.314
3.556
3.339
2.684
0.113

source: Authors’ tabulation based on data from Eagly and Carli 1981.
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Q w T TT ij
j

m

i

p

ij

11

2
i

∑∑ ( )= −
==

••

(the weighted total sum of squares about the grand mean) 
is partitioned into a between-groups-of-studies part QB 
(the weighted sum of squares of group means about the 
grand mean) and a within-groups-of-studies part QW (the 
total of the weighted sum of squares of the individual 
effect estimates about the respective group means). These 
statistics QB and QW yield direct omnibus tests of varia-
tion across groups in mean effects and variation within 
groups of individual effects.

12.3.1.5.1 An Omnibus Test for Between-Groups Dif-
ferences. To test the hypothesis that group mean effect 
sizes do not vary, that is, to test

q q qH : . . . ,p0 1 2= = =• • •

we use the between-group heterogeneity statistic QB 
defined by

Q w T T (12.23)B i i
i

p
2

1
∑ ( )= −• • ••

=

where wi• is the reciprocal of the variance of vi•. Note that 
QB is just the weighted sum of squares of group mean 
effect sizes about the grand mean effect size. When the 
null hypothesis of no variation across group mean effect 
sizes is true, QB has a chi-square distribution with (p –1) 
degrees of freedom. Hence we test H0 by comparing the 
obtained value of QB with the upper tail critical values of 
the chi-square distribution with (p – 1) degrees of free-
dom. If QB exceeds the 100(1 – a) percent point of the chi-
square distribution (for example, C.05 =18.31 for 10 degrees 
of freedom and a = 0.05), H0 is rejected at level α and 
between-group differences are significant.

This test is analogous to the omnibus F-test for varia-
tion in group means in a one-way analysis of variance in 
a primary research study. It differs in that QB, unlike the 
F-test, incorporates an estimate of unsystematic error in 
the form of the weights. Thus, no separate error term 
(such as the mean square within groups as in the typical 
analysis of variance) is needed and the sum of squares 
can be used directly as a test statistic.

12.3.1.5.2 An Omnibus Test for Within-Group Varia-
tion in Effects. To test the hypothesis that population ef-
fect sizes within the groups of studies do not vary, that is 
to test

q q q

q q q

q q q
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use the within-group homogeneity statistic QW given by

Q w T T , (12.24)W ij ij i

j

m

i

p
2

11

i

∑∑ ( )= − •
==

where the wij are the reciprocals of the vij, the sampling 
variances of the Tij. When the null hypothesis of perfect 
homogeneity of effect-size parameters is true, QW has a 
chi-square distribution with (k – p) degrees of freedom 
where k = m1+ m2+ . . . + mp is the total number of studies 
in the observed sample. Therefore, within-group homo-
geneity at significance level a is rejected if the computed 
value of QW exceeds the 100(1 – a) percent point (the 
upper tail critical value) of the chi-square distribution 
with (k – p) degrees of freedom.

Although QW provides an overall test of within-group 
variability in effects, it is actually the sum of p separate 
(and independent) within-group heterogeneity statistics, 
one for each of the p groups of effects. Thus

Q Q Q Q. . . . , (12.25)W W W Wp1 2
= + + +

where each QWi
 is just the heterogeneity statistic Q given in 

formula (12.6). In the notation used here, QWi
 is given by

Q w T T . (12.26)W ij ij i
j

m
2

1
i

i

∑ ( )= − •
=

These individual within-group statistics are often use-
ful in determining which groups are the major sources of 
within-group heterogeneity and which have relatively 
homogeneous effects. For example, in analyses of the 
effects of study quality in treatment-control studies, 
study-effect estimates might be placed into two groups: 
those from quasi-experiments and those from random-
ized experiments. The effect sizes within the two groups 
might be quite heterogeneous overall, leading to a large 
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QW, but most of that heterogeneity might arise within the 
group of quasi-experiments so that QW1

 (the statistic for 
quasi-experiments) would indicate great heterogeneity, 
but QW2

 (the statistic for randomized experiments) 
would indicate relative homogeneity (see, for example, 
Hedges 1983a).

If the effect-size parameters within the ith group of 
studies are homogeneous, that is, if qi1 = . . . = qimi

, then 
qWi

 has the chi-square distribution with mi – 1 degrees of 
freedom. Thus the test for homogeneity of effects within 
the ith group at significance level a consists of rejecting the 
hypothesis of homogeneity if QWi

 exceeds the 100(1 – a) 
percent point of the chi-square distribution with (mi – 1) 
degrees of freedom.

It is often convenient to summarize the relationships 
among the heterogeneity statistics via a table analogous 
to an ANOVA source table (see table 12.4).

12.3.1.5.3 The Partitioning of Heterogeneity. There is a 
simple relationship among the total homogeneity statistic Q 
given in formula (12.6) and the between-and within-group 
fit statistics discussed in this section. This relationship  
corresponds to the partitioning of the sums of squares in 
ordinary analysis of variance. That is Q = QB + QW.

One interpretation is that the total heterogeneity about 
the mean Q is partitioned into between-group heteroge-
neity QB and within-group heterogeneity QW. The ideal is 
to select independent (grouping) variables that explain 
variation (heterogeneity) so that most of the total hetero-
geneity is between-groups and relatively little remains 
within groups of effects. Of course, the grouping variable 

must, in principle, be chosen a priori (that is, before 
examination of the effect sizes) to ensure that tests for the 
significance of group effects do not capitalize on chance.

12.3.1.6 Computing the Analysis Although QB and 
QW can be computed via a computer program for weighted 
ANOVA, the weighted cell means and their standard 
errors cannot generally be obtained this way. Computa-
tional formulas can greatly simplify direct calculation of 
QB and QW as well as the cell means and their standard 
errors. These formulas are analogous to computational 
formulas in the analysis of variance and enable the com-
putation of all of the statistics in one pass through the 
data (for example, by a packaged computer program). The 
formulas are expressed in terms of totals (sums) across 
cases of the weights, of the weights times the effect esti-
mates, and of the weights times the squared effect esti-
mates. Define
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where wij = 1/vij is just the weight for Tij. Then the overall 
heterogeneity statistic Q is

Q TWDS TWD TW . (12.27)2( )= −• • •

Each of the within-group heterogeneity statistics is 
given by

Q TWDS TWD TW i p, 1, . . . , . (12.28)W i i i
2

i
( )= − =

The overall within-group homogeneity statistic is 
obtained as QW = QW1

 + QW2
 + . . . . + QWp

. The between-
groups heterogeneity statistic is obtained as QB = Q – QW. 
The weighted overall mean effects and its variance are

T TWD TW v TW, 1 ,= =•• • • •• •

and the weighted group means and their variances are

v TWD TW i p, 1, . . . , ,i i i= =•

and

v TW i p1 , 1, . . . , .i i= =•

Table 12.4 Heterogeneity Summary Table

 
Source

 
Statistic

Degrees of  
Freedom

Between groups QBET p – 1

Within groups
 Group 1
 Group 2
 .
 .
 .
 Group p

QW1

QW2

.

.

.
QWp

m1 – 1
m2 – 1
.
.
.
mp – 1

Total within groups QW k – p

Overall Q k – 1

source: Authors’ compilation.
note: Here k = m1 + m2 + . . . + mp.
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The omnibus test statistics Q, QB, and QW can also be 
computed using a weighted analysis of variance program. 
The grouping variable is used as the factor in the weighted 
ANOVA, the effect-size estimates are the observations, 
and the weight given to effect size Tij is just wij. The 
weighted between-group or model sum of squares is 
exactly QB, the weighted within-group or residual sum of 
squares is exactly QW, and the corrected total sum of 
squares is exactly Q.

Example. Return to the data from studies of gender dif-
ferences in conformity given in table 12.1. Using formula 
(12.6) and the sums given in table 12.1, the overall het-
erogeneity statistic Q = QT is

Q 36.076 34.649 279.161 31.776.2( )= − =

Using the sums given in table 12.1 in formula (12.28), the 
within-group heterogeneity statistics QW1

, QW2
, and QW3

 are

Q

Q

Q

3.899 9.320 63.895 2.540,

4.091 13.636 45.455 0.0004,

28.086 57.605 169.811 8.545.

W

W

W

2

2

2

1

2

3

( )

( )

( )

= − − =

= − =

= − =

The overall within-group heterogeneity statistic is 
therefore

Q 2.540 0.000 8.545 11.085.W = + + =

Because 11.085 does not exceed 14.067, the 95 percent 
point of the chi-square distribution with 10 – 3 = 7 
degrees of freedom, we do not reject the hypothesis that 
the effect-size parameters are homogeneous within the 
groups. In fact, a value this large would occur between 10 
and 25 percent of the time due to chance even with per-
fect homogeneity of effect parameters. Thus we conclude 
that no evidence indicates that effect sizes differ within 
groups.

The between-group heterogeneity statistic is calcu-
lated as

Q Q Q 31.776 11.085 20.691.B W= − = − =

Because 20.691 exceeds 5.991, the 95 percent point of 
the chi-square distribution with 3 – 1 = 2 degrees of free-
dom, we reject the null hypothesis of no variation in effect 
size across studies with different proportions of male 
authors. In other words, there is a statistically significant 

relationship between the percentage of male authors and 
effect size.

12.3.1.7 Comparisons or Contrasts Among Mean 
Effects Omnibus tests for differences among group means 
can reveal that the mean effect parameters are not all the 
same, but they are not useful for revealing the specific pat-
tern of mean differences that might be present. For exam-
ple, the QB statistic might reveal that there was variation in 
mean effects when the effects were grouped according to 
type of treatment, but the omnibus statistic gives no insight 
about which types of treatment (which groups) were asso-
ciated with the largest effect size. In other cases, the omni-
bus test statistic may not be significant, but we may wish to 
test for a specific a priori difference that the omnibus test 
may not have been powerful enough to detect. In conven-
tional analysis of variance, contrasts or comparisons are 
used to explore the differences among group means. Con-
trasts can be used in precisely the same way to examine 
patterns among group mean effect sizes in meta-analysis. 
In fact, all of the strategies used for selecting contrasts  
in ANOVA (such as orthogonal polynomials to estimate 
trends, and Helmert contrasts to discover discrepant groups)  
are also applicable in meta-analysis.

A contrast parameter is just a linear combination of 
group means

g c c. . . . (12.29)p p1 1θ θ= + +• •

where the coefficients c1, . . . , cp (called the contrast co -
efficients) are known constants that satisfy the constraint  
c1 + . . . + cp = 0 and are chosen so that the value of the 
contrast will reflect a particular comparison or pattern  
of interest. For example the coefficients c1 = 1, c2 = –1,  
c3 = . . . = cp = 0 might be chosen so that the value of the 
contrast is the difference between the mean q–1• of group 1 
and the mean q–2• of group 2. Sometimes we refer to a con-
trast among population means as a population contrast or a 
contrast parameter to emphasize that it is a function of pop-
ulation parameters and to distinguish it from estimates of 
the contrast. The contrast parameter specified by coeffi-
cients c1, . . . , cp is usually estimated by a sample contrast

g c c. . . . (12.30)p p1 1Τ Τ= + +• •

The estimated contrast g has a normal sampling distri-
bution with variance vg given by

v c v c v. . . . (12.31)g p p1
2

1
2= + +• •
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Although this notation for contrasts suggests that they 
compare group mean effects, they can be used to com-
pare individual studies (groups consisting of a single 
study) or to compare a single study with a group mean. 
All that is required is the appropriate definition of the 
groups involved.

12.3.1.7.1 Confidence Intervals and Tests of Signifi-
cance. Because the estimated contrast g has a normal 
distribution with known variance vg, confidence intervals 
and tests of statistical significance are relatively easy to 
construct. Just as with contrasts in ordinary analysis of 
variance, however, test procedures differ depending on 
whether the contrasts were planned or selected using in-
formation from the data. Procedures for testing planned 
comparisons and for constructing nonsimultaneous confi-
dence intervals are given in this section. Procedures for 
testing post hoc contrasts (contrasts selected using infor-
mation from the data) follow.

12.3.1.7.2 Planned Comparisons. Confidence inter-
vals for the contrast parameter g  are computed by multiply-
ing the standard error of g, vg , by the appropriate two-
tailed critical value of the standard normal distribution 
(Ca =1.96 for a =.05 and 95 percent confidence intervals) 
and adding and subtracting this amount from the esti-
mated contrast g. Thus the 100(1 – a) percent confidence 
interval for the contrast parameter g is

gag C v g C v . (12.32)g g− ≤ ≤ + α

Alternatively a (two-sided) test of the null hypothesis 
that γ = 0 uses the statistic

X g v . (12.33)g
2 2=

If X2 exceeds the 100(1 – a) percent point of the chi-
square distribution with one degree of freedom, reject the 
hypothesis that γ = 0 and declare the contrast to be signif-
icant at the level of significance a.

12.3.1.7.3 Post Hoc Contrasts and Simultaneous Tests.  
Situations often occur when several contrasts among 
group means are of interest. If several tests are made at the 
same nominal significance level a, the chance that at least 
one of the tests will reject (when all of the relevant null 
hypotheses are true) is generally greater than a and can 
be considerably greater if the number of tests is large. 
Similarly, the probability that tests will reject may also be 
greater than the nominal significance level for contrasts 
that are selected because they “appear to stand out” when 

examining the data. Simultaneous and post hoc testing 
procedures are designed to address these problems by  
assuring that the probability of at least one type I error is 
controlled at a preset significance level a. Many simulta-
neous test procedures have been developed (see Miller 
1981). We now discuss the application of two of these 
procedures to contrasts in meta-analysis (see also Hedges 
and Olkin 1985).

The simplest simultaneous test procedure is the Bonfer-
roni method. It exacts a penalty for simultaneous testing by 
requiring a higher level of significance from each individ-
ual contrast for it to be declared significant in the simulta-
neous test. If a number L ≥ 1 of contrasts are to be tested 
simultaneously at level a, the Bonferroni test requires that 
any contrast be significant at (nonsimultaneous) signif-
icance level a /L in order to be declared significant at 
level a in the simultaneous analysis. For example, if  
L = 5 contrasts were tested at simultaneous significance 
level a = 0.05, any one of the contrasts would have to be 
individually significant at the 0.01 = 0.05/5 level (that is, 
X2 would have to exceed 6.635, the 99 percent point of the 
chi-square distribution with df = 1) to be declared signifi-
cant at a = 0.05 level by the simultaneous test.

The Bonferroni method can be used as a post hoc test 
if the number of contrasts L is chosen as the number of 
contrasts that could have been conducted. This procedure 
works well when all contrasts conducted are chosen from 
a well-defined class of contrasts. For example, if there are 
four groups, there are six possible pairwise contrasts, so 
the Bonferroni method is applied to any pairwise contrast 
chosen post hoc by treating it as one of six contrasts 
examined simultaneously. If number L of comparisons 
(or possible comparisons) is large, the Bonferroni method 
can be quite conservative given that it rejects only if a 
contrast has a very low significance value.

An alternative test procedure that is a generalization of 
the Scheffé method from the analysis of variance can be 
used for both post hoc and simultaneous testing (see Hedges 
and Olkin 1985). This procedure for testing contrasts at 
simultaneous significance level a consists of computing the 
statistic X2 given in (12.33) for each contrast and rejecting 
the null hypothesis whenever X2 exceeds the 100(1 – a) 
percentage point of the chi-square distribution with L′ 
degrees of freedom, where L′ is smaller of L (the number of 
contrasts) or p – 1 (the number of groups minus one).

When the number of contrasts (or potential contrasts) 
is small, simultaneous tests based on the Bonferroni 
method will usually be more powerful. When the number 
of contrasts is large, the Scheffé method will be.
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Example. Continuing the analysis of standardized mean 
difference data on gender difference in conformity, recall 
that there are three groups of effects: those in which  
25 percent, 50 percent, and 100 percent (respectively) of 
the authors are male. To contrast the mean of the effects of 
group 1 (25 percent male authors) with those of group 3 
(100 percent male authors), use the contrast coefficients

c c c1.0, 0.0, 1.0.1 2 3= − = =

The value of the contrast estimate g is

g 1.0 0.146 0.0 0.300 1.0 0.339 0.485,( ) ( ) ( )= − − + − + =

with an estimated variance of

v 1.0 0.016 0.0 0.022 1.0 0.006

0.022.

g
2 2 2( ) ( ) ( ) ( ) ( ) ( )= − + +

=

Hence a 95 percent confidence interval for g = q–3• – q–1• 
is

0.194 0.485 1.960 0.022 0.485 1.960 0.022

0.776

= − ≤ γ ≤ +

=

Because this confidence interval does not contain zero, 
or alternatively, because

Z 0.485 0.022 3.270= =

exceeds 1.96, we reject the hypothesis that g = 0 and 
declare the contrast statistically significant at the a = 0.05 
level. Notice that the chi-square test is X2 = Z2 = 10.692.

12.3.2 Mixed-Models Analyses

The one-factor random-model analysis is analogous to the 
one-factor fixed-effects analysis. Like the fixed-effects 
analysis, it is used when we wish to determine whether a 
particular discrete characteristic of studies is related to 
effect size. The difference is that in the mixed model we 
wish to incorporate the effects of between-study but with-
in-class variation of effect sizes as uncertainty in the anal-
ysis (Konstantopoulos 2013). Under the mixed model, 
differences between studies that lead to differences in 
effects are regarded as random (systematic heterogeneity 
between studies). The random- or mixed-effects models 

are appropriate when unconditional inferences need to be 
drawn. In such cases, the observed studies in the sample 
are viewed to be randomly selected (representative) from 
a larger population of studies and the inference drawn is 
about the population of studies from which the observed 
studies were randomly selected.

12.3.2.1 Models and Notation Use the same nota-
tion for the effect-size parameters, estimate, and vari-
ances as in the fixed-effects analysis. Thus there are  
p disjoint classes of effects with m1 effects in the first 
class, m2 effects in the second class, . . . , and mp effects in 
the pth class and a total of k = m1 + . . . + mp effect sizes 
overall. Denote the jth effect parameter in the ith class by 
qij and its estimate by Tij with (conditional) variance vij. 
That is, Tij estimates qij with (conditional) standard error 

vij . Thus the data from the studies consist of the effect-
size estimates and their standard errors (or conditional 
variances) as shown in table 12.2.

We will assume that Tij is normally distributed about 
qij, that is

T N v j m i p~ , , 1, . . . , ; 1, . . . , .ij ij ij ij iθ θ( ) = =

Unlike the fixed-effects model, the mixed model treats 
the qij as being composed of both fixed and random com-
ponents. That is,

(12.34)ij i ijθ µ= + ξ•

where µi• is the mean of the population of effect parameters 
in the ith class and the xij are independently and identically 
distributed random effects with mean 0 and variance ti2. 
Thus the within-class variance of the qij or alternatively of 
the xij is ti

2 (between-study within-class variance).
Thus the unknown parameters are the class means µ1•, 

µ2•, . . ., µp• and the within-class variance components t 1
2, 

t 2
2, . . . , tp

2. The object of the analysis is to estimate the 
within-class variance components (or perhaps a pooled 
variance component across classes) and the means and 
test various hypotheses about them.

In most cases, vij will actually be an estimated variance 
that is a function of the within-study sample size and the 
effect-size estimate. However, unless the within-study 
sample size is exceptionally small, we can treat vij as 
known. Therefore, in the rest of this chapter we assume 
that vij is known for each study.

12.3.2.1.1 Homogeneity of Within-Class Variance 
Components. Note that this mixed model does not neces-
sarily imply that the within-class variance components 
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are the same for each class. However, homogeneity of 
variance components is a convenient assumption that is 
often consistent with the data. In other cases, the number 
of effect estimates in each class is so small and hence the 
information about the actual magnitude of the variance 
components so poor that the data do not provide a strong 
basis for deciding that variance components differ across 
classes. If, for either reason, one can treat the effect-size 
data as if the within-class variance components are homo-
geneous, analyses are simplified by the estimation of one 
pooled within-class variance component instead of one 
for each class. That case implies adding the restriction 
that all variance components are equal to a common 
value t 2, that is,

i p, 1, . . . , .i
2 2τ τ= =

However, in some cases, homogeneity of within-class 
variance components is not a reasonable assumption, 
either because it is inconsistent with the nature of the 
problem or because of the observed data itself. In such 
cases, each variance component would need to be esti-
mated separately. With a large enough number of studies 
in each class, separate variance components can be esti-
mated and incorporated into analyses, but we do not 
describe these methods here.

12.3.2.2 Between-Studies Variance Components  
The first step in the random- or mixed-effects analysis is 
to estimate the between-study, within-class variance 
component of the effect sizes (or multiple variance com-
ponents if these are not the same across classes). One 
estimation method, the method of moments is distribu-
tion free in the sense that the estimation method does not 
depend on the distribution of the random effects (the 
xij’s). Other methods, such as full or restricted maximum 
likelihood estimation, can be more efficient, but depend 
on the assumption that the random effects are normally 
distributed.

The method of moments estimate of the variance com-
ponent t 2 does not depend on assumptions about the 
form of the distribution of the random effects. However, 
the sampling distributions of the test statistics do depend 
on the assumption that the random effects are normally 
distributed. When the variance of the random effects (the 
between-study within-class variance component t 2) is 
small in respect to the sampling error variances (the vij), 
the effect of the random-effects variance on the distribu-
tion of the class means will be relatively minor. However, 
when the random-effects variance is larger (for example, 

much larger than the typical vij), the effect on the distribu-
tion of the class means and test statistics based on the 
random-effects model may be substantial.

12.3.2.2.1 Distribution-Free Estimation. The distribu-
tion-free estimate of the between-study within-class vari-
ance component is analogous to the estimation of the  
between-study variance component discussed earlier in 
this chapter for a single group of studies. If there is no 
reason to assume that between-study variation differs 
across groups, it is sensible to estimate a single be-
tween-study variance component by pooling the with-
in-class estimates from every class.

The pooled estimate of the with-class variance compo-
nent is given by

Q m p cˆ (12.35)W i
i

p

i
i

p
2

1 1
∑ ∑τ = − +



= =

whenever (12.35) is positive and 0 otherwise, where QW is 
the within-classes heterogeneity statistic computed in the 
fixed-effects analysis and given in (12.26), ci is given by

c w w w i p, 1, . . . , , (12.36)i ij
j

m

ij
j

m

ij
j

m

1

2

1 1

i i i

∑ ∑ ∑= − 





=
= = =

and wij = 1/vij, the same weights used in the fixed-effects 
analysis.

The pooled with-class variance component is an estimate 
of the variance of the effect-size parameters with classes. 
As such, it provides a descriptive statistic to describe the 
amount of true variation among study results within classes. 
A more easily interpreted descriptive statistic is actually the 
square root of this variance component, τ̂.

12.3.2.2.2 Full Maximum Likelihood Estimation. The 
method of maximum likelihood can also be used to esti-
mate of t 2 under a model of homogeneous t 2 across 
classes. Begin with a preliminary estimate τ̂2

[0] of t 2 such 
as that from (12.35) and define T

–*
1•[0] = T

–*
1•, . . . , T

–*
p•[0] = 

T
–*

p•. Compute the variance component estimate and the 
weighted means at the (s + 1)st iteration from T

–*
1•[s], . . . , 

T
–*

p•[s] and t̂ 2
[s] via

w T T v

w
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and

T w T w i p, 1, . . . , , (12.38)* * *i s ij s ij
j

m

ij s
j

m

1

1 1

i i

∑ ∑= =[ ] [ ] [ ]• +
= =

where the weight of the jth study in the ith class at the sth 
iteration w*

ij[s] is

tw v1 ˆ . (12.39)*
ij s ij s

2( )= +[ ] [ ]

The iterative process continues until the change in the 
estimates between two consecutive iterations is negligi-
ble (often only a few iterations). Then, convergence is 
achieved and the mean and variance estimates are the full 
maximum likelihood estimates.

12.3.2.2.3 Restricted Maximum Likelihood Estima-
tion. The method of restricted maximum likelihood can 
also be used to obtain estimates t 2. It is quite similar to 
that described for obtaining full maximum likelihood  
estimates of t 2. To use this method, start with an initial 
value of t 2 as t̂ 2

[0], such as the method of moments estima-
tor given in (12.35), and let T

–*
1•[0] = T

–*
1•, . . . , T

–*
p•[0] = T

–*
p•. 

Compute the variance component estimate at the (s + 1)st 
iteration from T

–*
1•[s], . . . , T

–*
p•[ s] and t̂ 2

[s] via

w T T v

w w

w

ˆ . (12.40)
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Next compute the weighted means T
–*

1•[s+1], . . . , T
–*

p•[s+1] 
at the (s + 1)st iteration from t̂ 2

[s+1] using (12.38). The 
sequence of estimates through iterations eventually con-
verges to the restricted maximum likelihood estimate  
of t 2 (see Goldstein 1989). Notice that the difference 
between equations (12.37) and (12.40) is the second term 
of the numerator, which adds a small constant to the esti-
mate of t 2 at each iteration. The function of this constant 
is to reduce bias in the squared residual as an estimate of 
t 2. As in the case of full maximum likelihood, the itera-
tion proceeds until the estimates of t 2 converge (that is, 
change negligibly between two consecutive iterations).

Example. Return to the data from studies of gender dif-
ferences in conformity given in Dataset I given in table 12.3.  

Using the sums given in table 12.1, we compute the con-
stant given in (12.36) for each group as

c

c

63.895 2054.113 63.895 31.747,

45.455 2066.116 45.455 0.0009,

1

2

( )

( )

= − =

= − =

and

c 169.811 6221.757 169.811 133.172.3 ( )= − =

Using the value of QW computed earlier, namely QW = 
11.085, we obtain the distribution-free estimate of t 2 as

ˆ 11.085 10 3 31.747 0.0009 133.172

0.025.

2τ ( ) ( )= − + + +

=

The full and restricted maximum likelihood estimates of 
t 2 are zero.

12.3.2.3 Means We use of the same “dot notation” 
used in the fixed-effects analysis discussed earlier, except 
that we denote the quantities computed in the mixed 
model analysis with an asterisk. Thus the group mean 
effect estimate for the ith group is denoted by T

–*
i• and is 

given by

T w T w i p, 1, . . . , , (12.41)* * *i ij ij
j

m

ij
j

m

1 1

i i

∑ ∑= =•
= =

where the weight w*ij is simply the reciprocal of the total 
(conditional plus unconditional) variance of Tij,

w v1 ˆ . (12.42)*
ij ij

2τ( )= +

The grand weighted mean T
–*

•• is

T w T w w T w ,

(12.43)

* * * * * *
ij ij

j

m

i

p

ij
j

m

i

p

i i

i

p

i
i

p

11 11 1 1

i i

∑∑ ∑∑ ∑ ∑= =••
== ==

• •
=

•
=

where the weight w*
i• is just the sum of the weights for the 

ithe group

w w w w. . . . . .* * * *
i i i im1 2 i

= + + +•
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Thus T
–*

i• is simply the weighted mean that would be 
computed by applying formula (12.1) with random- 
effects weights to the studies in group i (except possibly 
that the variance component estimate was pooled across 
groups). However, T

–*•• is not the weighted mean that 
would be obtained by applying formula (12.1) with ran-
dom-effects weights to all of the studies ignoring class 
membership. The reason is that any between-class effects 
are treated in this mixed model as fixed effects and do not 
contribute to the overall between-studies variance com-
ponent that would be calculated if between-class effects 
were ignored entirely.

The estimates T
–*

1•, . . . , T
–*

p• are estimates of the within- 
class means µ1•, . . . , µp•, respectively. If all of the classes 
in the collection estimate a common parameter µ••, that is 
if µ1• = . . . = µp• = µ••, then T

–*•• estimates µ••. If all of the 
classes do not all estimate the same parameter, then T

–*•• 
can be seen as an estimate of a weighted mean µ•• of the 
effect parameters given by

w w . (12.44)* * *
i i

i

p

i
i

p

1 1
∑ ∑µ µ=•• • •

=
•

=

where w*
i• is just the sum of the weights w*

ij for the ith 
group as in the alternate expression for T

–*•• above.
12.3.2.4 Standard Errors The sampling variances 

v*
i•, . . . , v*

p• of the group mean effect estimates T
–*

1•, . . . , 
T
–*

p• are given by the reciprocal of the sum of the weights 
in each group, that is

v w i p1 , 1, . . . , . (12.45)* *
i ij

j

m

1

i

∑= =•
=

Similarly, the sampling variance v*•• of the grand 
weighted mean is given by the reciprocal of the sum of all 
the weights or

v w w1 1 (12.46)* * *
ij

j

m

i

p

i
i

p

11 1

i

∑∑ ∑= =••
==

•
=

The standard errors of the group mean effect estimates 
T
–*

i• and the grand mean T
–*•• are just the square roots of 

their respective sampling variances. Note that whenever 
the between studies within-classes variance component 
(estimate) τ̂2 > 0, the standard errors v v* ,. . . , *

1 1• • , of the 
class means estimated under the mixed model will be 
larger than • •v v,. . . , p1 , the standard errors of the cor-

responding class means estimated under the fixed-effects 
model. If τ̂2 = 0, the standard errors of the fixed- and 
mixed-effects model will be identical.

12.3.2.5 Tests and Confidence Intervals If the ran-
dom effects are approximately normally distributed, the 
group means T

–*
1•, . . . , T

–*
p• are normally distributed about 

the respective effect-size parameters µ1•, . . . , µp• that they 
estimate. As in the fixed-effects case, that these means are 
normally distributed with the variances given in equation 
(12.45) leads to rather straightforward procedures for 
constructing tests and confidence intervals. For example, 
to test whether the ith group mean effect µi• differs from 
a predefined constant µ0 (for example to test if µi• – µ0 = 0) 
by testing the null hypothesis

H : ,i0 0µ µ=•

use the statistic

Z T v* * , (12.47)*
i i i0µ( )= −• • •

and reject H0 at level a (that is, decide that the effect 
parameter differs from µ0) if the absolute value of Z*

i• 
exceeds the 100a percent critical value of the standard 
normal distribution. For example, for a two-sided test 
that µi• = 0 at a = 0.05 level of significance, reject the null 
hypothesis if the absolute value of Z*

i exceeds 1.96. When 
there is only one group of studies, this test is identical to 
that using the statistic Z* given in (12.5) with random- 
effects weights.

Confidence intervals for the group mean effect and the 
weighted grand mean effect size can be computed by 
multiplying the respective standard error v*1( )•  or 

v*( )••  by the appropriate two-tailed critical value of the 
standard normal distribution (Ca/2 = 1.96 for a = 0.05 and 
95 percent confidence intervals) then adding and subtract-
ing this amount from the weighted mean effect size T

–*
i• or 

T
–*••. For example, the 100(1 – a) percent confidence inter-
val for µi• is given by

aT C v T C v* * * * (12.48)i i i i i2 2µ− ≤ ≤ +• • • • α •

The accuracy of tests and confidence intervals can be 
improved somewhat by substitution vi•

KN = v*
i•Q*

wi for v*
i• 

where

Q w T T* * * (12.49)wi ij ij i

j

m 2

1

i

∑ ( )= − •
=
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and Ca/2 is replaced with the corresponding critical value 
of student’s t-distribution with mi – 1 degrees of freedom 
(see Hartung and Knapp 2001).

To test whether the grand mean effect µ•• differs from a 
predefined constant µ0 (for example to test if µ•• – µ0 = 0) by 
testing the null hypothesis

H : ,0 0µ µ=••

use the statistic

Z T v* * ,*0µ( )= −•• •• ••

and reject H0 at level a (that is, decide that the effect 
parameter differs from µ0) if the absolute value of Z*•• 
exceeds the 100a percent critical value of the standard 
normal distribution. For example, for a two-sided test 
that µ•• = 0 at a = 0.05 level of significance, reject the null 
hypothesis if the absolute value of Z*•• exceeds 1.96. 
When there is only one group of studies, this test is iden-
tical to that described using the statistic Z given in equa-
tion (12.5) with random-effects weights.

Confidence intervals for the grand mean effect µ•• 
can be computed by multiplying the standard error  

v*( )••  by the appropriate two-tailed critical value of the 
standard normal distribution (Ca/2 =1.96 for a = 0.05 and 95 
percent confidence intervals) then adding and subtracting 
this amount from the weighted mean effect size T

–*••. Thus 
the 100(1 – a) percent confidence interval for µ•• is given by

T C v T C v* * * * .2 2µ− ≤ ≤ +α α•• •• •• •• ••

12.3.2.6 Tests of Heterogeneity in Mixed Models In 
the mixed model, tests for systematic sources of variation 
are constructed much like those in the fixed-effects 
model. The essential difference is that in the mixed 
model, the total variance (conditional variance plus vari-
ance component) plays the role that the conditional vari-
ance did in the fixed-effects model. Thus tests for 
systematic sources of variance are constructed from sums 
of squared deviations from means just as in conventional 
analysis of variance.

12.3.2.6.1 An Omnibus Test for Between-Group Dif-
ferences. To test the hypothesis that there is no variation 
in group mean effect sizes, that is to test

H : . . . ,p0 1 2µ µ µ= = =• • •

we use the mixed-model between-group heterogeneity 
statistic Q*

B defined by

Q w T T* * * * , (12.50)B i i

i

p 2

1
∑ ( )= −• • ••

=

where w*
i• = 1/v*

i• is the reciprocal of the variance of T
–*

i•. 
Note that Q*

B is just the weighted sum of squares of 
mixed-model group mean effect sizes about the mixed-
model grand mean effect size. When the null hypothesis 
of no variation across group mean effect sizes is true, Q*

B 
has a chi-square distribution with p – 1 degrees of free-
dom. Hence we test H0 by comparing the obtained value 
of Q*

B with the upper tail critical values of the chi-square 
distribution with (p – 1) degrees of freedom. If Q*

B 
exceeds the 100(1 – a) percentage point of the chi-square 
distribution (for example C0.05 = 18.31 for 10 degrees of 
freedom and a = 0.05), H0 is rejected at level a and 
between-group differences are significant.

This test is analogous to the omnibus F-test for varia-
tion in group means in one-way analysis of variance. 
Like the corresponding fixed-effects test of between-
class heterogeneity this test differs in that Q*

B, unlike the 
F-test, incorporates an estimate of unsystematic error in 
the form of the weights. Therefore, no separate error term 
is needed and the sum of squares can be used directly as 
a test statistic.

An alternative to the test based on Q*
B uses the statistic

Q
k p Q

p Q1
, (12.51)

*

*B
KN B

W( )
( )= −

−

where Q*
W = Q*

W1 + . . . + Q*
wp and rejects the null hypothesis 

if QB
KN exceeds the 100(1 – a) point of the F-distribution 

with (p – 1) degrees of freedom in the numerator and (k – p)  
degrees of freedom in the denominator.

12.3.2.7 Computing the Analysis Although Q*
B can 

be computed via a computer program for weighted 
ANOVA using the random-effects weights given  
in (12.42), the weighted cell means and their standard 
errors cannot generally be obtained this way, and  
an analysis will require at least two passes through  
the data. It is computationally simplest to start by com-
puting the fixed-effects analysis as described earlier. 
Then use

TW w TW TW, ,i ijj

m
ii

p

1 1

i∑ ∑= =
= • =
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from the fixed-effects analysis along with

TWS w TWS TWSi j

m
ii

p2

1 1ij

i∑ ∑= =
= • =

to compute the method of moments estimate of the vari-
ance component estimate t̂ 2 given in (12.35). This value 
can either be used as the final variance component esti-
mate or as the starting point for computing the full or 
restricted maximum likelihood estimates of t 2. Which-
ever final variance component estimate is chosen it is 
then used to compute the random-effects weights w*

ij 
given in equation (12.42). The random-effects weights 
are then used to compute the weighted group means, their 
variances, and the omnibus test statistic Q*

B.
Example. Return to the data from studies of gender dif-

ferences in conformity given in Dataset I given in table 
12.3. Using the sums given in table 12.1, we compute the 
constant given in equation (12.35) for each group as

c

c

63.895 2054.113 63.895 31.747,

45.455 2066.116 45.455 0.0009,

1

2

( )

( )

= − =

= − =

and

c 169.811 6221.757 169.811 133.172.3 ( )= − =

The method of moments estimate (the distribution-free 
estimate) of t 2 is computed from equation (12.35) as

ˆ 11.085 10 3 31.747 0.0009 133.172

0.025.

2τ ( ) ( )= − + + +

=

This value was used to compute the random-effects 
weights (the w*

ij), their product with the corresponding 
effect-size estimate (w*

ijTij) and their respective sums for 
each group, which are presented in table 12.1. Using the 
sums for each group from table 12.1, the random-effects 
weighted mean effect sizes for the three classes T

–*
1•, T

–*
2•, 

and T
–*

3• are given by

T

T

* 4.925 35.468 0.139,

* 6.383 21.277 0.300,

1

2

= − = −

= − = −

•

•

and

T* 34.363 95.120 0.361.3 = =•

and the weighted grand mean effect size is

T* 23.056 151.865 0.152.= =••

Note that the random-effects estimates of the class 
means and the weighted grand mean differ somewhat 
from the fixed-effects estimates of the class means and 
the weighted grand mean. The variances v*

1•, v*
2•, and v*

3• 
of T

–*
1•, T

–*
2•, and T

–*
3• are given by

v

v

v

* 1 35.468 0.028,

* 1 21.277 0.047,

* 1 95.120 0.0105.

1

2

3

= =

= =

= =

•

•

•

and the variance v*•• of T
–*•• is

v* 1 151.865 0.00658.= =••

Using formula (12.48) with C.05 = 1.960, the limits of 
the 95 percent confidence interval for the group mean 
parameter µ1• are given by

0.139 1.960 0.028 0.139 0.329.− ± = − ±

Thus the 95 percent confidence interval for µ1• is 
given by

0.467 0.189.iµ− ≤ ≤•

Because this confidence interval contains zero, or 
alternately, because the test statistic Z1 = |–0.139| / 0.028  
< 1.96, we cannot reject the hypothesis that µ1• = 0 at the 
a = 0.05 level of significance. Similarly, 95 percent con-
fidence intervals for the group mean parameters µ2• and 
µ3• are given by

0.725 0.300 1.960 0.047 0.300

1.960 0.047 0.125

2µ− = − − ≤ ≤ −

+ =

•

and

0.160 0.361 1.960 0.0105 0.361

1.96 0.0105 0.562.

3µ= − ≤ ≤

+ =

•
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Thus we see that the mean effect sizes for groups 1 and 
2 are not significantly different from zero and that the 
mean effect size for group 3 is significantly greater than 
zero at the a = 0.05 level.

12.3.2.8 Comparisons Among Mean Effects in 
Mixed Models Comparisons (contrasts) among class 
mean effect sizes are computed in a manner analogous to 
their computation in fixed-effects models. The contrast 
(parameter) is just a linear combination of group means

c c* . . . , (12.52)p p1 1µ µγ = + +• •

where the coefficients c1, . . . , cp (contrast coefficients) 
are known constants that satisfy the constraint c1 + . . .  
+ cp = 0 and are chosen so that the value of the contrast 
will reflect a particular comparison or pattern of interest.

The sample contrast G is computed as in equation 
(12.30) except that the mixed-effects estimates of class 
means T

–*
i• are substituted for the fixed-effects means T

–
i• 

so that the estimate of the contrast is

g c c* * . . . * . (12.53)1 p p1Τ Τ= + +• •

and the variance vg* of the contrast is computed as in 
(12.31) except that the mixed-effects variances of the class 
means v*

i• are substituted for the fixed-effects variances of 
the class means vi•. Thus the estimated contrast g* has a 
normal sampling distribution with variance v*

g given by

v c v c v* * . . . * . (12.54)g p p1
2

1
2= + +• •

Tests of hypotheses about g, computations of statistical 
power of tests about g, and confidence intervals for γ are 
computed in exactly the same way from formulas (12.53) 
and (12.54) as in the fixed-effects model, except that the 
random- or mixed-effects class means T

–*
i• and the vari-

ances of these class means v*
i• are substituted for the 

fixed-effects class means T
–

i• and the fixed-effects vari-
ances of the class means vi•.

Example. Continuing the analysis of standardized mean 
difference data on gender difference in conformity, recall 
that there are three groups of effects: those in which  
25 percent, 50 percent, and 100 percent respectively, of 
the authors are male. To contrast the mean of the effects of 
group 1 (25 percent male authors) with those of group 3 
(100 percent male authors), use the contrast coefficients

c c c1.0, 0.0, 1.0.1 2 3= − = =

The value of the contrast estimate g* is

g* 1.0 0.139 0.0 0.300 1.0 0.361 0.500,( ) ( ) ( )= − − + − + =

with an estimated variance of

v* 1.0 0.028 0.0 0.047 1.0 0.0105

0.0385.

g
2 2 2( ) ( ) ( ) ( ) ( ) ( )= − + +

=

The 95 percent confidence interval for γ* = µ3• – µ1• is

g0.115 0.500 1.960 0.0385 * 0.500

1.960 0.0385 0.885

= − ≤ ≤

+ =

Because this confidence interval does not contain zero, 
or alternatively, because

Z* 0.500 0.0385 2.548= =

exceeds 1.960, we reject the hypothesis that g * = 0 and 
declare the contrast statistically significant at the a = 0.05 
level.

12.4  MULTIPLE REGRESSION ANALYSIS  
FOR EFFECT SIZES

In many cases, it is desirable to represent the character-
istics of research studies by continuously coded vari-
ables or by a combination of discrete and continuous 
variables. In such cases, the reviewer often wants to 
determine the relationship between these continuous 
variables and effect size. One very flexible analytic pro-
cedure for investigating these relationships is an analog 
to multiple regression analysis for effect sizes (see 
Hedges 1982b, 1983b; Hedges and Olkin 1985). These 
methods share the generality and ease of use of conven-
tional multiple regression analysis, and like their con-
ventional counterparts can be viewed as including 
ANOVA models as a special case. In the recent medical 
literature, such methods have been called meta-regression 
(see Borenstein et al. 2009).

12.4.1 Fixed-Effects Analyses

Suppose that we have k independent effect-size estimates 
T1, . . . , Tk with estimated sampling variances v1, . . . , vk. 
The corresponding effect-size parameters are q1, . . . , qk. 
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We assume that each Ti is normally distributed about qi 
with known variance vi, that is

T N v i k~ 0, , 1, . . . , .i i i iθ ε ( )− = =

Suppose also that there are p known predictor vari-
ables X1, . . . , Xp that are believed to be related to the 
effects via a linear model of the form

x x. . . , (12.55)i 0 1 i1 p ipθ β β β= + + +

where xi1, . . . , xip are the values of the predictor variables 
X1, . . . , Xp for the ith study (that is, xij is the value of Xj for 
study i), and b1, . . . ,bp are unknown regression coeffi-
cients. Thus the linear model for the Ti could be written as

T x x i k. . . , 1, . . . , . (12.56)i i p ip i1 1β β ε= + + + =

The k × p matrix

x x x
x x x

x x x

X

x
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x

= ,
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k k kp k
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where each row vector xi′ = (xi1, . . . , xip) is used to con-
struct what is called in regression analysis the design 
matrix X, which is assumed to have no linearly depen-
dent columns; that is, X has rank p. It is often convenient 
to assume that the elements of the first column vector are 
x11 = x21 = . . . = xk1 = 1, so that the first regression coeffi-
cient becomes an intercept term, as in ordinary 
regression.

The model can be written succinctly in matrix notation if 
we denote the k-dimensional vectors of population and 
sample effect sizes by p = (q1, . . . ,qk)′ and T = (T1, . . . ,Tk)′,  
respectively. Then equation (12.56) can be written in matrix 
notation as

T X= ,θθ εε == ββ εε+ +

where a = (b1, . . . ,bp)′ is the p-dimensional column vec-
tor of regression coefficients and d = (e1, . . . , e k)′ is the 
k-dimensional column vector of study-specific estimation 
errors.

12.4.1.1 Estimation and Significance Tests for Indi-
vidual Coefficients Estimation is usually carried out via 
weighted least squares algorithms. The formulas for esti-

mators and test statistics can be expressed most suc-
cinctly in matrix notation and are given, for example, in 
Hedges and Olkin (1985). Specifically, the vector of 
regression coefficients corresponding to a = (b1, . . . , bp)′ 
is b = (b1, . . . , bp)′ and the estimate b is given (in matrix 
notation) by

b X WX X WT= , (12.57)1( )′ ′−

where W is a k × k diagonal matrix whose ith diagonal 
element is 1/vi. The covariance matrix of b is

X WX= . (12.58)1( )Σ ′ −

The analysis can be conducted using specialized soft-
ware such as Comprehensive Meta-analysis (Borenstein 
et al. 2013) or standard computer programs (such as in 
SAS, SPSS, R or Stata) that compute weighted multiple 
regression analyses. The regression should be run with 
the effect estimates as the dependent variable and the pre-
dictor variables as independent variables with weights 
defined by the reciprocal of the sampling variances. That 
is, the weight for Ti is wi = 1/vi.

Standard computer programs for weighted regression 
analysis produce the correct (asymptotically efficient) 
estimates b0, b1, . . . , bp of the unstandardized regression 
coefficients b0, b1, . . . , bp. (Note that unlike the SPSS 
computer program, we use the symbols b0, b1, . . . , bp  
to refer to the population values of the unstandardized 
regression coefficients not to the standardized sample 
regression coefficients). Although these programs give 
the correct estimates of the regression coefficients, the 
standard errors and significance values computed by the 
programs are based on a slightly different model than 
those used for fixed-effects meta-analysis and are incor-
rect for the meta-analysis model. Calculating the correct 
significance tests for individual regression coefficients 
requires some straightforward hand computations from 
information given in the computer output.

The correct standard error Sj of the estimated coefficient 
estimate bj is simply

S SE MS (12.59)j j ERROR=

where SEj is the standard error of bj as given by the com-
puter program and MSERROR is the error or residual mean 
square (the error variance) from the analysis of variance 
for the regression as given by the computer program. 
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Equation (12.59) corrects the standard error by eliminat-
ing from the computation the estimate of the constant 
error variance, which is not needed because the variances 
of the effect sizes are known and differ from study to 
study. Alternatively, the correct standard errors of b0,  
b1, . . . , bp are the square roots of the diagonal elements 
of the inverse of the matrix (X′WX), which is sometimes 
called the inverse of the weighted sum of squares and 
cross-products matrix. Many regression analysis pro-
grams (such as SAS PROC GLM) will print this matrix 
as an option. The (correct) standard errors obtained from 
both methods are, of course, identical. They are simply 
alternative ways to compute the same thing.

The regression coefficient estimates (the bjs) are nor-
mally distributed about their respective parameter (the 
bj’s) values with standard deviations given by the stan-
dard errors (the Sjs). Hence a 100(1 – a) percent confi-
dence interval for each bj can be obtained by multiplying 
Sj by the two-tailed critical value Ca of the standard nor-
mal distribution (for a = 0.05, Ca = 1.96) and then adding 
and subtracting this product from bj. Thus the 100(1 – a) 
percent confidence interval for bj is

b C S b C S (12.60)j j j j jβ− ≤ ≤ +α α

A two-sided test of the null hypothesis that the regression 
coefficient is zero,

H : 0,j0 β =

at significance level a consists of rejecting H0 if

Z b S (12.61)j j j=

exceeds the 100a percent two-tailed critical value of the 
standard normal distribution.

Example. Consider the example of the standardized 
mean differences for gender differences in conformity 
given in data set I. In this analysis we fit the linear model 
suggested by Betsy Becker (1986), who explained varia-
tion in effect sizes by a predictor variable that was the 
natural logarithm of the number of items on the confor-
mity measure (column 4 of table 12.3). This predictor 
variable is highly correlated with the percentage of male 
authors used as a predictor in the example given for the 
categorical model analysis. Using SAS PROC GLM with 
effect sizes and weights given in table 12.3, we computed 
a weighted regression analysis. The estimates of the 

regression coefficients were b0 = –0.323 for the intercept 
and b1 = 0.210 for the effect of the number of items. The 
standard errors of b0 and b1 could be computed in either 
of two ways. The (X′WX) inverse matrix computed by 
SAS was

0.01224 0.00407

0.00407 0.00191

−

−






and hence the standard errors can be computed as

S

S

0.01224 0.1106,

0.00191 0.044.

0

1

= =

= =

Alternatively, we could have obtained the standard errors 
by correcting the standard errors printed by the program 
(which are incorrect for our purposes). The standard errors 
printed by the SAS program were SE(b0) = 0.115 and 
SE(b1) = 0.046, and the residual mean square from the  
analysis of variance for the regression was MSERROR = 1.083. 
Using formula (12.59) gives

S

S

.115 1.083 0.1105,

.046 1.083 0.044.

0

1

= =

= =

A 95 percent confidence interval for the effect b1 of the 
number of items using C0.05 = 1.960, S1 = 0.044, and for-
mula (12.60) is given by 0.210 ± 1.960(0.044)

0.124 0.296.1β≤ ≤

Because the confidence interval does not contain zero, 
or alternatively, because the statistic

Z 0.210 0.044 4.7731 = =

exceeds 1.96, we reject the hypothesis that there is no 
relationship between number of items and effect size. 
Thus the number of items on the response measure has a 
statistically significant relationship to effect size.

12.4.1.2 Omnibus Tests It is sometimes desirable to 
test hypotheses about groups or blocks of regression 
coefficients. For example, stepwise regression strategies 
may involve entering one block of predictor variables 
(such as a set reflecting methodological characteristics) 
and then entering another block (such as a set reflecting 
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treatment characteristics) to see whether the second block 
explains any of the variation in effect size not accounted 
for by the first block. Formally, we need a test of the 
hypothesis that all of the regression coefficients for pre-
dictor variables in the second block are zero.

Suppose that the a predictor variables X1, . . . , Xa have 
already been entered and we wish to test whether the 
regression coefficients for a block of q additional predic-
tor variables Xa+1, Xa+2, . . . , Xa+q are simultaneously zero. 
That is, we wish to test

H : . . . 0.a a q0 1β β= = =+ +

The test statistic is the weighted sum of squares for the 
addition of this block of variables. It can be obtained 
directly as the difference in the weighted error sum of 
squares for the model with a predictors and the weighted 
error sum of squares of the model with (a + q) predictors. 
Alternatively, it can be computed from the output of the 
weighted stepwise regression as

Q qF MS (12.62)CHANGE CHANGE ERROR=

where FCHANGE is the value of the F-test statistic for test-
ing the significance of the addition of the block of b pre-
dictor variables and MSERROR is the weighted error or 
residual mean square (error variance) from the analysis 
of variance for the regression. The test at significance 
level a consists of rejecting H0 if QCHANGE exceeds the 
100(1 – a) percent point of the chi-square distribution 
with q degrees of freedom.

If the number k of effects exceeds p, the number of 
predictors including the intercept, then a test of good-
ness of fit or model specification is possible. The test is 
formally a test of the null hypothesis that the population 
effect sizes q1, . . . , qk are exactly determined by the 
linear model

x x i p. . . , 1, . . . , ,i 1 i p ip1θ β β= + + =

versus the alternative that some of the variation in the qis 
is not fully explained by X1, . . . , Xp . The test statistic is 
the weighted residual sum of squares QE about the regres-
sion line,

Q T W WX X WX X W T. (12.63)E
1( )( )= ′ − ′ ′−

The test can be viewed as a test for greater than 
expected residual variation. This statistic is given in the 

analysis of variance for the regression and is usually 
called the error or residual sum of squares on computer 
printouts. The test at significance level a consists of 
rejecting the null hypothesis of model fit if QE exceeds 
the 100(1 – a) percent point of the chi-square distribution 
with (k – p) degrees of freedom.

The tests of homogeneity of effect given in chapter 13 
and tests of homogeneity of effects within groups of inde-
pendent effects described in connection with the analysis 
of variance for effect sizes are special cases of the test of 
model fit given here. That is, the statistic QE reduces to 
the statistic Q given in formula (12.6) when there are no 
predictor variables, and QE reduces to the statistic QW 
given in formula (12.24) when the predictor variables are 
dummy coded to represent group membership.

Example. Continue the example of the regression 
analysis of the standardized mean differences for gender 
differences in conformity, using SAS PROC GLM to 
compute a weighted regression of effect size on the loga-
rithm of the number of items on the conformity measure. 
Although we can illustrate the test for the significance of 
blocks of predictors, there is only one predictor. We start 
with a = 0 predictors and add q = 1 predictor variables. 
The weighted sum of squares for the regression in the 
analysis of variance for the regression gives QCHANGE = 
23.112. We could also have computed QCHANGE from the 
F-test statistic FCHANGE for the R-squared change and  
the MSERROR for the analysis of variance for the regression. 
Here FCHANGE = 21.341 and MSERROR = 1.083, so using  
formula (12.62)

Q 1 21.341 1.083 23.112,CHANGE ( )( )= =

identical to the result obtained directly. Comparing 23.112 
with 3.841, the 95 percent point of the chi-square distribu-
tion with 1 degree of freedom, we reject the hypothesis 
that the (single) predictor is unrelated to effect size. This 
is, of course, the same result obtained by a test for the 
significance of the regression coefficient.

We also test the goodness of fit of the regression model. 
The weighted residual sum of squares was computed by 
SAS PROC GLM as QE = 8.664. Comparing this value to 
15.507, the 95 percent critical value of the chi-square dis-
tribution with 10 – 2 = 8 degrees of freedom, we see that 
we cannot reject the fit of the linear model. In fact, chi-
square values as large as 8.664 would occur between 25 
and 50 percent of the time due to chance if the model fit 
exactly.
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12.4.2 Random-Effects Analyses

In many cases, systematic variation among effect-size 
parameters is non-negligible even after controlling for the 
factors of interest in the analysis. That is, residual varia-
tion is greater than would be expected from sampling 
error alone. If the researcher believes that this variation 
should be included in the estimation of the uncertainty of 
the estimates of the regression coefficients and the esti-
mates of the regression coefficients themselves, fixed- 
effects models are not appropriate because such excess 
residual variation has no effect on the computation of the 
estimates or their uncertainty of the estimates in fixed- 
effects models. The random- or mixed-effects model is a 
generalization of the fixed-effects model that incorporates 
a component of between-study variation into the uncer-
tainty of effect-size parameters and their estimates that 
increases residual variation.

Random- or mixed-effects models are appropriate 
under the same kinds of circumstances discussed earlier 
in connection with mixed-effects categorical models. In 
fact, the categorical random-effects models and the anal-
yses discussed are special cases of the random-effects 
models discussed here.

12.4.2.1 Model and Notation Suppose that we have 
k independent effect-size estimates T1, . . . , Tk with (esti-
mated) sampling variances v1, . . . , vk. The corresponding 
effect-size parameters are q1, . . . , qk. As in the fixed- 
effects model, we assume that each Ti is normally distrib-
uted about qi with known variance vi, that is

T N v i k~ 0, , 1, . . . , .i i i iθ ε ( )− = =

Suppose also that there are p known predictor vari-
ables X1, . . . , Xp that are believed to be related to the 
effects via a linear model of the form

x x. . . ,i i p ip i1 1θ β β= + + + ξ

where xi1, . . . , xip are the values of the predictor variables 
X1, . . . , Xp for the ith study (that is xij is the value of Xj for 
study i), and b1, . . . , bp are unknown regression coeffi-
cients, and xi is a random effect with variance t 2. Thus 
the linear model for the Ti could be written as

T x x

i k

. . . ,

1, . . . , . (12.64)

i i p ip i i1 1β β= + + + ξ + ε

=

As in the fixed-effects model, the k × p matrix
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x x x
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where each row vector xi′ = (xi1, . . . , xip) is used to con-
struct what is called in regression analysis the design 
matrix X, which is assumed to have no linearly depen-
dent columns; that is, X has rank p. It is often convenient 
to assume that the elements of the first column vector are 
x11 = x21 = . . . = xk1 = 1, so that the first regression coeffi-
cient becomes an intercept term, as in ordinary least 
squares regression.

We denote the k-dimensional vectors of population and 
sample effect sizes by p = (q1, . . . , qk)′ and T = (T1, . . . , Tk)′, 
respectively. Equation (12.64) can be written succinctly 
in matrix notation as

T X , (12.65)θθ εε ββ ξξ εε= + = + +

where a = (b1, . . . ,bp)′ is the p-dimensional vector of regres-
sion coefficients, w = (x1, . . . , xk)′ is the k-dimensional vec-
tor of study-specific random effects, and d = (e1, . . . , ek)′ 
= T – p is a k-dimensional vector of residuals of T about 
p.

12.4.2.1.1 Terminology of Mixed- or Random-Effects 
Models. The models described in this section are usually 
called random-effects models in meta-analysis because 
the effect-size parameters are considered random. Simi-
lar models in other applications are often called mixed-ef-
fects models or just mixed models because the regression 
coefficients of the model (but not the residual w) are 
themselves considered fixed, but unknown constants, so 
that the model includes both fixed effects (the regression 
coefficients) and random effects (the residual w).

12.4.2.1.2 Homogeneity of Variance of Random  
Effects. In the model, the random effects xi are taken to 
have the same variance. This is not necessary in princi-
ple, but it makes both computations and conceptual mod-
els much simpler. More general formulations including 
models with heterogeneous variance components are 
possible but are not discussed here.

12.4.2.2 Relation to Classical Hierarchical Linear 
Models Progress has been considerable in developing 
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software to estimate and to test the statistical significance 
of parameters in mixed general linear models. To illus-
trate the connection, it is most convenient to use the rep-
resentation of the general mixed model as a hierarchical 
linear model, one that is widely used in the social sci-
ences (for example, Bryk and Raudenbush 1992; Goldstein 
1987; Konstantopoulos 2011; Longford 1987). In this 
representation, the data is regarded as hierarchically 
structured and the structural model is defined for each 
level of the hierarchy. In meta-analysis, level I is that of 
the study and the model for level I is

T i k, 1, . . . , (12.66)i i iθ ε= + =

where ei is a sampling error of Ti as an estimate of qi. 
Level II of the model describes between-study variation 
in the study-specific effect-size parameters (the qi). In 
this chapter the linear model in equation (12.66) would 
imply a level II model like

x x. . . , (12.67)i i p ip i0 1 1θ β β β ξ= + + + +

where xi is a study-specific random effect. Most of the 
attention in estimating these models has focused on the 
case where both the ei and the xi are independently and 
normally distributed with zero mean and unknown vari-
ances, that is

N v i k~ 0, , 1, . . . ,iε ( ) =

and

N i k~ 0, , 1, . . . , .i
2ξ τ( ) =

There are two important differences in the hierarchical 
linear models (or general mixed models) usually studied 
and the model in equation (12.65) used in meta-analysis. 
The first is that in meta-analysis models, such as in 
(12.65), the variances of the sampling errors e1, . . . , ek are 
not identical across studies. The sampling error variances 
usually depend on various aspects of study design (par-
ticularly sample size) that cannot be expected to be con-
stant across studies. The second is that the sampling error 
variances in meta-analysis are generally assumed to be 
known. Therefore the model in (12.65) used in meta- 
analysis can be considered a special case of the general 
hierarchical linear model where the level I variances are 
unequal, but known. Consequently software for the anal-

ysis of hierarchical linear models can be used for mixed 
model meta-analysis if it permits (as do the programs 
HLM and SAS PROC MIXED) the specification of first 
level variances that are unequal but known.

12.4.2.3 Estimation of the Residual Variance Com-
ponent s2 The first step in the mixed model analysis is 
the estimation of the residual variance component t 2. As 
in the case of analysis of variance style models for effect 
sizes, the variance component can be estimated using 
methods that do not depend on assumptions about the 
distribution of the random effects (method of moments 
estimators) or using methods that assume that the random 
effects are normally distributed (full or restricted maxi-
mum likelihood estimation). The methods discussed ear-
lier in section 12.3.2.3.1 are distribution-free in the sense 
that the derivations of the estimates and their standard 
errors do not depend on the sampling distribution of the 
random effects (the xis). However, the sampling distribu-
tions of the test statistics and probability statements (such 
as about confidence intervals) do depend on the distribu-
tion of the random effects. Some evidence from simula-
tion studies of estimates based on linear models suggests 
effect sizes with miss-specified distributions for the ran-
dom effects (Hedges and Vevea 1998). These in turn sug-
gest that, as long as the variance t 2 of the random effects 
is not large relative to the typical conditional variance of 
Ti given qi, the confidence intervals for effects are not 
substantially affected by even if the distribution of the 
random effects deviates substantially from normality.

12.4.2.3.1 Distribution-Free Analyses. The distribu-
tion-free method of estimation involves computing an 
estimate of the residual variance component by the 
method of moments and then computing a weighted 
least squares analysis conditional on this estimate. 
Whereas the estimates and their standard errors are dis-
tribution free in the sense that they do not depend on the 
form of the distribution of the random effects, the tests 
and confidence statements associated with these meth-
ods are only strictly true if the random effects are nor-
mally distributed.

Two alternative methods of moments estimators are 
most frequently used. The most frequently used estima-
tor is based on the statistic used to test the significance 
of the residual variance component (the inverse condi-
tional-variance-weighted residual sum of squares). It  
is the natural generalization of the homogeneity test 
described in equation (12.6). An alternative estimator is 
based on the residual sum of squares from the unweighted 
regression.
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The usual estimator of the residual variance component 
is given by

Q k p cˆ (12.68)E
2τ ( )= − +

where QE is the residual sum of squares from the fixed- 
effects weighted regression given in (12.63) and c is a 
constant given by

c w w wx x x xtr , (12.69)i i i i
i

k

i i i
i
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where the wi = 1/vi are the fixed-effects weights and tr(A) 
is the trace of the square matrix A.

When the random effects are normally distributed, the 
variance of τ̂2 is given by

SE

w v w v

c

x x B
ˆ

* 2tr * tr

(12.70)
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where the p × p matrix B is given by

w v wB x x x x* .i i i i
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The distribution of the residual variance component 
estimate is not close to normal unless k – p is large. Con-
sequently, probability statements based on SE(τ̂2) and the 
assumption of normality should be viewed as rough 
unless k – p is large.

12.4.2.3.2 Estimators of τ2 Assuming Normally Distri-
buted Random Effects. If the random effects are nor-
mally distributed (or if we just assume that this is approx-
imately true), the method of maximum likelihood can be 
used to obtain estimates of the variance component and 
in turn, estimates of the regression coefficients and their 
standard errors. The likelihood of the mixed model in 
(12.65) can be separated into parts involving the fixed 
effects (a) and the variance components (t 2) so that com-
puting the maximum likelihood estimate of β depends on 
first computing the maximum likelihood estimate of t 2. 
There are two different estimation strategies. One is the 
unrestricted maximum likelihood, sometimes called full 
maximum likelihood and the other is the restricted maxi-

mum likelihood. Full maximum likelihood estimates are 
obtained by maximizing the likelihood of the observa-
tions, which involves both a and t 2. Restricted estimates 
are obtained by maximizing the likelihood regarded as a 
function of t 2 alone. Restricted estimates of t 2 have the 
potential advantage that they take into account the uncer-
tainty in estimating a, while the full maximum likelihood 
estimates do not (see, for example, Raudenbush and Bryk 
2002). When the restricted maximum likelihood esti-
mates of variance components can be computed analyti-
cally, they are often unbiased (whereas the full maximum 
likelihood estimates are biased) and the restricted maxi-
mum likelihood estimates often appear to be less biased 
in other situations.

Full maximum likelihood estimation of τ2. One method 
for estimating t 2 relies on the fact that if either a or t 2 
were known, it would be easy to obtain the least squares 
estimate of the other. By starting with an initial value of 
t 2 and estimating first a and then reestimating t 2, a 
sequence of estimates can be obtained that converge to 
the maximum likelihood estimators of a and t 2 (see 
Goldstein 1986).

Specifically, start with an initial estimate t 2
[0] of t 2, 

such as the method of moments estimator of the between-
study variance given in equation (12.68). Then, if τ̂2

[s] is 
the estimate of t 2 on the sth step, the k × k weight matrix 
on that step becomes

w wW Diag , . . . , ,* * (12.71)s s k s1[ ]=[ ] [ ] [ ]

the estimate b*
[s+1] of a on the (s + 1)st step is given by

w w T

b X W X X W T

x x x

*

* * (12.72)
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where

w v* 1 ˆ . (12.73)i s i s
2τ( )= +[ ] [ ]

The vector e[s+1] = (e1[s+1], . . . , ek[s+1])′ of residuals on the 
(s + 1)st step given by

e T Xb* , (12.74)s s1 1= −[ ] [ ]+ +

is used to calculate τ̂2
[s+1], the generalized least squares 

estimate of t 2 given b*
[s+1] and the data, via
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w e v wˆ * * (12.75)s i s i s i
i

k

i s
i
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[ ] [ ][ ] [ ]+ +
= =

setting any negative estimates of t 2 to zero. Proceed until 
the estimates of t 2 converge (that is, changes negligibly 
between two consecutive iterations).

Restricted maximum likelihood estimation of t 2. One 
method for obtaining restricted maximum likelihood 
estimates t 2 is quite similar to that described above for 
obtaining full maximum likelihood estimates of t 2. To 
use this method start with an initial value of t 2, such as 
the method of moments estimator of the variance given 
in (12.78). Then estimate a and reestimate t 2 (but by a 
slightly different method than that used for full maxi-
mum likelihood). This leads to a sequence of estimates 
that converge to the restricted maximum likelihood esti-
mator of t 2 and consequently a (see Goldstein 1989). 
The weights at the sth step w*

i[s], the estimate of a at the 
(s + 1)st step â*[s+1], and the residual at the (s + 1)st step 
e[s+1] are computed exactly as in formulas (12.72), 
(12.73), and (12.74) for full maximum likelihood esti-
mation. The only difference is that instead of computing 
the estimate of t 2 at the (s + 1)st step τ̂2

[s+1] via (12.75), 
compute τ̂2

[s+1] via

w e v

w w

w

x x x x
ˆ

*

tr * *

*

(12.76)
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The difference between equations (12.75) and (12.76) 
is the second term of the numerator, which adds a small 
constant to the estimate of t 2 at each iteration. This itera-
tive method relies on the fact that ei

2 estimates vi + t 2, but 
actually the expected value of ei

2 < vi + t 2. The constant 
corrects that bias and therefore reduces the overall bias of 
the restricted maximum likelihood estimate. As in the 
case of full maximum likelihood, the iteration proceeds 
until the estimates of t 2 converge (that is, change negligi-
bly between two consecutive iterations) and t 2 is approx-
imated by the value of τ̂2

[s] at the last iteration.
12.4.2.3.3 Testing the Significance of the Residual 

Variance Component. It is sometimes useful to test the 

statistical significance of the residual variance component 
t 2 in addition to estimating it. The sampling distributions 
of the estimators of t 2 given in the previous section are 
not close to normal unless k is large and thus a nor-
mal-score test assuming a normal distribution of τ̂2/SE(τ̂2) 
does not provide an adequate test. However, it can be 
shown that if the null hypothesis H0: t 2 = 0 is true, then the 
weighted residual sum of squares QE given in equation 
(12.63) in conjunction with the fixed-effects analysis has 
a chi-square distribution with k – p degrees of freedom 
(where p is the total number of predictors including the 
intercept). Therefore, the test of H0 at level a is to reject if 
QE exceeds the 100(1 – a) percent point of the chi-square 
distribution with (k – p) degrees of freedom.

12.4.2.4 Estimation of the Regression Coefficients  
The mixed-effects linear model T = Xa + w + d for the 
effect sizes can be written as

T X (12.77)ββ ηη,,= +

where g = w + d, which is analogous to the model that is 
the basis for ordinary least squares regression analysis. 
The distribution of g = w + d has mean zero and diagonal 
covariance matrix given by

v v vDiag , , . . . , . (12.78)k1
2

2
2 2τ τ τ( )+ + +

The elements of g are independent but not identically 
distributed. If the residual variance component t 2 were 
known, the mixed model would become a special case of 
the fixed-effects model with the ith observation having 
residual variance equal to vi + t 2. When t 2 has to be esti-
mated (method of moments, full maximum likelihood, or 
restricted maximum likelihood) the estimate is substi-
tuted for t 2 in (12.78). We then use the estimate of t 2 to 
obtain a generalized least squares estimate of a. Let the  
k × k diagonal matrix W be defined by

v vW* Diag 1 ˆ , . . . ,1 ˆ . (12.79)k1
2 2τ τ[ ]( )( )= + +

The weighted least squares estimator b* under the 
model (12.65) using the estimated weight matrix W* is 
given by

w w Tb X W X X W T x x x* * * * * ,

(12.80)
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where w*
i = 1/(vi + τ̂2). When k is large, b* is approxi-

mately normally distributed with mean a and covariance 
matrix S* given by

∑ΣΣ ( )= ′ = ′





−

−

−

wX W X x x* * * . (12.81)i i i
i

k
1

1

1

Regardless of the method used to estimate t 2, the  
estimate of a has the same approximate sampling dis-
tribution with mean a and covariance matrix given in  
formula (12.81).

12.4.2.4.1 Tests and Confidence Intervals for Individ-
ual Regression Coefficients. The standard normal distri-
bution can be used to obtain tests of significance or  
confidence intervals for components of a. If s*

jj is the jth 
diagonal element of S*, and b* = (b1

*, . . . , bp
*)′ then an 

approximate 100(1 – a) percent confidence interval for 
bj, 1 ≤ j ≤ p, is given by

σ β σ− ≤ ≤ +α αb C b C* * * * (12.82)j jj j j jj2 2

where Ca/2 is the 100a percent two-tailed critical value of 
the standard normal distribution.

An approximate two-tailed test of the hypothesis that 
bj equals some predefined value bj0 (typically 0), that is a 
test of the hypothesis

β β=H : ,j j0 0

uses the statistic

( )= − β σZ b* * * , (12.83)j j j jj0

and rejects H0 when the absolute value of Zj
* exceeds the 

100a percent critical value of the standard normal distri-
bution. The usual theory for the normal distribution can 
be applied if one-tailed or simultaneous confidence inter-
vals are desired.

Tests and confidence intervals can be made somewhat 
more accurate by using the variance s jj

KH = s *
jjQ*

E in place 
of s*

jj, where

( )( )= ′ − ′ ′−Q T W W X X W X X W T,* * * * * (12.84)E
1

whenever Q*
E > k – p and using critical values from stu-

dent’s t-distribution with k – p degrees of freedom (see 
Knapp and Hartung 2003).

The estimates and standard errors can be computed 
using a standard weighted regression program such as 
SAS PROC GLM. The estimates of the regression coeffi-
cients and the weighted sums of squares will be correct 
for meta-analysis, but the standard errors of the regres-
sion coefficients given by the program will have to be cor-
rected via equation (12.59). Alternatively, software such 
as HLM (v-known option) and specialized software such 
as Comprehensive Meta-analysis or the R package Meta-
phor (https://github.com/wviechtb/metafor) can do all of 
the required computations directly.

12.4.2.4.2 Tests for Blocks of Regression Coefficients.  
As in the fixed-effects model, we sometimes want to test 
whether a subset b1, . . . , bm of the regression coefficients 
are simultaneously zero, that is,

β β= = =H : . . . 0.m0 1

This test arises, for example, in stepwise analyses where 
it is desired to determine whether a set of m of the p pre-
dictor variables (m ≤ p) are related for effect size after con-
trolling for the effects of the remaining predictor variables. 
To test this hypothesis, compute b = (b1

*, . . . , b*
m)′ and  

the statistic

SQ b b b b* *, . . . , * * *, . . . , * , (12.85)m m1 11

1

1( ) ( )( )= ′−

where Σ*
11 is the upper m × m submatrix of

S
S S

S S
*

* *

* *
.

11 12

12 22

=












The test that b1 = . . . = bm = 0 at the 100a percent sig-
nificance level consists in rejecting the null hypothesis if 
Q exceeds the 100(1 – a) percentage point of the chi-
square distribution with m degrees of freedom. A some-
what more accurate test can be obtained by using the test 
statistic

Sb b Q b b*, . . . , * * * *, . . . , * , (12.86)m E m1 11

1

1( ) ( )( ) ′−

where Q*
E is given by (12.84).

If m = p, then the test given above is a test that all the 
bj are simultaneously zero, that is a = 0. In this case, the 
test statistic Q* given in (12.85) becomes the weighted 
sum of squares due to regression
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SQ b b* * * . (12.87)R
* 1= ′ −

The test that a = 0 is simply a test of whether the weighted 
sum of squares due to the regression is larger than would be 
expected if a = 0, and the test consists of rejecting the 
hypothesis that a = 0 if QR exceeds the 100(1 – a) percent-
age point of a chi-square with p degrees of freedom.

Example. Return to the example of the standardized 
mean differences for gender differences in conformity 
given in data set I. In this analysis we fit the linear model 
suggested by Becker (1986), who explains variation in 
effect sizes by a predictor variable that was the natural 
logarithm of the number of items on the conformity mea-
sure (column 4 of table 12.3). This variable is highly cor-
related (r = 0.793) with the percentage of male authors 
used as a predictor in the example given for the categori-
cal model analysis. Starting with the fixed-effects analy-
sis, we computed the method of moments estimate of the 
variance component. The weighted residual sum of 
squares given in (12.63) is QE = 8.664, and the constant c 
given in (12.69) was computed as c = 203.493, which 
leads to the method of moments estimator

τ = − =ˆ 8.664 8

203.293
0.003.2

Using this starting value for t 2 with either the full or 
restricted maximum likelihood estimators yields an esti-
mate of zero for t 2 after the second iteration. Using the 
estimate t̂ 2 = 0.003 to compute random-effects weights 
and then using these weights into a weighted regression 
such as SAS PROC GLM with effect sizes and weights 
given in table 12.3, we computed a weighted regression 
analysis. The estimates of the regression coefficients 
were b*

0 = –0.321 for the intercept and b*
1 = 0.212 for the 

effect of the number of items. The standard errors of b*
0 

and b1
* could be computed in either of two ways. The 

(X′W*X) inverse matrix computed by SAS was

−

−






0.0137 0.00456

0.00456 0.0021

and hence the standard errors can be computed as

= =

= =

S

S

0.0137 0.117,

0.0021 0.046.1

0

Alternatively, we could have obtained the standard 
errors by correcting the standard errors printed by the pro-
gram (which are incorrect for our purposes). The standard 
errors printed by the SAS program were SE(b0) = 0.117 
and SE(b1) = 0.046, and the residual mean square from 
the analysis of variance for the regression was MSERROR = 
0.999. Using formula (12.59) gives

S

S

.117 0.999 0.117,

.046 0.999 0.046.

0

1

= =

= =

A 95 percent confidence interval for the effect b1 of  
the number of items using C0.05 = 1.960, S1 = 0.046, and 
formula (12.82) is given by 0.212 ± 1.960(0.046)

β≤ ≤0.122 0.302.1

Because the confidence interval does not contain zero, 
or, alternatively, because the statistic

= =Z* 0.212 0.046 4.6091

exceeds 1.960, we reject the hypothesis that there is no 
relationship between number of items and effect size. 
Thus the number of items on the response measure has a 
statistically significant relationship to effect size.

After two iterations, both the maximum likelihood 
estimate and the restricted maximum likelihood estimates 
of t 2 are zero, so both the maximum likelihood estimate 
and the restricted maximum likelihood analyses are iden-
tical to the fixed-effects analysis.

12.4.2.5 Robust Variance Estimation Another 
approach to inference about effect sizes is based on vari-
ance estimates computed from the empirical distribution 
of the effect-size estimates. This approach, similar to that 
used in econometrics (Wooldridge 2010) to obtain stan-
dard errors of regression coefficients, was adapted to 
meta-analysis by Larry Hedges, Elizabeth Tipton, and 
Matt Johnson (2010). It is particularly appealing for three 
reasons. First, it makes no assumptions about the (condi-
tional or unconditional) distribution of the effect-size 
estimates, so it is robust to violations of assumptions that 
estimates or random effects have any specific (for exam-
ple, normal) distributions. Second, it does not require that 
the study-level covariates be fixed as in other meta- 
regression models. Positing fixed covariates makes sense 
when the values of covariates may be set by the experi-
menter, but when the values of the covariates are sampled 
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along with those of the effect-size estimates, the assump-
tion seems problematic. One may argue that the analysis 
is conditional upon the particular values of the covariates 
sampled. This may be intellectually defensible, but it 
seems particularly problematic to say on the one hand 
that studies are a random sample from a population while 
conditioning on the observed covariate values. A theorem 
that justifies robust variance computation makes the 
intellectual subterfuge of conditioning unnecessary. 
Third, robust variance computations can be used even 
when variance estimates for individual effects size esti-
mates are not available (as occurs when reporting of sta-
tistics in studies is incomplete).

There are two disadvantages of this method. One is 
that it provides no method for computing weights to 
increase efficiency. However, if the variance of each 
effect-size estimate is known, then standard random- 
effects procedures can be used to compute (efficient) 
weights, and the robust variance estimates can be used in 
conjunction with these weights. A second disadvantage is 
that, unlike other approaches to inference in meta-analysis, 
the theory justifying the robust variance estimates 
assumes a large number of studies.

Suppose that â* is a mixed model estimate of a com-
puted using weights wi

*, i = 1, . . . , k. Then the robust 
variance estimate VR is given by

∑

∑ ∑( )

=
−
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where ei = Ti – xi â* is the residual in the ith study and p 
is the total number of coefficients in the regression model 
including the intercept. Any of the methods provided in 
this chapter for constructing tests or confidence intervals, 
such as equation (12.82), from the distribution of â* can 
be used with the robust variance estimates. However, 
simulation studies suggest that tests and confidence  
intervals computed using critical values of student’s 
t-distribution with (k – p) degrees of freedom will yield 
tests with actual significance levels that are closer to 
nominal than standard normal critical values (Hedges, 
Tipton, and Johnson 2010).

Although the noted simulations suggest that the method 
can perform reasonably well for a single covariate even 
when the number of studies is as small as ten to twenty, it is 

difficult to know when the number of studies is large 
enough to support valid inferences when the number of 
covariates is larger. Tipton suggests an improvement to the 
original method that improve performance in small samples 
of studies (2015). The modified robust variance estimate is
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where ai is an adjustment given by

a w wx x x x1 * * .i i i i i i
i

k

i
1

1 1

∑= − ′
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−

− −

Thus the robust analysis involves first computing a 
random-effects regression analysis using the method of 
moments or a distribution-free estimate of t 2, then com-
puting the variance of the regression coefficient estimates 
using formulas (12.86) or (12.87). Then approximate 
100(1 – a) percent confidence interval for bj, 1 ≤ j ≤ p, is 
given by

b C v b C* * * ( )j jj
R

j j jj
*

2 2
Rβ σ− ≤ ≤ +α α 12.90

where Ca/2 is the 100a percent two-tailed critical value of 
the t-distribution with nj degrees of freedom, where nj is 
given by (12.88), and v*

jj
R is the jth diagonal element of 

VR given by equation (12.88) or (12.89).
An approximate two-tailed test of the hypothesis that 
bj equals some predefined value bj0 (typically 0), that is a 
test of the hypothesis

β β=H : ,j j0 0

uses the statistic

Z b* * * , ( )j j j jj
R

0β( )= − σ 12.91

and rejects H0 when the absolute value of Zj
* exceeds the 

100a percent critical value of the standard normal distri-
bution. The usual theory for the normal distribution can 
be applied if one-tailed or simultaneous confidence inter-
vals are desired.
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Example. Return to the example of the standardized 
mean differences for gender differences in conformity 
given in data set I and the analysis explaining variation in 
effect sizes by a predictor variable that was the natural 
logarithm of the number of items on the conformity mea-
sure (column 4 of table 12.3). Here we use random- 
effects weights based on the method of moments estimate 
of t 2 computed in the previous example, so that the 
weights become

( )= +w v* 1 0.003 .i i

Using these weights, the robust covariance matrix of 
b* = (β̂*

1, β̂*
2) given by (12.88) is

−

−






0.01541 0.00461

0.00461 0.00177
.

The standard errors of b1
* and b2

* (square roots of the 
diagonal elements) corresponding to the variance esti-
mate based on (12.88) are 0.124 and 0.042.

Using the robust variance estimate and critical value  
Ca/2 = 2.31 of student’s t-distribution with 10 – 2 = 8 degrees 
of freedom, we obtain 100(1 – 0.05) = 95 percent confi-
dence intervals

β− = − − × ≤

≤ − + ×

= −

0.607 0.321 2.31 0.124

0.321 2.31 0.124

0.035,

1

which does not include zero, so the intercept is statistically 
significant, and

β= − × ≤

≤ + ×

=

0.113 0.210 2.31 0.042

0.210 2.31 0.042

0.307.

2

Computing the corresponding test statistics, we see that

= − = −Z* 0.321 0.124 2.589,1

which exceeds 2.31 in absolute value, the critical value of 
student’s t-distribution with 10 – 2 = 8 degrees of freedom, 
so it is statistically significant at the 5 percent level using 
the test based on robust variance estimates. Similarly,

= =Z* 0.210 .0463 4.537,2

which exceed 2.31, the critical value of the t-distribution 
with 8 degrees of freedom, so it is statistically significant 
at the 5 percent level using the test based on robust vari-
ance estimates.

12.4.2.6 Collinearity and Regression Diagnostics  
All of the problems that arise in connection with multi-
ple regression analysis can also arise in meta-analysis. 
Just as in regression analysis in primary research, many 
diagnostics are available for regression analysis in 
meta-analysis (see, for example, Hedges and Olkin 
1985, chapter 12; Viechtbauer and Cheng 2010). Some 
of these diagnostics are used to evaluate the goodness of 
fit of the regression model, including standardized resid-
uals, the change in the test statistic for residual variation 
when a study is deleted, or the change in the estimated 
residual variance component when a study is deleted. 
Other diagnostics address the influence of a particular 
study on the results of the regression analysis, including 
the relative weight given to each study, the change in the 
regression coefficients or the fitted values when a study 
is deleted or more theoretical quantities such as the lever-
age of each study (diagonal elements of the weighted  
hat matrix X(X′W*X)–1X′W*).

Collinearity may degrade the quality of estimates of 
regression coefficients in primary research studies, wildly 
influencing their values and increasing their standard 
errors. The same procedures used to safeguard against 
excessive collinearity in multiple regression analysis in 
primary research are useful in meta-analysis. Examina-
tion of the correlation matrix of the predictors and the 
exclusion of some predictors that are too highly intercor-
related with the others can often be helpful. In some 
cases, predictor variables derived from critical study 
characteristics may be too highly correlated for any 
meaningful analysis using more than a very few predic-
tors. It is important to recognize, however, that collinear-
ity is a limitation of the data (reflecting little information 
about the independent relations among variables) and not 
an inadequacy of the statistical method. Thus highly col-
linear predictors based on study characteristics imply that 
the studies simply do not have the array of characteristics 
that might make it possible to ascertain precisely their 
joint relationship with study effect size. In our example 
about gender differences in conformity, the correlation 
coefficient between percentage of male authors and num-
ber of items is 0.664. The correlation between percentage 
of male authors and log items is even higher, 0.793.
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12.5 QUANTIFYING EXPLAINED VARIATION

Although the QE statistic (or the QW statistic for models 
with categorical independent variables) is a useful test 
statistic for assessing whether any unexplained variation 
is statistically reliable, it is not a useful descriptive statis-
tic for quantifying the amount of unexplained variation. 
Such quantifying typically involves imposing a model of 
randomness on this unexplained variation. This is equiv-
alent to imposing a mixed model on the data for the pur-
poses of describing unexplained variation. The details of 
such models are beyond the scope of this chapter (for a 
discussion, see chapter 16).

A descriptive statistic RB (called the Birge ratio) has 
long been used in the physical sciences (see, for example, 
Birge 1932) and was recently proposed as a descriptive 
statistic for quantifying unexplained variation in medical 
meta-analysis with no covariates, where it was called H2 
(see Higgins and Thompson 2002). It is the ratio of QE (or 
QW) to its degrees of freedom, that is,

( )= − −R Q k p 1 ,B E

(for a regression model with intercept) or

( )= −R Q k p ,B W

(for a categorical model without intercept). The expected 
value of RB is exactly 1 when the effect parameters are 
determined exactly by the linear model. When the 
model does not fit exactly, RB tends to be larger than 
one. The Birge ratio has the crude interpretation that it 
estimates the ratio of the between-study variation in 
effects to the variation in effects due to (within-study) 
sampling error. Thus a Birge ratio of 1.5 suggests that 
there is 50 percent more between-study variation than 
might be expected given the within-study sampling  
variance.

The squared multiple correlation between the observed 
effect sizes and the predictor variables is sometimes used 
as a descriptive statistic. However, the multiple correla-
tion may be misinterpreted in this context because the 
maximum value of the population multiple correlation is 
always less than one, and can be much less than one. The 
reason is that the squared multiple correlation is a mea-
sure of “variance (in the observed effect-size estimates) 
accounted for” by the predictors. But there are two 
sources of variation in the effect-size estimates: between-
study (systematic) effects and within-study (nonsystem-

atic or sampling) effects. We might write this partitioning 
of variation symbolically as

σθ[ ] = +T vVar ,2

where Var[T] is the total variance, sq2 is the between-
study variance in the effect-size parameters and v is the 
within-study variance (the variance of the sampling 
errors). Only between-study effects are systematic and 
therefore only they can be explained via predictor vari-
ables. Variance due to within-study sampling errors can-
not be explained. Consequently the maximum proportion 
of variance that could be explained is determined by the 
proportion of total variance that is due to between-study 
effects. Thus the maximum possible value of the squared 
multiple correlation could be expressed (loosely) as

σ
σ

σ
[ ]+

=θ

θ

θ

v TVar
.

2

2

2

Clearly this ratio can be quite small when the between-
study variance is small relative to the within-study 
variance. For example, if the between-study variance 
(component) is 50 percent of the (average) within-study 
variance, the maximum squared multiple correlation 
would be

( )+ =0.5 0.5 1.0 0.33.

In this example, predictors that yielded an R2 of 0.30 
would have explained 90 percent of the explainable vari-
ance even though they explain only 30 percent of the 
total variance in effect estimates.

A better measure of explained variance than the con-
ventional R2 would be based on a comparison of the 
between-study variance in the effect-size parameters in a 
model with no predictors and that in a model with predic-
tors. If s 2

q0 is the variance in the effect-size parameters in 
a model with no predictors and s 2

q1 is the variance in the 
effect-size parameters in a model with predictors, then 
the ratio

σ σ
σ

σ
σ

= − = −θ θ

θ

θ

θ
P 1MA

2 0
2

1
2

0
2

1
2

0
2

of the explained variance to the total variance in the 
effect-size parameters is an analog to the usual concept of 
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squared multiple correlation in the meta-analytic context. 
Such a concept is widely used in the general mixed model 
in primary data analysis (see, for example, Bryk and 
Raudenbush 1992, 65). The parameter P2

MA is interpretable 
as the proportion of explainable variance that is explained 
in the meta-analytic model.

12.6 CONCLUSION

Fixed- and random- (or mixed-) effects approaches to 
meta-analysis provide a variety of techniques for statisti-
cally analyzing effect sizes. These techniques are analo-
gous to fixed- and mixed-effects statistical methods 
commonly used in the analysis of primary data, such as 
variance and multiple regression. Consequently, familiar 
analysis strategies (such as contrasts from analysis of 
variance) or coding methods (such as dummy or effect 
coding from multiple regression analysis) can be used in 
meta-analysis just as they are in primary analyses. The 
choice between fixed- or random- (mixed-) effects mod-
els should be driven primarily by the kind of inference 
the meta-analyst wants to make. If the inference is restricted 
to the sample of studies that are observed (that is, con-
ditional), the fixed-effects approach is appropriate. In 
contrast, if the inference drawn is about the population of 
studies from which the observed studies are considered  
to be a random (representative) sample, the random- or 
mixed-effects models are appropriate. Fixed-effects models 
may also be reasonable when the number of studies is too 
small to support the effective use of mixed- or random- 
effects models. In practice, it is not unusual for meta- 
analysts to determine whether effect-size estimates 
between studies show any systemic variability. If there is 
indeed systematic variation between studies that the ana-
lyst believes needs to be incorporated in the analyses, the 
random- or mixed-effects model seems appropriate.

12.7 REFERENCES

Becker, Betsy J. 1986. “Influence Again: An Examination of 
Reviews and Studies of Gender Differences in Social Influ-
ence.” In The Psychology of Gender: Advances Through 
Meta-Analysis, edited by Janet S. Hyde and Marcia C. 
Linn. Baltimore, Md.: Johns Hopkins University Press.

Birge, Raymond T. 1932. “The Calculation of Errors by the 
Method of Least Squares.” Physical Review 40: 207–27.

Borenstein, Michael, Larry V. Hedges, Julian P. T. Higgins, and 
Hannah R. Rothstein. 2009. Introduction to Meta-Analysis. 
Hoboken, N.J.: John Wiley & Sons.

———. 2013. “Comprehensive Meta-Analysis, Version 3.” 
Accessed December 8, 2018. http://www.meta-analysis.
com.

Bryk, Anthony S., and Stephen W. Raudenbush. 1992.  
Hierarchical Linear Models. Thousand Oaks, Calif.: Sage 
Publications.

Eagly, Alice H., and Linda L. Carli. 1981. “Sex of Research-
ers and Sex Typed Communication as Determinants of Sex 
Differences in Influenceability: A Meta-Analysis of Social 
Influence Studies.” Psychological Bulletin 90(1): 1–20.

Goldstein, Harvey. 1986. “Multilevel Mixed Linear Model 
Analysis Using Iteratively Generalized Least Squares.” 
Biometrika 73(1): 43–56.

———. 1987. Multilevel Models in Educational and Social 
Research. New York: Oxford University Press.

———. 1989. “Restricted (Unbiased) Iterative Generalised 
Least Squares Estimation.” Biometrika 76(3): 622–23.

Hartung, Joachim, and Guido Knapp. 2001. “On Tests of the 
Overall Treatment Effect in Meta-Analysis with Normally 
Distributed Responses.” Statistics in Medicine 20(12): 
1771–82.

Hedges, Larry V. 1982a. “Fitting Categorical Models to 
Effect Sizes from a Series of Experiments.” Journal of 
Educational Statistics 7(2): 119–37.

———. 1982b. “Fitting Continuous Models to Effect Size 
Data.” Journal of Educational Statistics 7(4): 245–70.

———. 1983a. “A Random Effects Model for Effect Sizes.” 
Psychological Bulletin 93(2): 388–95.

———. 1983b. “Combining Independent Estimators in 
Research Synthesis.” British Journal of Mathematical and 
Statistical Psychology 36(1): 123–31.

Hedges, Larry V., and Ingram Olkin. 1985. Statistical Meth-
ods for Meta-Analysis. Orlando, Fl.: Academic Press.

Hedges, Larry V., Elizabeth Tipton, and Matt Johnson. 2010. 
“Robust Variance Estimation for Meta-Regression with 
Dependent Effect Size Estimators.” Journal of Research 
Synthesis Methods 19(1): 39–65.

Hedges, Larry V., and Jack L. Vevea. 1998. “Fixed and  
Random Effects Models in Meta-Analysis.” Psychological 
Methods 3(4): 486–504.

Higgins, Julian P. T., and Simon G. Thompson. 2002. “Quan-
tifying Heterogeneity in Meta-Analysis.” Statistics in  
Medicine 21(11): 1539–58.

Higgins, Julian, Simon G. Thompson, Jonathan J. Deeks, 
and Doug Altman. 2003. “Measuring Inconsistency in 
Meta-Analysis.” British Medical Journal 327(1): 557–60.

Knapp, Guido, and Joachim Hartung. 2003. “Improved Tests 
for a Random Effects Meta-Regression with a Single 
Covariate.” Statistics in Medicine 22(17): 2693–710.



STATISTICALLY ANALYZING EFFECT SIZES: FIXED- AND RANDOM-EFFECTS MODELS   279

Konstantopoulos, Spyros. 2011. “Fixed Effects and Variance 
Components Estimation in Three-Level Meta-Analysis?” 
Research Synthesis Methods 2(1): 61–76.

———. 2013. “Meta-Analysis.” In Handbook of Quantita-
tive Methods for Educational Research, edited by Timothy 
Teo. Rotterdam: Sense Publishers.

Longford Nick T. 1987. “A Fast Scoring Algorithm for Max-
imum Likelihood Estimation in Unbalanced Mixed Models 
with Nested Random Effects.” Biometrika 74: 817–27.

Miller, Rupert G., Jr. 1981. Simultaneous Statistical Infer-
ence, 2nd ed. New York: Springer-Verlag.

Raudenbush, Stephen W., and Anthony S. Bryk. 2002. 
Hierarchical Linear Models: Applications and Data 

Analysis Methods, 2nd ed. Thousand Oaks, Calif.: Sage 
Publications.

Tipton, Elizabeth. 2015. “Small Sample Adjustments for 
Robust Variance Estimation with Meta-Regression.” Psy-
chological Methods 20(3): 375–93.

Viechtbauer, Wolfgang. 2005. “Bias and Efficiency of Meta- 
Analytic Estimators in the Random-Effects Model.” Journal 
of Educational and Behavioral Statistics 30(3): 261–94.

Viechtbauer, Wolfgang, and Mike W. L Cheng. 2010. “Outlier 
and Influence Diagnostics for Meta-Analysis.” Research Syn-
thesis Methods 1(2): 112–25.

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross 
Section and Panel Data. Cambridge, Mass.: MIT Press.





281

13
STOCHASTICALLY DEPENDENT EFFECT SIZES

LARRY V. HEDGES
Northwestern University

C O N T E N T S

13.1 Introduction 282
13.1.1 Dependence Due to Correlated Estimation Errors 282
13.1.2 When Estimation Errors Are Not Independent 282
13.1.3 Dependence Among Study Effects 283

13.2 Multivariate Data Structures 284
13.2.1 Multivariate Distribution of Effect Sizes 284

13.3 Full Multivariate Methods for Dependent Effect Sizes 285
13.3.1 Model and Notation 285
13.3.2 Regression Coefficients and Covariance Components 286
13.3.3 Tests and Confidence Intervals 287
13.3.4 Approximate Covariance Matrices 289

13.4 Robust Variance Estimation 290
13.4.1 Models and Notation 291
13.4.2 Robust Variance Estimator 291
13.4.2.1 Tests and Confidence Intervals 292
13.4.2.2 Weighting and Robust Estimates 292
13.4.2.3 Estimates of Variance Components for Weighting 293

13.5 Eliminating Dependence 295
13.5.1 Model and Notation 295
13.5.2 Estimating Mean Effect Size 295

13.6 Conclusion 297

13.7 References 297



282   STATISTICALLY DESCRIBING AND COMBINING STUDY OUTCOMES

13.1 INTRODUCTION

Previous chapters on statistical analysis of effect sizes 
have focused on situations in which each study yields 
only a single estimate of effect size and all estimates 
are independent. However, it is possible that effect-size 
estimates are not statistically independent. In the most 
abstract sense, an effect-size estimate T can be decom-
posed into an effect-size parameter q and an estimation 
error e ≡ T – q. Thus two effect-size estimates T1 and T2 
can be decomposed into T1 = q1 + e1 and T2 = q2 + e2. The 
two effect-size estimates T1 and T2 can be statistically 
dependent because the estimation errors e1 and e2 are not 
independent (for example, the ei are correlated), because 
the effect-size parameters q1 and q2 are random but not 
independent (for example, the qi are correlated) or both. 
The first source of dependence (correlated estimation 
errors) has attracted the most attention in meta-analysis, 
but the second source of dependence (correlated study-
level random effects) can be a serious concern in some 
situations.

13.1.1  Dependence Due to Correlated 
Estimation Errors

Dependence occurs in three common situations. First, 
each individual may be assessed using several different 
measures of outcome (for example, different measures 
of mathematics achievement), and an effect size may be 
computed using data on each of the several measures. 
Second, the same individuals may be measured at several 
different points in time (such as just after treatment and 
then at various follow-up periods) using the same measur-
ing instruments, and an effect size may be computed at 
each time point. Third, in studies with multiple treatment 
groups, an effect size may be computed by comparing 
each of the several treatment groups with the same control 
group, and because the estimates so computed share a 
common control group, they are not independent.

13.1.2  When Estimation Errors Are  
Not Independent

In each of the cases mentioned, effect sizes may be sorted 
into groups so that there is only one effect size per study 
and thus all of the effect-size estimates in a particular 
group are independent. For example, groups might be 
effect sizes based on the same measure (such as mathe-

matics computation), the same follow-up interval (such 
as approximately six months after treatment), or the same 
particular treatment (such as the standard rather than the 
enhanced variation of treatment versus control). The 
summary of independent effect-size estimates across 
groups can be accomplished via standard meta-analytic 
methods such as those described in chapter 12.

However, reviewers often want to carry out analyses 
that involve combining data across groups of effect-size 
estimates—analyses that involve effect-size estimates that 
are not all independent. Two types of combined analyses 
are the most common. One involves estimating a mean 
effect size across all types of outcomes or treatment vari-
ations (such as mathematics computation and problem 
solving, different follow-up intervals, or variations of the 
treatment). Such analyses are often desired to answer the 
most global questions about whether the treatment had an 
impact. A second kind of analysis involves estimating dif-
ferential effects of treatment. This type is often desired to 
answer questions about whether the treatment has a bigger 
effect on some outcomes than others, at some follow-up 
intervals than others, or whether certain variations of treat-
ment have bigger effects.

Five strategies are commonly used for handling effect-
size data involving such non-independence. The first is to 
explicitly model correlations among the effect sizes using 
multivariate methods (see, for example, Hedges and 
Olkin 1985; Kalaian and Raudenbush 1996). This strat-
egy is the most elegant, providing the most efficient 
estimates of effects and accurate results of significance 
tests. Unfortunately, because it requires knowledge of the 
covariance structure of the effect-size estimates (which in 
turn requires knowledge of the dependence structure of 
the raw data in each study), the information needed to 
implement this strategy is rarely available.

The second strategy is to estimate the fixed effects (for 
example, the mean or the regression coefficients in a linear 
model) using standard weighted meta-analysis methods, 
but to use robust computations of the variances that take 
into account the dependence of the effect-size estimates 
within studies (see, for example, Hedges, Tipton, and 
Johnson 2010). These robust methods do not require any 
knowledge of the covariance structure of estimates within 
studies and they are relatively easy to compute.

The third strategy is to first compute a within-study 
summary from non-independent effect-size estimates 
and then summarize the (independent) summaries across 
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studies. For example, to compute the overall mean effect 
size (across effect sizes of all types from all studies) one 
might first compute the mean effect size within each study 
as a kind of synthetic effect size for the study. The effect 
sizes within a study will not be independent, but the syn-
thetic effect sizes (the study-average effect sizes) from 
different studies will be independent, and consequently 
conventional meta-analytic methods can be used to com-
bine the summary effect sizes across studies.

Similarly, one might compute the difference between 
the average effects of two types (outcome measures, 
follow-up intervals, or treatment types) by first comput-
ing the difference between the two effects within each 
study as another type of synthetic effect size. The effect 
sizes within a study are not independent, but the synthetic 
effect sizes (difference between effect sizes of the two 
types) from different studies will be independent.

In either case, because the synthetic effect sizes are 
independent, they can be combined across studies using 
conventional methods for meta-analysis. There is, how-
ever, one problem in using conventional meta-analytic 
methods to combine the synthetic effect sizes: the stan-
dard errors of these synthetic effect sizes depend on the 
correlation structure of the within-study effect sizes 
from which they are computed, and thus are typically 
not known.

The fourth strategy is to use Bayesian methods. These 
have a particular advantage in that they can introduce 
(weakly or strongly) informative prior distributions to 
help deal with the missing data issues that often arise in 
the context of multivariate meta-analyses. Although there 
is much to recommend this approach, we do not consider 
it in this chapter (but see Wei and Higgins 2011).

The fifth strategy is to ignore the fact that some of the 
effect-size estimates are not independent, and to use the 
same meta-analytic procedures that would have been used 
had the effect-size data been independent. This approach 
is naïve and usually misguided, but may not be too mis-
leading if relatively few studies report more than one 
effect size. Moreover, in some cases, it may lead to con-
servative results for tests of the difference between aver-
age effects of different types.

Although the third and fourth strategies (use of syn-
thetic effect sizes and ignoring dependence) seem to be 
widely used for dealing with non-independent effect-size 
estimates, they have serious limitations. The first strategy 
(full multivariate analysis) is the most elegant, but it is 
also often difficult or impossible to implement. A major 

exception is when dependence arises when a common 
control group is compared with several treatments (see, 
for example, Gleser and Olkin 2009). The second strat-
egy (robust variance estimation) has considerable merit 
and is probably the best practical approach in most meta- 
analytic situations.

This chapter describes how to handle dependent effect 
sizes within studies in meta-analyses conceived broadly. 
Because possible analyses are numerous, I describe them 
primarily in terms of linear models for effect sizes (meta- 
regression), which includes both estimation of the mean 
effect size and categorical (analysis of variance style) 
models as special cases.

13.1.3 Dependence Among Study Effects

This chapter focuses on dependence related to correlated 
estimation errors. Another model of dependence, how-
ever, relates to dependence across studies, which arises 
through the study-level random effects when groups or 
clusters of studies exhibit less variation in their effect-
size parameters than the collection of effect-size param-
eters as a whole. For example, the entire collection of 
effect sizes may result from studies conducted by differ-
ent investigators. If an investigator contributes multiple 
studies, then some methodological features might be the 
same in all the studies. and the effect-size parameters (the 
true effect sizes) produced by one investigator might vary 
less than those produced by others. Such a situation induces 
a correlation among effect-size parameters from the same 
investigator. Because the structure of the data is that effect 
sizes (hierarchically) nested within investigators, and the 
effect sizes generated by the same investigator are cor-
related, this model is sometimes called the hierarchical 
dependence model (see Stevens and Taylor 2009).

Other kinds of hierarchical dependence are also possi-
ble, but empirical evidence that they occur is scant. For 
example, experiments involving different samples of 
individuals but reported in the same publication might be 
considered hierarchically dependent. Similarly, studies 
conducted by the same laboratory or by groups of 
researchers sharing common methodological conven-
tions (such as a research mentor and former doctoral stu-
dents) might be considered hierarchically dependent.

Note that this form of dependence arises through the 
effect-size parameters, not the estimation errors. However, 
if studies in such a hierarchical structure measure several 
effect-size estimates with correlated estimation errors, 
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both kinds of dependence (that induced by correlations 
among effect-size parameters and correlations induced 
by estimation errors) can occur in the same data.

Although hierarchical dependence potentially has 
important consequences in some situations, it has not 
been of great interest in most meta-analyses. Moreover, 
because this form of dependence requires estimation of 
complex variance component structures, it requires a 
fairly large number of studies for precise estimation and 
many meta-analytic datasets have too little information 
(in the statistical sense) for estimation. Consequently, we 
do not consider it further. However such dependence can 
arise and should be at least considered as a possibility. 
The robust estimation methods considered in section 13.4 
of this chapter can be used to provide valid analyses for 
hierarchical dependence models (see Hedges, Tipton, and 
Johnson 2010). However, other analyses of hierarchical 
dependence structures are also available (see Stevens and 
Taylor 2009; Konstantopoulos 2011).

13.2 MULTIVARIATE DATA STRUCTURES

The structure of effect-size data in univariate meta- 
analysis is reasonably simple, but the data structure in 
multivariate meta-analysis is more complex. In univariate 
meta-analysis, there may be study-level covariates that 
moderate (explain variation in) the effect parameters, but 
all of the effect-size parameters and estimates refer to the 
same construct. That is, they are all effect sizes of a treat-
ment on the same outcome. However, the assumption in 
multivariate meta-analysis is that some effect sizes refer 
to one treatment effect construct and that others refer to 
different treatment effect constructs.

For example, studies in education might measure out-
comes on different achievement domains (for example, 
reading, mathematics, and science) leading to three types 
of effect-size constructs (effects on reading, effects on 
mathematics, and effects on science). Alternatively, studies 
might measure outcomes at different follow-up periods or 
reflecting comparisons between variations of treatment, 
resulting in different effect-size constructs. If some or all 
of the outcome measurements used to compute different 
effect-size estimates in a study come from the same indi-
viduals, then the effect-size estimates will have correlated 
estimation errors.

Whether effect sizes refer to the same or different con-
structs is a theoretical decision determined by the breadth 
of the construct defined in the problem formulation aspect 

of the review. For example, for some purposes it might be 
useful to define the effect size of a particular treatment on 
a broad construct of mathematics achievement, includ-
ing achievement in algebra, geometry, and arithmetic 
computation. For more refined purposes, it might be 
preferable to differentiate the construct of mathematics 
achieve ment into achievement in algebra, geometry, and 
arithmetic computation as separate effect-size constructs.

Because it is frequently the case that every study in a 
meta-analysis may not provide estimates of all of the 
effect-size constructs, the data structure is more complex 
than in univariate meta-analysis or even in multivariate 
analysis of primary data. Therefore we describe a nota-
tion for identifying which effect-size constructs are rep-
resented in each study (so-called selection matrices) to 
handle this complexity of multivariate effect-size data.

13.2.1 Multivariate Distribution of Effect Sizes

Exceptions aside, such as methods for handling sparse  
2 × 2 tables (the Mantel-Haenszel method, for example), in 
most of this book we stress the unity of statistical methods 
for meta-analysis. We discuss, in detail, different effect-
size estimates and how to compute their variances in chap-
ter 11. However, once the effect-size estimates and their 
variances are computed, other analyses are identical for 
all effect-size estimates. Just as the sampling distributions 
(means and variances) of univariate effect-size estimates 
depend on details of the designs, their multivariate analogs 
(the joint distributions of effect-size estimates) also depend 
on details for the design.

Previous editions of this handbook have included explicit 
formulas for computing the covariance matrix of effect-
size estimates based on knowledge of the covariance 
matrix of the original measurements. Often these com-
putations suggest that the effect-size estimates have 
(very) approximately the same correlation as the under-
lying measurements. In this edition, we decided to omit 
these formulas—for four reasons. First, the formulas are 
different for each type of effect size, which means that a 
complete treatment would be extensive. Second, the for-
mulas are somewhat different depending on the details of 
the effect-size calculation, making a complete treatment 
even more extensive. Third, and perhaps most important, 
these formula are often of very little use because they 
depend on the correlations among the outcome constructs 
being measured and these underlying correlations among 
outcomes are often not very well known. Finally, new 
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methods (particularly the robust methods described later) 
make the use of these computations less important because 
they can provide valid multivariate analyses that do not 
depend on knowledge of the correlation structure of the 
correlated effect-size estimates within studies.

Expositions of the multivariate distribution of various 
effect-size estimators are available elsewhere. Harold 
Hotelling provides an exposition of the multivariate struc-
ture of correlated correlation coefficients (1940). J. J. Neil 
and Olive Dunn give an exposition of the multivariate 
structure of correlated z-transformed correlation coeffi-
cients (1975). Leon Gleser and Ingram Olkin offer an 
exposition of the multivariate structure of both log risk 
ratios and log odds ratios (2000) and the multivariate 
structure of standardized mean differences (2009).

13.3  FULL MULTIVARIATE METHODS 
FOR DEPENDENT EFFECT SIZES

In this section, we briefly sketch the procedure for the 
full multivariate analysis of effect sizes based on a linear 
random-effects model. The analysis for estimation of the 
mean effect can be carried out by using a design matrix 
with an intercept and no predictors (that is, the design 
matrix is a vector of ones). Fixed-effects analyses can be 
carried out by constraining the covariance matrix Y of the 
random effects wi to be zero.

13.3.1 Models and Notation

Let p = (q1, . . . , qm)′ correspond to the entire collection 
of effect-size parameters whose estimates are observed in 
any of the studies, and assume that each study observes 
an estimate of some nonempty subset of those param-
eters. For example, there might be studies with outcomes 
of reading, mathematics, and science achievement, but 
some studies observed effect-size estimates of only math 
and science achievement. Alternatively, there might be 
studies that observed the outcome at immediate, six-
month, and one-year follow-up intervals, but some that 
observed effect-size estimates only for immediate and 
one-year intervals.

Suppose that there are k ≤ m studies with 1 ≤ pi ≤ m 
possibly correlated effect-size estimates arising in the 
ith study. Let Tij be the jth effect-size estimate from the 
ith study, respectively, and denote the pi dimensional col-
umn vector of effect-size estimates from the ith study by 
Ti = (Ti1, . . . , Tipi

)′. Not every study will necessarily esti-
mate every one of the possible effect-size parameters. 

We could describe this situation by using a pi × m selec-
tion matrix Ai whose jth row has unity in the sth column 
if Tij estimates qs, and zero otherwise.

For example, if m = 5 so that p = (q1, q2, q3, q4, q5)′ and 
the ith study has estimates of q1, q3, and q4, but not q2 or 
q5, then pi = 3, Ti1 estimates q1, Ti2 estimates q3, and Ti3 
estimates q4. The matrix Ai is therefore

=
















A

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

i

and thus the vector Ti of estimates of the ith study esti-
mates Aip = (q1, q3, q4)′.

Assume that each Ti has a pi-variate normal distribu-
tion with mean Aip with known pi × pi covariance matrix 
Si, that is,

i kT A 0~ N , , 1, . . . , , (13.1)i i i iθθ εε ( )− = Σ =

so that the vector of (correlated) estimation errors for 
the ith study di = Ti – Aip has covariance matrix Si. The 
studies need not all have the same number of effect 
sizes. Assume that the effect-size parameter vector Aip 
for the ith experiment depends on a pi × q matrix of q ≥ 1 
fixed concomitant variables

�

� � �
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x x

x x

A X , (13.2)i i

i i q

ip ip q

11 1

1i i

=

















so that

A A X (13.3)i i i i iββ ++θ = Α ξ

wi = (x1, . . . , xm)′ is an m × 1 vector of study-level random 
effects (only pi of which are realized because only pi 
of the m components of p are realized in the ith study),  
a = (b1, . . . , bq)′ is a q × 1 vector of unknown regression 
coefficients, and the m × q matrix Xi can be conceived as 
the matrix AiXi with (m – pi) rows of zeros inserted in the 
row corresponding to each component of q that is not 
estimated by the ith study.

Consider again the example where m = 5, q = (q1, q2, 
q3, q4, q5)′ and the ith study has estimates of q1, q3, and q4, 
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but not q2 or q5, then pi = 3, Ti1 estimates q1, Ti2 estimates 
q3, and Ti3 estimates q4. The matrix Ai is

A

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

.i =
















Because q2 and q5 are not estimated in study i, the 
matrix Xi is defined by starting with AiXi, and insert-
ing a row of zeros as the second and fifth rows to create 
Xi as

�

�

�

�
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x x

x x

x x

X

0 0

0 0

.i

i i q

i i q

i i q

11 1

21 2

31 3

=























Just as the sth row of Aip may refer to different compo-
nents of p in different studies, the values of the covariates 
in the sth row of AiXi are intended to predict different 
components of p in different studies.

Denote the p = p1 + . . . + pk dimensional column vector 
of sample effect sizes by T = (T1′, . . . ,Tk′)′, and the m × kq 
selection matrix A = diag(A1, . . . , Am), and the m × q 
design matrix X by stacking the matrices Xi
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X

,

k

1

=
















so that AX is the full design matrix. Thus the total number 
of effect sizes and estimates across all k studies is p ≥ k 
and when p = k then there is one effect size per study and 
all the effect sizes are independent.

Assume that the effect-size parameters p are determined 
by a linear model of the form

� � �AX A

A X
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, (13.4)
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so that the effect-size estimates T are given by a linear 
model of the form

T AX A

T

T

A X

A X
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(13.5)
k k k k k k

1 1 1 1 1 1

� � � �ββ ξξ εε ββ

ξξ

ξξ

εε

εε

= + + =
















=
















+

















+
















where di = (di1, . . . , dipi
)′ is a vector of the pi estimation 

errors of the effect-size estimates in the ith study defined 
in (13.1), where di and wi are normally distributed with 
covariance matrices Si and Y, respectively, and are inde-
pendent of one another.

13.3.2  Regression Coefficients and  
Covariance Components

The regression coefficient vector a and the covariance 
component matrix Y can be estimated by weighted least 
squares as in the case of the univariate mixed model. The 
usual procedure is to first estimate the covariance com-
ponent matrix Y and then reweight to estimate the regres-
sion coefficient vector a and its covariance matrix Sa. 
There are usually advantages (among them software avail-
ability) in considering the problem as a special case of 
the hierarchical linear model considered in chapter 12 in 
conjunction with univariate mixed-model analyses. The 
multivariate mixed-model analyses can be carried out as 
instances of the multivariate hierarchical linear model 
(see Thum 1997), estimating parameters by the method 
of by maximum likelihood. However a simpler alterna-
tive is available.

If the sampling error covariance matrix Si is known, it 
is possible to transform the within-study model so that 
the sampling errors are independent with the same vari-
ances as the components of the Ti (see Raudenbush, 
Becker, and Kalaian 1988). Note that it is conventional in 
meta-analysis to treat variances as known (because they 
depend on samples sizes, which are known), but the 
covariances in the Si are typically unknown. The cor-
relation matrix of the estimation errors is

P D D , (13.6)i i i i
1 1= Σ− −

where Di is a diagonal matrix of the standard errors 
(square roots of the variances) of the components of Ti, 
D v vdiag , . . . ,i i ip1 i( )= . For each study perform the 
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Cholesky factorization of the correlation matrix of the 
estimation errors Pi so that

P FF , (13.7)i i i= ′

where Fi is a known matrix (since Pi is a known matrix). 
The transformed effect-size vector Zi given by

Z D F D T C T (13.8)i i i i i i i
1 1= =− −

where Ci = DiFi
–1Di

–1 has a sampling error vector

� D F D C (13.9)i i i i i i i
1 1εε εεεε = =− −

which has covariance matrix Di
2 = diag (vi1, . . . , vipi

). 
When there is only a single effect-size estimate from a 
study, the transformation matrix is understood to be the 
identity so that Ci = 1 and Di = vi1.

Premultiplying both sides of the model given in formula 
(13.5) by Ci, the within-study model for the transformed 
effect-size vector Zi becomes

C T C A Ci i i i i iθθ ++ εε=

Thus one might write the within-study (level I) model as

�Z C A , (13.10)i i i i iθθ ++ εε=

where the transformed effect-size estimates Zi are inde-
pendent with the same variances as the effect sizes in Ti, 
and the effect-size parameter vector p is the same as in the 
original model.

Thus the within-study model (13.10) along with the 
between-study (level II) model

A X A (13.11)i i iθθ ββ ++ ξξ=

is a conventional two-level hierarchical linear model with 
independent estimation errors at the first level. Therefore 
conventional software can be used to estimate a and Y by 
the method of full or restricted maximum likelihood (as 
in HLM, SAS Proc Mixed, Stata, or the R package nlme) 
or iteratively reweighted least squares (as in ML3).

13.3.3 Tests and Confidence Intervals

The interpretation of results of the analysis is identical to 
that of any other multilevel model analysis. The regres-

sion coefficients are the fixed effects and their estimates 
b1, . . . , bq and their standard errors S1, . . . , Sq will be 
given by the program. A 100(1 – a) percent confidence 
interval for bj is given by

b C S b C S , (13.12)j j j j j2 2β− ≤ ≤ +α α

where Ca is the 100(1 – a ) percent point of t-distribution 
with k – q degrees of freedom.

The test of the hypothesis

H : 0j0 β =

uses the test statistic

t b S (13.13)j j j=

where Sj is the standard error of bj, which is compared 
with critical values of student’s t-distribution with k – q 
degrees of freedom.

The variance and covariance components of CiAiw are 
the elements of Y. The diagonal elements yjj are the vari-
ance components and the off-diagonal elements yst corre-
spond to the covariances between the random effects, 
which may be more interpretable when expressed as the 
correlations between the random effects. The correlation 
between the sth and tth random is

.st ss ttψ ψ ψ

One aspect of this procedure that complicates inter-
pretation is that the random effects, as the predictors 
are transformed by the matrices Ci in this analysis (for 
a discussion of this issue and an extended tutorial, see 
Begos 2015).

Example. Consider the k = 26 randomized experiments 
on SAT coaching reported by Sema Kalaian and Stephen 
Raudenbush (1996). Five of these studies reported out-
comes for both SAT verbal scores (SATV) and SAT 
mathematics scores (SATM), eight reported results only 
for SATM, and fifteen reported results only for SATV. 
The data from these studies are reproduced in table 13.1. 
Suppose we were interested in estimating the mean effect 
size for SATV and SATM, then p = (q1, q2)′, where q1 = 
the effect size for SATV and q2 is the mean effect size for 
SATM. Define the selection matrix Ai so that it selects the 
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effect size for q1 if the effect size is estimating SATV, and 
q2 if the effect size is estimating SATM. Thus the selec-
tion matrix Ai for studies one to thirteen in table 13.1 is

A 1 0 , (13.14)i ( )=

the selection matrix Ai for studies fourteen to twenty-one is

A 0 1 , (13.15)i ( )=

and the selection matrix Ai for studies twenty-two to 
twenty-six is

A
1 0

0 1
. (13.16)i =







The overall A matrix therefore consists of a block 
diagonal of thirteen 1 × 2 Ai matrices of form (13.14), 
eight 1 × 2 Ai matrices of form (13.15), and five 2 × 2 
Ai matrices of form (13.16). The design matrices Xi for 
all of the studies are 2 × 2 matrices and the overall 
design matrix X is a matrix of k = 26 stacked 2 × 2 
matrices.

With this design matrix, the intercept b1 is interpreted 
as the effect size on SATV and the slope b2 is interpreted 
as the effect size for SATM. The object of the analysis is 
to estimate the mean effect size of coaching on SATV 
and SATM, develop confidence intervals for each, and 
test the hypothesis that the coaching effect is different 
from zero.

Because the first twenty-one studies have only a single 
effect size, there is only one estimation error in each of 
these studies, Ci = 1 and Zi = Ti. However, studies twenty- 
two to twenty-six have two effect sizes each and each  
of these estimation error covariance matrices must be 
factored. Using the correlation r = 0.7 between the effect 
sizes on SATV and SATM, so that the covariance between 
effect sizes on SATV and SATM is v v0.7 i i1 2 , we obtain 
the covariance matrices, transformation matrices, and 
transformed effect-size estimates for studies twenty-two to 
twenty-six as

C

Z C T

0.0147 0.0103

0.0103 0.0147
,

1.000 0.000

0.980 1.400
,

0.13

0.04
.

22 22

22 22 22

ΣΣ =






=
−







= =






Similarly, we obtain

C

Z C T

0.0218 0.0152

0.0152 0.0216
,

1.000 0.000

0.976 1.400
,

0.25

0.16
,

23 23

23 23 23

ΣΣ =






=
−







= =
−







Table 13.1  Data from Twenty-Six Randomized  
Experiments on the Effects  
of SAT Coaching

Study nT nC T x v T–i• v–i•

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
23
24
24
25
25
26
26

28
39
22
48
25
37
24
16
43
19
16
20
39
38
18
19
37
19
17
20
20

145
145

72
72
71
71
13
13
16
16

22
40
17
43
74
35
70
19
37
13
11
12
28
25
13
13
22
11
13
12
13

129
129
129
129
129
129

14
14
17
17

0.22
0.09
0.14
0.14

–0.01
0.14
0.18
0.01
0.01
0.67

–0.38
–0.24

0.29
0.26

–0.41
0.08
0.30

–0.53
0.13
0.26
0.47
0.13
0.12
0.25
0.06
0.31
0.09
0.00
0.07
0.13
0.48

0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1

0.0817
0.0507
0.1045
0.0442
0.0535
0.0557
0.0561
0.1151
0.0503
0.1366
0.1561
0.1342
0.0620
0.0669
0.1352
0.1297
0.0732
0.1482
0.1360
0.1344
0.1303
0.0147
0.0147
0.0218
0.0216
0.0221
0.0219
0.1484
0.1484
0.1216
0.1248

0.22
0.09
0.14
0.14

–0.01
0.14
0.18
0.01
0.01
0.67

–0.38
–0.24

0.29
0.26

–0.41
0.08
0.30

–0.53
0.13
0.26
0.47
0.13

0.16

0.20

0.04

0.31

0.0817
0.0507
0.1045
0.0442
0.0535
0.0557
0.0561
0.1151
0.0503
0.1366
0.1561
0.1342
0.0620
0.0669
0.1352
0.1297
0.0732
0.1482
0.1360
0.1344
0.1303
0.0147

0.0217

0.0220

0.1484

0.1232

Source: Author’s tabulation.
Note: x = 0 if the effect size is for SATV and x = 1 if the effect size is 
for SATM.
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In this case, it is simple to obtain simple algebraic for-
mulas for the transformation from Ti to Zi—in this case, 
Zi1 = Ti1 and

Z
T T v v

1
.i i i i

12
2 1 2 1

2

ρ
ρ
( )=

−

−

The equation for Zi2 shows that the second element of 
the second row of C is the same for each study because it 
depends only on r, which is the same for each study. It 
also shows that the first element of the second row of 
each C matrix is quite similar for every study because 
it depends on r (which is constant) and the ratio vi2 /vi1, 
which is nearly the same for every study. In cases with 
different correlations across studies or larger numbers of 
correlated effect sizes within a study, the pattern of trans-
formations will be more complex.

The vector of effect-size estimates T consists of T1 to 
T21 stacked on top of one another, stacked on top of Z22 to 
Z26, so that Z = (T1, . . . , T21, Z′22, . . . , Z′26)′.

Using HLM with the V Known option using the vari-
ances of the effect sizes in table 13.1, and the effect-
size estimates given in Z, we obtain estimates that the 
between-studies variance components are both zero (that 
is variances of x1 and x2 are both zero). This implies that 
the appropriate weights to apply are the inverses estima-
tion error variances (fixed-effects weights).

With these weights, the analysis yields an estimate of 
b1 (the mean effect on SATV) of b1 = 0.16 with a standard 
error of 0.051 and a 95 percent confidence interval of 
0.06 ≤ b1 ≤ 0.26. This corresponds to a test statistic of 
Z1 = 3.13, which exceeds the 5 percent critical value of the 
standard normal distribution so we can reject the null 
hypothesis that the coaching effect on SATV is zero.

With these weights, the analysis yields an estimate of b2 
(the mean effect on SATM) of b2 = 0.09 with a standard 
error of 0.057 and a 95 percent confidence interval of 
–0.03 ≤ b2 ≤ 0.20. This corresponds to a test statistic of  
Z2 = 1.51, which does not exceed the 5 percent critical value 
of the standard normal distribution so we cannot reject the 
null hypothesis that the coaching effect on SATV is zero.

13.3.4 Approximate Covariance Matrices

Although using the actual covariance matrices is desirable 
for the unequivocally correct results, simulation studies 
suggest that the results of multivariate meta-regressions 
were relatively insensitive to incorrect values of the within- 
study correlations (see, for example, Ishak et al. 2008; 
Riley 2009). This is consistent with our experience in 
using multivariate methods in meta-analysis. Thus a rea-
sonable approach to multivariate meta-analysis in many 
situations (where estimation error covariances are not 
known precisely) is to use an approximate or working 
covariance matrix, which may be of simpler structure 
than the actual covariance matrix. The purpose of this 
working correlation is to acknowledge in the analy sis some 
degree of correlation among estimates to provide a better 
approximation to the covariance matrix than assuming 
independence of estimates within studies would. This 
permits incorporating more information (more effect-size 
estimates) in the meta-analysis than if we were required 
to have all the estimates be independent, but does not 
substantially overestimate the amount of information as 
would be if the correlated estimates were treated as if 
they were independent.

Whenever working covariance matrices are used, they 
should be chosen based on some knowledge of the likely 
correlation among estimates. Moreover, it is advisable 
to do sensitivity analyses to understand how strongly the 
results of the meta-analysis depend on the approximate 
correlation structure chosen.

For example, if a study has several effect-size estimates 
related to constructs measured by different cognitive tests, 
one might posit that the (working or approximate) correla-
tion has the same value r between estimates of any two of 
them. The approximate correlation matrix may be incorrect, 
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but if it is reasonably close to the correct value, the result-
ing analysis may be approximately correct, and may not 
be very sensitive to the precise choice of the correlation 
used to define the working covariance matrix.

Example. Return to the k = 26 randomized experiments 
on SAT coaching reporting outcomes for either SAT ver-
bal scores or SAT mathematics scores, or both, as reported 
in table 13.1. Earlier, we carried out a multivariate analy-
sis of these data assuming that the exact correlation 
between effect-size estimates on SATV and SATM within 
each study was r = 0.7. Table 13.2 shows the results 
obtained from multivariate analyses assuming r = 0.0, 
0.5, 0.6, 0.7, and 0.8. The rows of the table correspond to 
different values of r. The left vertical panel of the table 
shows the estimate of the average effect size on SATV 
(b1), its standard error (S1), the lower and upper 95 percent 
confidence intervals (lcl1 and ucl1), and the test statistic for 
testing that q1 = 0. The right vertical panel of the table 
shows the estimate of the average effect size on SATM 
(b2), its standard error (S2), the lower and upper 95 percent 
confidence intervals (lcl2 and ucl2), and the test statistic for 
testing that q2 = 0. The table shows that the differences 
in the estimates of q1 associated with different values of 
r (and their standard errors) are negligible. The differ-
ences in the estimates of q2 associated with different 
values of r are larger, but still not substantial. This illus-
trates that the results of the meta-analysis is relatively 
(but not entirely) insensitive to small differences in r.

13.4 ROBUST VARIANCE ESTIMATION

All of the estimates of regression coefficients (including 
maximum likelihood estimates) are equivalent to weighted 
least squares with some weight matrix. Usually the weight 

matrix is derived to obtain maximum efficiency and 
involves variance or covariance component estimates. In 
this section, we describe a method of estimation of the 
variances of weighted least squares estimates that is valid 
when the number of studies is large, regardless of the 
within-study covariance structure or the sampling distri-
bution of the effect-size estimates (see chapter 12).

This approach is appealing in the multivariate situa-
tion for four reasons. First, it does not require knowl-
edge of the correlation structure of the estimation errors 
or the random effects. Second, it makes no assumptions 
about the (conditional or unconditional) distribution of 
the effect-size estimates, so it is robust to violations of 
assumptions that estimates or random effects have any 
specific distribution. Third, it does not require that the 
study-level covariates be fixed as in other meta-regression 
models. Fourth, robust variance computations can be used 
even when variance estimates for individual effects-size 
estimates are not available (such as when reporting of sta-
tistics in studies is incomplete).

The approach, as noted in chapter 12, has two dis-
advantages. One, it does not offer a way to compute 
weights to increase efficiency. However, if the variance of 
each effect-size estimate is known, then standard random- 
effects procedures can be used, and the robust variance 
estimates can be used in conjunction with these weights. 
A second disadvantage is that the formal derivation of 
the validity of the method requires more studies. How-
ever, simulations suggest that the method performs rea-
sonably well for a single covariate even when the number 
of studies is as small as ten to twenty, and modifications 
of the method described here can assure its validity in 
even smaller numbers of studies (Hedges, Tipton, and 
Johnson 2010).

Table 13.2 Results of Multivariate Meta-Analyses of SAT Coaching Data

Coefficients for SATV Coefficients for SATM

r b1 S1 lcl1 ucl1 Z1 b2 S2 lcl2 ucl2 Z2

0.0
0.5
0.6
0.7
0.8

0.15
0.16
0.16
0.16
0.16

0.053
0.052
0.051
0.051
0.050

0.05
0.06
0.06
0.06
0.06

0.26
0.26
0.26
0.26
0.26

2.93
3.03
3.08
3.13
3.04

0.11
0.09
0.09
0.09
0.09

0.064
0.060
0.059
0.057
0.058

–0.12
–0.02
–0.03
–0.03
–0.03

0.24
0.21
0.21
0.20
0.20

0.04
0.98
1.22
1.49
1.84

Source: Author’s tabulation.
Note: Data are for various values of the correlation r between effect sizes on SATV and SATM.
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13.4.1 Models and Notation

Using the earlier notation, denote the total residual for the 
ith study as gi = Aiwi + di and g = (g1′, . . . , gk′)′. Here we 
assume the same model as before, except that we relax the 
assumption that the effect-size estimates have normal dis-
tributions. Then we can write the linear model for the esti-
mates as

� � �

T

T

A X

A X

, (13.17)
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where the gi are independent but (g1′, . . . , gk′)′ has an 
unknown covariance matrix.

13.4.2 Robust Variance Estimator

We can compute the weighted least squares estimate of a 
with any weight matrix. In meta-analysis, we usually use 
weights that are selected to yield the most efficient esti-
mate of a. We consider the problem of selecting weights 
later in this chapter. For now, assume an arbitrary weight 
matrix W. This need not be diagonal, but here we assume 
W = diag(W1, . . . , Wk), where Wi = diag(wi1, . . . , wipi

) is 
the pi × pi weight matrix for the ith study. The weighted 
least squares estimate of a is
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where Yi is the covariance matrix of gi.
Robust standard errors are obtained by substituting 

the matrix of cross products of within-study residuals 
in the jth study for (Sj, + AiYAi′), that is

k

k q
V X A W A X

X A W e e W A X X A W A X ,

(13.19)
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where ei = Ti – Xib is the (pi × 1) residual vector in the ith 
study. Although the pi × pi matrix eiei′ is a rather poor 
estimate of (Si, + AiYAi′), it is good enough that (13.19) 
converges in probability to the correct value as k → ∞. 
Even when the predictor values and weights are random, 
this estimate converges almost surely to a as k → ∞ (see 
Hedges, Tipton, and Johnson 2010).

Despite related simulations, as discussed in chapter 12, 
it is difficult to know when the number of studies is large 
enough to support valid inferences when the number of 
studies is not large (see Hedges, Tipton, and Johnson 
2010). Two modifications can improve performance in 
small samples of studies (Tipton 2015). The first is a 
modification of the robust variance estimate itself. The 
second is a computation of the effective degrees of free-
dom for the standard error to be used in place of (k – p) 
for determining critical values.

The modified robust variance estimate is

k

k q
V M X A W B e e B W A X M ,

(13.20)
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and Ii is a pi × pi identity matrix.
The effective degrees of freedom can be different for 

each regression coefficient. The effective degrees of 
freedom for the jth regression coefficient (1 ≤ j ≤ q) are 
given by

v
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where the k × k matrix Qj is given by

l lQ I H B W A X M M X A W B I H .

(13.22)

j i i i i i j j
i

k
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=

−

lj is a q × 1 vector whose jth row is unity and all other rows 
are zero, and (I – H)i denotes the pi rows of the p × p matrix

H I AX X A WAX X A W1( )= − ′ ′ ′ ′−

associated with study i.
The effective degrees of freedom can be substantially 

smaller than k – q, which will have a substantial impact 
on the critical values. The effective degrees of freedom will 
typically be fractional, not integers, so care must be taken 
when using some computer programs (such as Microsoft 
Excel), which round or truncate fractional degrees of 
freedom to integers and thus would give inaccurate com-
putations. When the effective degrees of freedom are 
smaller than four, substantial caution is warranted in draw-
ing inferences using the robust standard errors.

13.4.2.1 Tests and Confidence Intervals The square 
roots of the diagonal elements of VRM are the robust stan-
dard errors of the elements of b. The robust test of the 
hypothesis

H : 0j0 β =

uses the test statistic

t b v (13.23)j
RM

j jj
RM=

where vR
jj

M is the jth diagonal element of VRM, which is 
compared with critical values of student’s t-distribution 
with nj degrees of freedom. The maximum degrees of 
freedom is the number of clusters (not effect-size esti-
mates) minus the number of coefficients (including the 
intercept) in the regression model. A robust 100(1 – a) 
percent confidence interval for bj is given by

b C v b C v , (13.24)j jj
RM

j j jj
RM

2 2β− ≤ ≤ +α α

where Ca is the 100(1 – a ) percentage point of t-distribution 
with nj degrees of freedom.

13.4.2.2 Weighting and Robust Estimates Weight-
ing is used in meta-analysis for two purposes. The first 

and most important is to increase efficiency of estimates. 
Because estimates from different studies typically have 
very different precision, we give more weight to studies 
whose estimates have greater precision. For example, 
inverse variance weights are selected to obtain the most 
efficient weighted mean (or weighted regression coeffi-
cient estimates). The second, and incidental, function of 
weights in meta-analysis is to compute the variances of the 
combined estimate. When inverse variance weights are 
used in either fixed- or random-effects models, the vari-
ance of the weighted mean is the reciprocal of the sum of 
the weights. Similarly, the inverse of the weighted sum of 
squares and cross products matrix, the (X′WX)–1 matrix, 
is the covariance matrix of the regression coefficients.

The robust estimate of the covariance matrix of the 
regression coefficients obviates the second function of 
weights altogether. However, although it provides valid 
variance estimates for any weights, it provides no obvi-
ous method for selecting weights and particularly select-
ing weights that will lead to efficient estimates.

Because weights proportional to the inverse covariance 
matrix produce combined estimates with the smallest 
variance, it would often make sense to use them if possi-
ble. Unfortunately, computing inverse covariance weights 
requires knowing the covariance matrix of the estimates, 
which depends in part on the covariance structure of the 
correlated estimates. 

That this covariance structure is rarely known is exactly 
the motivation for the robust variance estimates. We sug-
gest approximating the optimal weights in a way that does 
not involve the within-study covariances (except when 
they are used to estimate between-study variance compo-
nents). In deriving approximations, it is useful to remem-
ber that any weights that are reasonably close to optimal 
will often give estimates that are nearly as efficient as the 
optimal weights, and the robust variance estimates will 
be valid. However, in some situations, this weighting will 
depart from optimal weighting. For example, if the effect 
sizes on different outcomes have substantially different 
between-study variance components, this weighting does 
not allow differential weighting of the different outcomes 
and thus will depart from optimal weighting.

The variance of all effect-size estimates depends heavily 
on within-study sample size. Sample sizes typically vary 
substantially across studies. Correlated effects within a 
study arising from multiple measurements on the same 
individuals are likely to be based on similar (if not iden-
tical) sample sizes. It follows that much more variation 
is likely in the precision of effect-size estimates between 
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studies than within studies. Thus a sensible approach might 
be to give equal weights to all of the correlated estimates 
within a study. However, it does not make sense to assign 
each estimate in study i a weight proportional to the inverse 
of the total weight of that study, because that strategy 
would assign more total weight to studies having more 
estimates. This could depart substantially from optimal 
weighting if some studies have a large number of highly 
correlated estimates.

It is more sensible to bound the total weight that any 
single study can receive. Suppose that each study has 
p effect-size estimates with equal variances v and equal 
correlations r between estimates. If we were estimating 
the mean effect in this situation, it would be optimal to 
assign a weight of 1/v[1 + (p – 1)r] to each effect in the 
study. This optimal weight tends to 1/vp = (1/v)/p (the 
average of the inverse variance weights in the study) as  
r tends to 1.

The correlation r involved here is the unconditional 
correlation, which includes correlation induced by the 
(study-level) random effects, which is likely to be larger 
than the correlation induced by correlated errors of esti-
mation alone. If the variance of the estimation errors is v 
and the correlation between estimates induced by estima-
tion error (the correlation of estimates Tis and Tit (s ≠ t) 
conditional on the study-level parameters qis and qit) is  
rC and the variance of the study-level effects (the between- 
studies variance component) is t 2, the unconditional 
correlation between estimates rU is

v v v

I

1

1 ,

2 2 2 2

2

U C C C

C C

ρ ρ τ τ ρ ρ τ τ

ρ ρ

[ ]( ) ( )

( )

( ) ( )= + + = + − +

= + −

where here I2 is the index of heterogeneity defined in 
chapter 11, but here without multiplying by 100 percent. 
This makes clear that rU is an increasing function of t 2 
that tends to 1 as t 2 becomes large. Thus (under this 
model) when the between-study variance t 2 > 0, rU > rC 
(and can be much larger), so that the optimal weights  
will be closer to 1/vp than might be imagined considering 
rC alone.

One implication of this special case is that, if estimates 
are reasonably highly correlated, little efficiency will typ-
ically be lost by bounding the total weight for each clus-
ter by 1/ v–, where v– is the average variance of the estimates 
in that cluster. This would amount to assigning each esti-
mate a weight of

w
p v

v
1

1 , (13.25)ij
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where v–i• is the average of the variances in study i. If the 
value of r were known or could be imputed, using a 
weight of 1/v–i•[1 + (pi – 1)r] could lead to more efficient 
estimates (at least for the mean effect size).

This strategy would be sufficient if we wished only to 
develop fixed-effects weights that ignored between-study 
variation. Such weights will lead to (approximately) effi-
cient estimates only if there is no between-study variation. 
In many cases, we will wish to develop random-effects 
weights (that include between-study variation), that will 
lead to (approximately) efficient estimates when there 
is between-study variation. To do so, it will be neces-
sary to estimate the between-study variance component 
or components, which we address in the following two 
sections.

13.4.2.3 Estimates of Variance Components for 
Weighting One approach to estimation of between-
study variance components for computation of efficient 
weights is to impute values for a convenient choice of 
covariance structure (a working covariance matrix) and 
compute optimal weights given between-studies vari-
ance components estimated for that structure. It is import-
ant that the accuracy of the weights as approximations of 
the optimal weights has no impact on the accuracy of the 
robust standard errors. They will be accurate for any 
choice of weights. The robust standard errors will just be 
smallest for the most efficient weights.

A reasonable choice for a working covariance matrix 
is one in which the estimates in each study have the same 
estimation error variance equal to the average (v–i•), the 
fixed-effects weights given to each effect-size estimate 
in the ith study are equal to 1/pi times the reciprocal of 
that variance (so that the total weight for the ith study is 
1/ v–i•), and the correlation of any pair of effect-size esti-
mates in the same study is r. Thus we posit the linear 
model and error covariance structure (13.5), except that 
now each of the study-specific covariance matrices can 
be described in terms of a between-study variance com-
ponent t 2 and a between-effect-within-study correlation r. 
Specifically,

v p v pJ I1 ,i i i i i i
2τ ρ ρ( ) [ ]( )+ + −

where Ij is a pj × pj identity matrix, Jj is a pj × pj matrix 
of 1’s.
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In this case, the estimate of t 2 can be computed from 
a preliminary meta-regression using all of the effect-size 
estimates, giving equal weights to each effect-size esti-
mate from the same study, so that the weight given to each 
effect-size estimate in the ith study is wi = 1/piv

–
i•. In this 

case, the weighted residual sum of squares from the meta- 
regression QE is given by
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(13.26)
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and the residual variance component estimate is
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where R is the inverse of the X′WX matrix given by
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Ji = 11′ is a m × m matrix of 1’s, tr(X) is the trace of the 
square matrix X, and negative values of the estimate are 
set to zero. These computations are somewhat simpli-
fied by recognizing that Xi′Xi = Xi′Ai′AiXi and Xi′JiXi =  
Xi′Yi′J

~
iYiXi, where J

~
i is a pi × pi matrix of ones.

It is wise to then conduct sensitivity analyses to ensure 
that estimates are not highly sensitive to choice of that 
covariance structure. However, the effect of the correla-
tion among estimates on the estimate of τ2 given in formula 
(13.27) occurs entirely through the term

w

p

p w w

R X J X X X

R X J X

tr

tr

, (13.28)

i

i
i i i i i

i

k

i i i i i i
i

k

i

k
1

2

11

∑

∑∑
ρ

[ ]′ − ′











− ′





























=

==

which is typically small (see Hedges, Tipton, and Johnson 
2010). Moreover, in simulation studies, the results of 
multivariate meta-regressions proved relatively insensi-
tive to incorrect values of the within-study correlations 
(Ishak et al. 2008). Our experience is also that these 
estimates are not highly sensitive to choices of working 
covariance structure in many situations, but it is clear that 
estimates of between-study variance components will be 
most sensitive to within-study correlation structure when 
between-study covariance components are small com-
pared to within-study covariances (see Riley 2009).

Example. Return to the example of the k = 26 ran-
domized experiments on SAT coaching (Kalaian and 
Raudenbush 1996). Five of these studies reported out-
comes for both SAT verbal scores and SAT mathematics 
scores, eight studies reported results only for SATM, 
and fifteen studies reported results only for SATV. The 
data from these studies is reproduced in table 13.1. 
Suppose we were interested in estimating the mean 
effect size for SATV and SATM, then m = 2, p = (q1, q2)′, 
where q1 = the effect size for SATV and q2 is the mean 
effect size for SATM. Define the selection matrix Ai so 
that it selects the effect size for q1 if the effect size is 
estimating SATV, and q2 is the effect size is estimating 
SATM. Thus the selection matrix Ai for studies one to 
thirteen is

A 1 0 , (13.29)i ( )=

the selection matrix Yi for studies 14 to 21 is

A 0 1 , (13.30)i ( )=

and the selection matrix Ai for studies 22 to 26 is

A
1 0

0 1
. (13.31)i =







The overall A matrix therefore consists of thirteen 
stacked 1 × 2 Ai matrices of form (13.29), stacked on top 
of eight stacked 1 × 2 Ai matrices of form (13.30), stacked 
on top of five stacked 2 × 2 Ai matrices of form (13.31). 
The design matrices Xi for all of the studies are 2 × 2 
matrices and the overall design matrix is a matrix of  
k = 26 stacked 2 × 2 matrices.

With this matrix, the intercept b1 is interpreted as the 
effect size on SATV and the slope b2 is interpreted as the 
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effect size for SATM. The object of the analysis is to esti-
mate the slope and intercept (the effect size of coaching 
on SATV and SATM), develop confidence intervals for 
each and test the hypothesis that the coaching effect is 
different from zero.

We began by estimating t 2 to estimate efficient weights 
for the analysis. Starting with the assumption that the cor-
relation between effect sizes on SATV and SATM were 
approximately the same as the correlations between mea-
surements of SATV and SATM, we estimated weights 
assuming a working correlation of r = 0.7. This yielded an 
estimate of t 2 equal to zero. To test the sensitivity of this 
value, we repeated the computation using working cor-
relation values between r = 0 and r = 0.95, inclusive and 
obtained the same result.

Using weights computed with t 2 = 0, we obtained the 
estimate b1 = 0.140, with a robust standard error of 0.0338 
and 13.1 degrees of freedom. The 95 percent critical value 
of the t-distribution with 13.1 degrees of freedom is 
2.159. Thus a 95 percent confidence interval for the inter-
cept b1 is given by

0.066 0.140 2.159 0.0339

0.140 2.159 0.0339

0.213.

1β

= − ×

≤ ≤ + ×

=

The robust significance test for b1 uses the statistic

t 0.140 0.0338 4.12,1 = =

which exceeds the critical value 2.159, so we can reject 
the hypothesis that b1 = 0. Similarly, we obtained the esti-
mate b2 = 0.114, with a robust standard error of 0.0489 
and 7.69 degrees of freedom. The 95 percent critical value 
of the t-distribution with 7.69 degrees of freedom is 2.322. 
Thus a 95 percent confidence interval for the intercept is 
given by

0.000 0.114 2.322 0.0489

0.114 2.322 0.0489

0.227.

2β

− = − ×

≤ ≤ + ×

=

The robust significance test for b2 uses the statistic

Z 0.114 0.0489 2.32,2 = =

which does not exceed the critical value 2.322, so we 
cannot reject the hypothesis that b2 = 0.

These results differ slightly from those of the full 
multi variate analysis, but their qualitative conclusions 
are the same. They differ slightly for two reasons. First, a 
slightly different (and marginally less efficient) weight-
ing scheme is used here. Second, the full multivariate 
analysis uses information about the within-study covari-
ance matrix from each study that the robust variance esti-
mates do not depend upon. In general, the results will 
usually be quite similar.

These analyses could be computed directly with a 
package that permits manipulation of matrices, such as 
MATLAB, R, or the matrix languages in statistical pack-
ages such as SAS, SPSS, or Stata. The formulas have been 
preprogrammed in several packages that compute the 
robust variance estimates such as the R package robumeta 
or the Stata macro robumeta.

13.5 ELIMINATING DEPENDENCE 

Perhaps the most frequently used approach to handling 
statistical dependence among effect-size estimates from 
the same study is to compute a single summary of those 
estimates. I call such estimates synthetic effect-size esti-
mates. Because there is only one synthetic effect-size 
estimate for each study, and because studies are usually 
taken to be independent, synthetic effect sizes can be ana-
lyzed by conventional (univariate) meta-analysis methods.

13.5.1 Model and Notation

Suppose that the ith study has pi effect-size estimates  
(T1, . . . , Tpi

), which are estimates of the effect-size param-
eters (q1, . . . , qpi

), and the estimation error variance of the 
Tij is denoted by vij. The reviewer may wish to use infor-
mation from all of the effect estimates, but there may be 
no information about the covariances of the Tij, so full 
multivariate methods cannot be used.

13.5.2 Estimating Mean Effect Size

If the object of the meta-analysis is to estimate the aver-
age of the effect sizes across studies, then the reviewer 
might wish to create a synthetic effect-size estimate for 
the ith study by combining the Tij into single estimate. 
Because different estimates within the same study are 
likely to be based on similar sample sizes and therefore 
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have similar variances, it may be sensible to take the 
unweighted average

T
p

T
1

. (13.32)i
i

ij
j

p

1

i

∑=
=

Then the synthetic (average) estimate can be used in a 
conventional meta-analysis just like any other effect-size 
estimate.

One difficulty is that the variance of T
–

i depends on the 
covariance structure and is therefore not known precisely. 
The usual approach in this case is to use a conservative 
overestimate of the variance of T

–
i as an approximate vari-

ance estimate. A reasonable approach is to use the average 
of the variances vij of the Tij within-study i as a synthetic 
variance, that is,

v
p

v
1

. (13.33)i
i

ij
j

p

1

i

∑=•
=

If the effect-size estimates are positively correlated, v–i• 
will be larger than the true variance of T

–
i so that the vari-

ance of the weighted mean in the meta-analysis will be 
overestimated. Confidence intervals will therefore be 
wider than the exact confidence intervals, and statistical 
significance will be understated (p-values will be too 
large) in the overall meta-analysis.

It is probably useful to realize that although v–i• over-
estimates the true variance of T

–
i, the overestimate may 

not be substantial. Consider a case in which all of the 
estimates in the ith study have the same variance vi and 
any two of the estimates have the same positive correla-
tion r. This may be an idealization, but it is an idealiza-
tion of exactly the case where one might wish to combine 
effect-size estimates within a study: Each outcome mea-
sure is a measure of the same construct and all of the 
measures are equally valid. In such a case, the actual vari-
ance of T

–
i is

v
p

p
v

p

1 1
1

1
. (13.34)i

i

i
i

i

ρ ρ ρ( )( )+ −





= + − 











If r = 0, then the actual variance of T
–

i is v–i•/pi which 
may be very different from v–i•. However, the situations in 
which it makes sense to combine information across dif-
ferent effect sizes about the same construct are the situa-
tions in which the intercorrelation r is relatively large 
(effects that are uncorrelated presumably are not measur-
ing the same construct). Thus it seems implausible, on 
substantive grounds, that a reviewer would choose to 

combine effect-size estimates where r was small or neg-
ative. If r is near 1, equation (13.34) implies that the 
exact variance of T

–
i is close to v–i•. For example, if r = 0.8 

(a reasonable value for different cognitive tests of the 
same construct) and pi = 2, then the true value of the vari-
ance of T

–
i is 0.9v–i• and even if pi = 10, the true value of 

the variance of T
–

i is 0.82v–i•.
The weighted mean effect size will still be unbiased, 

only its uncertainty (as expressed in the variance, confi-
dence interval width, and p-values) will be affected. The 
amount by which the overall meta-analysis is affected 
depends on the amount of correlated effect-size data and 
the extent of the correlation. Clearly, if only a few studies 
have any correlated estimates (and therefore synthetic 
effect-size estimates with synthetic overestimates of their 
variance), the impact will be quite small. If there are many 
studies, each with many correlated estimates (and there-
fore synthetic effect-size estimates with synthetic over-
estimates of their variance), the impact can be substantial 
(for an extensive study of the impact of using synthetic 
effect-size estimates on inference in meta-analysis, see 
Hedges 2007).

The use of synthetic effect sizes like T
–

i with synthetic 
variances like v–i• also has an impact on statistics like tests 
of heterogeneity. It can be shown that if the correlations 
among effect-size estimates are positive, the test of het-
erogeneity using the Q statistics given in chapter 12 rejects 
the hypothesis of homogeneity less often than nominal. 
That is, the actual p-value of the Q test is smaller than 
nominal (for details, see Hedges 2007).

Example. Return to the example of the k = 26 ran-
domized experiments on SAT coaching (Kalaian and 
Raudenbush 1996; for the data, see table 13.1). Five of 
these studies reported outcomes for both SAT verbal 
scores and SAT mathematics scores, eight studies reported 
results only for SATM, and thirteen reported results only 
for SATV. The vast majority of the studies (twenty-one 
of twenty-six) estimated only one effect size. We might 
choose to deal with the five studies that estimated effects 
on both SATV and SATM by creating a synthetic effect 
size (the average of the two effects) and a synthetic vari-
ance (the average of the variances) for each of these five 
studies. The three synthetic effects are given in the last 
column of table 13.1.

Computing first the test of heterogeneity we see that 
the Q statistic is Q = 13.560, and comparing this with 
the critical values of the chi-squared distribution with 
25 degrees of freedom, we see that this value is not sta-
tistically significant at the 5 percent level. In fact, values 
this large would be expected to occur almost 97 percent 
of the time by chance if there were perfect homogeneity 
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of effects and the effects were all independent. The effects 
are not all independent, however, because three studies 
produce two effects each, effects that are probably cor-
related. The actual p-value associated with this significance 
test is probably smaller than 0.97. Because Q = 13.53 is 
less than its nominal degrees of freedom (k – 1 = 25), the 
method of moments estimator of t 2 is zero.

Because the estimate of t 2 is 0, the fixed- or random- 
effects weighted averages are identical. Here T

–
• = 0.130 

and v• = 0.0023 for a standard error of 0.048. The 95 per-
cent confidence interval computed for q is

0.035 0.130 1.96 0.048 0.130 1.96 0.048

0.224.

θ= − × ≤ ≤ + ×

=

The test statistic for testing the hypothesis that q = 0 is 
given by

Z 0.130 0.048 2.569.= =

Comparing 2.569 with 1.96, the 95 percent critical 
value of the standard normal distribution, we can reject 
the hypothesis that q = 0.

13.6 CONCLUSION

Conventional methods for meta-analysis assume that the 
effect-size estimates are statistically independent. To 
obtain valid analyses of effect sizes that are statistically 
dependent, special methods are needed. Full multivariate 
methods are an elegant approach to analysis of dependent 
effect-size data, but these methods require extensive data 
on correlations among effect-size estimates that are fre-
quently unavailable. Assuming simplified, but approxi-
mate, correlation structure among the estimates within 
studies is simpler and can provide reasonably accurate 
approximate analyses if it is based on sensible empirical 
evidence about correlations. Robust variance estimation 
methods are good practical alternatives that provide valid 
analyses without assumptions about the form of the cor-
relation structure among dependent effect-size estimates. 
The increasing availability of software for robust analyses 
should help make these methods more accessible to users.
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14.1 INTRODUCTION

The statistical methods for meta-analysis presented in 
previous chapters are based on a frequentist (or classical) 
approach to statistical inference. In a frequentist approach 
to inference, unknown parameters are viewed as fixed 
quantities, which can be estimated from observed data, 
subject to the uncertainty that results from sampling error. 
In a Bayesian approach, unknown parameters are viewed 
as random variables, with associated probability distribu-
tions that represent beliefs about the plausibility of differ-
ent parameter values. A Bayesian analysis requires the 
analyst to provide an initial probability distribution, known 
as the prior distribution, which expresses their beliefs 
about the plausibility of different parameter values before 
making use of the evidence provided by the data. Evidence 
from the data is then used to update the prior distribution, 
through Bayes’s theorem, and to obtain the posterior distri-
bution on which Bayesian inference is based.

Over recent years, Bayesian approaches to meta-analysis 
and evidence synthesis have increased in popularity. A 
Bayesian meta-analysis allows direct probability state-
ments to be made regarding parameters of interest and 
enables prediction of effects in future studies; these advan-
tages are particularly valuable in meta-analyses performed 
to inform decision making. By choosing informative prior 
distributions for particular parameters, analysts can com-
bine evidence from the observed data brought together spe-
cifically for the meta-analysis with external evidence from 
other sources, in order that statistical inference is based on 
all available evidence. A practical advantage is that Markov 
chain Monte Carlo (MCMC) simulation-based methods 
facilitate Bayesian estimation of complex models, meaning 
that a Bayesian approach can offer greater flexibility in 
modeling than a frequentist approach.

In the following section, we provide a brief introduc-
tion to Bayesian inference.

14.2 BAYESIAN INFERENCE

Bayesian inference is based on the posterior distribution 
of the parameters of interest, which combines evidence 
from the data with existing prior beliefs. Under a Bayesian 
approach, we begin by specifying a joint probability 
distribution, f (p), which describes our prior beliefs 
about the values of all unknown model parameters p. 
The information provided by the data y is represented 
by the likelihood function f(y|p). The likelihood func-
tion is the same one that is used in frequentist inference, 
and represents the statistical model, that is the way in 
which the data are thought to have arisen, conditional 
on the values of the parameters p. In Bayesian infer-
ence, the prior distribution is updated by evidence from 
the data, and a posterior distribution f(p|y) is obtained. 
Bayes’s theorem describes the relationship between the 
posterior distribution, the likelihood function, and the 
prior distribution:

f
f f

f
y

y
y

θθ
θθ θθ( ) ( )
( )

( )
=

where f(y) is a constant ensuring that the distribution 
f(p|y) integrates to 1.

In most analyses, it is not possible to express the pos-
terior distribution in closed form and Bayesian inference 
requires evaluation of complicated integrals. Since the 
1990s, however, the availability of powerful MCMC 
simulation methods (Smith and Roberts 1993; Best et al. 
1996; Brooks 1998) within accessible software, such as 
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WinBUGS has facilitated Bayesian analysis (Lunn et al. 
2000; see also box 14.1). Bayesian estimation based on 
MCMC methods provides an extremely flexible frame-
work for data analysis, meaning that some applied 
problems that cannot be addressed using a frequentist 
approach can be handled using a Bayesian approach. 
However, Bayesian analysis requires careful choice of 
prior distributions, since these can be very influential in 
small samples. Prior distributions are discussed in more 
detail later in the chapter.

14.3  GENERIC BAYESIAN MODELS  
FOR META-ANALYSIS

14.3.1 Fixed-Effect Meta-Analysis Model

In a fixed-effect (or common effect, or equal-effects) 
meta-analysis, all studies included are assumed to pro-
vide estimates of the same underlying effect, and differ-
ences among the estimated effect sizes are assumed to 
result only from sampling error. Suppose that the data to 

be combined in the meta-analysis comprise k effect 
size estimates y1, . . . , yk. We assume a common under-
lying effect q in all studies. The Bayesian fixed-effect 
meta-analysis model is

y Normal i k

P

~ , 1, . . . ,

(14.1)

i i
2θ σ

θ ∼

( ) =

θ

where s 2
i is the variance of the effect estimate in study i 

and Pq is the prior distribution for the underlying effect 
q. By convention, the within-study variances are 
assumed to be known and are therefore replaced in 
equation 14.1 by the estimated within-study variances 
ŝ 2

i, since this usually makes little difference in prac-
tice unless many of the studies are small (Hardy and 
Thompson 1996):

y Normal i k

P

~ , ˆ 1, . . . ,

(14.2)

i i
2θ σ

θ ∼

( ) =

θ

Box 14.1 Markov Chain Monte Carlo Methods

The principle of Markov chain Monte Carlo (MCMC) simulation is that we construct a Markov chain for which the 
stationary distribution is the target posterior distribution f(p|y). A Markov chain is a sequence of random variables 
satisfying the condition that, conditional on the present value, future values are independent of past values.

Several algorithms are available for constructing Markov chains with a specified stationary distribution. One 
of the most widely used of these algorithms is Gibbs sampling (Gelfand and Smith 1990). Gibbs sampling 
works by sampling each parameter in turn, each time conditioning on the most recent values of all other param-
eters. A set of initial values p(0) = {q1

(0), q 2
(0), . . . , q r

(0)} is chosen at the beginning of the process. A new value for 
q1 is sampled from the full conditional distribution for q1 given the current values of the other model parameters 
{q2

(0), q3
(0), . . . , qr

(0)}. Next, a new value for q2 is sampled given the current values of the other parameters {q 1
(1), 

q 3
(0), . . . , q r

(0)} and so on until the last parameter qr is sampled given {q 1
(1), q 2

(1), . . . , q (1)
r–1}. This process com-

pletes one iteration of the Gibbs sampler and a transition from p(0) to p(1). The process is repeated numerous 
times and a sequence of samples p(0), p(1), p(2), . . . is generated.

Eventually, the Markov chain of samples should converge to the target posterior distribution. The initial iter-
ations are referred to as burn-in, a phase in which the chain is judged not yet to have reached convergence, and 
these are discarded. Once the chain has converged, a large number of iterations are carried out to provide a 
sample from the posterior distribution. Summaries of this sample such as means, medians, and percentiles are 
used to provide estimates of summary measures for the posterior distribution. Markov chains can sometimes get 
stuck in a particular area as a result of the initial values chosen and may not converge to the correct stationary 
distribution. It is therefore preferable to run multiple chains starting from diverse sets of initial values and to use 
formal methods to check whether they have converged to the same distribution, which may then be assumed to 
be the target posterior distribution.

source: Authors’ compilation.
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When fitting the fixed-effect model (14.2) using a fre-
quentist approach to estimation, the common effect q is 
estimated by a weighted average of the studies’ effect 
estimates, with weights set equal to the reciprocals of 
their within-study variances ŝ 2

i. When taking a Bayesian 
approach to estimation, we begin by choosing prior dis-
tributions for all unknown parameters in the model. In 
model (14.2), we need to choose a prior distribution Pq 
for the one unknown parameter q. We discuss specifica-
tion of this prior distribution in more detail in a later 
section.

14.3.2 Random-Effects Meta-Analysis Model

In most meta-analyses, differences among the study- 
effect estimates are known to arise from causes other 
than sampling error alone. For example, study designs 
may differ in populations recruited or timing of out-
come measurement, differences in the conduct of the 
research may lead to variation in results, or the studies 
may be affected by methodological flaws that result in 
biases. The assumption of a common underlying effect 
across studies is then unrealistic, and it is inappropriate 
to combine the results using a fixed-effect meta-analysis 
model. The random-effects meta-analysis model is a 
commonly used alternative model, which includes a set 
of random effects to represent the variability of true 
effects across studies:

θ σ

θ ∼ µ τ

µ τ ∼

( )
( )

=

µ,τ

y Normal i k

Normal

P

~ , ˆ 1, . . . ,

,

, (14.3)

i i i

i

2

2

In this model, the qi represent the true effects in each 
of the k studies, assumed to be normally distributed 
with mean µ and variance τ2. The between-study vari-
ance τ2 describes the extent of heterogeneity among  
the studies. A Bayesian random-effects meta-analysis 
relies on making an assumption of exchangeability for 
the true study effects, which is a judgment that the 
effects are similar, but nonidentical, and that the rank-
ings of their magnitudes cannot be predicted in advance 
(Higgins, Thompson, and Spiegelhalter 2009). Con-
ventionally, the prior distributions for the mean µ and 
variance τ2 are assumed to be independent, so we will 
write µ ∼ Pµ, t ∼ Pt .

14.3.3 Random-Effects Meta-Regression Model

Given interest in exploring the influence of study-level 
characteristics on the magnitude of effect, it may be useful 
to fit meta-regression models. Bayesian meta-regression 
can be performed as an extension of the Bayesian 
meta-analyses discussed in the previous sections. We 
extend the random-effects model to a random-effects 
meta-regression model by introducing study-level covari-
ates xli:

y Normal i k

Normal x i k

P P

~ , ˆ 1, . . . ,

, 1, . . . ,

, (14.4)
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=

τββ
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where x0i is usually set equal to 1 so that the model includes 
an intercept b0; the remaining xmi are continuous or dichot-
omous study-level characteristics (possibly including 
dummy coding of categorical study-level characteristics). 
In this model, prior distributions are required for the set 
of meta-regression coefficients a and for t 2

res, which rep-
resents the residual between-study heterogeneity remain-
ing after accounting for that explained by the study-level 
covariates.

14.3.4 Prior Distributions

Prior distributions for the model parameters should be 
chosen carefully in any Bayesian analysis. Several general 
approaches to specifying prior distributions are available; 
we introduce these in decreasing order of popularity.

The most common option is to choose a “vague” prior 
distribution that is intended to provide little information 
relative to the information provided by the observed data. 
Vague prior distributions are used when analysts wish to 
obtain findings that are based on the data alone and close to 
those that would result from a frequentist analysis. In gen-
eral, no consensus has been reached on the optimal choice 
of vague prior distribution for particular model parameters 
(Kass and Wasserman 1996). Bayesian statisticians have 
explored formal methods for choosing “reference” or 
“non-informative” priors, which could provide a default 
choice of a prior representing ignorance in particular mod-
els. However, many priors chosen using such methods 
have been shown to have undesirable properties and it is 
now generally accepted that choosing priors which are 
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approximately “flat” over the range of values that the 
parameters are likely to take (for example, by specifying 
very large variances) is a sensible approach (Kass and 
Wasserman 1996). When sample sizes are large, the like-
lihood will dominate the posterior distribution, and there-
fore findings based on different possible vague prior 
distributions will be very similar. When the data provide 
little information about particular parameters, prior distri-
butions are more influential and sensitivity of results to the 
choice of prior distribution should be investigated.

Alternatively, we could choose an informative prior dis-
tribution based on external data sources available before 
the analysis is carried out. It can be quite beneficial to use 
informative rather than vague prior distributions, particu-
larly for parameters about which the new data provide little 
or no information. Two standard sources of information 
that can be represented in a prior distribution are historical 
(or external) data and expert beliefs. For some parameters, 
a prior distribution can be constructed from relevant exter-
nal data, perhaps from similar previous studies. In other 
cases, analysts may wish to incorporate prior beliefs by 
eliciting opinion from experts about the likely values of 
particular parameters.

A third type of prior distribution is one chosen expressly 
to represent a hypothetical viewpoint. David Spiegelhalter, 
Lawrence Freedman, and Mahesh Parmar demonstrate 
construction of a “skeptical” prior distribution that rep-
resents an opinion that the treatment difference in a ran-
domized trial is unlikely to exceed a chosen value, and an 
“enthusiastic” prior distribution that represents an oppos-
ing opinion that the treatment difference is likely to favor 
one intervention over its comparator (1994). Such prior 
distributions are useful for exploring how much evidence 
would be required to convince a skeptic that a new treat-
ment is effective, or to convince an enthusiast that it is 
not. Andrew Gelman and his colleagues suggest using 
“weakly informative” priors, constructed to include less 
information than is available from external data, in order 
that the prior influences the analysis only when the data 
are sparse (2009).

We briefly mention the concept of conjugate priors, 
leading to a posterior that has the same distributional form 
as the prior. Conjugate priors can be chosen in simple 
analyses, such as a single binary endpoint from one study 
(for which a Beta prior would be the conjugate choice), 
but are not always available for more complex analyses.

14.3.4.1 Choosing a Prior Distribution for the Over-
all Effect First, we consider how to choose a prior distri-
bution for the common effect q in model (14.2) or the mean 

effect µ in model (14.3). For convenience, we will refer to 
µ. Similar considerations for choice of a vague prior distri-
bution apply to regression coefficients, bm, in model (14.4).

In many meta-analyses, a vague prior distribution for µ 
will be preferred so that inference for the effect of pri-
mary interest is based on the observed data alone rather 
than being informed additionally by external informa-
tion. We discuss the use of informative prior distributions 
for the overall effect later in the chapter.

The scale of the effect measure should be considered 
when choosing a prior distribution for the overall effect µ. 
For many effect measures, a wide normal distribution cen-
tered at the null effect would be an appropriate choice as a 
vague prior distribution. The variance of the normal distri-
bution should be chosen to be large relative to likely values 
of the effect estimates to ensure that the prior distribution 
is approximately flat over the range of values supported by 
the likelihood. Plausible values of the effect measure 
should be considered when choosing a prior distribution.

For example, we consider choosing a prior distribu-
tion in meta-analysis of a binary outcome such as an 
adverse event or recurrence of disease, assuming the odds 
ratio to be the effect measure of interest. Model 14.2 will 
be fitted on the log odds ratio scale, so µ will represent 
the overall mean log odds ratio across studies. Suppose 
we choose µ ∼ Normal (0, 104) as a prior distribution. 
This expresses a belief that 95 percent of values of µ will 
lie in the range 0 ± 1.96 × 104, that is (–196,196).When 
transformed to the odds ratio scale, the corresponding 
interval (exp(–196),exp(196)) covers an extremely wide 
range of values. In most meta-analysis data sets, this dis-
tribution would be regarded as approximately flat over 
the range supported by the likelihood and therefore would 
be a suitable choice of vague prior distribution.

A wide normal distribution is an appropriate choice in 
meta-analysis of many common effect measures such as 
(log) risk ratios, risk differences, mean differences, stan-
dardized mean differences, Fisher-transformed correlations, 
(log) rate ratios and (log) hazard ratios. Note, however, that 
for mean differences, the distribution µ ∼ Normal (0, 104) 
just described might not be wide enough if the units of mea-
surement are such that values outside the range (–196,196) 
are plausible. This might be the case, for example, for an 
outcome such as resource use measured in U.S. dollars, 
or when small units (such as inches or seconds) are used.

14.3.4.2 Choosing a Prior Distribution for the 
Between-Study Variance Many meta-analyses contain 
only a few studies, and in these analyses the data provide 
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little information on the magnitude of the between-study 
variance t 2. This means that the prior distribution for t 2 
is often very influential and should be chosen with partic-
ular care (Lambert et al. 2005). An advantage of perform-
ing a Bayesian meta-analysis is that relevant external 
evidence on the likely magnitude of t 2 can be incorpo-
rated as an informative prior distribution, as we discuss 
later. In this section, we discuss choosing a vague prior 
distribution for t 2.

As when choosing a prior distribution for the overall 
mean effect, it is important to consider what beliefs are 
represented by the prior distribution. Here, we need to 
check first that we have a clear understanding of what 
different values of t 2 mean. Following the reasoning of 
Spiegelhalter and his colleagues, we note that 95 percent 
of the study effects qi will lie within the interval µ ± 1.96τ 
(asymptotically), and therefore that the 2.5 percent and 
97.5 percent values of qi may be assumed to be 3.92t apart 
(Spiegelhalter, Abrams, and Myles 2004, 168). For effect 
measures that are expressed as ratios and modeled on the 
log ratio scale, such as odds ratios, the value exp (3.92t) 
can be seen as representing the ratio of the 97.5 percent 
value to the 2.5 percent value of the distribution of true 
odds ratios across studies. For example, the value t  = 1 
corresponds to a ratio of approximately 50 between the 
97.5 percent and 2.5 percent values of the studies’ under-
lying odds ratios, which would seem implausible in most 
meta-analyses. When the effect measure is a mean dif-
ference, the meta-analysis model is fitted on the scale of 
the original outcome measure, and it is helpful to con-
sider the magnitude of t 2 relative to the (within-study) 
between-participant variances. For example, if the aver-
age between-participant standard deviation is 0.5, then 
a value of t = 100 would probably be considered implau-
sibly high, but not if the average between-participant 
standard deviation is 500.

A common choice is to specify a uniform distribution 
for the between-study standard deviation t. The upper 
limit of the distribution should be chosen with care  
to ensure that an appropriate range of values is covered. 
If the number of studies is small, it is likely that the 
results of the meta-analysis will be sensitive to the choice 
of prior distribution for t 2 (11). In such meta-analyses a 
sensitivity analysis is recommended. As alternative 
choices of vague prior distribution, we could declare a 
half-normal prior distribution for t or an inverse gamma 
prior distribution for t 2. The inverse gamma distribu-
tion for t 2 is a conjugate prior, conditional on the other 
parameters in the model. Choice of vague prior for the 

between-study variance is discussed in more detail by 
other authors (Gelman 2006; Spiegelhalter, Abrams, and 
Myles 2004, 170).

The variance t 2
res in a meta-regression model (14.4) rep-

resents the residual between-study heterogeneity remain-
ing after adjustment for study-level covariates. Vague 
priors considered for the heterogeneity variance t 2 in a 
random-effects meta-analysis model (14.3) would also be 
suitable choices for t 2

res.

14.3.5 Implementation

In the examples throughout this chapter, we undertake 
Bayesian estimation using MCMC simulation methods 
within the WinBUGS software (Lunn et al. 2000). We 
provide an introduction to MCMC methods and the Gibbs 
sampler in box 14.1.

We report posterior median values as central estimates 
for all model parameters; posterior distributions are often 
skewed and so the median is usually a more useful sum-
mary than the mean. As interval estimates, we report  
95 percent credible intervals (CrI). Any interval contain-
ing 95 percent probability under the posterior distribution 
may be regarded as a 95 percent credible interval. Here, 
we use the standard approach of reporting the interval 
defined by the 2.5 percent and 97.5 percent percentiles of 
the posterior distribution. An alternative approach would 
be to report a highest posterior density interval, which is 
the narrowest interval containing the chosen probability, 
but these intervals are more difficult to compute.

In each analysis, we run three chains starting from 
widely dispersed values (as discussed in box 14.1) and 
use a diagnostic to check whether convergence has been 
reached (Brooks and Gelman 1998). Each set of results 
reported is based on running all three chains for one hun-
dred thousand iterations following a burn-in period of ten 
thousand iterations, which in our examples was enough 
to ensure convergence in every analysis.

For model comparison, we use the deviance informa-
tion criterion (DIC) (Spiegelhalter et al. 2002). The DIC 
is equal to the sum of the posterior mean deviance, D

–
, 

which measures model fit, and the effective number  
of parameters, pD, which measures model complexity. 
Models with smaller DIC values are preferred; differ-
ences of 5 or more are suggested to be important, while 
there is less reason to choose between models if the DIC 
differs by less than 5. A tool for calculating the DIC value is 
available in WinBUGS.
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14.3.6 Example

14.3.6.1 Fixed-Effect Meta-Analysis To illustrate 
application of the methods discussed, we reanalyze the 
data from a published meta-analysis including sixteen 
studies (D’Amico et al. 2009). This meta-analysis was 
performed to evaluate the effectiveness of a combination 
of topical plus systemic antibiotics versus no antibiotics in 
intensive care unit patients, with respect to prevention of 
respiratory tract infections. The odds ratio is the chosen 
effect measure. Table 14.1 shows the raw data and the 
observed study results. When calculating the log odds 
ratio and variance in the Jacobs 1992 study (row 7), 
which has a cell count of zero for events in the treated 
group, we have taken the standard approach of adding 
0.5 to the numbers of events and nonevents in each group.

We first fit a fixed-effect model (14.2) to the respira-
tory tract infections data, with a normal(0,104) prior dis-
tribution placed on q. The common log odds ratio q is 
estimated as –1.09 (95 percent CrI –1.27 to –0.91), which 
corresponds to an odds ratio of 0.34 (95 percent CrI 0.28 
to 0.40). This analysis shows evidence that antibiotics are 
beneficial for prevention of respiratory tract infections. 
This result is very close (identical to two decimal places) 
to the result obtained using a conventional frequentist 

inverse-variance method for fitting model (14.2), which 
produces an estimate of –1.09 (95 percent CI –1.27 to 
–0.91) for q.

14.3.6.2 Random-Effects Meta-Analysis We now fit 
a random-effects meta-analysis model (14.3) to the respi-
ratory tract infections data. We place a normal(0,104) prior 
distribution on µ, the same as for q in the fixed-effect 
model, and initially place a uniform(0,2) prior distribu-
tion on t. The mean log odds ratio µ is estimated as –1.29 
(95 percent CrI –1.73 to –0.94), which corresponds to an 
odds ratio of 0.28 (95 percent CrI 0.18 to 0.39), and the 
between-study heterogeneity variance t 2 is estimated as 
0.26 (95 percent CrI 0.01 to 1.08). The odds ratio esti-
mate and interval are similar to those from a frequentist 
random-effects meta-analysis, which produces an esti-
mate of 0.28 (95 percent CI 0.21 to 0.38) for µ. The inter-
val estimate for µ is wider in the Bayesian analysis 
because it takes into account the higher central estimate 
for t 2 (table 14.2) and the uncertainty in estimating t 2.

In table 14.2, we compare the results based on the uni-
form(0,2) prior with those obtained from two different 
choices of vague prior for the between-study variance:  
a half-normal(0,0.52) prior for t or a gamma(0.001,0.001) 
prior for 1/t 2. The central estimate for t 2 is somewhat 

Table 14.1 Respiratory Tract Infections Data

Study

Antibiotic 
Prophylaxis No Prophylaxis

Log Odds 
Ratio

Var(Log 
Odds Ratio)Events Total Events Total

1  Abele-Horn 1997 13 58 23 30 –2.43 0.29
2 Aerdts 1991 1 28 29 60 –3.23 1.10
3 Blair 1991 12 161 38 170 –1.27 0.12
4 Boland 1991 14 32 17 32 –0.38 0.25
5  Cockerill 1992 4 75 12 75 –1.22 0.36
6 Finch 1991 4 20 7 24 –0.50 0.51
7 Jacobs 1992 0 45 4 46 –2.27 2.27
8 Kerver 1988 5 49 31 47 –2.84 0.32
9 Krueger 2002 91 265 149 262 –0.92 0.03
10 Palomar 1997 10 50 25 49 –1.43 0.21
11 Rocha 1992 7 47 25 54 –1.59 0.24
12  Sanchez-Garcia 1992 32 131 60 140 –0.84 0.07
13  Stoutenbeek 2007 62 201 100 200 –0.81 0.04
14 Ulrich 1989 7 55 26 57 –1.75 0.23
15  Verwaest 1997 22 193 40 185 –0.76 0.08
16 Winter 1992 3 91 17 92 –1.89 0.42

source: Raw data published in D’Amico et al. 2009. Statistics calculated by authors.
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sensitive to choice of vague prior, and the upper limit of 
the 95 percent credible interval for t 2 changes more sub-
stantially. In this example, because of the reasonably 
large number of sixteen studies, the central and interval 
estimates for the odds ratio are not sensitive to choice of 
vague prior for t 2 and change only slightly.

14.3.6.3 Random-Effects Meta-Regression As an 
example of random-effects meta-regression, we investi-
gate the influence of a study-level covariate in the respi-
ratory tract infections meta-analysis (table 14.1). The 
Cochrane review authors classified the studies according 
to whether concealment of randomized treatment alloca-
tion was adequate (studies 2, 3, 6, 9, 12–16) or not 
(studies 1, 4, 5, 7–11), and performed subgroup analyses 
to explore the impact of quality of allocation conceal-
ment on treatment effect (D’Amico et al. 2009). To inves-
tigate this here, we fit a random-effects meta-regression 
including a single study-level covariate x1i, taking the 
value 1 for studies in which allocation concealment was 
inadequate and 0 otherwise:
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Normal x i k
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, 1, . . . ,

, , (14.5)

i i i

i i res

2

0 1 1
2

0 10 1

θ σ

θ ∼ β β τ

β ∼ β ∼ τ ∼

( )
( ) =

+ =

β τββ

We choose a uniform(0,2) prior for tres, together with 
normal(0,104) distributions for b0 and b1. The differ-
ence b1 between average treatment effect in studies 
with inadequate allocation concealment compared to that 
in studies with adequate allocation concealment has a 
central estimate of –0.58 (95 percent CrI –1.22 to 0.16). 

No strong evidence therefore exists of a difference 
between these two subgroups of studies. The residual 
between-study variance t 2

res is estimated as 0.12 (95 per-
cent CrI 0.0003 to 0.88). This is lower than in the  
random-effects meta-analysis of these data (table 14.2), 
because some of the heterogeneity has been explained by 
the covariate x1i. By calculating the exponentials of b0 
and b0 + b1, we find that the combined odds ratio in stud-
ies with adequate allocation concealment is estimated as 
0.35 (95 percent CrI 0.21 to 0.49), while that in studies 
with inadequate allocation concealment is estimated as 
0.20 (95 percent CrI 0.11 to 0.33).

14.3.6.4 Model Comparison We use the deviance 
information criterion to compare the fit of three different 
models fitted to the respiratory tract infections data above 
(table 14.3). The posterior mean deviance D

–
 is equal to 

Table 14.2 Random-Effects Meta-Analysis of Respiratory Tract Infections Data

Combined OR Estimate 
(95 Percent CI/CrI)

Heterogeneity Variance Estimate 
(95 Percent CI/CrI)

Frequentist random-effects meta-analysis (DerSimonian 
and Laird estimation)

0.28 (0.21, 0.38) 0.18 (0.04, 1.20)

Bayesian random-effects meta-analysis, uniform(0,2) 
prior for t

0.28 (0.18, 0.39) 0.26 (0.01, 1.08)

Bayesian random-effects meta-analysis,  
half-normal(0,0.52) prior for t

0.28 (0.19, 0.39) 0.19 (0.004, 0.70)

Bayesian random-effects meta-analysis, 
gamma(0.001,0.001) prior for 1/t2

0.29 (0.19, 0.39) 0.16 (0.002, 0.81)

source: Authors’ calculations.

Table 14.3 Comparison of Models Fitted  
to Respiratory Tract Infections Data

Model

Posterior 
Mean 

Deviance 
(D–)

Effective 
Number of 
Parameters 

(pD)
DIC 

Value

Fixed-effect 
meta-analysis

40.3 1.0 41.3

Random-effects 
meta-analysis

24.5 9.7 34.2

Random-effects 
meta-regression

26.6 8.3 34.9

source: Authors’ calculations.
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24.5 in the random-effects model and to 40.3 in the 
fixed-effect model. The much lower value for D

–
 shows 

that the random-effects model provides a better fit to the 
study data, which is unsurprising given that between-
study heterogeneity is moderately high. In the fixed-effect 
model, the effective number of parameters pD equals 1, 
representing the treatment effect. The effective num-
ber of parameters in a random-effects model must lie 
between the number of parameters in the fixed-effect 
model and the number of parameters in a model esti-
mating independent treatment effects for all studies. In 
this data set, pD must lie between 1 and 16 in the ran-
dom-effects model, and has been calculated as 9.7. The 
DIC values for the fixed-effect and random-effects 
models are 41.3 and 34.2 respectively, indicating that 
the random-effects model is preferred. The DIC value 
for the random-effects meta-regression model is 34.9, 
which is close to the DIC value for the random-effects 
model, so there is no reason to choose between these 
two models on the basis of fit.

14.3.7  Estimating Effects for Specific Studies  
in Random-Effects Meta-Analysis

In the random-effects model (14.3), the qi represent the 
true effects in each of the k studies included in the 
meta-analysis. When using Bayesian estimation to fit this 
model, we obtain a posterior distribution for each qi, which 
is informed not only by the results observed for study i, but 
also by the fitted random-effects distribution. The posterior 
distributions for the qi are said to “borrow strength” from 
the other studies in the meta-analysis. In comparison with 
the original observed study results, uncertainty is reduced 
and the interval estimates for the qi become narrower. The 
central estimates obtained for the qi move closer together, 
toward the overall mean effect. This is known as shrinkage 
and the posterior summaries for the qi are often referred to 
as shrunken study-specific estimates.

In the respiratory tract infections example in table 14.1, 
the Aerdts 1991 study (row 2) had an extreme observed 
log odds ratio of –3.23 (95 percent CI –5.29 to –1.17) and 
this was imprecisely estimated because the study was 
small. The corresponding shrunken study-specific esti-
mate (from the analysis with uniform(0,2) prior for t ) is 
–1.62 (95 percent CrI –3.02 to –0.76), which is substan-
tially closer to the mean log odds ratio. By contrast, the 
Blair 1991 study (row 3) had an observed log odds ratio of 
–1.27 (95 percent CI –1.96 to –0.58), close to the mean; 
the corresponding shrunken estimate is –1.26 (95 percent 

CrI –1.86 to –0.71), with central estimate almost unchanged 
but a slightly narrower interval estimate.

In many meta-analyses, the primary focus is on sum-
marizing the evidence across studies, and interest is scant 
in estimating the effects within individual studies. How-
ever, when a meta-analysis is carried out to address a par-
ticular target question, it may be that one particular study 
is closest to the target setting, for example, with respect 
to population or treatments compared. In this situation, 
the focus of the meta-analysis could be on this one study’s 
effect estimate and on increasing its precision through 
borrowing information from other similar studies.

14.3.8 Predicting the Effect in a New Study

An important advantage of a Bayesian random-effects 
meta-analysis is that it enables us to predict the effect 
expected in a future study. In study design, prediction 
from a meta-analysis of existing evidence can be used to 
estimate the probability that a new planned study of a 
given size will produce statistically significant results. 
The predictive distribution for the effect in a new study is 
obtained directly from the random-effects distribution, 
q new ∼ Normal (µ, t 2), under the assumption that the new 
study can be considered exchangeable with the studies in 
the meta-analysis.

In the respiratory tract infections example, the log 
odds ratio expected in a new study is estimated as –1.26 
(95 percent CrI –2.61 to –0.10) (based on the analysis 
with uniform(0,2) prior for t), which corresponds to an 
odds ratio of 0.28 (95 percent CrI 0.07 to 0.91). Predic-
tion of an effect in a new individual study is associated 
with much higher uncertainty than the uncertainty associ-
ated with estimating the mean of the random distribution 
of study effects. When using the outputs from a random- 
effects meta-analysis in decision modeling, it is import-
ant to consider whether the mean effect or the predictive 
effect for a new study should be used (Ades, Lu, and  
Higgins 2005).

14.4  BAYESIAN APPROACHES FOR SPECIFIC  
TYPES OF DATA

The random-effects meta-analysis model (14.3) is a 
generic model and can be used to perform meta-analysis 
of any effect measure for which observed estimates and 
within-study variances are available from each study. In 
this model and in the fixed-effect model (14.2), normal-
ity is assumed for the within-study likelihood. We now 
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discuss using exact within-study likelihoods for specific 
types of outcome data.

14.4.1 Binary Data

When analyzing binary outcome data, we can model the 
within-study likelihood as binomial rather than assuming 
normality (Smith, Spiegelhalter, and Thomas 1995). This 
is straightforward when the effect measure of interest is 
the odds ratio. The numbers of events ri0, ri1 and total 
numbers of patients ni0, ni1 in the treatment arms are 
modeled directly, rather than modeling estimated log 
odds ratios and their variances. The random-effects meta- 
analysis model is now written as
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Advantages of this approach are that we avoid the need 
to adjust for zero cells when estimating log odds ratios 
and their variances, and that the within-study likelihood is 
modeled exactly rather than assumed normal. In many 
data sets, the difference between the results obtained from 
models (14.3) and (14.6) will be minimal, but greater 
when studies are small or event rates are extreme.

Methods for performing Bayesian meta-analysis of 
risk differences or relative risks while assuming binomial 
within-study likelihoods were proposed by David Warn, 
Simon Thompson, and David Spiegelhalter (2002). Imple-
mentation of a binomial likelihood model is less straight-
forward for risk differences or relative risks than for 
odds ratios because care has to be taken to ensure that 
the values of the risk differences or relative risks are 
appropriately constrained.

14.4.1.1 Example We fit model (14.6) to the respi-
ratory tract infections example, specifying vague nor-
mal(0,104) priors for the average log odds ai in each study 
as well as for µ, and a uniform(0,2) prior for t. As previ-
ously, an initial five thousand iterations were discarded 
as burn-in and estimates were based on the following 
hundred thousand. The log odds ratio is estimated as –1.40 
(95 percent CrI –1.88 to –1.01), which corresponds to an 

odds ratio of 0.25 (95 percent CrI 0.15 to 0.36); t 2 is 
estimated as 0.40 (95 percent CrI 0.08 to 1.41). In this 
example, the results differ quite substantially between 
models (14.3) and (14.6), and it would be preferable to use 
the exact binomial likelihood model.

14.4.2 Continuous Data

For a continuous outcome, an exact likelihood model can 
be fitted if we have access to the observed mean and its 
standard error from each arm of each study. An assump-
tion of normality for the mean value in each arm is based 
on the central limit theorem if sample sizes are large 
enough. In the random-effects model (14.7), yij represents 
the observed mean in arm j of study i, and ŝij represents 
its standard error, and mean differences are modeled.
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We specify vague normal(0,104) distributions for the 
average means ai in each study. Choices of prior distribu-
tion for the overall effect µ and the between-study vari-
ance t 2 are discussed earlier in the chapter.

14.4.3 Rate Data

In a meta-analysis comparing rates of a particular event 
over time, we model the number of events yij in arm j of 
trial i; this depends on the rate lij at which events occur in 
the trial arm and the exposure time Eij. In model (14.8), 
we present a random-effects meta-analysis model on the 
log rate difference scale:
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This model assumes that the rate of events in each 
study arm remains constant over the length of exposure.
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14.5 INFORMATIVE PRIOR DISTRIBUTIONS

14.5.1  Informative Prior Distributions  
for the Between-Study Variance

Earlier in this chapter, we use vague prior distributions for 
all unknown parameters in the models presented to reflect 
a lack of prior knowledge in advance of seeing the data. 
We now consider choosing informative prior distributions 
for the between-study heterogeneity variance t 2 in ran-
dom-effects meta-analysis. In meta-analyses including 
only a few studies, t 2 is imprecisely estimated. Frequentist 
estimation of the combined effect does not take this impre-
cision into account, and Bayesian analyses are sensitive to 
the choice of vague prior for t 2. It would be preferable for 
Bayesian meta-analyses to use informative prior distribu-
tions for t 2, informed by relevant external evidence on the 
likely magnitude of between-study heterogeneity (Higgins 
and Whitehead 1996).

Recently, predictive distributions for the heterogeneity 
expected in a variety of medical settings have been pub-
lished. These were constructed by modeling the data from 
a large collection of meta-analyses. We will demonstrate 
how these distributions can be used as informative prior 
distributions for heterogeneity in a new meta-analysis.

In a meta-regression model (14.4), the between-study 
variance t 2

res represents the residual between-study hetero-
geneity remaining after adjustment for study-level covari-
ates. It is unlikely that a data-based predictive distribution 
for residual heterogeneity in a particular meta-regression 
model would ever be available, given that we would need 
multiple examples of the same model fitted in the same 
setting. However, we could use an informative prior rec-
ommended for total heterogeneity t 2 in a particular set-
ting as an informative prior for residual heterogeneity t 2

res 
(Jackson et al. 2014). We would expect some heterogene-
ity to be explained by the covariates and consequently t 2

res 
is likely to be smaller than t 2. This prior would therefore 
be a conservative choice, since the prior distribution 
would support somewhat larger values of t 2

res than are 
likely to occur and would lead to wider intervals for the 
meta-regression coefficients bm.

14.5.1.1 Empirical Data-Based Priors We previ-
ously used data from the Cochrane Database of Sys-
tematic Reviews to construct predictive distributions 
for between-study heterogeneity in a variety of differ-
ent medical settings and for several types of effect mea-
sure. To construct distributions for heterogeneity of log 
odds ratios, we used data from 14,886 meta-analyses, 
including data from 77,237 individual studies in total 

(Turner et al. 2012). We fitted hierarchical models, in 
which all 14,886 meta-analyses were performed simulta-
neously; in a regression model, we explored the effects of 
meta-analysis characteristics on the magnitude of hetero-
geneity. We find that type of outcome and type of inter-
vention comparison evaluated in the meta-analysis both 
influenced the magnitude of between-study heterogeneity. 
For example, heterogeneity variances for meta-analyses in 
which the outcome was all-cause mortality were lower 
than heterogeneity variances for other outcomes. We 
presented predictive distributions for nine broad set-
tings, defined by outcome type and intervention com-
parison type. In a later paper, we presented predictive 
distributions for eighty narrower settings, again defined 
by outcome type and intervention comparison type (Turner 
et al. 2015). Similar methods have been used to construct 
predictive distributions for heterogeneity of standardized 
mean differences in meta-analyses of continuous outcomes 
(Rhodes, Turner, and Higgins 2016).

14.5.1.2 Example We first return to the example pre-
sented in table 14.1 and choose a suitable informative 
prior distribution for the extent of heterogeneity expected 
in this setting. The outcome in this meta-analysis is respi-
ratory tract infections and the analysis compares topical 
plus systemic antibiotic prophylaxis versus no prophy-
laxis. Selecting from the eighty settings we presented, we 
find that the example meta-analysis fits well into the out-
come category of Infection/onset of new disease and  
the intervention comparison category of Pharmacological  
versus Placebo/control. A log-normal(–2.49, 1.522) distri-
bution was recommended for between-study heterogeneity 
in this setting. When specifying this prior for t 2 in a random- 
effects meta-analysis, the heterogeneity variance is esti-
mated as 0.15 (95 percent CrI 0.01 to 0.62). The central 
estimate has reduced in comparison with the analyses 
based on vague priors for t 2 (table 14.2), and the interval 
estimate is narrower because additional information has 
been provided through the prior distribution. The estimate 
for the combined log odds ratio µ has changed slightly to 
–1.25 (95 percent CrI –1.63 to –0.95), with corresponding 
odds ratio 0.29 (95 percent CrI 0.20 to 0.39).

Next, we repeat the meta-regression analysis carried 
out in section 14.3.6.3, using the same informative prior 
distribution for t 2

res. The estimate for t 2
res reduces to  

0.07 (95 percent CrI 0.004 to 0.45) as a result of incorpo-
rating external information. Correspondingly, the inter-
val estimates for the meta-regression coefficients have 
narrowed; the difference b1 is now estimated as –0.59 
(95 percent CrI –1.16 to 0.02).
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Many meta-analyses contain much smaller numbers 
of studies than the respiratory tract infections example. 
Jonathan Davey and his colleagues find that 75 percent of 
meta-analyses published in the Cochrane Database of 
Systematic Reviews in the first 2008 issue include no more 
than five studies (2011). To illustrate use of an informative 
prior for heterogeneity when the data provide very limited 
information, we reanalyze the data from a meta-analysis 
including four studies (Smedslund et al. 2011). This meta- 
analysis evaluated the effectiveness of cognitive behav-
ioral therapy for men who physically abuse their partner, 
with respect to recurrence of violence (table 14.4). The 
odds ratio is the chosen effect measure.

In a frequentist random-effects meta-analysis using 
method-of-moments estimation, the heterogeneity vari-
ance estimate is moderately high at 0.31, but extremely 

imprecise (95 percent CI 0.07 to 8.15, calculated using 
the Q-profile method). The usual frequentist analysis 
does not allow for this imprecision in estimation of the 
combined odds ratio, so the confidence interval for µ is 
inappropriately narrow (table 14.5). If we fit the random- 
effects model using Bayesian estimation, with a vague 
prior specified for t 2, we find that estimates and interval 
estimates for t 2 and interval estimates for the combined 
log odds ratio µ are sensitive to the choice of vague 
prior (table 14.5).

Although this meta-analysis is not in a medical research 
setting, we use a predictive distribution for broad cate-
gorizations of outcomes and interventions (Turner et al. 
2012). The CBT versus control comparison fits well into 
the category of nonpharmacological comparisons and 
recurrence of violence would have been categorized as 

Table 14.4 Recurrence of Violence Data

Study

CBT Control

Log Odds Ratio Var(Log Odds Ratio)Events Total Events Total

1 Bronx 2005 20 202 11 218 0.73 0.15
2 Brooklyn 2000 13 129 100 386 –1.14 0.10
3 Broward 2000 52 216 45 188 0.01 0.05
4 San Diego Navy 2000 63 218 75 214 –0.28 0.04

source: Raw data published in Smedslund et al. 2011. Statistics calculated by authors.

Table 14.5 Random-Effects Meta-Analysis of Recurrence of Violence Data

Combined OR Estimate 
(95 Percent CI/CrI)

Heterogeneity Variance Estimate 
(95 Percent CI/CrI)

Frequentist random-effects meta-analysis (DerSimonian and 
Laird estimation)

0.82 (0.45, 1.52) 0.31 (0.07, 8.15)

Bayesian random-effects meta-analysis, uniform(0,2)  
prior for t

0.83 (0.27, 2.54) 0.74 (0.06, 3.51)

Bayesian random-effects meta-analysis, half-normal(0,0.52) 
prior for t

0.82 (0.41, 1.67) 0.30 (0.02, 1.27)

Bayesian random-effects meta-analysis, gamma(0.001,0.001) 
prior for 1/t 2

0.82 (0.30, 2.37) 0.42 (0.01, 5.97)

Bayesian random-effects meta-analysis, log-normal(–3.95,1.792) 
prior for t 2

0.82 (0.39, 1.74) 0.29 (0.03, 1.94)

source: Authors’ calculations.
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a subjective outcome. We will assume that levels of 
between-study heterogeneity for meta-analyses evaluat-
ing this type of outcome and intervention comparison in 
medical research are similar to those in social science. A 
log-normal(–2.01,1.642) distribution was recommended 
for heterogeneity in this setting (22). When the informa-
tive prior distribution was used, the central estimate for 
t 2 changed to 0.29, with 95 percent credible interval 0.03 
to 1.94. In this example, we prefer to incorporate relevant 
external information on the likely values of t 2 than to 
estimate the combined treatment difference using a very 
imprecise estimate of t 2 in a frequentist analysis. The 
combined odds ratio has changed to 0.82 (95 percent CrI 
0.39 to 1.74) in the Bayesian meta-analysis.

14.5.2  Informative Prior Distributions 
for the Overall Effect

In most meta-analyses, researchers prefer to use a vague 
rather than informative prior for the overall effect so that 
the parameter of primary interest is estimated only from 
the current data set. However, an informative prior may 
be chosen if certain relevant external studies cannot 
directly be included in the meta-analysis, if there is a 
desire to incorporate expert opinion on the magnitude of 
the effect, or if there is interest in assessing the impact  
of the observed data on one or more particular prior 
distributions. We describe a published example of the 
first scenario in the following section. If researchers 
wish to incorporate expert opinion on the effect of pri-
mary interest, it is advisable to seek detailed guidance on 
elicitation of opinion-based prior distributions (for a 
review of this area, see Spiegelhalter, Abrams, and Myles 
2004). The impact of data on an intentionally skeptical 
prior distribution has been demonstrated in interpreta-
tion of a meta-analysis of clinical trials of intravenous 
magnesium after acute myocardial infarction (Higgins 
and Spiegelhalter 2002).

14.5.2.1 Example Alex Sutton and Keith Abrams 
present results from an evaluation of the effectiveness of 
electronic fetal heart rate monitoring (EFM), in which 
relevant observational evidence was used to construct 
an informative prior for the treatment effect in a meta- 
analysis of randomized trials (2001). Data were available 
from nine randomized trials comparing perinatal mortal-
ity rates between expectant mothers who received EFM 
during labor and mothers who did not. The risk differ-
ence (per thousand births) was the effect measure of 
interest and a Bayesian random-effects meta-analysis 

(see model 14.3) of the randomized trial data was fitted. 
Initially, a vague normal(0,106) prior was chosen for the 
combined risk difference µ and a gamma(0.001,0.001) 
prior was chosen for 1/t 2. This analysis produced an esti-
mate of 1.07 (95 percent CrI –2.53 to 1.71) for µ.

In addition to that available from randomized trials, 
considerable evidence on the effectiveness of EFM was 
available from observational studies. These studies were 
believed to be of lower quality than the trials, so it was 
not considered appropriate to include them in the meta- 
analysis. Sutton and Abrams discuss how such evidence 
could instead be incorporated as an informative prior in the 
meta-analysis of the trial data (2001). A random-effects 
meta-analysis of the observational studies was performed 
and produced an estimate of –1.64 for the risk difference 
per thousand births, with a standard error of 0.45. Assuming 
normality, this result is translated into a normal(–1.64,0.452) 
prior for µ. A random-effects meta-analysis of the trial data, 
incorporating this prior, now produces an estimate of 0.42 
(95 percent CrI –2.19 to –0.55) for µ. The original result 
based on the trial evidence alone has shifted some way 
toward the result based on observational evidence. Sutton 
and Abrams also discuss how to downweight the prior dis-
tribution based on observational evidence to reduce its 
influence on the meta-analysis.

14.5.3  Informative Prior Distributions  
for Other Quantities

We have discussed how to introduce external informa-
tion on two of the standard meta-analysis model param-
eters. It is also possible to extend the standard models 
specifically to incorporate relevant external informa-
tion on other quantities. In this section, we discuss two 
examples.

14.5.3.1 Allowing for Within-Study Biases Studies 
within a meta-analysis often vary in quality, and flaws in 
them can potentially lead to biased estimation of the over-
all effect. Given concerns about study quality, researchers 
may want to make allowance for within-study biases in 
the meta-analysis. In a bias-adjusted meta-analysis, rela-
tively less weight is given to the studies judged to be at 
high risk of bias, and thus the results of lower quality  
studies have less influence on estimation of the com-
bined effect. The seminal work in this area was carried out 
by David Eddy and his colleagues, who presented 
models allowing for multiple biases in meta-analysis 
(Eddy, Hasselblad, and Schachter 1992). Model (14.9) 
is a simple extension of the standard random-effects 
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model, including study-specific bias parameters bi rep-
resenting the bias resulting from one characteristic:
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Informative prior distributions for the bi could be based 
on empirical evidence on the expected magnitude of cer-
tain biases or on expert opinion. Nicky Welton and her col-
leagues constructed distributions for the bias associated 
with a particular methodological flaw by using evidence 
from an external collection of meta-analyses (Welton et al. 
2009). In their model, studies in a new meta-analysis are 
judged according to whether they are at low or high risk of 
bias due to a given flaw. The study-specific bias bi is set to 
zero in studies judged to be at low risk of bias. In studies 
at high risk of bias, the bias parameter bi is given an 
informative prior distribution, which is derived from a 
hierarchical model fitted to the biases associated with this 
flaw in each of a large collection of meta-analyses. Welton 
and her colleagues illustrate their method by adjusting for 
the bias associated with inadequate or unclear allocation 
concealment in a meta-analysis of twenty-one random-
ized trials. A distribution for the bias affecting the sixteen 
trials judged to have inadequate or unclear allocation 
concealment was derived from an external collection of 
thirty-three meta-analyses including 250 trials.

Rebecca Turner and colleagues considered basing 
prior distributions for the study-specific bias parameters 
bi on expert opinion rather than empirical evidence 
(2009). Under this method, the methodological quality of 
each study in the new meta-analysis was assessed in 
detail and expert opinion was used to construct a distri-
bution for the bias expected to affect each study’s results. 
As when using empirical evidence, the weighting of the 
studies in the meta-analysis was altered by allowance for 
the expected levels of bias, and the lower quality studies 
had relatively less influence on the overall bias-adjusted 
result.

14.5.3.2 Allowing for Within-Subject Correlation  
Keith Abrams and his colleagues demonstrate how a 
Bayesian approach can be used to allow for heteroge-
neous reporting of study results (2000). Their motivating 
example was a meta-analysis assessing the impact of test-
ing positive or negative in a screening program on levels 
of long-term anxiety. The measure of interest was the 

change in anxiety between baseline and follow-up. Two 
of the six studies in the meta-analysis had reported esti-
mates of change, together with standard deviations. 
The other four studies had reported only baseline and 
follow-up levels of anxiety. These results can be used 
to calculate estimates of change, but calculation of the  
correct standard deviations requires knowledge of the 
within-subject correlations between baseline and follow-up. 
Abrams and his colleagues fit a Bayesian meta-analysis 
model in which the variance ŝ 2

i of each estimated change 
from baseline (unless already reported) was assumed to 
depend on the unknown within-subject correlation r:
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( ) ( ) ( ) ( )= − + −
+ −

= + − =

n V d n V d

n n

V d V x V y V x V y j

ˆ 1 1

2

2 , 0,1

(14.10)

i
i i i i

i i

ij ij ij ij ij

2 0 0 1 1

0 1

In expression (14.10), xij, yij and dij represent the base-
line measurement, follow-up measurement and change 
from baseline respectively, in trial arm j of study i. An 
informative prior for r was derived by performing a 
meta-analysis of six estimates of within-subject correla-
tion for anxiety levels and using a moment-based approach 
to fit a gamma distribution to the results obtained.

A meta-analysis of change from baseline in anxiety is 
then performed, combining evidence from all six studies 
of the impact of screening results on change in anxiety 
levels, while allowing appropriately for within-subject 
correlation in anxiety over time.

14.6 DISCUSSION

We have demonstrated some of the advantages of Bayesian 
meta-analysis: prediction of the effect in a future study, 
incorporation of external evidence on between-study 
heterogeneity or the combined effect, and full allowance 
for uncertainty in estimation. An additional advantage is 
flexibility in modeling. Because Bayesian estimation of 
more complex models is easily achieved using MCMC 
methods, the basic models presented here can be extended 
to perform network meta-analysis (Higgins and Whitehead 
1996; Dias et al. 2013) or multivariate meta-analysis (Wei 
and Higgins 2013), or to allow for varying types of study 
within the meta-analysis, by adding an extra layer of 
variation to the hierarchical models (Prevost, Abrams, 
and Jones 2000).
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A challenge of Bayesian meta-analysis is that selection 
of prior distributions requires care and the results of the 
meta-analysis may be sensitive to the choices made, par-
ticularly in small data sets. If relevant external evidence 
is available for the between-study heterogeneity vari-
ance, we recommend that an informative prior is used for 
this parameter in preference to a vague prior. However, 
published predictive distributions for heterogeneity are 
currently available only for health-related meta-analyses, 
not for every type of effect measure. Whether using infor-
mative or vague prior distributions, sensitivity of the 
meta-analysis results should always be explored. Another 
drawback of using MCMC methods to perform Bayesian 
estimation is that these methods are computationally inten-
sive and require analysts to ensure that convergence has 
been reached. Alternative implementations of Bayesian 
meta-analysis may be available, based, for example, on 
numerical integration or importance sampling, though 
these methods have so far been described for only a limited 
range of models (Turner et al. 2015).

In summary, Bayesian meta-analysis offers a number 
of useful benefits. The opportunity to incorporate exter-
nal information on heterogeneity is particularly valuable 
in meta-analyses including few studies; incorporating 
external information on the combined effect may be 
worthwhile when relevant evidence is available from 
studies that cannot be directly included in the meta- 
analysis. When meta-analyses are performed to inform 
decision making, the predictive distribution for the 
effect in a future study is often required, and this is 
available only from Bayesian meta-analysis. These ben-
efits may be weighed against the need to choose prior 
distributions with care and to carry out large numbers of 
simulations.
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15.1  ARTIFACTS THAT DISTORT OBSERVED  
STUDY RESULTS

Every study has imperfections, many of which bias the 
results. In some cases, we can define precisely what a 
methodologically ideal study would be like, and thus can 
say that the effect size obtained from any real study will 
differ to some extent from the value that would have been 
obtained had the study been methodologically perfect. 
Although it is important to estimate and eliminate bias in 
individual studies, it is even more important to remove 
such errors in research syntheses such as meta-analyses.

Some authors have argued that meta-analysts should 
not correct for study imperfections because the purpose 
of meta-analysis is only to provide a description of study 
findings, not an estimate of what would have been found 
in methodologically ideal studies. However, the errors 
and biases that stem from study imperfections are artifac-
tual; they stem from imperfections in our research meth-
ods, not from the underlying relationships that are of 
scientific interest (Rubin 1990). Thus, scientific questions 
are better addressed by estimates of the results that would 
have been observed had studies been free of methodolog-
ical biases (Cook et al. 1992; Schmidt and Hunter 2015, 
34–36; Rubin 1990; Schmidt 1992). For example, in cor-
relational research, the results most relevant to evaluation 
of a scientific theory are those that would be obtained from 
a study using an infinitely large sample from the relevant 
population (that is, the population itself) and using mea-
sures of the independent and dependent variables that are 
free of measurement error and perfectly construct valid. 
Such a study would be expected to provide an exact esti-
mate of the relation between constructs in the population 
of interest; such an estimate is maximally relevant to the 
testing and evaluation of scientific theories (and also to 
theory construction). Thus corrections for biases and other 
errors in study findings due to study imperfections (which 
we call artifacts) are essential to the development of valid 
cumulative knowledge. The increasing use of estimates 

from meta-analysis as input into causal modeling proce-
dures further underlines the importance of efforts to ensure 
that meta-analysis findings are free of correctable bias and 
distortion (for example, see Colquitt, LePine, and Noe 
2002; Becker and Schram 1994). In the absence of such 
corrections, the results of path analyses and other causal 
modeling procedures are biased in complex and often 
unpredictable ways (Coffman and MacCallum 2005).

The goal of research is accurate estimation of relation-
ships between constructs. Correcting for research artifacts 
provides the most accurate estimates of correlations at 
the true score level. It is sometimes argued that true scores 
are not accurate estimates of construct scores. However, 
the evidence shows that in all but unusual cases the cor-
relation between true scores and the relevant construct is 
very high, that is, in the high 0.90s (Schmidt, Le, and Oh 
2009). Hence true scores provide good estimates of con-
struct scores. The discussion in this chapter is oriented to 
the scientific examination of theories and hypotheses. In 
some areas of applied work in which the goal is not theory 
evaluation but instead empirical prediction of human per-
formance (for example, in educational or work perfor-
mance), it is not necessary or appropriate to correct the 
observed relationships for error of measurement in the 
predictive scales used. Such applied cases are noted again 
later where appropriate.

Most artifacts with which we are concerned have been 
studied in the field of psychometrics. The goal is to 
develop methods of calibrating each artifact and correct-
ing for its effects. The procedures for correcting for these 
artifacts can be complex, but software for applying them 
is available (Schmidt and Le 2014). The procedures sum-
marized in this chapter are more fully detailed elsewhere 
(Schmidt and Hunter 2015). They are presented there for 
both the correlation coefficient and the standardized mean 
difference (d value statistic); however, for economy of 
presentation this chapter presents only their application to 
correlations. The procedures described in this chapter can 
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also be applied to other effect-size statistics such as odds 
ratios and related risk statistics.

15.1.1 Unsystematic Artifacts

Some artifacts produce a systematic effect on the study 
effect size and some cause unsystematic (random) effects. 
Even within a single study, it is possible to correct for a 
systematic effect. Unsystematic effects usually cannot be 
corrected in single studies and sometimes may not be cor-
rectable even at the level of meta-analysis. The two major 
unsystematic artifacts are sampling error and data errors.

15.1.1.1 Sampling Errors It is not possible to cor-
rect for the effect of sampling error in a single study. The 
confidence interval gives an idea of the potential size of 
the sampling error, but the magnitude of the sampling 
error in any one study is unknown and hence cannot be 
corrected. However, the effects of sampling error can 
be greatly reduced or eliminated in meta-analysis if the 
number of studies (k) is large enough to produce a large 
total sample size, because sampling errors are random 
and average out across studies. If the total sample size in 
the meta-analysis is not large, one can still correct for the 
effects of sampling error, though the correction is less 
precise and some smaller amount of sampling error will 
remain in the final meta-analysis results, a second-order 
sampling error (see Schmidt and Hunter 2015, chapter 9; 
Schmidt and Oh 2013). A meta-analysis that corrects 
only for sampling error and ignores other artifacts is a 
partial meta-analysis and is therefore called a bare-bones 
meta-analysis.

15.1.1.2 Data Errors and Outliers Bad data in 
meta-analysis stem from a variety of errors in handling 
data: primary data used in a study may be erroneous due 
to transcription errors, coding errors, and so on; the initial 
results of the analysis of the primary data in a particular 
study may be incorrect due to computational errors, tran-
scriptional errors, computer program errors, and so on; 
the study results as published may have errors caused by 
transcriptional error by the investigator, by a typist, or 
by a printer; or a meta-analyst may miscopy a result or 
make a computational error. Data errors are apparently quite 
common (Gulliksen 1986; Tukey 1960). Sometimes such 
errors can be detected and eliminated using outlier analysis, 
but outlier analysis is problematic in meta-analysis because 
it is often impossible to distinguish between data errors 
and large sampling errors. Deletion of data with large 
sampling errors can bias corrections for sampling error 
(Schmidt and Hunter 2015, 235–36).

15.1.2 Systematic Artifacts

Many artifacts have a systematic influence on study effect 
size parameters and their estimates. If such an effect can 
be quantified, often there is an algebraic formula for the 
effect of the artifact. Most algebraic formulas can be 
inverted, producing a correction formula. The resulting 
correction removes the bias created by the artifact and 
estimates the effect size that would have been obtained 
had the researcher carried out a study without the corre-
sponding methodological limitation.

Correction for an artifact requires knowledge about the 
size of the effect of that artifact. Correction for each new 
artifact usually requires at least one new piece of infor-
mation. For example, to correct for the effects of random 
error of measurement in the dependent variable, we need 
to know the reliability of the dependent variable in the 
primary studies. Many primary studies do not present 
information on the artifacts in the study, but often this 
information (for example, scale reliability) is available 
from other sources. Even when artifact information is 
presented in the study, it is not always of the required 
type. For example, in correcting for the influence of mea-
surement error, it is important to use the appropriate type 
of reliability coefficient. Use of an inappropriate coeffi-
cient will lead to a correction that is at least somewhat 
erroneous (Schmidt and Hunter 2015, 115–21), usually 
an undercorrection.

There are at least ten systematic artifacts that can be cor-
rected if the artifact information is available. The correc-
tion can be made within each study individually if artifact 
information is available for all (or nearly all) studies indi-
vidually. If so, then the meta-analysis is performed on 
these corrected values. If this is not the case, the correction 
can be made at the level of the meta-analysis if the distri-
bution of artifact values across studies can be estimated.

As pointed out elsewhere in this volume, study effect 
sizes can be expressed in a variety of ways, the two most 
frequently used indices being the correlation coefficient 
and the standardized mean difference (d value and its 
variations). For ease of explication, artifact effects and 
corrections are discussed in this chapter in terms of 
correlations. The same principles apply to standardized 
mean differences, although it is often more difficult to 
make appropriate corrections for artifacts affecting the 
independent variable in true experiments (see Schmidt and 
Hunter 2015, chapters 6, 7, and 8).

15.1.2.1 Single Artifacts Most artifacts attenuate 
the population correlation r. The amount of attenuation 
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depends on the artifact. For each artifact, it is possible 
to present a conceptual definition that makes it possi-
ble to quantify the influence of the artifact on the 
observed effect size. For example, the reliability of 
the dependent variable calibrates the extent to which 
there is random error of measurement in the measure 
of the dependent variable. The reliability, and hence the 
artifact parameter that determines the influence of mea-
surement error on effect size, can be empirically esti-
mated. Journal editors should require authors to furnish 
those artifact values but often do not. Most of the arti-
facts cause a systematic attenuation of the correlation; 
that is, the expected value of the study correlation is 
lower than the actual correlation by some amount. This 
attenuation is usually most easily expressed as a product 
in which the actual correlation is multiplied by an artifact 
multiplier, usually denoted a.

We denote the actual (unattenuated) population cor-
relation by r, and denote the (attenuated) study popula-
tion correlation by ro. Because we cannot conduct the 
study without measurement error, this study imperfec-
tion systematically biases the actual correlation parame-
ter downward. Thus the study correlation ro is smaller 
than the actual correlation r.

We denote by ai the artifact value for the study 
expressed in the form of a multiplier. If the artifact param-
eter is expressed by a multiplier ai, then

ρρ ρρ= a , (15.1)o i

where ai is some fraction, 0 < ai < 1. The size of ai 
depends on the artifact: the greater the error, the smaller 
the value of ai. In the developments that follow, these 
artifacts are described as they occur in correlation studies. 
However, each artifact has a direct analog in experi-
mental studies (for detail, see Schmidt and Hunter 2015, 
chapters 6–8).

Attenuation artifacts and the corresponding multiplier 
are as follows:

1. Random error of measurement in dependent vari-
able Y:

a r ,YY1 =

  where rYY is the reliability of the measure of Y. 
Example: rYY = 0.49 implies ai = 0.70, ro = 0.70r,  
a 30 percent reduction.

2. Random error of measurement in independent vari-
able X:

a r ,XX2 =

where rXX is the reliability of the measure of X.  
Example: rXX = 0.81 implies a2 = 0.90, ro = 0.90r,  
a 10 percent reduction.

3. Artificial dichotomization of continuous dependent 
variable split into proportions p and q:

φ ( )( )= =a c pqbiserial constant ,3

where φφ ππ( ) = −x e 2x 22

 is the unit normal density 
function and where c is the unit normal distribution 
cut point corresponding to a split of p. That is,  
c = f –1(p), where f(x) is the unit normal cumulative 
distribution function (Hunter and Schmidt 1990).

Example: Y is split at the median, p = q = 0.5,  
a3 = 0.80, ro = 0.80r, a 20 percent reduction.

4. Artificial dichotomization of continuous indepen-
dent variable split into proportions p and q:

φ ( )( )= =a c pqbiserial constant ,4

where c is the unit normal distribution cut point 
corresponding to a split of p and f (x) is the unit 
normal density function. That is, c = f –1 (p) (Hunter 
and Schmidt 1990).

Example: the continuous measure X is split such 
that p = 0.9 and q = 0.1. Then a4 = 0.60, ro = 0.60r, 
a 40 percent reduction.

5. Imperfect construct validity of the dependent vari-
able Y. Construct validity is the correlation of the 
dependent variable measure with the actual depen-
dent variable construct:

a5 5 the construct validity of Y.

Example: supervisor ratings of job performance,  
a5 = 0.72 (Viswesvaran, Ones, and Schmidt 1996); 
mean inter-rater reliability of supervisor rating is 
0.52; the correlation between the supervisor rating 
and job performance true scores is 0.52  = 0.72 
(see also Rothstein 1990) ro = 0.72r, a 28 percent 
reduction.
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6. Imperfect construct validity of the independent 
variable X. Construct validity is defined as in (5):

a6 5 the construct validity of X. 

Example: use of a perceptual speed measure to 
measure general cognitive ability, a6 = 0.65 (the 
true score correlation between perceptual speed and 
general cognitive ability is 0.65).

ro 5 0.65r, a 35 percent reduction.

7. Range restriction on the independent variable X. 
Range restriction results from systematic exclusion 
of certain scores on X from the sample compared 
with the relevant (or reference) population:

a7 depends on the standard deviation (SD) ratio, 
  uX 5 (SDX study population)/ 

(SDX reference population).

For example, the average value of ux among 
employees for general cognitive ability has been 
found to be 0.67.

Range restriction can be either direct (explicit 
truncation of the X distribution) or indirect (partial or 
incomplete truncation of the X distribution, usually 
resulting from selection on some variable correlated 
with X). Volunteer bias in study subjects, a form of 
self-selection, can produce indirect range restriction. 
Most range restriction in real data is indirect (Hunter, 
Schmidt, and Le 2006). The order in which correc-
tions are made for range restriction and measurement 
error differs for direct and indirect range restriction. 
Correcting for direct range restriction when the 
restriction has actually been indirect results in esti-
mates that are downwardly biased, typically by about 
25 percent.

For both types of range restriction, the size of the 
multiplier depends on the size of r.

For direct range restriction the formula is:

ρ ρ( )= + −a u u 1 .x X7
2 2 2

Example: For r = 0.20 and uX = 0.67, a7 = 0.68.  
ro = 0.68r, a 32 percent reduction.

The formula for indirect range restriction is more 
complicated because it involves correlations between 

the third variable Z where selection (explicit trunca-
tion) occurred and both X and Y. Unfortunately, 
information regarding these correlations is rarely 
available (Hunter, Schmidt, and Le 2006). One prac-
tical method of correcting for indirect range restric-
tion was introduced by John Hunter and Frank 
Schmidt (2004, chapter 5) and presented in the sec-
ond edition of this handbook (Schmidt, Le, and Oh 
2009). That method relies on the assumption that the 
effect of Z on Y is fully mediated by X. This assump-
tion is likely to be met in many practical situations 
(Hunter, Schmidt, and Le 2006; see also Le and 
Schmidt 2006). Even when this assumption is vio-
lated, as long as range restriction is indirect (almost 
always the case), this method still provides more 
accurate estimates of the true correlation than the 
direct range restriction correction method or no 
correction at all (Le and Schmidt 2006). The formula 
for this method is

a u u 1 ,T T7
2 2 2ρ ρ( )= + −

where uT is the ratio of restricted to unrestricted true 
score standard deviations (computed in Schmidt and 
Hunter 2015, equation 3.16; or in Hunter, Schmidt, 
and Le 2006, equation 22):

{ }( )= − −u u r r1T X XX XX
2 2

a a

Note that in this equation, rXXa
 is the reliability of the 

independent variable X estimated in the unrestricted 
group. Hunter and his colleagues use subscript a 
to denote values estimated in the unrestricted group, 
and subscript i to denote the restricted group (Hunter, 
Schmidt, and Le 2006). We use the same notation in 
this chapter.

Example: For r = 0.20 and uT = 0.56, a7 = 0.57. 
ro = 0.57r, a 43 percent reduction.

There has been a significant development since 
the last edition of this handbook regarding a new cor-
rection method for indirect range restriction. Specifi-
cally, Huy Le and his colleagues introduced a more 
accurate correction approach that does not require 
the assumption underlying the earlier method just 
discussed (Le et al. 2016). The new method, how-
ever, requires knowledge of range restriction on Y. 
For situations in which that information cannot be 
obtained (for example, all personnel selection stud-
ies), the Hunter, Schmidt, and Le method provides 
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reasonably accurate estimates of the effect of indirect 
range restriction (Hunter, Schmidt, and Le 2006). 
The basic formula of the new method is:

a
u u

u u1
1

1 1

T P

T P
7

2 2

ρ
( )( )

= − − −





where uT is the ratio of restricted true score stan-
dard deviation of X to its unrestricted true scores 
standard deviation, as described (Le et al. 2016). 
The ratio of restricted true score standard devia-
tion of Y to its unrestricted true score standard 
deviation, uP, can be computed via the following 
equation:

u u r r1 .P Y YY YY
2 2

a a{ }( )= − −

In this equation, rYYa
 is the reliability of Y in the 

unrestricted group; uY is the raw score range restric-
tion ratio on Y.

Example: For r = 0.20 and uT = 0.60, uP = 0.98, 
then a7 = 0.35. ro = 0.35r, a 65 percent reduction.

8. Range restriction on the dependent variable Y. Range 
restriction results from systematic exclusion of cer-
tain scores on Y from the sample in comparison to 
the relevant population:

( )
( )

=
a SD

u SD study population
SD reference population

depends on the ratio,

.
Y Y

Y

8

Example: Some workers are fired early for poor 
performance and are hence underrepresented in the 
incumbent population. If exactly the bottom 20 per-
cent of performers are fired, this is a condition of 
direct range restriction. Then from normal curve 
calculations, uY = 0.83.

The size of the multiplier depends on the size of r.

a u u 1 .Y Y8
2 2 2ρ ρ( )= + −

Example: For r = 0.20 and uY = 0.83, a8 = 0.84,  
ro = 0.84r, a 16 percent reduction.

Note: Correction of the same correlation for range 
restriction on both the independent and depen-
dent variables is complicated and requires special 

formulas (see Schmidt and Hunter 2015, 47–50; Le 
et al. 2016).

9. Bias in the correlation coefficient. The correlation 
has a small negative bias:

a N1 1 2 2 .9
2ρ( ) ( )= − − −

Comment: For sample sizes of twenty or more, 
bias is smaller than rounding error. Thus, bias is 
usually trivial in size, as illustrated in the following 
example.

Example: For r = 0.20 and N = 68, a9 = 0.9997, 
ro = 0. 9997r, a .03 percent reduction.

10. Study-caused variation (covariate-caused confounds).
Example: Concurrent test validation studies con-

ducted on ability tests evaluate the job performance 
of incumbent workers who vary in job experience, 
whereas applicants all start with zero job experi-
ence. Job experience correlates with job perfor-
mance, even holding ability constant.

Solution: Use partial correlation to remove the 
effects of unwanted variation in job experience.

Specific case: Study done in new plant with 
very low mean job experience (for example, mean 
= 2 years). Correlation of experience with ability 
is zero. Correlation of job experience with job per-
formance is 0.50. Comparison of the partial cor-
relation to the zero order correlation shows that 
a 1 .50 0.8710

2= − = . ro = 0. 87r, a 13 percent 
reduction.

15.1.2.2 Multiple Artifacts Suppose that the study 
correlation is affected by several artifacts with parame-
ters, a1, a2, a3, . . . . The first artifact reduces the actual 
correlation from r to ro1 = a1r.

The second artifact reduces that correlation to  
ro2 = a2ro1 = a2(a1r) = a1a2r.

The third artifact reduces that correlation to ro3 = a3ro2 
= a3(a1a2r) = a1a2a3r, and so on.

Thus, the joint effect of the artifacts is to multiply  
the population correlation by all the multipliers. For m 
artifacts

ρ ρ( )= a a a a. . .
om m1 2 3

or

A (15.2)oρ ρ,=
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where A is the compound artifact multiplier equal to the 
product of the individual artifact multipliers:

A a a a a. . . .m1 2 3=

15.1.2.3 A Numerical Illustration We now illustrate 
the impact of some of these artifacts using actual data 
from a large program of studies of the validity of a per-
sonnel selection test. The quantitative impact is large. 
Observed correlations can be less than half the size of the 
estimated population correlations based on perfect mea-
sures and computed on the relevant (unrestricted refer-
ence) population. We give two illustrations: the impact on 
the average correlation between general cognitive ability 
and job performance ratings and the impact of variation in 
artifacts across studies.

A meta-analysis of 425 validation studies conducted 
by the U.S. Employment Service shows that for medi-
um-complexity jobs, the average applicant population 
correlation between true scores on general cognitive 
ability and true scores job performance ratings is 0.73 
(Hunter, Schmidt, and Le 2006).1 We now show how this 
value is reduced by study artifacts to an observed mean 
correlation of 0.27.

The ideal study. Ideally, each worker would serve under 
a population of judges (raters), so that idiosyncrasy of 
judgment could be eliminated by averaging ratings across 
judges.

Let the subscript P denote consensus (average) rating 
of performance by a population of judges, and let the sub-
script A denote actual cognitive ability.

The correlation rAP would then be computed on an 
extremely large sample of applicants hired at random 
from the applicant population. Hence, there would be no 
unreliability in either measure, no range restriction, and 
virtually no sampling error. The Hunter, Schmidt, and Le 
meta-analysis (2006) indicates that the obtained correla-
tion would be 0.73.

The actual study. In the actual study, the independent 
variable X = score on an imperfect test of general cogni-
tive ability, and dependent variable Y = rating by one 
immediate supervisor. The correlation rXY is computed on 
a small sample of range-restricted workers (incumbents) 
hired by the company based on information available at 
the time of hire.

Impact of restriction in range. Range restriction biases 
the correlation downward. All studies by the U.S. 
Employment Service were conducted in settings in which 

the General Aptitude Test Battery (GATB) had not been 
used to select workers, so this range restriction is indi-
rect. When range restriction is indirect, its attenuating 
effects occur before the attenuating effects of measure-
ment error occur (Hunter, Schmidt, and Le 2006). The 
average extent of restriction in range observed for the 
GATB was found to be (Hunter 1980):

( )
( )

=
=

u SD incumbent population
SD applicant population

X X

X 0.67

This observed range restriction uX translates into a true 
score uT value of 0.56 (based on Schmidt and Hunter 
2015, equation 3.16; Hunter, Schmidt, and Le 2006, 
equation 22). This calculation is based on the reliability 
of the GATB in the unrestricted population, rXXa

, which is 
0.81. Further using the equation provided earlier in sec-
tion 1.2.1(7), we obtain the value of a7 = .70, a 30 percent 
reduction. Note: in a selection study, the Le et al. (2016) 
range restriction correction cannot be used, because the 
range restriction ratio on Y (job performance) is unknown; 
hence we use the Hunter, Schmidt, and Le (2006) method 
in our example here.

Impact of measurement error. The value of rXX, the reli-
ability of the GATB, is 0.81 in the unrestricted population, 
but in the restricted group this value is reduced to 0.58, com-
puted using the following equation: rXXi

 = 1 – (1 – rXXa
)/uX

2 
(Hunter, Schmidt, and Le 2006, equation 27). Conse-
quently, the attenuation multiplier due to measurement 
error in the independent variable is = =a 0.58 0.762 . 
The value of rYY, the reliability of the dependent vari-
able (supervisory ratings of job performance), is 0.50 in 
the restricted group (Viswesvaran, Ones, and Schmidt 
1996). This translates into the attenuation multiplier of 
0.71 ( )= =a 0.50 0.711 .

Taken together, the combined attenuating effect due to 
indirect range restriction and measurement error in both 
the independent and dependent variable measures is

A a a a 0.71 0.76 0.70 0.38.1 2 7 ( )( )( )= = =

Hence the expected value of the observed r is

( )( )( )( )
= = =

=
r Ar a a a r

0.71 0.76 0.70 0.73 0.27.
XY AP AP1 2 7

2

The total impact of study limitations was to reduce the 
mean population correlation from 0.73 to 0.27, a reduc-
tion of 63 percent.
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Now we present numerical examples of the effects of 
variation in artifacts across studies. Again, here we assume 
a correlation of 0.73 in the applicant population for per-
fectly measured variables. Even if there was no true vari-
ation in this value across studies (for example, different 
employers), variation in artifact values would produce 
substantial variation in observed correlations even in the 
absence of sampling error.

Indirect range restriction. None of the firms whose data 
were available for the study used the GATB in hiring. Dif-
ferent firms used a wide variety of hiring methods, includ-
ing cognitive ability tests other than the GATB. Thus, 
range restriction on the GATB is indirect. Suppose that the 
composite hiring dimension used (symbolized as S) cor-
related on average 0.90 with GATB true scores, that is, 
rST = 0.90 (see Hunter, Schmidt, and Le 2006, figure 1). 
Further assume that some firms are very selective, accept-
ing only the top 5 percent on their composite, uS = 0.37 
(calculated based on the procedure presented in Schmidt, 
Hunter, and Urry 1976). Other firms are relatively lenient, 
selecting half of the applicants, uS = 0.60. Explicit selec-
tion on S results in range restrictions on true score T  
of the test (X), which effect varies from uT = 0.55 (when 
uS = 0.37) to uT = 0.69 (when uS = 0.60) (calculations 
based on Hunter, Schmidt, and Le 2006, equation 18):

u u 1.T ST S ST
2 2 2 2

a a
ρ ρ= − +

This creates an attenuating effect ranging from a7 = 
0.69 (31 percent reduction) to a7 = 0.82 (18 percent 
reduction). The correlations would then vary from rXY = 
0.51 to rXY = 0.60.

Predictor reliability. Suppose that each study is con-
ducted using either a long or a short ability test. Assume 
that the reliability for the long test is rXX = 0.81 and that 
for the short test is 0.49 in the unrestricted population. 
Due to indirect range restriction, reliabilities of the tests 
in the samples will be reduced. The following equation 
allows calculation of the restricted reliability (rXXi) from 
the unrestricted reliability (rXXa) and the range restriction 
ratio on T (uT) (Hunter, Schmidt, and Le 2006, equations 
25 and 26):

r
u r

u r r1
.XX

T XX

T XX XX

2

2i

a

a a

=
+ −

Based on this equation, observed reliabilities for the 
long test will vary from to 0.56 (when uT = 0.55) to 0.67 

(when uT = 0.69); for the short test, reliabilities will be 
0.22 (when uT = 0.55) and 0.32 (when uT = 0.69). The 
corresponding correlations would be as follows:

1. High-range restriction ratio, long test: rXY = 0.67  
(0.60) 5 0.49,

2. High-range restriction ratio, short test: rXY = 0.32  
(0.60) 5 0.33

3. Low-range restriction ratio, long test: rXY = 0.56  
(0.51) 5 0.38,

4. Low-range restriction ratio, short test: rXY = 0.22 
(0.51) 5 0.24.

Criterion reliability: one rater versus two raters. Sup-
pose that in some studies one supervisor rates job perfor-
mance and in other studies there are two raters. Interrater 
reliability is 0.50 for one rater and (by the Spearman- 
Browne formula) is 0.67 for ratings based on the average 
of two raters. Criterion reliability would then be either 
rYY = 0.50 or rYY = 0.67. Consequently, the observed 
correlations would be as follows:

1. High-range restriction ratio, long test, two raters: 
( )= =r 0.67 0.49 0.40XY

2. High-range restriction ratio, long test, one rater: 
( )= =r 0.50 0.49 0.35XY

3. High-range restriction ratio, short test, two raters: 
( )= =r 0.67 0.33 0.27XY

4 High-range restriction ratio, short test, one rater: 
( )= =r 0.50 0.33 0.23XY

5. Low-range restriction ratio, long test, two raters: 
( )= =r 0.67 0.38 0.31XY

6. Low-range restriction ratio, long test, one rater: 
( )= =r 0.50 0.38 0.27,XY

7. Low-range restriction ratio, short test, two raters: 
( )= =r 0.67 0.24 0.20XY

8. Low-range restriction ratio, short test, one rater: 
( )= =r 0.50 0.24 0.17XY

Thus, variation in artifacts produces variation in study 
population correlations. Instead of one population cor-
relation of 0.73, we have a distribution of attenuated 
population correlations: 0.17, 0.20, 0.23, 0.27, 0.27, 
0.31, 0.35, and 0.40. Each of these values would be the 
population correlation underlying a particular study. To 
that value random sampling error would then be added 
to yield the correlation observed in the study. In this 
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example, we have assumed a single underlying popula-
tion value of 0.73. If there were variation in population 
correlations prior to the introduction of these artifacts, 
that variance would be increased because the process 
illustrated here applies to each value of the population 
correlation.

15.2  CORRECTING FOR ATTENUATION-INDUCED 
BIASES

15.2.1  The Population Correlation:  
Attenuation and Disattenuation

The population correlation can be exactly corrected for 
the effect of any artifact. The exactness of the correction 
follows from the absence of sampling error. Because  
ro = Ar, we can reverse the equation algebraically to 
obtain

A. (15.3)oρ ρ=

Correcting the attenuated population correlation pro-
duces the value the correlation would have had if it had 
been possible to conduct the study without the method-
ological limitations produced by the artifacts. To divide 
by a fraction is to increase the value. That is, if artifacts 
reduce the study population correlation, then the corre-
sponding disattenuated (corrected) correlation must be 
larger than the observed correlation.

15.2.2 The Sample Correlation

The sample correlation can be corrected using the same 
formula as for the population correlation. This eliminates 
the systematic error in the sample correlation, but it does 
not eliminate the sampling error. In fact, sampling error is 
increased by the correction.

The sample study correlation relates to the (attenuated) 
population correlation by

r e, (15.4)o oρ= +

where e is the sampling error in ro (the observed correla-
tion). To within a close approximation, the average error 
is zero (Hedges 1989) and the sampling error variance is

Var e N1 1 . (15.5)o
2 2ρ( ) ( )( ) = − −

The corrected sample correlation is

r r A, (15.6)c o=

where A is the compound artifact multiplier. The sam-
pling error in the corrected correlation is related to the 
population correlation by

ρ

ρ

ρ

( )
( )

( )

= = +

= +

= + ′

r r A e A

A e A

e

(15.7)

.

c o o

o

That is, the corrected correlation differs from the actual 
effect size correlation by only sampling error e′, where 
the new sampling error e′ is given by

e e A. (15.8)′ =

Because A is less than 1, the sampling error e′ is larger 
than the sampling error e. This can be seen in the sam-
pling error variance

Var e Var e A . (15.9)2( ) ( )′ =

However, because the average error e is essentially zero, 
the average error e′ is also essentially zero (see Schmidt 
and Hunter 2015, chapter 3).

15.3  META-ANALYSIS OF CORRECTED  
CORRELATIONS AND SOFTWARE

The meta-analysis methods described in this and the 
following sections are based on random-effects models 
(Schmidt, Oh, and Hayes 2009). These procedures are 
implemented in the Schmidt and Le (2014) Windows- 
based software and have been shown in simulation 
studies to be accurate (for example, see Field 2005; Hall 
and Brannick 2002; Law, Schmidt, and Hunter 1994;  
Schulze 2004).

If study artifacts are reported for each study, then for 
each study, we have three numbers.

For study i we have

 ri 5 the ith study correlation,

Ai 5 the compound artifact multiplier for study i, and

Ni 5 the sample size for study i.
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We then compute for each study the disattenuated 
correlation:

rci
 5 the disattenuated correlation for study i.

(If some of the studies do not provide some of the 
artifact information, the usual practice is to fill in this 
missing information with average values from the other 
studies.)

Two meta-analyses can be computed: one on the biased 
(attenuated) study correlations (the partial meta-analysis) 
and one on the corrected (unbiased) correlations.

15.3.1 The Mean Corrected Correlation

Large-sample studies contain more information than small- 
sample studies and thus should be given more weight 
(Schmidt and Hunter 1977; Hedges and Olkin 1985). 
Studies are therefore often weighted by sample size, or 
the inverse of their sampling error variance, which is 
nearly equivalent. For corrected correlations, a more com-
plicated weighting formula is recommended that takes 
into account the other artifact values for the study—for 
example, the more measurement error there is in the 
measures of the variables, the less the information there 
is in the study (Schmidt and Hunter 2015, chapter 3). 
Thus, a high-reliability study should be given more 
weight than a low-reliability study (see also Hedges and 
Olkin 1985, 135–36).

The weight for study i should be

w N A , (15.10)i i i
2=

where Ai is the compound artifact multiplier for study I 
(Schmidt and Hunter 2015, chapter 3).

The average correlation can be written

Ave r w r w , (15.11)i i i∑ ∑( ) =

where

 wi = 1 for the unweighted average,

 wi =  Ni for the sample size weighted average, and

 wi =  NiA
2
i for the full artifact weighted average 

(applied to corrected correlations).

If the number of studies were infinite (so that sampling 
error would be completely eliminated), the resulting mean 

would be the same regardless of which weights were used. 
But for a finite number of studies, meta-analysis does not 
totally eliminate sampling error; there is still some 
sampling error left in the mean correlation. Use of the full 
artifact weights described here minimizes sampling error 
in the mean corrected correlation.

15.3.2  Corrected Versus Uncorrected 
Correlations

In some research domains, the artifact values for most 
individual studies are not presented in those studies. As 
a result, some published meta-analyses do not correct for 
artifacts. Failure to correct means that the mean uncor-
rected correlation will be downwardly biased as an esti-
mate of the actual (unattenuated or construct level) 
correlation. The amount of bias in a meta-analysis of 
uncorrected correlations will depend on the extent of error 
caused by artifacts in the average study. This average 
extent of systematic error is measured by the average 
compound multiplier Ave(A).

To a close statistical approximation, the mean cor-
rected correlation Ave(rc) relates to the mean uncorrected 
correlation Ave(r) in much the same way as does an indi-
vidual corrected correlation. Just as for a single study

r r A, (15.12)c =

so to a close approximation we have for a set of studies

Ave r Ave r Ave A . (15.13)c( ) ( )( )=

Thus, to a close approximation, the difference in find-
ings of an analysis that does not correct for artifacts and 
one that does is the difference between the uncorrected 
mean correlation Ave(r) and the corrected mean correla-
tion Ave(rc) (Schmidt and Hunter 2015, chapter 4).

15.3.3  Variance of Corrected Correlations: 
Procedure

The variance of observed correlations greatly overstates 
the variance of population correlations. This is true for 
corrected correlations as well as for uncorrected correla-
tions. From the fact that the corrected correlation is

r e . (15.14)c i ii
ρ= + ′
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where rci
 and ri are the corrected sample and population 

correlations, respectively, and ei′ is the sampling error, we 
have the decomposition of variance

Var r Var Var e .c ρ( )( ) ( )= + ′

Thus, by subtraction, we have an estimate of the desired 
variance

ρ( ) ( ) ( )= − ′Var Var r Var e . (15.15)c

The variance of study corrected correlations is the 
weighted squared deviation of the ith correlation from the 
mean correlation. If we denote the average corrected cor-
relation by r–c then

r Ave r w r w , (15.16)c c i c ii∑ ∑( )= =

Var r w r r w . (15.17)c i c c i
2

i∑ ∑( )( ) = −

The sampling error variance is computed by averaging 
the sampling error variances of the individual studies. 
The error variance of the individual study depends on the 
size of the uncorrected population correlation. To esti-
mate that number, we first compute the average uncor-
rected correlation r–.

r Ave r w r w .i i i∑ ∑( )= =

where the wi are the sample sizes Ni.
For study i, we have

Var e v r N1 1 , (15.18)i i i
2 2( ) ( )( ) = = − −

and

Var e v Var e A v A .i i i i i i
2 2( ) ( )′ = ′ = =

For simplicity, denote the study sampling error vari-
ance Var(ei′) by vi′. The weighted average error variance 
for the meta-analysis is the average

∑ ∑( )′ = ′Var e w v w . (15.19)i i i

where the wi = NiAi
2.

Procedure. The specific computational procedure 
involves six steps:

1. Given for each study ri = uncorrected correlation, 
Ai 5 compound artifact multiplier, and Ni 5 sample 
size,

2. Compute for each study rci 5 corrected correlation, 
and wi 5 the proper weight to be given to rci

.

3. To estimate the effect of sampling error, compute 
the average uncorrected correlation r–. This is done 
using weights wi = Ni.

4. For each study compute the sampling error variance: 
v′i = the sampling error variance.

5.  The meta-analysis of disattenuated correlations 
includes four steps:
(a)  Compute the mean corrected correlation using 

weights wi = NiAi
2: Mean corrected correlation = 

Ave(rc).
(b)  Compute the variance of corrected correlations 

using wi = NiAi
2: Variance of corrected correla-

tions = Var(rc).
(c)  Compute the sampling error variance Var(e′) by 

averaging the individual study sampling error 
variances:

Var e Ave v . (15.20)i( )( )′ = ′

(d)  Now compute the estimate of the variance of 
population correlations by subtracting out sam-
pling error:

Var Var r Var e .cρ( ) ( ) ( )= − ′

6. The final fundamental estimates (the average and 
the standard deviation (SD) of r) are

Ave Ave r (15.21)cρ( ) ( )=

 and

SD Var . (15.22)ρ( )=ρ

As mentioned earlier, software is available for con-
ducting these calculations (Schmidt and Le 2014).3 A 
procedure similar to the one described here has also been 
presented by Nambury Raju and his colleagues (1991). 
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Simplified examples of application of the approach 
described earlier to meta-analysis are presented in chap-
ter 3 of Methods of Meta-Analysis (Schmidt and Hunter 
2015). Numerous meta-analyses of this sort have been 
published (see, for example, Carlson et al. 1999; Judge 
et al. 2001; Rothstein et al. 1990).

As an example, in one study, a previously developed 
weighted biodata form was correlated with promotion or 
advancement (with years of experience controlled) for 
7,334 managers in twenty-four organizations (Carlson et al. 
1999). Thus there were twenty-four studies, with a mean 
N per study of 306. The reliability of the dependent 
variable—rate of advancement or promotion rate—was 
estimated at 0.90. The standard deviation (SD) of the inde-
pendent variable was computed in each organization, 
and the SD of applicants (that is, the unrestricted SD) 
was known, allowing each correlation to be corrected 
for range variation. In this meta-analysis, there was 
no between-studies variation in correlations due to varia-
tion in measurement error in the independent variable- 
because the same biodata scale was used in all 24 studies. 
Also, in this meta-analysis, the interest was in the effec-
tiveness of this particular biodata scale in predicting man-
agerial advancement. Hence, mean r was not corrected for 
unreliability in the independent variable.

The results were as follows:

ρ

ρ

( )

( )

( )

( ) ( )

=

=

= − ′

= − =

Ave r

Ave

Var Var r Var e

0.48,

0.53,

0.00462 0.00230 0.00232

i

c

and

SD Var 0.048.ρ( )= =ρ

Thus the mean operational validity of this scale across 
organization was estimated as 0.53, with a standard devia-
tion of 0.048. After correcting for measurement error, range 
variation, and sampling error, only a small variability in 
correlation across organizations is apparent. If we assume a 
normal distribution for r, the value at the 10th percentile is 
0.53–1.28 × 0.048 = 0.47. Thus, the conclusion is that the 
correlation is at least 0.47 in 90 percent of these (and com-
parable) organizations. The value at the 90th percentile is 
0.59, yielding an 80 percent credibility interval of 0.47 to 
0.59, indicating that an estimated 80 percent of population 

values of validity lie in this range. Although the computa-
tion procedures used are not described in this chapter, con-
fidence intervals can be placed around the mean validity 
estimate. In this case, the 95 percent confidence interval for 
the mean is 0.51 to 0.55. Confidence intervals and credibil-
ity intervals are different, however, and serve different pur-
poses (Schmidt and Hunter 2015, 228–31). Confidence 
intervals refer only to the estimate of the mean, whereas 
credibility intervals are based on the estimated distribution 
of all of the population correlations. Hence confidence 
intervals are based on the (estimated) standard error of the 
mean, and credibility intervals are based on the (estimated) 
standard deviation of the population correlations.

15.4  ARTIFACT DISTRIBUTION META-ANALYSIS 
AND SOFTWARE

In most contemporary research domains, the artifact values 
are not provided in many of the studies. Instead, artifact 
values are presented only in a subset of studies, usually a 
different but overlapping subset for each individual artifact. 
Meta-analysis can be conducted in such domains, although 
the procedures are more complex.

Simplified examples of application of artifact distribu-
tion meta-analysis are presented in chapter 4 of Methods of 
Meta-Analysis (Schmidt and Hunter 2015). Many pub-
lished meta-analyses have been based on these artifact dis-
tribution meta-analysis methods (see Schmidt and Hunter 
2015, chapters 1 and 4). A subset of these have been con-
ducted on correlation coefficients representing the validities 
of various kinds of predictors of job performance— 
usually tests, but also interviews, ratings of education and 
job experience, assessment centers, and others. The impli-
cations of the findings of these meta-analyses for person-
nel selection practices have been quite profound and are 
described in various studies (see Schmidt, Hunter, and 
Pearlman 1980; Pearlman, Schmidt, and Hunter 1980; 
Schmidt and Hunter 1981; Schmidt et al. 1985; Schmidt, 
Hunter, and Raju 1988; Schmidt, Ones, and Hunter 1992; 
Schmidt and Hunter 1998, 2003; Schmidt, Oh, and Le 
2006; Schmidt, Shaffer, and Oh 2008; McDaniel, Schmidt, 
and Hunter 1988; Le and Schmidt 2006; McDaniel et al. 
1994). Artifact distribution meta-analyses have also been 
conducted in a variety of other research areas, such as role 
conflict, leadership, effects of goal setting, and work- 
family conflict. More than two hundred such nonselection 
meta-analyses have appeared in the literature to date.

The artifact distribution meta-analysis procedures 
described in this section are implemented in the Schmidt 
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and Le software (2014), although the methods used in 
these programs to estimate the standard deviation of the 
population corrected correlations are slightly different 
from those discussed later. Although the methods used in 
the Schmidt-Le programs for this purpose are slightly more 
accurate (as shown in simulation studies) than those 
described in the remainder of this chapter, they contain a 
number of statistical refinements, making them more  
complex—in fact, too complex to describe easily in a chap-
ter of this sort. These methods are fully described in Meth-
ods of Meta-Analysis (Schmidt and Hunter 2015, chapter 4). 
Similar artifact distribution methods for meta-analysis have 
been presented in other studies (Callender and Osburn 
1980; Raju and Burke 1983). In all these methods, the key 
assumption in considering artifact distributions is indepen-
dence of artifact values across different artifacts. This 
assumption is plausible for the known artifacts in research 
domains that have been examined. The basis for indepen-
dence is the fact that the resource limitations that produce 
problems with one artifact, such as range restriction, are 
generally different and hence independent of those that pro-
duce problems with another artifact, such as measurement 
error in scales used (Schmidt and Hunter 2015, chapter 4). 
Artifact values are also assumed to be independent of the 
true score correlation ri. A 1998 computer simulation study 
found that violation of these independence assumptions has 
minimal effect on meta-analysis results unless the artifacts 
values are correlated with the ri, a seemingly unlikely event 
(Raju et al. 1998).

We use the following notation for the correlations 
associated with the ith study:

 ri  =  the true (unattenuated) study population 
corre lation;

 rci =  the study sample corrected correlation that can 
be computed if artifact information is available 
for the study so that corrections can be made;

 roi =  uncorrected (observed) study sample correlation; 
and

	roi =  uncorrected (attenuated) study population 
correlation.

In the previous section, we assumed that artifact infor-
mation is available for every (or nearly every) study indi-
vidually. In such a case, an estimate rci of the true correlation 
ri can be computed for each study and meta-analysis can 
be conducted on these estimates. In this section, we assume 
that artifact information is missing for many or most 
studies. However, we assume that the distribution (or at 

least the mean and variance) of artifact values can be esti-
mated for each artifact. The meta-analysis then proceeds 
in two steps:

• A “bare bones” or partial meta-analysis is conducted, 
yielding estimates of the mean and standard devia-
tion of attenuated study population correlations. A 
bare bones meta-analysis is one that corrects only for 
sampling error.

• The mean and standard deviation from the bare 
bones meta-analysis are then corrected for the effects 
of artifacts other than sampling error.

15.4.1 The Mean of the Corrected Correlations

The attenuated study population correlation roi is related 
to the actual study population correlation ri by the 
formula

A ,oi i iρ ρ=

where Ai = the compound artifact multiplier for study i 
(which is unknown for most studies).

The sample attenuated correlation roi for each study is 
related to the attenuated population correlation for that 
study by

r e ,oi oi oiρ= +

where eoi = the sampling error in study i (which is unknown).
15.4.1.1 Meta-Analysis of Attenuated Correlations 

The meta-analysis uses the additivity of means to produce

Ave r Ave e Ave Ave e .oi oi oi oi oiρ ρ( ) ( )( ) ( )= + = +

If the number of studies is large, the average sampling 
error will tend to zero and hence

Ave r Ave Ave0 .oi oi oiρ ρ( ) ( )( ) = + =

Thus, the bare-bones estimate of the mean attenuated 
study population correlation is the expected mean attenu-
ated study sample correlation.

15.4.1.2 Correction of the Mean Correlation The 
attenuated population correlation for study i is related to 
the disattenuated correlation for study i by roi = Airi, 
where Ai = the compound artifact multiplier for study i.
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Thus, the mean attenuated correlation is given by

Ave AAve . (15.23)oi i iρ ρ( )( ) =

Because we assume that artifact values are indepen-
dent of the size of the true correlation, the average of the 
product is the product of the averages:

Ave A Ave A Ave . (15.24)i i i iρ ρ( ) ( )( )=

Hence, the average attenuated correlation is related to 
the average disattenuated correlation by

Ave Ave A Ave ,oi i iρ ρ( ) ( )( )=

where Ave(Ai) = the average compound multiplier across 
studies.

We need not know all the individual study artifact mul-
tipliers, only the average. If the average multiplier is 
known, then the corrected mean correlation is

Ave Ave r Ave . (15.25)i oi iρ Α( ) ( ) ( )=

15.4.1.3 The Mean Compound Multiplier To esti-
mate the average compound multiplier, it is sufficient to 
be able to estimate the average for each single artifact 
multiplier separately. This follows from the independence 
of artifacts. To avoid double subscripts, let us denote the 
separate artifact multipliers by a, b, c, . . . The compound 
multiplier A is then given by the product A = abc . . .

Because of the independence of artifacts, the average 
product is the product of averages:

Ave Ave a Ave b Ave c . . . (15.26)iΑ( ) ( )( ) ( )=

Thus, the steps in estimating the compound multiplier 
are as follows:

1. Consider the separate artifacts.
(a)  Consider the first artifact a. For each study that 

includes a measurement of the artifact magni-
tude, denote the value ai. Average those values 
to produce Ave(ai) = average of attenuation 
multiplier for first artifact.

(b)  Consider the second artifact b. For each study 
that includes a measurement of the artifact 
magnitude, denote the value bi. Average those 

values to produce Ave(bi) = average of attenua-
tion multiplier for second artifact.

(c)  Similarly, consider the other separate artifacts 
c, d, and so on, that produce estimates of the 
averages Ave(ci), Ave(di). . . .

The accuracy of these averages depends on the 
assumption that the available artifacts are a reason-
ably representative sample of all artifacts (see 
Hunter and Schmidt 2004). Note that even if this 
assumption is not fully met, results will still tend to 
be more accurate than those from a meta-analysis 
that does not correct for artifacts.

2. Compute the product

Ave Ave a Ave b Ave c Ave d . . . . (15.27)iΑ( ) ( ) ( )( ) ( )=

15.4.2 Correcting the Standard Deviation

The method described in this section for estimating the 
standard deviation of the population true score correla-
tions is the multiplicative method (Hunter and Schmidt 
2004, chapter 4). This approach was first introduced by 
John Callender and Hobart Osburn and is the least 
complicated method to present (1980). However, other 
methods have also been proposed and used. Taylor 
Series-based methods, for example, have been used 
under conditions of direct and indirect range restriction 
(see, respectively, Raju and Burke 1983; Hunter, Schmidt, 
and Le 2006). Still another procedure is the interactive 
procedure (Schmidt, Gast-Rosenberg, and Hunter 1980; 
Schmidt and Hunter 2015, chapter 4). Simulation studies 
suggest that, with certain refinements, it is slightly more 
accurate than other procedures (Law, Schmidt, and Hunter 
1994; Le and Schmidt 2006). It is therefore explicated 
most fully in Methods of Meta-Analysis (Schmidt and 
Hunter 2015, chapter 4) and incorporated in the Schmidt 
and Le software (2014). However, by the usual standards 
of social science research, all three procedures are quite 
accurate.

The meta-analysis of uncorrected correlations pro-
vides an estimate of the variance of attenuated study pop-
ulation correlations. However, these study population 
correlations are themselves uncorrected; that is, they are 
biased downward by the effects of artifacts. Furthermore, 
the variation in artifact levels across studies causes the 
study correlations to be attenuated by different amounts 
in different studies. This produces variation in the size of 
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the study correlations that could be mistaken for variation 
due to a real moderator variable, as we saw in our numer-
ical example early in the chapter. Thus, the variance of 
population study correlations computed from a meta- 
analysis of uncorrected correlations is affected in two 
ways. The systematic artifact-induced reduction in the 
magnitude of the study correlations tends to decrease 
variability, and at the same time variation in artifact 
magnitude tends to increase variability across studies. 
Both sources of influence must be removed to accu-
rately estimate the standard deviation of the disattenu-
ated correlations across studies.

Let us begin with notation. The study correlation free 
of study artifacts (the disattenuated correlation) is 
denoted ri, and the compound artifact attenuation factor 
for study i is denoted Ai. The attenuated study correla-
tion, roi is computed from the disattenuated study cor-
relation by

ρ ρ= A . (15.28)oi i i

The study sample correlation roi departs form the disat-
tenuated study population correlation roi by sampling 
error ei defined by

r e A e. (15.29)oi oi i i iρ ρ= + = +

Consider now a bare-bones meta-analysis on the uncor-
rected correlations. We know that the variance of sample 
correlations is the variance of population correlations 
added to the sampling error variance. That is,

Var r Var Var e . (15.30)oi oi iρ( )( ) ( )= +

Because the sampling error variance can be computed 
by statistical formula, we can subtract it to yield

Var Var r Var e . (15.31)oi oi iρ( ) ( ) ( )= −

That is, the meta-analysis of uncorrected correlations 
produces an estimate of the variance of attenuated study 
population correlations, the actual study correlations 
after they have been reduced in magnitude by the study 
imperfections.

At the end of a meta-analysis of uncorrected (attenu-
ated) correlations, we have the variance of attenuated 
study population correlations Var(roi), but we want the 

variance of actual disattenuated correlations Var(ri). The 
relationship between them is

Var Var A . (15.32)oi i iρ ρ( )( ) =

We assume that Ai and ri are independent. A formula for 
the variance of this product is given in Hunter and Schmidt 
(2004, chapter 4). Here we simply use this formula. Let  
us denote the average disattenuated study correlation by 
r– and denote the average compound attenuation factor by A

–
. 

The variance of the attenuated correlations is given by

Var A A Var Var A Var Var A .
(15.33)

i i i i i i
2 2ρ ρ ρ ρ( ) ( ) ( )( ) ( )= + +

Because the third term on the right is negligibly small, to 
a close approximation

Var A A Var Var A . (15.34)i i i i
2 2ρ ρ ρ( ) ( ) ( )= +

We can then rearrange this equation algebraically to obtain 
the desired equation for the variance of actual study cor-
relations free of artifact effects:

ρ ρ ρ( )( ) ( )= − Var Var A Var A A . (15.35)i i i i
2 2

That is, starting from the meta-analysis of uncorrected 
correlations, we have

ρ ρ ρ( ) ( ) ( )= − Var Var Var A A . (15.36)i o i i
2 2

The right-hand side of equation 15.36 has four 
numbers:

1.  Var(roi): the population correlation variance from 
the meta-analysis of uncorrected correlations, esti-
mated using equation 15.31;

2.  r–: the mean of disattenuated study population  
correlations, estimated using equation 15.25;

3.   A
–
: the mean compound attenuation factor, esti-

mated from equation 15.26.

4.  Var(Ai): the variance of the compound attenuation 
factor. This quantity has not yet been estimated.

15.4.2.1 Variance of the Artifact Multiplier How 
do we compute the variance of the compound attenuation 
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factor, Ai? We are given the distribution of each component 
attenuation factor, which must be combined to produce the 
variance of the compound attenuation factor. The key to 
this computation lies in two facts: (a) that the compound 
attenuation factor is the product of the component attenua-
tion factors and (b) that the attenuation factors are assumed 
to be independent. That is, because Ai = aibici . . . , the 
variance of Ai is

Var A Var a b c . . . . (15.37)i i i i( )( ) =

The variance of the compound attenuation factor  
is the variance of the product of independent compo-
nent attenuation factors (for the formula, see Hunter 
and Schmidt 2004, 148–49). Here we simply use the 
result.

For each separate artifact, we have a mean and a 
standard deviation for that component attenuation fac-
tor. From the mean and the standard deviation, we can 
compute the coefficient of variation, which is the stan-
dard deviation divided by the mean. For our purposes 
here, we need a symbol for the squared coefficient of 
variation:

cv SD Mean . (15.38)2[ ]=

For each artifact, we now compute the squared coeffi-
cient of variation. For the first artifact attenuation factor a, 
we compute

cv Var a Ave a . (15.39)1
2[ ]( ) ( )=

For the second artifact attenuation factor b, we compute

cv Var b Ave b . (15.40)2
2[ ]( ) ( )=

For the third artifact attenuation factor c, we compute

cv Var c Ave c , (15.41)3
2[ ]( ) ( )=

and so on. Thus, we compute a squared coefficient of 
variation for each artifact. These are then summed to 
form a total

CVT cv cv cv . . . (15.42)1 2 3= + + +

Recalling that A
–
 denotes the mean compound attenua-

tion factor, we write the formula for the variance of the 
compound attenuation factor (to a close statistical approx-
imation) as the product

Var A A CVT . (15.43)i
2( ) =

We now have all the elements needed to estimate the 
variance in actual study correlations Var(ri). The final 
formula is

Var Var Var A A

Var A CVT A . (15.44)

i oi i

oi

2 2

2 2 2

ρ ρ ρ

ρ ρ[ ]
[ ]( ) ( )

( )

( )= −

= −

The square root of this value is the SDr. Hence we 
now have two main results of the meta-analysis: the 
mean of the corrected correlations, from equation 
15.25; and the standard deviation of the corrected cor-
relations, from equation 15.44. Using these values, we 
can again compute credibility intervals around the 
mean corrected correlation, as illustrated in the previ-
ous section. Also, we can compute confidence inter-
vals around the mean corrected correlation (for a 
description of the methods, see Schmidt and Hunter 
2015, 229–31).

For data sets for which the meta-analysis methods 
described earlier can be applied (that is, correlations can 
be corrected individually), the artifact distribution meth-
ods described in this section can also be applied. When 
this is done, the results are virtually identical, as expected 
(see Schmidt and Hunter 2015, chapter 4). Computer 
simulation studies also indicate that artifact distribution 
meta-analysis methods are quite accurate (for example, 
see Le and Schmidt 2006).

15.4.2.2 Decomposition of the Variance Inherent in 
the derivation in the previous section is a decomposition 
of the variance of uncorrected (observed) correlations. 
We now present that decomposition:

ρ

ρ ρ ρ ρ( )

( )

( ) ( ) ( )

( ) ( )= +

= = +

Var r Var Var e

Var Var A A Var Var A

,

, (15.45)

oi oi i

oi i i i i
2 2

and

Var A A CVT . (15.46)i
2( ) =
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That is,

Var r A Var A CVT Var e

S S S1 2 3. (15.47)

oi i i
2 2 2ρ ρ( )( ) ( )= + +

= + +

where S1 is the variance in uncorrected correlations pro-
duced by the variation in actual unattenuated effect size 
correlations, S2 is the variance in uncorrected correla-
tions produced by the variation in artifact levels, and S3 
is the variance in uncorrected correlations produced by 
sampling error.

In this decomposition, the term S1 contains the esti-
mated variance of effect-size correlations. This estimated 
variance is corrected for those artifacts that were corrected 
in the meta-analysis. For reasons of feasibility, this does 
not usually include all the artifacts that affect the study 
value. (For example, the unsystematic artifact of data 
errors is rarely correctable.) Thus, S1 is an upper-bound 
estimate of the component of variance in uncorrected cor-
relations due to real variation in the strength of the rela-
tionship and not due to artifacts of the study design. To 
the extent that there are uncorrected artifacts, S1 will 
overestimate the real variation; it may even greatly 
overestimate that variation. As long as there are uncor-
rected artifacts, there will be artifactual variation in study 
correlations produced by variation in those uncorrected 
artifacts.

15.5 SECOND-ORDER META-ANALYSIS

15.5.1  Need and Purpose of Second-Order 
Meta-Analysis

Increasingly today, multiple meta-analyses on the same 
question appear in the literature in diverse fields (for exam-
ple, psychology, medicine, management), creating the need 
for methods of synthesizing multiple meta-analyses. As 
more and more meta-analyses are conducted, this need will 
only increase in the future. For example, at least a dozen 
meta-analyses have been undertaken on the relationships 
between the Big Five personality traits and job perfor-
mance; some are independent because they were con-
ducted in different countries based on national literatures. 
These meta-analyses often do not report the same results 
for the same relationship (for example, self-reports of 
conscientiousness and supervisor-ratings of job perfor-
mance), leaving some doubt or ambiguity about the most 

trustworthy estimate for that relationship. There are three 
options to choose from if we decide to synthesize results 
across the first-order meta-analyses conducted on the same 
relationship (see Schmidt and Oh 2013; Borenstein et al. 
2010, 184–86).

The first option is to conduct a full-scale meta-analysis 
by identifying, coding, pooling all primary studies included 
in all prior first order meta-analyses. Although ideal, this is 
typically not a practical solution given that many primary 
studies (in particular, unpublished studies) included in 
prior meta-analyses may be unavailable. The second 
option is to aggregate (that is, average) mean effect sizes 
across first order meta-analyses of interest while ignoring 
the between-meta-analysis variance. However, this option 
does not allow either estimation of the amount of true (that 
is, non-artifactual) variance between meta-analyses means 
or estimation of the amount of observed variation across 
meta-analyses due to second-order sampling error (given 
that the total number of primary studies in any first-order 
meta-analysis is less than infinite, the meta-analytic process 
does not reduce sampling error to zero; the remaining sam-
pling error is called second-order sampling error). The third 
option is to combine mean effect sizes across meta-analyses 
of interest while modeling the between-meta-analysis vari-
ance. This is the best option when primary studies from all 
relevant first-order meta-analyses are unavailable and there 
is a need to estimate the between-meta-analysis variance. 
This approach overcomes the problems in options 1 and 2. 
This option is called second-order meta-analysis, also 
known as overview of reviews, umbrella review, meta- 
meta-analysis, and meta-analysis of meta-analyses (for 
example, Cooper and Koenka 2012, 446).

This section presents an introduction to statistical  
methods for second order meta-analysis that model 
between-meta-analysis variation (for equation origins, 
see Schmidt and Oh 2013). More details (including artifact- 
distribution methods), illustrative examples, and answers 
to several potential objections to second order meta- 
analysis are found in a separate study (Schmidt and Oh 
2013). Put simply, the statistical methods of second 
order meta-analysis are a straightforward generalization 
of first order random effects (RE) meta-analysis methods 
(Schmidt, Oh, and Hayes 2009) to the synthesis of the 
meta-analytic mean effect-size estimates across multiple 
relevant meta-analyses.

Basic equations and principles of first order meta-analysis 
can be generalized to second order meta-analysis. We intro-
duce two meta-analysis methods. First is a method without 
corrections for the biases created by measurement error, that 
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is, bare bones second-order meta-analysis, which corrects 
only for the effects of second order sampling error. Second 
is a method that includes corrections for both second 
order sampling error and the biasing effects of mea-
surement error, that is, construct-level second-order 
meta-analysis. For convenience of presentation, these 
methods are illustrated using the metric of the correlation 
coefficient; analogous equations exist for other effect size 
indices, such as d values.

15.5.2 Bare Bones Second-Order Meta-Analysis

Suppose that m independent meta-analyses have been con-
ducted to estimate the same relationship. Equation 15.48 
is the fundamental equation when the first-order meta- 
analyses entering the second-order meta-analysis have 
corrected only for sampling error:

S E Sˆ , (15.48)r e
2

ˆ
2 2

xy rî
σ ( )= −ρ

where the term on the left side of the equation is the 
estimate of the population variance of the observed- 
uncorrected meta-analytic mean correlations (r

_̂
xy) across 

the m (first-order) meta-analyses after second-order 
sampling error has been subtracted.

The first term on the right side of equation 15.48 is the 
weighted variance of the mean meta-analytic correlations 
across the m meta-analyses, computed as follows:
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and where S2
ri
 is the variance of the observed correlations 

(rs) in the ith meta-analysis, ri

_̂
 is the estimate of the mean 

effect size for the ith meta-analysis, ri

___̂
 is the estimate of 

the (weighted) grand mean effect size across the m meta- 
analyses, ki is the number of primary studies included in 

the ith meta-analysis, and the wi is the weight applied to 
the ith meta-analysis.

The second term on the right side of equation 15.48 is 
the expected (weighted average) second-order sampling 
error variance across the m meta-analyses:
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Equation 15.49d reduces to equation 15.49e:

E S m w . (15.49e)e i

m
2

1
rî

∑( ) =

In sum, each first-order meta-analysis will have reported 
a meta-analytic mean uncorrected-observed correlation,  ri

_̂
 . 

The first term on the right in equation 15.48 is the weighted 
variance of these meta-analytic mean correlations. This 
computation is shown in equations 15.49a and 15.49b. The 
weights (wi) used in equations 15.49a, 15.49b, 15.49d, and 
15.49e are as defined in equation 15.49c. Each weight is the 
inverse of the random-effect (RE) sampling error variance 
for the meta-analytic mean correlation in the ith meta- 
analysis. The second term on the right in equation 15.49 is 
the sampling error variance of these meta-analytic mean 
correlations. Each of the meta-analyses will have reported 
the variance of the observed mean correlations in that 
meta-analysis. Dividing each such variance by ki (the num-
ber of studies in that meta-analysis) yields the RE sampling 
error variance of the meta-analytic mean estimate (ri

_̂
) in that 

meta-analysis (see Schmidt, Oh, and Hayes 2009). The 
weighted average of these values across the m meta-analyses 
estimates the RE sampling error variance of the mean rs as 
a group, as shown in equations 15.49d and 15.49e. The 
square root of this value divided by the square root of m is 
the standard error (SEr

__̂) and can be used to put confidence 
intervals around the estimate of the (weighted) grand mean 
(ri

___̂
; computed in equation 15.49b). Also, using the square 

root of the value on the left side of equation 19–48 (σ̂r–xy
) one 

can construct a credibility interval around the grand mean 
correlation across the m meta-analyses, within which  
a given percentage of the first order population meta- 
analytic (mean) effect sizes (r–̂

xy
) is expected to lie (Schmidt 

and Hunter 2015, chapter 5). If the value on the left side 
of equation 15.48 is zero, the conclusion is that the mean 
population correlation values are the same across the 
meta-analyses. In that case, all the observed variance 
across the meta-analyses (meta-analytic mean estimates) 
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is accounted for by second order sampling error, and 
the conclusion is that there are no moderators. If it is 
greater than zero, the proportion of variance between- 
meta-analyses due to second-order sampling error can 
be computed as the ratio of the second term on the right 
side of equation 15.48 to the first term on the right side, 
that is, as follows:

E S SProportionVar , (15.49f)e r
2

ˆ
2

rî
( )=

and 1–ProportionVar denotes the proportion of the vari-
ance across first-order meta-analytic (bare bones) mean 
correlations that is “true” variance (that is, variance not 
due to second-order sampling error). As such, this number 
is the reliability of the meta-analytic correlations. consid-
ered as a set or vector of values, one for each first-order 
meta-analysis (Schmidt and Hunter 2015). This follows 
because reliability is the proportion of total variance that is 
true variance. This value can be used to produce enhanced 
accuracy for estimates of these mean (meta-analytic) cor-
relations from the first-order meta-analyses-by regressing 
them toward the value of the grand mean correlation, that 
is, the mean across the first order meta-analyses (Schmidt 
and Oh 2013).

For purposes of detecting moderators across the m 
first-order meta-analytic mean estimates, the absolute 
amount of true variance across the m first-order meta- 
analytic mean estimates (or even better, its square root, 
the SD) is more important than the relative percentage 
of variance attributable to second-order sampling error. 
Meta-analysts should compute and report both estimates. 
This principle also applies to analyses within individual 
first order meta-analyses (see Schmidt and Hunter 2015, 
425–26).

15.5.3  Psychometric Second-Order 
Meta-Analysis

Measurement error downwardly biases virtually all rela-
tionships examined in psychological and behavioral 
research. Therefore it is important to include corrections 
for these biases in psychometric (construct-level) meta- 
analysis. One approach in psychometric meta-analysis is to 
correct each correlation individually for the downward bias 
created by measurement error (for a different approach, 
based on the artifact-distribution method, see Schmidt and 
Oh 2013).

When the first-order meta-analyses entering the second- 
order meta-analysis have corrected each correlation indi-

vidually for measurement error (and range restriction and 
dichotomization, if applicable), the fundamental equation 
for second-order meta-analysis is as follows:

σ ( )= −ρ ρ ρ
S E Sˆ , (15.50)e

2
ˆ
2 2

iˆ

where the term on the left is the estimate of the actual (not 
artifactual) variance across the m meta-analyses of the 
population mean disattenuated-corrected correlations 
(r–̂); that is, the variance after variance due to second- 
order sampling error has been subtracted.

The first term on the right side of equation (15.50) is 
the variance of the meta-analytic mean individually cor-
rected correlations across the m meta-analyses, computed 
as follows:
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and where S2
rci

 is the weighted variance of the disattenu-
ated (individually corrected) correlations in the ith 
meta-analysis, r–̂i is the meta-analytic mean disattenuated 
correlation in that meta-analysis, r

__̂
 is the (weighted) 

grand mean effect size across the m meta-analyses, ki  
is the number of primary studies included in the ith 
meta-analysis, and the wi

* is the weight applied to the ith 
meta-analysis.

The second term on the right side of equation (15.50) 
is the weighted average second-order sampling error 
variance across the m meta-analyses:
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Equation 15.51d reduces to equation (15.51e):

E S m w* (15.51e)e i

m
2

1
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ρ

where the wi
* are as defined in equation (15.51c).
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In sum, each first order meta-analysis will have reported 
an estimate of the meta-analytic mean disattenuated 
correlation (r–̂i). The first term on the right side of equation 
(15.50) is the variance of these meta-analytic mean correla-
tions across these first order meta-analyses (meta-analytic 
mean correlations). This computation is shown in equations 
(15.51a) and (15.51b). Equation (15.51c) shows the weights 
that are used in equations (15.51a) and (15.51b). The sec-
ond term on the right side of equation (15.50) is the expected 
value of the second-order sampling error variance of these 
meta-analytic mean correlations. Each meta-analysis will 
have reported an estimate of the variance of the corrected 
correlations it included, preferably to four decimal places, 
for precision. Dividing this value by k (the number of 
studies in the meta-analysis), yields the RE sampling error 
variance of the meta-analytic correlation for that meta-anal-
ysis. As shown in equations (15.51d) and (15.51e), the 
weighted mean of these values across the m meta-analyses 
yields the second order sampling error variance needed in 
equation (15.50). The square root of this value divided by 
the square root of m is the standard error (SEr_

_̂) and can be 
used to put confidence intervals around the grand mean  
(r

__̂
 ), shown in equation (15.51b).
The term on the left side of equation (15.50) is the 

estimate of the actual (non-artifactual) variance across 
meta-analysis of the population mean disattenuated- 
corrected correlations (the r–̂i), that is, the variance across 
first-order meta-analytic estimates after removal of vari-
ance due to second-order sampling error. Using the 
square root of this value (ŝr–), credibility intervals can be 
placed around the grand mean computed in equation 
(15.51b). For example, 80 percent of population mean 
values are expected to lie within in the 80 percent credi-
bility interval.

If the value on the left side of equation (15.50) is zero, the 
indicated conclusion is that the mean population correlation 
values are the same across the multiple meta-analyses. All 
the variance is accounted for by second-order sampling 
error. If this value is greater than zero, one can compute the 
proportion of the between-meta-analyses variance that is 
explained by second-order sampling error. This is computed 
as the ratio of the second term on the right side of equation 
(15.50) to the first term on the right side, that is,

E S SProportionVar , (15.51f)e
2

ˆ
2

iˆ( )= ρρ

and 1–ProportionVar denotes the proportion of the vari-
ance across the first order meta-analysis mean population 

correlation values that is true variance (that is, variance not 
due to second order sampling error). As such, this number 
is the reliability of the estimated mean first-order popula-
tion correlations (Schmidt and Hunter 2015), because reli-
ability is defined as the proportion of total variance that is 
true variance. This value can be used to refine the esti-
mates of these first-order meta-analysis mean values by 
regressing them toward the value of the grand mean dis-
attenuated correlation, that is. the mean across the m 
meta-analyses, computed in equation (15.51b) (for details, 
see Schmidt and Oh 2013). In addition, when S2 

r–̂ is zero, 
the ProportionVar is 100 percent and the reliability of 
the vector of m first-order meta-analytic mean estimates 
is zero. This is the same as the situation in which all exam-
inees get the same score on a test, making the reliability of 
the test zero.

For detecting the presence of moderators across the 
m first-order meta-analytic mean estimates, the abso-
lute amount of true variance across m first-order 
meta-analytic mean estimates (ŝ 2

r–) (or even better, its 
square root, the SD) is more important than the rela-
tive percentage of variance attributable to second-order 
sampling error. Meta-analysts should compute and report 
both estimates. This principle also applies to modera-
tor analyses conducted within an individual first-order 
meta-analysis (for further discussion, see Schmidt and 
Hunter 2015, 425–26).

15.6 SUMMARY

The methods presented in this chapter for correcting 
meta-analysis results for sampling error and biases in indi-
vidual study results might appear complicated. More elab-
orated and extended descriptions of these procedures are 
available, however (see Hunter and Schmidt 2004; Schmidt 
and Hunter 2015). Further, Windows-based software  
is available to apply these methods in meta-analysis 
(Schmidt and Le 2014). Without these corrections for biases 
and sampling error, the results of meta-analysis do not esti-
mate the construct-level population relationships that are 
the relationships of greatest scientific and theoretical inter-
est (Rubin 1990; Hunter and Schmidt 2004; Schmidt 
and Hunter 2015, chapters 1 and 14). Hence these cor-
rections are essential to developing valid cumulative 
knowledge about relations between the actual constructs 
underlying the measures used. This is especially import-
ant in light of recent developments concerning the use 
of meta-analytic results in the testing of causal models. 
Meta-analytic results are increasingly being used as input 
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to path analyses and other causal modeling techniques. 
Path analysis assumes corrections for measurement error 
and other artifacts. Without appropriate corrections for 
the artifacts that bias meta-analysis results, these causal 
modeling procedures will produce erroneous results 
(Coffman and MacCallum 2005). In addition, second- 
order meta-analysis can offer unique and useful informa-
tion that first-order meta-analysis cannot. Second-order 
meta-analysis is particularly useful in meta-analytic 
moderator analysis—that is, synthesizing independent 
first-order meta-analyses on the same relationship con-
ducted in different settings (such as countries, research 
settings, ethnic or racial groups, time intervals, and so on) 
and comparing first-order meta-analytic results of the 
same relationship across settings (for empirical exam-
ples, see Schmidt and Oh 2013).

15.7 NOTES

1.  Table 3 in Hunter, Schmidt, and Le (2006) shows the 
value of operational validity for medium complexity 
job is 0.66, which was obtained from the true score 
correlation of 0.73. 

2.  The value here is slightly different from the 0.26 shown 
in Hunter, Schmidt, and Le (2006) due to rounding of 
values beyond the second decimal place. 

3.  The 2014 version of the software (V 2.0) does not 
include the new correction method for indirect range 
restriction described in the earlier section (Le et al. 
2016); it will be included in the next version. 
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16.1  WHAT ARE MODEL-BASED AND  
PARTIAL-EFFECTS RESEARCH SYNTHESES?

In this chapter, we describe model-based meta-analysis 
and related approaches to meta-analysis that examine 
models and questions more complex than those addressed 
in meta-analyses of bivariate correlations. Model-based 
(and model-driven) meta-analysis and the related concept 
of linked meta-analysis are described, and illustrated 
with examples. We also make connections to methods for 
summarizing correlational indices of partial relationships 
and regression results.

16.1.1 Model-Based Meta-Analysis

Decades ago, Gene Glass coined the term meta-analysis to 
capture the idea of analyzing series of related experiments 
(1976). Many early meta-analyses concerned treatments, 
but it soon became clear that questions of association could 
also be examined by using meta-analytic methods to  
summarize correlational studies. Many early correlational 
meta-analyses looked at straightforward questions, such  
as whether two variables were related. Sometimes one 
variable was defined as an outcome and the other as a  
predictor, but even so most meta-analyses examined  
bivariate correlations (for example, Apling 1981; Kavale 
1980; Viana 1982).

Model-based meta-analysis techniques address more 
complex interrelations at the within-study level, includ-
ing the prediction of outcomes based on sets of precursor 
variables (do A, B, and C relate to D?), chains of connec-
tions among predictors and outcomes (does A lead to B 
and B lead to C?), and questions about whether certain 
variables are mediators of relationships. We use the term 
model to mean “a set of postulated interrelationships 
among constructs or variables” at the participant level, 
within each study (Becker and Schram 1994, 358). Model-
based meta-analyses aim to examine such interrelations 
cohesively, by way of a unified analysis on correlational 
data (typically r matrices) from a collection of studies.  
For example, an early meta-analysis on the prediction of 
science achievement examined the separate relation-
ships of science affect and science ability to achievement 

(Steinkamp and Maehr 1980). Their joint impacts on 
achievement were examined in Betsy Becker’s model- 
based synthesis on the topic (1992a).

Syntheses of partial effect indices can accomplish some 
but not all of the things that model-based meta-analyses  
can do; most relevant here is that an analysis of partial 
effects would likely examine any set of relationships in a 
piecewise manner, as discussed later in this chapter. Last, 
many meta-analyses posit models for explaining varia-
tion in effect sizes such as standardized mean differences or 
correlations, using predictors at the study level. These 
between-studies models do not address participant-level 
relations, thus would not fall under our definition of  
model-based meta-analysis.

Model-based meta-analysis has been called by sev-
eral different names—model-based and model-driven 
meta-analysis are terms Becker has used (2001, 2009; 
Becker and Schram 1994). Model-driven meta-analysis can 
be distinguished from model-based meta-analysis by the 
fact that it is guided from the start by a theoretical or con-
ceptual model, rather than, say, being empirically derived 
using any constructs that appear with a certain outcome  
in the literature. Studies are included in a model-driven 
meta-analysis only if they measure variables that are part of 
the relevant theory or a priori conceptualization of the prob-
lem. Model-based meta-analysis is broader, in that it also 
includes meta-analyses of models derived simply based on 
collections of empirically observed relations.

A related term—linked meta-analysis—was coined by 
Mark Lipsey (1997). Lipsey envisioned connecting multi-
ple separate but related meta-analyses for the purpose of 
policy development. He argued that linked meta-analyses 
might address developmental changes, and could involve 
both individual and social level inputs (potentially based 
on completely different sets of studies), thus they go a step 
beyond the ideas we present here. Linked meta-analysis 
has been used to look at relationships between measures 
taken at two or more time points in Lipsey and James 
Derzon’s 1998 work on the prediction of serious delin-
quency, but the approach has not been widely applied.

The term meta-analytic structural equation modeling 
(MASEM) was used by Mike Cheung and Wai Chan for 
their proposed use of SEM analyses as a data-analytic 
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16.5 References 360



MODEL-BASED META-ANALYSIS AND RELATED APPROACHES   341

approach to conducting model-based meta-analyses 
(2005). Most model-based meta-analyses consider link-
ages among manifest variables; in the terminology of 
SEM, this is the structural portion of the model, or the 
path model. Becker’s original analytic approach to model- 
based analysis aimed to estimate such path models 
(1992b). Latent components and measurement models 
can be incorporated in model-based meta-analyses given 
access to raw data, such as in an individual participant (or 
patient) data analysis (Cooper and Patall 2009; Stewart 
and Clarke 1995), or by using the MASEM approach 
(Cheung 2015).

In short, model-based meta-analyses are more exten-
sive and more complicated than typical meta-analyses of 
single effect indices, but consequently they can yield bene-
fits that go beyond those of a more typical synthesis. 
Certainly, with the added complexity come additional 
caveats; they are addressed in this chapter.

16.1.2 Syntheses of Partial Effect Sizes

On occasion, a researcher may be interested in only one or 
two specific partial relationships, not a full complicated 
model. Indices such as part and partial correlations describe 
relationships between two variables that would have 
occurred had a third variable (or more) been adjusted for or 
partialed out. Thus, they represent more complex relation-
ships than do bivariate rs. Meta-analyses of various partial 
correlational indices have been conducted. Syntheses  
of semi-partial correlations (Aloe and Becker 2009) and  
partial correlations (Mathur et al. 2016), combinations of 
different kinds of correlations (Perry, Sibley and Duckitt 
2013), and even combinations of variance-explained  
measures from full and reduced regression models (Yang, 
Aloe, and Feeley 2014) appear in the literature.

Meta-analyses of partial effect-size indices focus on  
partial relationships without the need for a model of the 
connections among multiple component variables. For 
example, Ariel Aloe and Becker (2009) summarized studies 
that related teacher verbal ability to measures of student 
achievement. Many studies reported on this relationship by 
way of multiple regression models that had partialed out 
such other features as teacher or student socioeconomic sta-
tus or prior student achievement (though the latter was 
rarely included). Aloe and Becker used the semi-partial cor-
relation to represent these effects.

One concern about (and limitation of) the approach of 
synthesizing partial effects is that studies usually vary in 
the variables that are controlled, so similar partial effect 

sizes may not be available. For example Maya Mathur 
and her colleagues found that some studies had controlled 
for age, but others for both age and sex when studying the 
relationship of perceived psychological stress to telomere 
length (2016). The addition of control variables can 
change the size of the resulting partial or semi-partial r. If 
the extra partialed variables are extraneous (do not affect 
the relationship of interest) their presence is less of a con-
cern because they will not affect the size of the partial 
effect index (Thompson, Aloe, and Becker 2018).

When identical or highly similar partial effects are 
available, each study could contribute a single partial 
effect size (or small set of effects) to the review, and stan-
dard univariate (or multivariate) meta-analysis techniques 
would be used to summarize the data. If several partial 
correlations were extracted from each study, multivariate 
analyses that deal explicitly with the dependence of the 
(partial) effect sizes or other approaches based on the use 
of robust standard errors could be employed (on multi-
variate analyses, see Raudenbush, Becker, and Kalaian 
1988; Riley 2009; on robust standard errors, Tipton 2015).

16.1.3  Examples of Model-Based  
and Partial-Effects Meta-Analyses

Suppose a meta-analyst wanted to understand the predic-
tion of metabolic control from three psychological  
factors—anxiety, depression, and coping strategies—
considered jointly. This question, among others, was 
investigated by Sharon Brown and her colleagues (Brown 
et al. 2015; Brown et al. 2016; Brown and Hedges 1994). 
Figure 16.1 shows a model for this scenario.

We denote the measures of the psychological variables 
as X1 through X3 and the outcome, three-month average 
blood glucose levels (glycated hemoglobin, also denoted 
A1c), as Y. Lower A1c values reflect good outcomes. 
This model might be represented in a single study via the 
raw regression model Ŷ = b0 + b1 X1 + b2 X2 + b3 X3 +  
b4 X4, or via a standardized-regression-equation model. 
The predictors in this model act jointly to produce  
the outcome Y, so a meta-analysis that looked at each 
bivariate X-Y connection separately (for example, by sum-
marizing the pairwise correlations) would not be a true 
model-based meta-analysis.

The meta-analyst has at least two options for gathering 
information on a model such as the one shown in figure 
16.1. Model-based meta-analysis of correlations provides 
one way to summarize studies that inform us about the 
joint relations in this model, or about the whole model. 
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Sets of correlations (preferably complete matrices among 
the Xs and Y) from the series of studies could be used to 
derive an overall mean r matrix, which then would be 
used to estimate the model above. The full process of 
analysis is described later in the chapter.

Another approach is to combine the partial regression 
slopes provided in a set of primary studies. If all studies 
have estimated the same “target” equation using identical 
measures X1 through X4, the raw slopes (bis) can be com-
bined (Becker and Wu 2007). However, Becker and 
Meng-Jia Wu noted that in many research domains the 
metrics of the measures used are quite diverse, prevent-
ing the synthesis of raw regression coefficients (2007). 
Studies may include the same predictor variables (con-
structs), but measure them using different scales (causing 
the raw slopes to be on different scales as well). If the 
primary studies report standard deviations of the out-
come and the predictors, their raw regression coeffi-
cients can be standardized, and the standardized slopes 
can be combined.

Suppose now that the meta-analyst expects that the Xs 
relate to each other as well, and wants to examine whether 
anxiety and depression (X1 and X2) affect A1c (Y) by way 
of the variable coping skills (X3), as well as directly. 
Figure 16.2 shows the pathways involved. The direct 
paths from anxiety, depression, and stress (X4)—all nega-
tive characteristics—to A1c suggest that persons with 
higher levels of these three variables would also have high 

levels of A1c (thus these Xs would have positive slopes). 
The supportive variable of coping skill should lower lev-
els of A1c, so coping should relate negatively to A1c. If 
coping skill (X3) mediates the effects of anxiety on A1c, 
it would both be predicted by anxiety (with a negative 
slope), and relate (negatively) to A1c. The presence of 
large negative coefficients for these two paths would 
mean that people who cope well may be able to offset the 
effects of their anxiety, and thus would have lower levels 
of A1c than those who do not cope well. Complete medi-
ation would be revealed if including both coping and 
anxiety in the model revealed a zero coefficient for anxi-
ety’s direct path to A1c (shown by a dashed line in figure 
16.2). Models like this one were examined by Brown and 
her colleagues using a set of studies of diabetic outcomes 
(Brown et al. 2015; Brown et al. 2016).

As was true for the model shown in figure 16.1, model- 
based meta-analysis provides a way to combine correla-
tions and estimate the pathways in figure 16.2. In this 
case, a summary of partial regression coefficients is less 
likely to be possible, because it is hard to find sets of  
studies that have all examined the two component models 
in figure 16.2 (that is, the models with X3 and Y as out-
comes). As the sets of pathways among predictors become 
more numerous and complex, direct combinations of slope 
coefficients become increasingly more difficult to achieve.

A model-driven meta-analysis of a larger model is 
found in Mary Whiteside and Becker’s review of factors 
relevant to child-custody decisions, including features of 
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the co-parent relationship, mother-child and father-child 
relationships, and frequency of father-child contact 
(2000). They examined nine predictors of five possible 
outcomes for young children in divorcing families. Only 
three predictor-outcome relationships were significant, 
but many of the predictors mediated the impact of other 
co-parenting variables such as between-parents coopera-
tion and hostility, and the frequency of father visitation 
on child outcomes.

Other applications of model-based meta-analysis include 
Becker’s examination of science-achievement outcomes, 
and Lynette Craft and her colleagues’ meta-analysis of the 
role of anxiety in predicting sport performance (Becker 
1992a; Craft et al. 2003). We use data from the latter study 
in our examples.

Meta-analyses of partial effect sizes can be found in 
the literature as well (see, for example, Aloe and Becker 
2009; Bowman 2010; Denson 2009). For instance, 
Jeffrey Valentine, David DuBois, and Harris Cooper 
summarized studies of the relation between self-beliefs 
and academic achievement, adjusting for prior achieve-
ment (2004). Nicholas Bowman used regression slopes 
and partial correlations to examine how college diversity 
experiences may affect cognitive development, con-
trolling for other college experiences the students may 
have had (2010). Partial-effects syntheses are becoming 
more common now that methods for summarizing such 
effects have been developed.

16.2 WHAT CAN WE LEARN FROM MODELS?

Unlike meta-analyses that focus on single correlation 
coefficients, model-based meta-analyses address how 
sets of predictors relate to an outcome (or outcomes) of 
interest. We may examine partial relations, because we 
will model or statistically control for additional variables, 
and it is also possible to examine indirect relations and 
mediator effects. We provide examples of how these 
kinds of effects have been examined in existing model- 
based meta-analyses and syntheses of partial effects.

16.2.1 Partial Effects Can Be Examined

Most correlational meta-analyses take one predictor at a 
time, and ask, “Does the predictor X relate to the outcome 
Y?” However, real-world relationships are usually not so 
simple. Consider the issue of the effectiveness of diabetic 
patients at controlling their blood sugar levels. Many fac-
tors play roles in this process, including the person’s diet, 

activity level, and attitudes. The severity of the person’s 
disease may be important, so researchers may want to con-
trol or adjust for that. This control can be exerted through 
design variations (such as by selecting only patients whose 
disease is at a particular level of severity) or by statistical 
means, such as by blocking on and analyzing an indicator 
of disease severity or adding a variable such as the Diabe-
tes Complications Severity Index to a model predicting  
the outcome of interest (Young et al. 2008).

Assuming that correlations of key predictors and out-
comes with control variables are available in the primary 
studies, model-based meta-analyses can incorporate con-
trol variables into a more complex model than is possible 
in a traditional univariate meta-analysis. An example from 
Becker’s work with Sharon Brown and colleagues on the 
diabetes model-based meta-analysis shows this benefit. The 
study involved a variety of predictors of diabetic control, 
measured by one of three outcomes, including hemoglobin 
A1c (Brown et al. 2016). The data set included correlations 
among anxiety (X1), depression (X2), coping skills (X3), and 
as well as stress (X4), and the larger data set included cor-
relations among self-efficacy, health beliefs, and measures 
of adherence to diet, physical activity, and medication 
regimes, weight and body mass, among others.

We consider the roles of the four psychological factors as 
an example. Under the random-effects model, each predic-
tor correlated significantly with A1c on average, but only 
coping and stress showed nontrivial correlations with A1c. 
Even those were small: for coping r–.3Y = –.18 (SE = .012, 
with k = 21 studies); for stress r–.4Y = .17 (SE = .007, k = 66). 
The correlation of anxiety with A1c was significant but 
negligible at r–.1Y = .02 (SE = .008, k = 35), and depression 
showed a very low correlation, with r–.2Y = .07 (SE = .004,  
k = 116).

When modeling all four components together as shown 
in figure 16.1, coping (b = –0.16), stress (b = 0.17),  
and depression (b = –0.04) remained significantly related 
to A1c, but anxiety (b = –0.04) was no longer significant. 
In addition, the sign of the slope for depression became 
negative and its standardized slope was near zero, sug-
gesting effects of collinearity or suppression with the 
other predictors. As anxiety correlated on average 0.53 
with anxiety and 0.45 with stress, this is a possibility. 
When multiple variables are controlled for, interrela-
tions among the variables may come into play, and must 
be considered when estimating complex models in 
meta-analyses.

Partial-effects meta-analyses also enable the meta- 
analyst to examine partial relationships, but in a more 
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focused way. An example of a partial-effects meta-analysis 
comes from Jeffrey Valentine and his colleagues. When 
designing their meta-analysis,Valentine and colleagues 
realized the importance of controlling for previous level 
of academic achievement (2004). Consequently, their 
inclusion criteria explicitly stated that primary studies 
must have adjusted for pretest scores to be included  
in their meta-analysis. They found a small but consis-
tent positive effect of self-beliefs on achievement once 
prior achievement was controlled for. Just a single par-
tial relationship was investigated. This example also 
illustrates that the data required for the synthesis of par-
tial effect sizes is typically different from that needed 
for model-driven meta-analysis; we elaborate on this 
point later on.

16.2.2 Indirect Effects Can Be Examined

A second major benefit of the use of model-based meta- 
analyses is the ability to examine indirect effects, where the 
effects of a predictor on an outcome manifest via a third 
intervening variable. The analysis of indirect relationships 
is a key aspect in primary-study analyses using structural 
equation models (see, for example, Kaplan 2000), as well 
as in meta-analytic path models and MASEMs. Complex 
models have been posited for a variety of outcomes in  
primary studies in many fields, and it makes sense that a 
meta-analyst might want to examine such models in a 
meta-analysis. Model-based meta-analyses allow us to 
examine indirect relationships among the predictors in the 
theoretical models.

A very powerful example of this benefit comes from 
the model-driven synthesis of predictors of child out-
comes in divorcing families (Whiteside and Becker 
2000). An important consideration in child-custody deci-
sions is the extent of parental visitation for the noncusto-
dial parent. When the mother is granted custody, decisions 
must be made about the extent of father visitation and 
contact with the child. Curiously and counterintuitively, 
earlier narrative syntheses showed only a weak influence 
for the extent of father visitation on child-adjustment out-
comes such as internalizing and externalizing behaviors 
(see for example, Hodges 1991). Indeed, when Whiteside 
and Becker examined the bivariate associations of mea-
sures of father-child contact with adjustment outcomes, 
the quality of the father-child relationship was the only 
significant correlate of child outcome variables. Good 
father-child relationships related to higher levels of child 
cognitive skills (a good outcome), and lower levels of 

externalizing symptoms and internalizing symptoms 
(also good outcomes, as high internalizing and external-
izing symptoms reflect problems for the child). Measures 
of father visitation, and pre-separation and current levels 
of father involvement, did not relate significantly to child 
outcomes.

However, Whiteside and Becker found that when 
father-child contact variables were examined in the con-
text of a more realistic multivariate model for child out-
comes, extent of father contact showed a significant 
indirect relationship, through the variable of father-child 
relationship quality (2000). Figure 16.3 shows that both 
pre-separation father involvement and extent of father 
visitation showed positive indirect impacts on child out-
comes, suggesting that when a child has a good relation-
ship with their father, more father contact has a positive 
impact on psychological outcomes. Children who had 
good relationships with their father and more involve-
ment with their father before parental separation showed 
more positive outcomes. These results would have been 
overlooked if Whiteside and Becker had not examined 
the indirect relationships specified in the model-driven 
synthesis.

Because it has the potential to model indirect effects, 
model-based meta-analysis also allows for tests of medi-
ating effects. One example of an application where 
mediators were critical examined the roles of risk and 
protective factors in substance abuse (Collins, Johnson, 
and Becker 2007). In a synthesis of community-based 
interventions for substance abuse, risk factors such as 
friends’ use of drugs mediated the impact of preventive 
interventions on a variety of substance-abuse outcomes. 
David Collins and his colleagues used a variation of  
the regression approach proposed by Charles Judd  
and David Kenny in a meta-analytic context (Collins, 
Johnson, and Becker 2007; Judd and Kenny 1981). One 
could also test for mediation in other ways, using varia-
tions on the approaches David MacKinnon and his col-
leagues described (2002), or using model-comparison 
tests under the more traditional SEM framework, as 
Cheung has proposed (2015). Connections can also be 
made to logical analyses based on directed acyclic 
graphs, which allow for the exploration of causal infer-
ences (Pearl 2009).

16.2.3 Models Can Be Compared

Model-based meta-analyses also allow us to compare 
models based on moderator variables. For instance, a 
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meta-analyst may want to ask whether the same individual- 
level predictive relationships hold for two or more groups. 
Subgroup analyses can address such questions. For exam-
ple, Whiteside and Becker found that the same predictors 
were important for child outcomes when comparable 
models were fit for young boys and young girls in divorc-
ing families (2000). Craft and her colleagues examined a 
variety of aspects of the athletes and sports in their syn-
thesis of studies of anxiety and sport performance 
(2003). Team sports showed significantly lower cor-
relations than individual sports, and nearly all compar-
isons were significant among elite athletes, European 
club athletes, college athletes, and college physical 
education students. Type of skill (open versus closed) 
and time of administration of the anxiety scale (in 
terms of minutes prior to performance) showed signifi-
cant differences as well.

Complications can arise when moderator variables are 
examined. If key variables are not examined or reported 
in some subsets of studies, it may be impossible to esti-
mate the same models for subsets of studies as for the 
whole collection of studies. For categorical moderators, 
studies may not have analyzed their data separately by 
subgroup, or may have analyzed differences in levels of 
the outcome by the moderator but not reported separate 
correlations for each subgroup. Also analyses of sub-
samples will often be less precise because of the smaller 
numbers of studies (although between-studies variation 
may counteract this effect if the subsets’ results are more 
homogeneous). For Whiteside and Becker, only five of 
their seventeen studies had reported results separately by 
gender, and four correlations of interest had not been 
studied for those samples (2000). Thus some models esti-
mated for the full set of studies could not be examined for 
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the gender-specific samples, and the power was lower for 
the analyses that could be done.

16.2.4 We Can Learn What Has Not Been Studied

Designing a meta-analysis with a specific model in mind 
enables the meta-analyst to identify relationships that have 
not been studied at all or that have not been studied exten-
sively. In a meta-analysis of one bivariate relationship, 
absence of data would cause the synthesis to be abandoned, 
because without correlations the given relationship cannot 
be studied. In the context of a model, the absence of data 
on a particular relationship will restrict the complexity of 
some analyses (for example, certain paths may not be esti-
mable), but other analyses will still be possible.

Most critically, such missing data can reveal areas for 
future research. In their synthesis on child outcomes in 
divorcing families, Whiteside and Becker found no  
correlations for maternal restrictiveness with two other 
predictors—co-parent hostility and maternal depressive 
symptoms (2000). Thus two pairs of predictors (restric-
tiveness and hostility, and restrictiveness and maternal 
depression) could not be used together to predict any out-
come. In their synthesis on diabetic outcomes, Brown and 
her colleagues were interested in the predictive power of 
five kinds of patient adherence—to medicine regimes, 
diet restrictions, physical activity plans, blood monitor-
ing, and keeping appointments with their doctor (2016). 
However, appointment-keeping adherence is relatively 
new in the literature, and only eighteen of the thirty-five 
possible correlations involving appointment keeping with 
other variables were observed. Of these, eleven arose 
from one study. Appointment keeping thus could not 
appear in models that included the seventeen variables it 
had not been studied with, and no information was pre-
sented about variation in the strength of the correlations 
for the eleven relationships found in the single study. This 
variable is a candidate for further study, given that it did 
play a role in A1c for the few studies that had examined it.

Often it is desirable to quantify the amount of evidence 
available for each relationship. Counting the correlations 
that contribute to each path is one way to identify the 
amount of evidence available about each relationship. 
Certainly, it is not common for all paths to be represented 
by the same numbers of correlations. In the Brown et al. 
data, adherence to diet and physical activity were each 
studied with A1c in more than sixty studies; in contrast, 
each occurred with free blood glucose in fewer than ten 
studies (2016).

16.2.5  Extensive Models Can Be Built and 
Multiple Operations Examined

Model-based syntheses may seek to test models that were 
never examined in any one study, or that are so complex 
that the costs (both monetary and in terms of participant 
time) to collect all of the variables in a single primary 
study would be prohibitive.

Brown and her colleagues carefully described the 
selection of variables for their synthesis of diabetes out-
comes (2015). Their broader theoretical diabetes-care 
model outlined thirteen constellations of variables, each 
of which contained several potential constructs. They 
focused first on six of these model components, targeting 
relationships among thirty variables, and in so doing 
retrieved 4,145 correlations from their set of 775 studies.

Model-based meta-analysis also allows the meta- 
analyst to examine whether multiple operationalizations 
of constructs lead to similar results (showing robustness 
of the model under study), or to define potentially fin-
er-grained constructs that may show different associa-
tions with other variables. Such differences could lead to 
more differentiated models and better understandings of 
the constellation of variables under review.

16.2.6 Limitations of Model-Based Meta-Analysis

Model-based meta-analysis has some limitations. Of  
particular concern is the issue of missing data. When a 
particular relationship has not been studied, one cannot 
estimate any correlation between the variables of interest. 
This may provide future directions for research, but it 
also means that certain configurations of variables cannot 
be studied in the models in the meta-analysis. Even if 
every relationship has been studied at least once, most 
studies will probably not examine all relationships.

Some advances have been made in dealing with miss-
ing data in the context of correlation matrices (Furlow 
and Beretvas 2005), and the generalized least squares 
methods we describe later on easily handle studies in 
which not all correlations are reported. Wu and Becker 
investigated a method based on factored likelihoods and 
the sweep operator that handles missing data and per-
forms well in many conditions (2013). However, for their 
method to work, the correlations observed in any study 
must be a subset of what is observed in other studies. So 
if r1, r2, and r3 are reported in one study and r1 and r2 
appear in another study the latter data are nested within 
the set of three rs, but if a third study reported r1, r3, and 
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r4 its data would not be nested with either of the first two 
studies, and the method could not be applied.

A second concern when data are missing is that the 
results of a model-based meta-analysis may be so dis-
persed as to appear fractionated. Specifically, correlations 
relevant to one relationship might arise from a set of stud-
ies completely different from those providing results for 
other relationships. Thus the connection between vari-
ables A and C could be based on samples (or populations) 
different from those examining variables B and C, thus 
the overall results may not apply well to any particular 
population. This becomes more likely as the numbers of 
studies and of relationships in the review increase. Many 
studies in the Brown et al. diabetes dataset included only 
two or three of the thirty variables of interest, and across 
all their studies the number of correlations reported by a 
single study ranged from one to fifty-two (2016).

Last, as in all situations where data are not reported, 
the meta-analyst needs to assess the possibility that pub-
lication or reporting bias has played a role in the absence 
of correlations. Some primary-study authors may report 
only correlations of predictors with the outcome of inter-
est, or may be restricted in what they can report by edito-
rial practices that aim for shorter journal articles. To date 
nothing has been written about publication bias in the 
case of model-based meta-analysis, but available tech-
niques, such as funnel plots (Egger et al. 1997), can be 
applied to rs for each element of the accumulated correla-
tion matrix or tests of asymmetry.

16.3  HOW CAN WE CONDUCT MODEL-BASED 
AND PARTIAL-EFFECTS SYNTHESES?

Many of the tasks required in conducting a model-based 
meta-analysis are essentially the same as those required 
in doing a typical meta-analysis. Both Becker and Christine 
Schram and Brown and her colleagues provide details 
about these tasks (Becker and Schram 1994; Brown et al. 
2015). We therefore touch on only certain key points 
here. We also cover points common to the synthesis of 
partial effect sizes.

16.3.1  Problem Formulation, Searching,  
and Inclusion Criteria

The process of meta-analysis always begins with prob-
lem formulation, which involves setting clear rules 
about the characteristics of studies that will be included. 
For model-based meta-analysis, the meta-analyst often 

begins with a model like the ones shown in figures 16.1 
through 16.3—with critical components specified. For 
some searches particularly important relationships or popu-
lation features may serve as inclusion criteria. Whiteside 
and Becker required that every study in their synthesis 
reported a correlation involving one of their child outcomes 
with either father-child contact or the co-parenting relation-
ship, measured as hostility or cooperation (2000). These 
two constructs were chosen because they can be influenced 
by the courts in divorce custody decisions, which was criti-
cal to the review.

Using detailed inclusion criteria requires complex 
intersection searches; strategies often involve systematic 
pairings of relevant terms. The more stringent and spe-
cific the inclusion rules, the more limited the set of perti-
nent studies will be. For instance the search rule “(hostility 
or cooperation) and (anxiety or internalizing behaviors or 
depression or externalizing behaviors)” identified studies 
that meet one of the conditions required in the Whiteside 
and Becker synthesis (2000). None of Whiteside and 
Becker’s studies reported on all correlations among the 
fourteen variables of interest (eleven of which are shown 
in figure 16.3).

 Brown and her colleagues searched for studies with 
participants who had type 2 diabetes mellitus, that exam-
ined either hemoglobin A1c, free blood glucose, or body 
mass index as an outcome, and that measured at least one 
of the following predictors: “psychological factors 
(stress, depression, anxiety, coping), motivational factors 
(self-efficacy), or behavioral factors (adherence to diet, 
physical activity, medications, glucose self-monitoring, 
or appointment keeping)” (2016, 5). It was important to 
allow for this flexibility, because most studies presented 
correlations of just a few predictors with the outcomes. 
With more elaborate models, it is unlikely that all studies 
will report correlations among all variables, thus requir-
ing that individual studies include all variables of interest 
might reduce the collection of available studies to the 
null set. Even though the Brown et al. analysis involved 
775 studies, the maximum number of correlations observed 
for any relationship was 116.

As in other meta-analyses diversity in the included 
studies, and the number of studies deemed relevant, can 
be controlled by having well-planned inclusion and 
exclusion criteria. Populations can be carefully defined 
using a framework such as MUTOS, an acronym for meth-
ods, units, treatments, observations, and settings (Aloe and 
Becker 2008; Becker and Aloe 2008), or in the medical 
realm PICOS, an acronym for patients, interventions,  
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comparators, outcomes, and study design (Richardson  
et al. 1995).

16.3.2 Data Extraction

In model-based meta-analyses, we estimate an average 
correlation matrix and its variance-covariance matrix. 
The meta-analyst must therefore collect correlations, 
preferably correlation matrices, for as many of the vari-
ables of interest as can be found. Requiring that studies 
report all correlations among all variables can restrict the 
collection of studies greatly. The general rule is to extract 
from each study that meets other inclusion criteria any 
information that links model components together.

In partial-effects meta-analyses, a full correlation matrix 
is usually not needed because partial effect sizes and their 
respective variances can be estimated from reported regres-
sion results (Aloe and Becker 2012; Aloe and Thompson 
2013; Becker and Wu 2007). However, partial effect sizes 
can be computed from correlation matrices as well. Several 
partial effect-size indices are described shortly.

One variable the meta-analyst must record is the sample 
size. When primary studies report correlation matrices 
computed using pairwise deletion, the rs for different 
relations in a matrix may be based on different sample 
sizes. In such cases, the smallest sample size reported 
across all relationships (all correlations) represents a con-
servative choice for n. One may also use some average 
value (for example, the harmonic mean n) but that will be 
less conservative than the smallest n.

For partial effect sizes, it is also important to code the 
number and kind of variables that are controlled or par-
tialed out. Aloe and Becker recommended coding dichot-
omous indicators for key control variables that have been 
omitted from the regression model from which a 
semi-partial correlation is extracted (2012). This enables 
the meta-analyst to assess the biasing impact of not con-
trolling those important variables. Clearly, this recom-
mendation also holds for other partial effect sizes (such 
as regression slopes and partial correlations).

For both model-based and partial-effect meta-analyses, 
the meta-analyst may want to ask questions about moder-
ator variables, and will thus code predictors specific to 
the substantive problem at hand. Participant characteris-
tics, information about settings, and features of the mea-
sures (for example, self versus other report) would be 
selected in line with the key research questions.

16.3.2.1 Effect Data for Model-Based Meta-Analyses  
Each of these strategies—model-based and partial meta- 

analyses—relies on the extraction of effect indices to repre-
sent within-study relationships of interest. Single correla-
tions, full correlation matrices, or subsets of relevant rs can 
be extracted from individual studies for use in model-based 
analyses. In theory, model-based meta-analyses can be 
based on collections of structural equation models or factor 
analyses (see, for example, Cho 2015; Becker 1996) or 
regression models from primary studies. However, such 
indices are partial effect sizes. Because exact replications 
are rare, the effects from these multivariate within-study 
models may not be commensurable across studies, 
making it harder to use this approach to build a model- 
based meta-analysis.

Thus, for most model-based meta-analyses, an average 
bivariate correlation matrix among all relevant variables 
will be estimated. Ideally one would compute the average 
matrix from many large, representative studies that 
include all the variables of interest, measured with a high 
degree of specificity. In reality, the meta-analyst will 
encounter a diverse set of studies, each of which exam-
ines subsets of the variables of interest. For example, 
Brown and her colleagues targeted thirty variables that 
represented six main constructs in a model of diabetic 
outcomes (2015). A 30 × 30 matrix contains 435 unique 
correlations, but the most correlations any one study 
reported was fifty-two, and two-thirds of the studies 
reported no more than five r values.

For our examples, we consider data from the Craft et al.  
meta-analysis on the prediction of sport performance 
from three anxiety-related factors. The first step in the 
model-based meta-analysis was to gather estimates of the 
correlations in the matrix
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where rab is the correlation between the anxiety scales Xa 
and Xb for a and b = 1 to 3, and raY is the correlation of Xa 
with Y (sport performance), for a = 1 to 3. We use the  
subscript i to represent the ith study, and Ri represents  
the square form of the correlation matrix from study i. The 
index p represents the total number of variables in the 
matrix (here p = 4). Therefore any study may have up to 
p* = p(p–1)/2 unique correlations. For this example  
p* = 6.
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The matrix Ri will contain mi < p* unique elements if 
one or more variables are not examined in study i, or if 
some correlations are not reported. The rows and columns 
of Ri can be arranged in any order desired, though it is 
convenient to place the most important or ultimate out-
come in either the first or last position. In the anxiety and 
sport performance example, correlations involving sport 
outcomes appear in the first row and column of R. From 
the k Ri matrices the meta-analyst then estimates an aver-
age correlation matrix, and functions of that mean matrix 
give the path coefficients for our models.

16.3.2.2 Effect Data for Partial-Effects Meta-
Analyses When regression models are reported by pri-
mary studies (in the absence of correlation matrices) the 
meta-analyst can usually estimate the semi-partial cor-
relation, the partial correlation, or the slope of a standard-
ized regression for each study, all of which are in a 
standard metric. These indices are most appropriate if 
one particular predictor is of greatest interest, because the 
indices do not easily allow for the creation of a full sys-
tem of equations. For example, to examine the model 
shown in figure 16.2 using a partial-effects meta-analysis 
would take six partial effect sizes. Two partials would 
represent the model that relates X1 and X2 to X3, and the 
other four effects would relate X1 through X4 to Y. 
However, not all studies using regression analyses will 
report similar models. And, despite calls to do so, many 
authors fail to report the descriptives needed for comput-
ing the partial indices of choice (Gozutok, Alghamdi, and 
Becker 2018).

Aloe and Thompson (2013) show that the partial cor-
relation can be obtained from the regression-slope test as
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where tf is the t statistic associated with the null hypo-
thesis that the slope for Xf is zero (H0: bf = 0), and df 
represents the degrees of freedom (the sample size minus 
the number of predictors in the model, minus one).

The semi-partial correlation can be obtained as
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where R2 is the variance explained by the model (Aloe 
and Becker 2012). Each of these indices has its own vari-

ance, and can be analyzed using standard meta-analytic 
techniques.

Another index, the standardized slope b*, is often 
reported in regression studies. It can also be computed 
from the raw slope (b) as b* = b (SX/SY), as long as stan-
dard deviations of the outcome (SY) and the predictor of 
interest (SX) are available. We advise against treating 
standardized slopes as comparable to correlations, and 
suggest summarizing them separately using their own 
inverse variances as weights instead (Aloe 2014, 2015; 
Kim 2011). For details on the synthesis of these three 
indices, including their asymptotic variances, see work 
by Aloe and Thompson 2013).

16.3.3 Data Management

Because one step in a model-based meta-analysis is to 
compute a correlation matrix, it is best to lay out the 
desired contents of that matrix early in the data-collection 
process so that extracted correlations can be recorded 
systematically. Correlations may be stored in the form of 
a typical data record—that is, in a line or row of a data 
matrix—or in the form of a square correlation matrix. For 
models with few variables it may be easiest to record the 
data on a form that looks like the “real” matrix, then enter 
the data from that form into a file. Database interfaces 
that look like the desired matrix can be created. Certain 
computational approaches to correlation-matrix data 
require that values be read in a square form, but values 
can be easily translated from row to square form using 
most computer packages.

Data-collection forms are often created so that the first 
correlations to be entered are those involving the primary 
outcome. These are the most frequently reported correla-
tions and can easily be entered first, to be followed by 
missing-data codes if correlations among predictors are 
not reported. When a correlation does not appear, the data 
form may be left blank, but it may be preferable to note 
the absence of values with a code such as NR (not reported), 
NA (not available, preferred by the R language), or some 
numerical code. If primary-study authors have omitted 
values that were not significant, one could enter NS so 
that omitted nonsignificant results can be counted, giving 
a crude index of the possibility of publication bias. Often, 
though, it is not possible to determine why a result was 
not reported.

For an extensive model-based meta-analysis with 
many variables, forms that resemble the full correlation 



350   STATISTICALLY DESCRIBING AND COMBINING STUDY OUTCOMES

matrix can be quite unwieldy. Using them would likely 
contribute to errors of transcription. Brown’s team opted 
to enter the correlation for each relationship into a spread-
sheet, along with its associated sample size and a dummy 
indicator of whether it was a Pearson correlation or was 
computed from other information such as a contingency 
table (Brown et al. 2015, 2016).

The meta-analyst may also record values of other vari-
ables of interest as moderators, or simply as descriptors 
of the primary studies. There are no particular require-
ments for those additional variables, and each relation-
ship in a matrix or each variable may have its own 
moderator variables (for example, type of outcome would 
be relevant to X-Y correlations, but not to interpredictor  
correlations).

Thus for each study the data will include, at a mini-
mum, a study identification code, the sample size, and up 
to p* (here, six) correlations. Table 16.1 shows the data 
for ten studies drawn from the Craft et al. meta-analysis 
(2003). The record for a study shows a value of 9.00 
when a correlation is missing. The fifth line of table 16.1 
shows the data from a study that is missing all interpre-

dictor correlations. The table also includes a variable rep-
resenting whether the sport examined was a team (T) or 
individual (I) sport.

One last set of information is needed for the general-
ized least squares approach to synthesizing correlation 
matrices—a set of indicator variables (typically stored 
as a matrix) that identify which correlations are 
reported in each study. The methods described in this 
chapter represent the study data as vectors of correla-
tions, and the correlations reported in each study are 
coded using matrices of dummy variables. If data were 
stored in the form of one record per correlation, then a 
set of p* dummy variables would indicate which rela-
tionships appeared in each study. We illustrate this pro-
cess shortly.

Consider the studies with IDs 3 and 6 in table 16.1. 
Study 3 estimates all six correlations among a perfor-
mance outcome and the subscales of the Competitive 
State Anxiety Index (CSAI) (Martens, Vealey, and 
Burton 1990). The results of study 3 appear as a 6 × 1 
vector r3 together with the 6 × 6 indicator (identity) 
matrix X3, associated with the model r3 = X3 q + e3. (The 

Table 16.1 Relationships Between CSAI Subscales and Sport Performance

Variable Names and Corresponding Correlations

 
Cognitive/

Performance

 
Somatic/

Performance

Self-
Confidence/
Performance

 
Cognitive/
Somatic

Cognitive/
Self-

Confidence

Somatic/
Self-

Confidence

 
ID

 
ni

Type of 
Sport

C1  
ri1Y

C2  
ri2Y

C3  
ri3Y

C4  
ri12

C5  
ri13

C6  
ri23

1 142 I –.55 –.48 .66 .47 –.38 –.46

3 37 I .53 –.12 .03 .52 –.48 –.40

6 16 T .44 .46 9.00 .67 9.00 9.00

10 14 I –.39 –.17 .19 .21 –.54 –.43

17 45 I .10 .31 –.17 9.00 9.00 9.00

22 100 I .23 .08 .51 .45 –.29 –.44

26 51 T –.52 –.43 .16 .57 –.18 –.26

28 128 T .14 .02 .13 .56 –.53 –.27

36 70 T –.01 –.16 .42 .62 –.46 –.54

38 30 I –.27 –.13 .15 .63 –.68 –.71

source: Authors’ tabulation based on Craft et al. 2003.
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matrix X does not contain the raw data on X1 – X3.) 
Specifically,
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where e3 represents the deviation of the observed values 
in r3 from the unknown population values in q. Here X3 
is an identity matrix because study 3 has all six correla-
tions and the columns of X represent each of the correla-
tions being studied.

In contrast, study 6 did not measure self-confidence, 
and reports only three correlations: for the first, second, 
and fourth relationships in the correlation matrix. Thus 
the data from study 6 are represented by
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The indicator matrix still contains six columns to allow 
for the six correlations we plan to summarize across all 
studies. However, three of the columns in X for study 6 
contain only zeroes. The elements of the X matrices can 
be entered as data or can be created from the correlation 
data and the missing-data codes using software such as R 
or SAS.

16.3.4 Analysis and Interpretation

A main goal of all approaches to model-based meta- 
analysis is to discover patterns in the targeted relationships 
and to find potential explanations for important variability 
in the correlations of interest across studies. Another objec-
tive is to explicitly identify missing (unstudied) or less-
well-studied relationships; these may suggest fruitful areas 
for future research.

The estimation and data-analysis methods used to 
accomplish model-based meta-analysis have been referred 
to as estimating synthetic linear models (Becker 1992b, 

1995), meta-analytic structural equation modeling or 
MASEM (Cheung 2014; Cheung and Chan 2005), 
MA-SEM (Furlow and Beretvas 2005), and two-stage 
structural equation modeling (TSSEM) (Cheung and 
Chan 2005). Interest in these strategies is still strong years 
after the methods were first proposed; a 2016 special issue 
of Research Synthesis Methods included five articles and 
two commentaries on various aspects of the topic. Before 
describing the steps in the process of data analysis, we 
present some additional notation.

16.3.4.1 Distribution of the Correlation Vector r  
Regardless of approach, the meta-analyst begins a mod-
el-based analysis by estimating an average correlation 
matrix across studies. Most estimators are based on 
asymptotic assumptions, and most require the variances 
for the correlations to be summarized. Multivariate 
approaches also need their covariances.

16.3.4.1.1 Fixed Effects. We first define notation for 
the correlation vector for the matrix Ri by listing the 
unique elements of Ri in a vector, here, ri = (riY1, riY2, riY3, 
ri12, ri13, ri23)′. We refer to the entries (riY1, riY2, riY3, ri12, ri13, 
ri23) as ri1 through rip*, or more generally as riα, for α = 1 
to p*, so that the elements of ri are indexed by just two 
subscripts. In our example ri = (ri1, ri2, . . . , ri6)′.

Ingram Olkin and Minoru Siotani show that, in large 
samples of size ni, the correlation vector ri is approxi-
mately normally distributed with mean vector qi and  
variance-covariance matrix Si, where the elements of Si 
are defined by σiαγ (1976). Formulas for the variances and 
covariances are also provided (238). To distinguish 
among the p variables involved in the p* correlations in 
each study, we use full subscripting because the covari-
ance of rist with riuv involves all of the cross-correlations 
(rist, risu, risv, ritu, ritv, and riuv). Specifically the large-sample 
variance of riα = rist is

r r nVar Var 1 . (16.1)i i ist ist i
2 2( )( ) ( )σ = = = − ραα α

The covariance σiαγ can be expressed by noting that if 
the correlation between the sth and tth variables in study i  
is riα = rist , and rif = riuv , with ρist and ρiuv the correspond-
ing population values, then

r r r r
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for s, t, u, and v = 1 to p. Sometimes the denominators in 
(16.1) and (16.2) are shown as (ni – 1) rather than ni.

Although these variances and covariances are treated 
as known, in practice they must be computed. Often σiαα 
and σiαγ are estimated by substituting the corresponding 
sample estimates for the parameters in (16.1) and (16.2). 
However, substituting individual study correlations into 
these formulas is often not the best approach (Becker and 
Fahrbach 1994; Furlow and Beretvas 2005; Hafdahl 
2007, 2008). In short, we recommend computing these 
variances and covariances by substituting values of the 
mean correlations across studies for the population values. 
We denote the estimates of (16.1) and (16.2) as siαα and 
siαγ respectively. The estimated variance-covariance 
matrix for study i with elements estimated using (16.1) 
and (16.2) is denoted Si.

Another issue is whether to analyze raw correlations or 
transform them using Sir Ronald Fisher’s z transformation, 
which is z = 0.5 log [(1 + r)/(1 – r)], and has the attractive 
feature of being a variance-stabilizing transformation 
(1921). The variance of zia is usually taken to be ψiaa = ni

–1 
or (ni – 3)–1, neither of which involve the parameter ρia. 
The covariance between two z values, ψiag = Cov(zia, zig) = 
σiag /[(1 – ρ2

ia)(1 – ρ2
ig)], is more complicated than the 

covariance in 16.2. Various work supports the use of  
the Fisher transformation both in terms of estimating the 
mean correlation matrix, and improving the behavior of 
associated test statistics (Becker and Fahrbach 1994; 
Furlow and Beretvas 2005; Hafdahl 2007). However, 
results in the z metric, particularly between-studies vari-
ances, are more challenging to interpret, and require that 
point estimates be transformed back to the r metric. This 
is problematic when working with functions of the mean 
matrix and its variance, such as the path coefficients esti-
mated for models. The problem occurs because there is 
no easy way to transform the between-studies variance of 
Fisher’s z back to the r scale. Thus we present analyses 
based on the use of raw correlations.

The formulas for variances and covariances in (16.1) 
and (16.2) apply under the fixed-effects model, that is, 
when one can assume that all k correlation matrices arise 
from a single population. If that is unreasonable either on 
theoretical grounds or because tests of homogeneity are 
significant, then one should augment the within-study 
uncertainty quantified in Si by adding between-studies 
variation. A number of approaches exist for estimating 
between-studies variation in the univariate context (see, 
for example, chapter 12; Sidik and Jonkman 2005). 
Estimators for the multivariate context have also been 

proposed (see Becker and Schram 1994; Jackson, White, 
and Thompson 2010; van Houwelingen, Arends, and 
Stijnen 2003). Ian White provides the Stata command 
mvmeta for multivariate meta-analysis (2009); mvmeta 
implements the maximum likelihood estimator of Hans 
van Houwelingen and his colleagues (2003). In the R 
environment, several other approaches are available in 
Wolfgang Viechtbauer’s metafor package (2010).

Our own assessment based on experience with a vari-
ety of data sets is that though it is relatively simple to 
estimate between-studies variances, estimation of 
between-studies covariance components can be problem-
atic (for example, producing between-studies correla-
tions beyond ±1), particularly with small numbers of 
studies (see also Riley et al. 2007). If all studies have 
complete data, a multivariate hierarchical modeling 
approach (Kalaian and Raudenbush 1996) may solve 
these problems. However, complete data are rare when 
summarizing correlation matrices. Thus it is sometimes 
advisable to add only the variance components when 
adopting a random-effects model, to constrain covari-
ances to more reasonable in-range values if the covariance 
terms do not appear reasonable, or to use a more sophisti-
cated variance estimator rather than a simpler one.

Example. We calculate the covariance matrix using 
data from study 3 in the anxiety and sport example. This 
study reported all 6 correlations, thus has a 6 × 6 covari-
ance matrix. The covariance of r3, computed using n = 37 
and the sample-size weighted mean correlations across 
all studies, specifically r–n = (–.074 –.127 .323 .523 –.416 
–.414)′, is

r( ) =

− −

− −

− − − −

− − − −

− −

− −





























Cov

.027 .014 .010 .002 .007 .003

.014 .026 .009 .001 .003 .007

.010 .009 .022 .000 .000 .001

.002 .001 .000 .014 .005 .005

.007 .003 .000 .005 .018 .008

.003 .007 .001 .005 .008 .019

.3

For studies that report fewer than p* correlations the 
Cov(ri) matrix will be reduced in size accordingly. In our 
data set studies 6 and 17, with only three correlations 
each, have 3 × 3 covariance matrices.

Once correlations or other partial effect sizes have 
been extracted from multiple studies, the meta-analyst 
can estimate both the average strength of the relationship 
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between variables and the degree to which the correla-
tions vary across studies (Becker 1992b). Estimating 
such variation is consistent with adopting the random- 
effects model (DerSimonian and Laird 1986; Hedges 
1983; Hedges and Vevea 1998). In the random-effects 
case, estimates of variation across studies are incorpo-
rated into the uncertainty of the mean correlations. 
Adopting random-effects also allows estimates of the 
average correlations to be generalized to a broader range 
of situations, at the cost of wider confidence intervals for 
the parameters. Tests of the appropriateness of the 
fixed-effects model for the entire correlation matrix can 
be computed if desired (see Becker 1992b; Cheung and 
Chan 2005).

16.3.4.2 Estimating the Mean Correlation Matrix 
Under Fixed Effects Data from series of correlation matri-
ces are inherently multivariate. Generalized least squares 
(GLS) methods for multivariate meta-analysis data were 
proposed by Stephen Raudenbush, Becker, and Hripsime 
Kalaian (1988; see also Berkey, Anderson, and Hoaglin 
1996; Jackson, White, and Thompson 2010; Riley 2009). 
The GLS approach has also been applied to correlation 
matrices (Becker 1992b, 1995; Becker and Schram 1994). 
Becker and Schram also presented likelihood-based meth-
ods. Bayesian methods can be used to estimate the mean 
matrix as well (Cheung and Chan 2005; Prevost et al. 2007).

Under fixed effects, the GLS estimator of the mean is

q = X S X X S r( )′ ′− − −ˆ , (16.3)1 1 1

where X is a stack of k p* × p* indicator matrices, r is the 
vector of correlations, and S is a blockwise diagonal matrix 
with the matrices Si on its diagonal. The variance of q̂ is

q = X S XVar ˆ . (16.4)1 1( )( ) ′ − −

These GLS estimators have been extensively studied, 
along with other estimation methods. Restricted maxi-
mum likelihood (REML) methods, which for some esti-
mators provide estimates identical to GLS values, are 
widely used and can be obtained via the R package meta-
for, using the rma.mv function (Viechtbauer 2010).

Example. Analyses for our examples are performed 
using independent R code (our package called metaRmat 
is available from the authors) as well as the metafor pack-
age. For the ten studies in our example, the mean correla-
tion matrix obtained from GLS analysis of the correlations 
under fixed effects (in square format) is

=

− −

− −

− −

− −





















ˆ

1 .074 .127 .316

.074 1 .523 .415

.127 .523 1 .405

.316 .415 .405 1

.q

Identical results are obtained using maximum likelihood 
estimation. The first row and column of the matrix contain 
the correlations of the CSAI subscales with sport behavior. 
The last entry in row one, which represents the average cor-
relation for self-confidence with sport behavior, is the larg-
est X-Y correlation. However these values should not be 
interpreted because the fixed-effects model is not appropri-
ate for these data. Nonetheless for later comparison we pres-
ent the covariance matrix of the means under fixed effects:

q

(16.5)

Cov ˆ

0.00156 0.00080 0.00057 0.00012 0.00040 0.00020

0.00080 0.00153 0.00055 0.00005 0.00018 0.00039

.0.00057 0.00055 0.00129 0.00002 0.00000 0.00007

.0.00012 0.00005 0.00002 0.00090 0.00032 0.00032

0.00040 0.00018 0.00000 0.00032 0.00118 0.00053

0.00020 0.00039 0.00007 0.00032 0.00053 0.00119

.

( )

























=

− −

− −

− − − −

− − − −

− −

− −

16.3.4.3 Test of Homogeneity, with H01: q1 = . . . = qk  
In a univariate meta-analysis, it can be useful to test 
whether all studies appear to be drawn from a single pop-
ulation (Hedges 1982). One may choose any model with-
out testing, however, on the basis of theoretical reasons. 
The meta-analyst can test whether all k correlation matri-
ces appear to be equal or homogeneous, or can do p* tests 
of whether each of the relationships in the matrix arises 
from one population. A test of the hypothesis of homoge-
neity of the k population correlation matrices is a test of 
H01: q1 = . . . = qk, specifically

( )= ′ − ′ ′ ′





− − − − −Q . (16.6)E
1 1 1 1 1r S S X X S X X S r

When H01 is true, QE has approximately a chi-square 
distribution with (k – 1)p* degrees of freedom if all studies 
report all correlation values. (See however results that 
suggest such chi-square tests are misused, as well as 
overly likely to reject H0 for small samples; Hoaglin 
2016.) If some correlations are missing, the degrees of 
freedom equal the total number of observed correlations 
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across studies minus p*. Here the df are 9(6) – 6 = 48 
because of the three correlations missing from each of 
two studies. This test is also provided by metafor.

Cheung and Chan investigated the chi-square test of 
homogeneity based on raw correlations (2005). They 
find, as Becker and Fahrbach did (1994), that the test 
rejected the null hypothesis at rates above the nominal 
rate, making it conservative. Cheung and Chan also studied 
a Bonferroni adjusted test—the BA1 (Bonferroni at least 
1) rule—based on the individual tests of homogeneity for 
the p* unique relationships in the correlation matrix 
(Cheung 2000). The BA1 test rejects H01: qi = q if at least 
one of the p* individual homogeneity tests is significant 
at level α/p*. For a 4 by 4 matrix of means with p* = 6 
correlations, the adjusted significance level for the α = 
0.05 test would be 0.05/6 = 0.0083.

Example. The ten studies in our example include fifty- 
four correlations (k × p* = 10 × 6 = 60 were possible, but 
six are missing) and the value of QE = 198.66 is significant 
with df = 48 and p < .001, suggesting that the matrices do 
not arise from a single population. According to the BA1 
rule, at least one of the individual homogeneity tests for 
the six relationships in the matrix must be significant at 
the .0083 level. All of the homogeneity tests for the cor-
relations of the three CSAI subscales with sport perfor-
mance are highly significant, with p-values well below 
0.0001 (and below the BA1 cutoff); the three sets of cor-
relations among the subscales are each homogeneous. 
(The six Q values are 80.2 [df = 9], 45.1 [9], 52.0 [8],  
7.5 [8], 13.0 [7], and 11.6 [7].) Thus we also reject H0 
according to the BA1 test. We explore the between-stud-
ies variances for the correlations of the three CSAI sub-
scales with sport performance in the next section.

16.3.4.4 Estimating Between-Studies Variation If a 
random-effects model seems sensible, either on principle 
or because the hypothesis of homogeneity has been 
rejected, the meta-analyst must estimate the between- 
studies variance τ2

a (with α = 1 to p*) for each set of cor-
relations. When analyses are conducted on raw correla-
tions, variances and possibly covariances are estimated in 
the r metric and the estimate T̂ is added to each Si matrix to 
get Ŝi

RE = Si + T̂. The blockwise diagonal matrix ŜRE 
would then be used in place of S in equations (16.3) and 
(16.4) to obtain random-effects estimates, given in (16.7) 
and (16.8). If covariance components of the T̂ matrix 
are problematic then the diagonal matrix T̂D = diag  
(ˆ , ˆ , . . . , ˆ p p11 22τ τ τ ∗ ∗) can be used in its place. The meta- 
analyst would add T̂D rather than T̂ to each of the with-
in-study covariance matrices Si.

Example. An important issue when reporting results 
from random-effects models is the approach imple-
mented to estimate between-studies variation. We 
selected the REML estimation option for our R code, 
given past experiences with the method-of-moments esti-
mator, as well as the research on variance estimation. The 
values on and above the diagonal in T̂ are the variances 
and covariances, and correlations obtained by calculating 
ˆ ˆ ˆτ τ ταβ αα ββ  are below the diagonal. Based on the homo-
geneity tests for these data, we expect at least one of the 
ταα estimates to be nonzero for the correlations of the 
three anxiety scales with sport performance (the first 
three diagonal entries). This pattern is seen in the REML 
estimate

=

− −

− − −

− − −

− − − −

− − −

−





























ˆ

.126 .077 .040 .010 .013 .016

.88 .060 .061 .006 .019 .013

.45 .99 .062 .008 .005 .001

.64 .50 .71 .002 .003 .002

.34 .72 .20 .64 .011 .001

.58 .68 .06 .59 .11 .006

.T

Inspection of the correlations associated with T̂ shows 
one value very near to –1; it is, for t̂ 23, associated with the 
correlations of performance with cognitive anxiety and 
performance with somatic anxiety.

The square root of each diagonal element of T̂ is the 
estimated standard deviation of the population of correla-
tions for the relationship. As expected, the first three 
diagonal elements are larger than the later three. For 
instance, the ρ1i values for correlations of cognitive anxi-
ety with sport behavior have a standard deviation of  
t̂ 1 = 0.126  = 0.35. If the true average correlation were 
zero, then roughly 95 percent of the population correla-
tions would fall between –0.69 and 0.69. This is quite a 
wide spread in population correlation values. The range 
obtained for the correlations of somatic anxiety with per-
formance (the ρ2i) is a little narrower: +0.48. These 
ranges are analogous to the plausible values range com-
puted for hierarchical linear model parameters at level 2 
(see, for example, Raudenbush and Bryk 2002). In practice, 
we would center this interval on an appropriate mean, thus 
we next introduce the mean under the random-effects 
model.

16.3.4.5 Random-Effects Mean Correlation If the 
meta-analyst believes that a random-effects model is 
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more appropriate for the data, the value of ŜRE—the vari-
ance including between-studies differences—would be 
used in place of S in (16.3). The random-effects mean q̂RE 
is thus

q S SX X X rˆ ˆ ˆ , (16.7)RE RE 1 1
RE 1( )= ′   ′  

− − −

where X is still the stack of k p* × p* indicator matrices, 
r is the vector of correlations, and ŜRE is the blockwise 
diagonal matrix with the matrices Ŝ i

RE on its diagonal. 
The variance of q̂RE is

q SX XVar ˆ ˆ . (16.8)RE RE 1 1( )( ) = ′  
− −

Example. In our data the first three correlations showed 
significant variation, and now under the random-effects 
model their means are slightly smaller than under the 
fixed-effects assumptions (the values were –.07, –.13, 
and .32). The random-effects mean obtained with the 
REML T estimate (shown in square form) is

=

− −

− −

− −

− −





















ˆ

1 .034 .071 .233

.034 1 .544 .453

.071 .544 1 .397

.233 .453 .397 1

,REq

with covariance

( )
























ρρ

=

− −

− −

− − − −

− − −

− − −

− −

Cov ˆ

0.0150 0.0089 0.0048 0.0005 0.0016 0.0008

0.0089 0.0081 0.0049 0.0007 0.0019 0.0004

0.0048 0.0049 0.0085 0.0013 0.0020 0.0016

0.0005 0.0007 0.0013 0.0011 0.0007 0.0001

0.0016 0.0019 0.0020 0.0007 0.0027 0.0005

0.0008 0.0004 0.0016 0.0001 0.0005 0.0020

.

RE

Many of the values in the first three rows and columns 
of Cov(q̂RE) are considerably larger than the fixed-effects 
variances and covariances in equation (16.5). Values for 
the latter three columns and rows remain small because 
these relationships had very small τ̂ab values.

16.3.4.6 Test of No Association, with H02: q = 0  
Meta-analysts nearly always want to know whether any 

correlations in the matrix q are nonzero, that is, to test H02: 
q = 0. Rejecting H02 implies that at least one element of the 
matrix q is nonzero, but it does not mean that all elements 
are nonzero. GLS theory provides such a test for  
the correlation vector, and maximum-likelihood-based 
tests are also available and are given in metafor’s rma.mv 
routine. The GLS based test under random effects uses 
the statistic

q S qX XQ ˆ ˆ ˆ . (16.9)B
RE RE 1 1

RE( )= ′ ′  
− −

When the null hypothesis is true, QB has approximately 
a chi-square distribution with p* degrees of freedom. If 
the random-effects model is not called for, ŜRE can be 
replaced with S, or used as is, because it will be close  
to S under fixed effects (often within rounding error).

Becker and Fahrbach found that under fixed effects the 
rejection rate of QB for α = .05 was a bit high, but never 
more than .07, and was usually within .01 of α = .05 
(1994). When the within-study sample size was 250, the 
rate even dropped below .05 in some cases. Usually the 
test QB computed under random-effects conditions will 
be smaller than the analogous value using a fixed-effects 
mean and variance, thus effects are less likely to be 
judged significant in the context of the random-effects 
model. A similar test for a subset of correlations can be 
done by selecting a submatrix of m values from q̂RE and 
using the corresponding submatrices of X and ŜRE to 
compute QB for the subset of correlations.

Example. The value of QB based on the REML esti-
mates is quite large under both the fixed and random- 
effects models. Under the more appropriate random-ef-
fects model, QB = 403.9 with df = 6, suggesting that at 
least one population correlation differs from zero. 
Individual random-effects tests of the significance of  
the first two correlations do not reject the null (z = –0.28 
for the cognitive anxiety-performance correlation and  
z = –0.79 for somatic anxiety with performance). 
However, z = 2.53 for the correlation of self-confidence 
and performance, which reaches significance, as do all 
tests for the interpredictor correlations (p < .05).

16.3.4.7 Estimating Linear Models Once the meta- 
analyst has a mean correlation matrix, the next step in 
model-based meta-analysis is to estimate a function, series 
of regression equations, or structural model using the 
matrix of average correlations among the predictors and 
outcome, along with its covariance matrix. The model- 
based estimation procedure produces a set of standardized 
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slopes, and standard errors for those slopes. Individual 
slopes can be examined to determine whether each dif-
fers from zero (that is, the meta-analyst can test whether 
each β*

j = 0), which indicates a statistically significant 
contribution of the tested predictor to the relevant out-
come, adjusting for other included variables. An overall 
or omnibus test of whether all standardized slopes equal 
zero is also available, thus the meta-analyst can test the 
hypothesis that β*

j = 0 for all j.
Because standardized regression models express  

predictor-outcome relationships in terms of standard-devia-
tion units of change in the variables, comparisons of the 
relative importance of different predictors are possible. 
As in primary studies, the slopes themselves are interre-
lated, and appropriate comparisons of the relative impor-
tance of slopes account for the covariation between 
slopes (Becker 2000; Becker and Schram 1994). These 
comparisons can be accomplished by testing differences 
between coefficients for the samples of interest (Becker 
1992b), or via comparisons of models that constrain the 
model co  efficients to be equal or not (Cheung 2014).

Synthetic partial or semi-partial correlations can also 
be obtained from the mean by applying the same for-
mulas used with primary-study data to q̂RE (or a fixed- 
effects mean); to obtain appropriate standard errors the 
variance of the vector q̂RE must be taken into account. 
Aloe and Roberto Toro Rodriguez show that when all 
effects arise from studies that report on the same vari-
ables, computation of these coefficients using the mean 
correlation matrix produces on average the same point 
estimates and standard errors as those obtained from 
univariate synthesis of the analogous partial coeffi-
cients (2018).

In many model-driven meta-analyses, the goal is to 
estimate path models such as those shown in figures 16.1 
through 16.3. We can use q̂ or q̂RE (with an appropriate 
variance) to estimate a model under standard assump-
tions. We begin by arranging the mean correlations from 
q̂ or q̂RE in a square form, which we denote R

–
. The matrix 

R
–

 is partitioned so that the mean correlations of the pre-
dictors with the outcome of interest are in submatrix R

–
XY, 

and the intercorrelations among the predictors appear in 
R
–

XX. Different subsets of R
–

 are used depending on the 
model(s) to be estimated.

Working with the 4 × 4 matrix of means from the Craft 
et al. data, the matrix is arranged so that correlations 
involving sport performance are in the first row and col-
umn. We partition the matrix as follows to estimate a 
model with performance as the outcome. R

–
XY is a vector 

of three values (–.034, –.071, .233)′ and R
–

XX is the lower 
square matrix:

=

− −

− −

− −

− −

=

1 .034 .071 .233

.034 1 .544 .453

.071 .544 1 .397

.233 .453 .397 1

1

.

XY

XY XX

R

R

R R

Then the product b* = R
–

x
–1
x R

–
XY is computed to obtain 

the standardized regression slopes in the structural model. 
Becker and her colleagues provide further details about 
the estimation of variances and tests associated with such 
models (Becker 1992b, 1995; Becker and Schram 1994). 
The variance of b* is obtained as a function of the vari-
ance of the vector form of R

–
 (here, Var(q̂RE)), or a subma-

trix of that variance if not all variables are used in the 
estimated model.

Multilevel structural equation modeling programs can 
be used to obtain many of these same results using multi-
group SEM analyses (Cheung and Chan 2005). The 
MASEM and TSSEM approaches also provide tests of 
model quality as well as model-comparison tests that 
enable the reviewer to evaluate the importance of sets of 
paths in the model. Both fixed-effects and random-effects 
approaches exist (Cheung and Cheung 2016).

Example. A path model was estimated for the example 
data on anxiety and sport behavior, under random-effects 
assumptions. Figure 16.4 shows that only self-confidence is 
a significant direct predictor of sport behavior under the 
random-effects model. (Dashed lines represent paths that 
were tested but found not significant.) Moreover, the esti-
mates suggest that both cognitive and somatic aspects of 
anxiety appear to have indirect effects, via self-confidence. 
Both are significant predictors of self-confidence, even 
under the random-effects model. The REML estimate of the 
contribution of somatic anxiety is slightly lower and is not 
significant.

Presenting more information than just the path coeffi-
cients and some indication of their significance on path 
diagrams makes the images very “busy.” Thus it is not a 
good idea to add standard errors to the display, much as 
in primary-study applications of SEM. Brown and her 
colleagues tabled the slope coefficients, their standard 
errors (SEs), and p-values for z tests computed as the 
slope-to-SE ratio (2016). This information can also be 
presented in text as the slopes are discussed. For example, 
the path from self-confidence to performance shows that 
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a one standard-deviation shift in self-confidence has just 
over a quarter of a standard deviation impact on sport 
performance (with a slope of 0.27, SE = 0.105, z = 2.59, 
and p = .001). Other slopes could be discussed in a simi-
lar fashion. Last, the variance explained in performance 
is estimated using an approach parallel to that used in 

primary studies (Cooley and Lohnes 1971, 53). The three 
anxiety subscales explain only 6.08 percent of variation 
in sport performance, suggesting that considerable vari-
ability in performance is not accounted for.

16.3.4.8 Moderator Analyses A last step one might 
take in the analysis of a model via meta-analysis is to exam-
ine categorical moderator variables. To do so, separate 
models are estimated for the groups of interest and com-
pared; if using Cheung’s estimation approach, constraints 
can be applied then tested to examine whether equality of 
subgroup slopes holds.

For the anxiety data, we examine the moderator “type 
of sport activity”—specifically, we have four studies of 
team sports (type T in table 16.1) versus six of individual 
sports (type = I). Figure 16.5 shows the slopes from team 
sports (in the left panel) and individual sports (to the 
right). Again, dashed lines represent paths with coeffi-
cients that do not differ from zero.

Because the data sets are relatively small, coefficients 
of the same magnitude as found for the full set of studies 
now do not reach significance, and on the whole, the anx-
iety measures do not seem to predict sport performance 
well for team sports. For individual sports, somatic anxi-
ety relates to self-confidence when controlling for cogni-
tive anxiety, whereas the path does not reach significance 
for team sports. We discuss only one specific comparison 
for illustrative purposes.

Example. The contribution of self-confidence to per-
formance appears significant for individual sports but not 

(Y )

Sport performance 

Cognitive
(X1)

Somatic
(X2)

Self 
confidence 

(X3)

.10 .27*

–.34* –.22*

–.02

Figure 16.4 Random-Effects Path Coefficients for Prediction 
of Sport Performance

source: Authors’ tabulation.

Figure 16.5 Random-Effects Path Coefficients for Prediction by Type of Sport

source: Authors’ tabulation.

–.33* –.34*
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Individual sports performance
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(X2)

.09

(Y)
Team sports performance

Cognitive
(X1)

Somatic
(X2)

Self-
confidence 

(X3)

Self-
confidence 

(X3)

.18 –.09

–.38* –.14

.28 .03.30*
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for team sports, in spite of being close in value. Because 
the studies of the two types of sport are independent, 
we can construct a test of differences in the slopes. The 
variance-covariance matrices of the slopes for the 
direct effects on performance in each subgroup are 
below; the last diagonal element in each is needed for 
the test:

0.0813 0.0112 0.0155

0.0112 0.0082 0.0106

0.0515 0.0106 0.0431

0.0399 0.0073 0.0170

0.0073 0.0163 0.0037

0.0170 0.0037 0.0208

Team Sports Performance Individual Sports Performance

































−

−

In large samples the difference in slopes is approximately 
normal, thus we use

( )
( ) ( )

( )=
−

+
= −

+

= − = −

z
b b

Var b Var b

* * .28 .30

.0431 .0208* *

.02

.2528
0.079.

T I

T I

This can be compared with critical values of the stan-
dard normal distribution. For a two-sided test at the .05 
level this difference clearly does not reach significance, 
so we fail to reject the hypothesis that b*

T = b*
I and con-

clude that self-confidence is equally important to perfor-
mance for individual and team sports.

16.3.4.9 Synthetic Partial Correlations In cases 
where a complex model is not of interest, it may make 
sense to examine just a single partial correlation. This can 
be done using a standard univariate meta-analysis of par-
tial correlations, or by estimating what we term a syn-
thetic partial correlation matrix from the summary 
correlation matrix. Using an appropriate estimator of the 
mean to create the square matrix R

–
 for the full set of studies, 

we obtain the partial correlation matrix via

R R R Rdiag diag .partial
1 1 1

1
2

1
2( ) ( )( ) ( )= − − − − − −

Estimating the partial correlation matrix in this way 
can produce negative diagonal elements, which are typi-
cally ignored. For our example, using the mean q̂RE for 
R
–

 produces a synthetic partial correlation matrix (where 
the correlation for each pair of variables adjusts for all 
others) with values

− −

− −

− − −

− − −





















1 .080 .014 .237

.080 1 .445 .317

.014 .445 1 .193

.237 .317 .193 1

.

Thus, in this matrix the synthetic partial correlation of 
self-confidence and performance adjusting both for cog-
nitive anxiety and somatic anxiety is 0.237, with SE = 
.091. The SE is obtained from the variance-covariance 
matrix of the synthetic partial correlation. It is based on 
the multivariate delta method and is given in Aloe and 
Toro Rodriguez (2018). Its values for our example are



























− − −

− − − −

− −

− − −

− − −

− − −

0.0137 0.0007 0.0053 0.0004 0.0045 0.0016

0.0007 0.0038 0.0007 0.0007 0.0002 0.0016

0.0053 0.0007 0.0083 0.0017 0.0005 0.0025

0.0004 0.0007 0.0017 0.0018 0.0000 0.0016

0.0045 0.0002 0.0005 0.0000 0.0051 0.0027

0.0016 0.0016 0.0025 0.0016 0.0027 0.0043

.

Alternately, the meta-analyst may estimate the desired 
partial correlation directly for each study, and then synthe-
size those partial correlations directly. This requires that 
each study provide the necessary elements to compute the 
partial r. For our data set studies 6 and 17 do not present all 
the necessary elements to estimate the partial correlation of 
self-confidence and performance adjusting both for cogni-
tive anxiety and somatic anxiety. The partial correlation 
values for the 8 samples with sufficient data for computa-
tion range from –0.07 to 0.65 and are shown in table 16.2.

A univariate analysis of these values under random 
effects (see chapter 12) obtained using metafor produces 
a mean partial r of 0.328 (SE = 0.090). This mean is 
slightly higher than that from the synthetic partial cor-
relation analysis, and its SE is similar to the synthetic  
partial’s SE of .091. This is explained in part by the fact 
that study 16, which contributed data to the synthetic-par-
tial-correlation computation above but not to the direct 
synthesis of partial r values, had the only negative bivar-
iate correlation between self-confidence and perfor-
mance. The partial correlations are heterogeneous (Q(7) 
= 36.88, p < .001) with between-studies variance of 
0.047. Thus 95 percent of the true partial correlations are 
likely to lie between –0.10 and 0.75, a very broad range 
of population values.
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16.4 SUMMARY AND FUTURE POSSIBILITIES

Although the steps and data required to implement a 
model-based meta-analysis are definitely more complex 
and involved than those for other meta-analyses, if the 
questions of interest are suitable, the benefits of the model- 
based analyses are well worth the effort. In this chapter, 
we illustrate the strengths of model-based analyses for 
examining such complexities as partial relationships, 
mediating variables, and indirect effects. The small data 
set used for the examples did not allow for an illustration 
of the ways model-based meta-analysis can identify areas 
in need of further exploration, but some of the examples 
drawn from the literature make clear that even when data 
are sparse, much can still be learned. For example, 
Whiteside and Becker discovered that nine of the nine-
ty-one correlations among the fourteen variables in their 
studies of children of divorce had not been examined 
(2000). Of key importance was the absence of data on the 
relations of amount of father visitation, pre-separation 
father involvement, and current father involvement to 
cognitive outcomes. This made it impossible to study the 
roles of these three potentially important variables in 
child cognitive outcomes.

Using mean correlation matrices to obtain regressions 
across studies solves the problem of having different scales 
of measurement—a factor that often limits whether regres-
sions can be directly combined. Becker and Wu compared 
regression models derived from pooled correlation matrices 
with the slopes one would obtain from a pooled sample of 

data, such as an individual-participant-data analysis (2007). 
They showed that under fixed-effects models, when esti-
mates of mean squared error are available, a summary of 
slopes from identical models will be equivalent to the same 
regression model computed from the pooled primary data. 
However, meta-analytic summaries of slopes may differ 
from pooled-analysis results when the models from which 
slopes are drawn are not identical across studies.

One key benefit of estimating partial correlations and 
slopes from the mean correlation matrix is that covari-
ances among the synthetic partial r values or slopes can 
be obtained. On the other hand, a clear benefit of summa-
rizing partial effects estimated directly from each study is 
that the meta-analyst can analyze these effects using uni-
variate techniques, estimating between-studies variances 
in the metric of the partial correlation or slope; these are 
not available when partial effect values are computed 
from the mean correlation matrix.

Is the model-based meta-analysis approach of estimat-
ing a regression model or synthetic partial correlation 
from a summary of correlation matrices preferable to a 
direct synthesis of regression slopes or partial correla-
tions? Aloe and Toro Rodriguez’s results suggest that 
either approach can be applied to obtain mean partial cor-
relations, if appropriate data are available (2018). Their 
results may apply to other indices such as regression 
slopes and semi-partial correlations; however this topic 
needs further investigation.

Technically, for raw slopes or standardized slopes to be 
comparable across studies, the same set of predictors 
should appear in all of the regression models to be syn-
thesized. This is almost never the case, as researchers 
build upon and add to models already appearing in the 
literature, making exact replications very rare (Makel, 
Plucker, and Hegarty 2012).

Other complications arise when summarizing sets of 
regression models, such as the need to consider the scales 
of both the predictors and outcomes in a synthesis of raw 
regression slopes (Becker and Wu 2007). If slopes can be 
transformed to a common scale, or if slopes from stan-
dardized regression models are available (Kim 2011), 
then they can be combined. However, this is often not pos-
sible in the social sciences where no “true” scale exists. 
Because correlations are scale free, this issue is skirted in 
regressions and path models estimated via model-based 
meta-analysis. Model-based methods and summaries of 
correlation matrices give the meta-analyst sensible ways 
to address complicated questions about interrelationships 
among variables via research synthesis.

Table 16.2  Self-Confidence and Sports Performance, 
Adjusting for Cognitive and Somatic Anxiety

 
ID

 
n

Partial Correlation 
of Self-Confidence 
with Performance

 
Variance

1 142 .536 0.0037

3 37 .332 0.0240

10 14 –.070 0.0990

22 100 .654 0.0034

26 51 .044 0.0212

28 128 .247 0.0071

36 70 .434 0.0100

38 30 –.024 0.0384

source: Authors’ calculations based on Craft et al. 2003.
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17.1 INTRODUCTION

This chapter presents strategies for examining the sensi-
tivity of meta-analysis results to missing data on predic-
tors in linear models of effect size, or meta-regression. 
Researchers using meta-analysis will invariably find that 
studies in a research synthesis differ in the types and 
quality of the information reported. The chapter accord-
ingly discusses the types of missing data that occur in a 
research synthesis, and statistical methods researchers 
can use to explore the sensitivity of their results to miss-
ing data. The goal of methods for handling missing data 
in any statistical analysis is not to recover the values for 
the missing observations, but instead to examine the extent 
to which missing data may potentially affect the conclu-
sion drawn in the analysis.

Researchers should attempt to recover any missing 
data as a first strategy in any meta-analysis by contacting 
the authors of the primary study included in the meta- 
analysis. When recovery of the missing information is 
unsuccessful, the next strategy is to use statistical meth-
ods for missing data to check the sensitivity of results to 
the presence of missing data. The robustness of meta- 
analysis results can be assessed by providing evidence 
about the potential risk of bias of results under different 
assumptions about the missing data. The main goal of 
statistical methods for missing data is to make valid 
inferences about a population of interest (Graham and 
Schafer 1999). This chapter introduces methods for test-
ing the sensitivity of meta-analysis results when missing 
data occur.

The focus is on missing data in the meta-analysis of 
study-level data, particularly when missing data occurs 
in predictors of effect-size models. Although researchers 
have developed missing data methods for individual par-
ticipant data meta-analysis (IPD), it is not covered in this 
chapter (Burgess et al. 2013; Jolani et al. 2015; Quartagno 
and Carpenter 2016). Missing data also occurs in more 
complex meta-analysis models such as network meta- 
analysis but these emerging methods will also not be 
addressed here.

17.2 TYPES OF MISSING DATA

Researchers conducting systematic reviews encounter 
missing data in three ways in a meta-analysis: in the form 
of missing studies, missing effect sizes (or information 
needed to compute effect sizes), and missing study 
descriptors that could be used in an effect-size model. As 

will be detailed later, understanding both the type of 
missing data and the potential reasons for the missing-
ness are important for choosing strategies for handling 
missing data. Although the reasons for missing observa-
tions on any of these three areas vary, each type of miss-
ing data presents difficulties for the analysis.

17.2.1 Missing Studies

A number of mechanisms might lead to studies missing 
in a research synthesis. Researchers in both medicine and 
in the social sciences have documented the bias in the 
published literature toward statistically significant results 
(see, for example, Rosenthal 1979; Hemminki 1980; 
Smith 1980; Begg and Berlin 1988; Rothstein, Sutton, 
and Borenstein 2005). Chapter 18 in this volume dis-
cusses the identification of publication bias in a meta- 
analysis and methods for examining the sensitivity of 
results to the presence of publication bias. Another reason 
studies may be missing in a synthesis is accessibility. 
Some studies may be unpublished reports that are not 
identifiable through commonly used search strategies. For 
example, Matthias Egger and George Davey (1998) and 
Peter Jüni and his colleagues (2002) both demonstrate that 
studies published in languages other than English are 
not only more difficult to identify, but might also produce 
results different from studies in English.

Researchers undertaking a comprehensive synthesis 
expend significant effort identifying and obtaining unpub-
lished studies to maintain the representative nature of 
the sample for the synthesis. Strategies for preventing, 
assessing and adjusting for publication bias are examined,  
as mentioned, in the next chapter (see also Rothstein, 
Sutton, and Borenstein 2005). The focus here is therefore 
on missing data within studies, not on how to handle pub-
lication bias.

17.2.2 Missing Effect Sizes

A common problem in research syntheses is missing infor-
mation for computing an effect size. Researchers com-
monly encounter studies that are missing the descriptive 
statistics needed to compute an effect size, such as the 
group means and standard deviations required for the 
computation of a standardized mean difference. In this 
scenario, the author of the primary study did not report 
enough information to compute an effect size. An-Wen 
Chan and colleagues refer to these studies as having 
incompletely reported outcomes (2004). Studies may 



MISSING DATA IN META-ANALYSIS   369

also only partially report outcomes, such as including 
only the value of the effect size, the sample size, or 
p-value, but not the values of the summary information 
needed to compute the effect size directly. Studies with 
qualitatively reported outcomes may include only the 
p-value, with or without the sample size. In some cases, 
an estimated effect size could be computed based on the 
p-value and sample sizes, or the value of the test statistic. 
David Wilson’s effect-size calculator can be used to com-
pute effect sizes from a variety of statistics (2016).

Effect sizes might also be missing from a study because 
a study has selectively reported outcomes. The issue of 
selective outcome reporting has been well documented 
in the medical literature (Hutton and Williamson 2000; 
Vedula et al. 2009; Kirkham et al. 2010), and in educa-
tion (Pigott et al. 2013). Primary researchers may have a 
range of reasons for not reporting all the outcomes col-
lected in a study. In some cases, authors may not have 
space in the article to provide information about all out-
comes, and thus may report only on outcomes considered 
central. In other cases, they may omit outcomes because 
statistical tests of those outcomes were not statistically 
significant. The issue of outcome reporting bias is of 
great interest in the medical and social science literature 
at present given concerns about the overall quality of 
research and subsequent policy decisions (Ioannidis 2005). 
Effect sizes are often missing from primary studies because 
the statistical tests for these outcomes are not statisti-
cally significant.

A problem related to missing effect sizes is missing 
outcome data within studies. If an individual patient does 
not have a measure for the target outcome, then that 
patient cannot provide any information about the efficacy 
of the treatment, leading to a potentially biased estimate 
of the effect size. Studies have explored methods for 
missing outcome data in clinical trials, methods that 
could lead reviewers to compute a more accurate effect 
size for a study included in a meta-analysis (Higgins, 
White, and Wood 2008; Jackson et al. 2014). Another 
strategy for handling missing outcome data in a study is 
the use of pattern mixture models (Little 1993; Andridge 
and Little 2011). Dimitris Mavridis and his colleagues 
provide an overview of methods for addressing missing 
outcome data in meta-analysis (2014). Mavridis and his 
colleagues later build on Roderick Little’s work on  
pattern-mixture models, developing techniques for miss-
ing outcome data in study-level and network meta- 
analysis (Mavridis et al. 2015; Little 1993). Studies may 
also fail to report information about the sample variances 

needed to compute an effect size. Missing variances of 
mea sures collected in a study leads directly to missing 
effect sizes. Amit Chowdhry, Robert Dworkin, and 
Michael McDermott discuss a method to handle missing 
sampling variances within studies and test its performance 
through simulation (2015). More research is needed on 
whether these techniques developed for meta-analyses  
in medicine could apply to the social sciences where the 
meta-analyses include a larger number of studies, and 
where reporting standards are less rigorous.

When effect sizes are missing from a study, most 
reviewers drop these studies from the analysis. As dis-
cussed, researchers in medicine are developing a number 
of strategies for handling the problem of missing effect 
sizes, and these methods could prove useful beyond the 
medical literature. The remainder of this chapter focuses 
on missing data on predictors used for examining varia-
tion in effect sizes across studies.

17.2.3 Missing Predictor Variables

A major task in the data evaluation phase of a meta- 
analysis involves coding aspects of a study’s design and 
methods. Studies may be missing potential predictors 
that might be used as moderators in an effect-size model 
because the primary authors did not collect this informa-
tion or did not report it. Missing descriptor variables are 
an inherent problem in meta-analysis given that not every 
study author will collect or report the same information. 
For example, Seokyung Hahn and colleagues were inter-
ested in studying whether the effect of prophylactic malaria 
treatment for pregnant women differs as a function of 
whether a woman is pregnant for the first time (2000). 
However, not all studies reported on whether study par-
ticipants were experiencing their first pregnancy and thus 
they could not complete this analysis.

Missing data on study descriptor variables arise because 
of differences among research synthesists and primary 
researchers in the importance placed on particular infor-
mation. Synthesists may have hypotheses about how 
variation in study methods and procedures might relate to 
variation in effect size, whereas primary authors are con-
cerned about the design and implementations of a single 
study. One way that missing descriptor variables in a 
study might occur is due to disciplinary practices in a 
given field. Robert Orwin and David Cordray use the 
term macrolevel reporting to refer to practices in a given 
research area that influence how constructs are defined 
and reported (1985). For example, Selcuk Sirin finds 
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several measures of socioeconomic status reported in 
his meta-analysis of the relationship between academic 
achievement and socioeconomic status (SES) (2005). 
These measures include parent scores on Hollingshead’s 
occupational status scale, parental income, parental edu-
cation level, free lunch eligibility in school and compos-
ites of several of these measures. Differences in the types 
of SES measures reported could derive from traditional 
ways disciplines have reported SES. Education research-
ers may tend to have more access to free lunch eligibility 
status when gathering data, whereas economists may use 
large data sets with income data reported.

Primary authors also differ from each other in writing 
style and thoroughness of reporting. Orwin and Cordray 
refer to individual differences of primary authors as micro
level reporting quality (1985). In this case, whether a given 
descriptor is reported across a set of studies may be random 
given that it depends on individual writing preferences 
and practices. Primary authors may also be constrained by 
a particular journal’s publication practices, and thus do 
not report on information a synthesis considers import-
ant. Individual journal reporting constraints would likely 
result in descriptors missing randomly from a study.

Study descriptors may also be missing from primary 
study reports because of selective reporting. As in out-
come reporting bias, primary study authors may selec-
tively report on study descriptors because of the actual 
values of those descriptors. For example, a primary author 
might not report the gender of the participant sample if 
an outcome does not differ significantly by gender. It is 
also hard to imagine that a primary author might report 
on the racial and ethnic background of study participants 
when the sample is more homogeneous than the author 
intended. Synthesists often find that measures of attrition 
from a trial are missing, and many might assume that the 
amount of attrition could have influenced the decision to 
include the values in the report. When information about 
descriptor variables are missing because of their values, 
this selective reporting cannot be considered random, and 
leads to problems discussed later in this chapter. Also, 
potential study-level predictors of effect-size models may 
be reported as if they were completely observed within 
the study. For example, studies might report the average 
income level of participants based only on those study 
participants that provided their income level. Reviewers 
should consider coding the percentage of missing data on 
study-level descriptor variables to understand the impact 
of missing data at both the study level and at the level of 
the meta-analysis.

No matter what the reasons for missing data, research-
ers using meta-analysis also need to examine closely the 
pattern of the missing predictors. Meta-analysts often 
have a number of effect-size models they wish to fit in the 
presence of heterogeneity, and these models include a 
number of predictors. Missing data could affect each of 
these variables separately, and may dramatically reduce 
the number of cases that include complete data on two or 
more of these variables. Each model fit in a meta-analysis 
may draw on a different sample of cases from the origi-
nally identified studies.

17.3 REASONS FOR MISSING DATA

Roderick Little and Donald Rubin remains the seminal 
work on statistical analysis with missing data (2002). The 
strategies they discuss rely on specific assumptions the 
data analyst is willing to make about the reasons for 
missing data, and about the joint distribution of all vari-
ables in the data. Rubin had introduced a framework for 
describing the response mechanism, the reasons for why 
data may be missing in a given research study in 1976. 
This framework describes three assumptions about the 
nature of the missing data: missing completely at random 
(MCAR), missing at random (MAR), and not missing at 
random (NMAR). These assumptions are described in 
the context of typical meta-analytic data in the following 
sections. The potential mechanism for the missing data is 
critical for choosing an analysis strategy when missing 
data occur, as we see later in the chapter.

17.3.1 Missing Completely at Random

Data are missing completely at random when the observed 
data can be considered a random sample of the originally 
collected data. For example, primary study authors might 
differ on whether they report on particular details of a 
study. Educational researchers could differ on whether 
they report the exact enrollment of the schools in their 
sample. If school size is not an important factor in a given 
study, there may be no reason to suspect that the aver-
age size of schools in a given primary study is missing 
because of the value of the school. Thus a research syn-
thesis might postulate that average school size could be 
missing randomly from the set of studies identified for 
the synthesis. When data are MCAR, we assume that the 
probability of the values being missing are not related to 
their unobserved values or to values of any other observed 
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or unobserved variables in the data set. When data are 
MCAR, the studies with completely observed data can 
be considered a random sample of the studies originally 
identified for the synthesis.

17.3.2 Missing at Random

We refer to data as missing at random when the probabil-
ity of missing a value on a variable is not related to the 
missing value, but may be related to other observed vari-
ables in the data. For example, Selcuk Sirin reports on a 
number of moderator analyses in his meta-analysis of 
the relationship between SES and academic achievement 
(2005). One moderator examined is type of components 
of measured SES. These include parental education, paren-
tal occupation, parental income, and eligibility for free or 
reduced lunch. A second source is source of information 
on SES, whether parent, student, or a secondary source. 
Imagine if all studies report the source of information on 
SES but not all report the component used. It is likely that 
the source of information on SES is highly related to the 
component of SES measured in the study. Students are 
much less likely to report income, but may be more likely 
to report on parental education or occupation. Secondary 
sources of income are usually derived from eligibility for 
free or reduced lunch. In this case, the component of SES 
is missing at random because we can assume that the like-
lihood of observing any given component of SES depends 
on the completely observed value, source of SES infor-
mation. Note that MAR refers to what is formally called 
the response mechanism. This is generally unobservable, 
unless a researcher can gather direct information from 
participants about why they did not respond to a given 
survey question, or from primary authors about why they 
did not collect a particular variable.

17.3.3 Not Missing at Random

We refer to data as not missing at random when the prob-
ability of observing a given value for a variable is related 
to the missing value itself. For example, effect sizes are 
not missing at random when they are not reported in a 
study because they are not statistically significant (see 
Chan et al. 2004; Williamson et al. 2005). In this exam-
ple, data are not missing at random due to a censoring 
mechanism, which results in certain values having a 
higher probability of being missing than other values. 
Meta-analysts have developed methods to handle cen-
sored effect-size data in the special case of publication 

bias (for example, Hedges and Vevea 1996; Vevea and 
Woods 2005; chapter 18, this volume).

Missing study descriptors could also be NMAR. Pri-
mary authors whose research participants are racially 
homogeneous may not report fully on the distribution of 
ethnicities among participants as a way to provide a more 
positive picture of their study. As with the effect-size 
example, the actual ethnic distribution of the samples are 
related to their probability of being missing. When poten-
tial predictors in effect-size models are missing because 
of reporting bias, the response mechanism is NMAR.

Synthesists rarely have direct evidence about the rea-
sons for missing data and need to assume data are MCAR, 
MAR, or NMAR when they are conducting sensitivity 
analyses to examine the robustness of meta-analysis 
results to missing data. In the rest of the chapter, I discuss 
the options available to meta-analysts when faced with 
various forms of missing data.

17.4 COMMONLY USED METHODS

Before Little and Rubin, most researchers used one of 
three strategies to handle missing data: using only those 
cases with all variables completely observed (listwise 
deletion), using available cases that have particular pairs 
of variables observed (pairwise deletion), or replacing 
missing values in a given variable with a single value 
such as the mean for the complete cases (single-value 
imputation) (2002). These methods will not uniformly 
produce results that are defensible.

17.4.1 Complete Case Analysis

In complete case analysis, the researcher uses only those 
cases with all variables fully observed. This procedure, 
also known as listwise deletion, is usually the default pro-
cedure for many statistical computer packages. When 
some cases are missing values of a particular variable, 
only cases observing all the variables in the analysis are 
used. When the missing data are MCAR, the complete 
cases can be considered a random sample from the origi-
nally identified set of cases. Thus, a synthesist can make 
the assumption that values are in fact missing completely 
at random, using only complete cases will produce unbi-
ased results.

Complete case analysis for models of effect size is 
likely one of the most common methods used when miss-
ing data on predictors occurs. Research synthesists typi-
cally use only those studies reporting on a given predictor 
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when estimating a model of effect-size variation. But in 
meta-analysis as in other statistical analyses, using only 
complete cases can seriously limit the number of obser-
vations available for the analysis. Losing cases decreases 
the power of the analysis and ignores the information 
contained in the incomplete cases (Kim and Curry 1977; 
Little and Rubin 2002). When data are NMAR or MAR, 
complete case analysis yields biased estimates because 
the complete cases cannot be considered representative 
of the original sample. If studies are missing predictors 
for a given model and these predictors are missing either 
because of their values or due to the values of other 
observed predictors in the model, using only complete 
cases will lead to bias in the estimates of the model. For 
example, say the authors are interested in how the efficacy 
of an intervention differs for high- versus low-income 
students. If income information tends to be missing for 
studies with higher-income students, then using only 
complete cases will lead to a biased estimate of the rela-
tionship between treatment efficacy and students’ income 
level. If the probability of observing income is related to 
another observed variable, such as achievement, complete 
case analysis in a model with only income-predicting 
effect size will also lead to a biased estimate.

17.4.1.1 Complete Case Analysis Example Table 17.1 
presents a subset of studies from a meta-analysis examin-
ing the effects of oral anticoagulant therapy for patients 
with coronary artery disease (adapted from Sonia Anand 
and Salim Yusuf 1999). To illustrate the use of missing 
data methods with MCAR and MAR data, I used two 
methods for deleting the age of the study in the total data 
set. For MCAR data, I randomly deleted ten values (30 per-
cent) of study age from the data. For MAR data, I ran-
domly deleted the value of study age from ten of the studies 
that reported providing a high dose of oral anti coagulants 
to patients. The last two columns of table 17.1 indicate the 
cases that are missing study age under the conditions of 
MCAR and MAR. This simple example used throughout 
the chapter is suggestive of issues that may arise with miss-
ing data; more rigorous simulation studies are needed to 
understand how these methods work in meta-analysis.

Table 17.2 compares the complete case analysis results 
of a random-effects meta-regression for examining the 
variation in the log-odds ratio across studies as a function 
of the magnitude of the oral anticoagulant dose and the 
age of the study. Two dummy variables were coded for 
dose—high and moderate. Although the model as a whole 
is not significant, we can examine the value of the esti-
mates for each coefficient. The complete case analysis 

with MCAR data provides results consistent in effect 
direction with the results from the original data set. The 
coefficients for high and moderate doses are smaller than 
the original data. The complete case results with MAR 
data, however, differ in both direction and magnitude. 
Unless data can be considered MCAR, complete case 
analysis will produce biased estimates (Schafer 1997; 
Enders 2010).

17.4.2 Available Case Analysis

An available case analysis, also called pairwise analysis, 
estimates parameters using as much data as possible. An 
available case analysis uses all the complete cases for the 
estimates of the means, and for bivariate statistics, such 
as correlations, uses all possible pairs of observations. In 
table 17.1, we would use all the cases to estimate the cor-
relation between the log-odds ratio and dose, but only 
those complete cases for the correlation between the log-
odds ratio and age. If there were an additional variable in 
the data with missing data, there could be another set of 
cases that we would use to estimate this variable’s cor-
relation with the log-odds ratio.

This simple example illustrates the drawback of using 
available case analysis: each correlation in the variance- 
covariance matrix estimated using available cases could 
be based on different subsets of the original data set. If 
data are MCAR, these subsets are individually represen-
tative of the original data, and available case analysis 
provides unbiased estimates. If the data are MAR, how-
ever, these subsets are not individually representative of 
the original data and will produce biased estimates.

Much of the early research on methods for missing data 
focuses on the performance of available case analysis 
versus complete case analysis (for example, Glasser 1964; 
Haitovsky 1968; Kim and Curry 1977). Kyle Fahrbach 
examines the research on available case analysis and 
concludes that such methods provide more efficient esti-
mators than complete case analysis when correlations 
between two independent variables are moderate, that is, 
around 0.6 (2001). This view, however, is not shared by 
all who have examined this literature (see, for example, 
Allison 2002). One statistical problem that could arise 
from the use of available cases under any form of missing 
data is a nonpositive definite variance-covariance matrix, 
that is, a variance-covariance matrix that cannot be 
inverted to obtain the estimates of slopes for a regression 
model. One reason for this problem is that different sub-
sets of studies are used to compute the elements of the 



Table 17.1 Oral Anticoagulant Therapy Data

ID
Log-Odds 

Ratio

Variance of 
Log-Odds 

Ratio
Intensity  
of Dose

Year of 
Publication

Age of 
Study

MCAR 
Data

MAR 
Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

3.02
–1.84
0.24
0.15
0.47
0.38

–0.38
–0.47
–0.25
0.22
0.84
0.35
0.33
0.12

–1.81
0.43
0.18
0.39
0.9
0.65
1.42
0.14
0.04
0.35
0.08
0.06
0.43

–1.16
0.75
0.81
0.04
0.35
0.34
0.15

2.21
0.8
0.16
0.07
0.07
0.28
0.18
0.22
0.07
0.1
0.08
0.04
0.02
0.01
0.82
0.02
0.06
0.07
0.41
0.29
2.74
4.06
1.36
0.35
0.03
0.03
0.07
0.93
0.98
0.6
0.82
0.70
0.06
0.02

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Low
Low
Low

1960
1960
1961
1961
1964
1964
1966
1967
1967
1969
1969
1980
1990
1994
1969
1974
1980
1980
1993
1996
1990
1990
1982
1981
1982
1969
1964
1986
1982
1998
1994
1998
1997
1997

39
39
38
38
35
35
33
32
32
30
30
19
9
5

30
25
19
19
6
3
9
9

17
18
17
30
35
13
17
1
5
1
2
2

0
1
0
1
1
1
1
0
1
0
0
1
0
1
1
1
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
1
1

0
0
1
0
0
1
0
1
0
0
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

source: Author’s tabulation based on Anand and Yusuf 1999.
note: In last two columns, 0 = study age is missing in this scenario.

Table 17.2 Complete Case Results

Full Data MCAR Data MAR Data

Coefficient Estimate SE Estimate SE Estimate SE

Intercept
High dose
Moderate dose
Age of study

0.213
0.060

–0.033
–0.001

0.142
0.180
0.216
0.005

0.214
0.014

–0.012
–0.002

0.153
0.209
0.239
0.006

0.193
–0.008
–0.149
0.004

0.122
0.152
0.206
0.006

source: Author’s compilation.
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variance-covariance matrix. Further, Paul Allison points 
out that a more difficult problem in the application of 
available case analysis concerns the computation of stan-
dard errors of available case estimates (2002). At issue is 
the correct sample size when computing standard errors, 
given that each parameter could be estimated with a dif-
ferent subset of data. Some of the standard errors could 
be based on the full data set, and others on the subset of 
studies that observe a particular variable or pair of vari-
ables. Most statistical computing packages provide the 
option of available case analysis or listwise deletion, but 
how standard errors are computed differs widely.

Although available case analysis appears sensible given 
that it uses all available data, consensus is scant in the lit-
erature about the conditions where available case analysis 
outperforms complete case analysis when data are MCAR. 
A version of available case analysis occurs when research 
synthesists fit a number of different models to the data, 
and thus inadvertently use different sets of cases for each 
model fit. For example, if we were exploring different 
models for the oral anticoagulant data, we might first fit 
a model with dose, and then add study age. If we were not 
careful about the missing data, we might try to compare 
these two models despite the fact that they use different 
sets of cases. Harris Cooper calls this strategy a shifting 
units of analysis approach, a common method in meta- 
analysis (2017). Reviewers need to be aware of the dif-
ferent samples used to fit effect-size models.

17.4.3 Single-Value Imputation Methods

When values are missing in a meta-analysis (or any statis-
tical analysis), many researchers replace the missing value 
with a reasonable value, such as the mean for the cases that 
observed the variable. Little and Rubin refer to this strat-
egy as single-value imputation (2002). In meta-analysis, 
researchers may fill in the complete case mean for a miss-
ing predictor value. Another strategy uses regression with 
the complete cases to estimate predicted values for miss-
ing observations given the observed values in a particular 
case. Single-value imputation methods do not provide 
accurate standard errors for any statistical analysis because 
the filled-in data set is treated as if it had no incomplete 
cases. The sample sizes for all analyses will be that for 
the original data set without accounting for the uncertainty 
caused by missing values. The problems with single-value 
imputation are illustrated in the following section.

17.4.3.1 Imputing the Complete Case Mean  
Replacing the missing values in a variable with the com-

plete case mean of the variable is also referred to as 
unconditional mean imputation. When we substitute a 
single value for all the missing values, we decrease the 
variation in that variable. The estimated variance thus does 
not reflect the true uncertainty in the variable. Instead, the 
smaller variance wrongly indicates more certainty about 
the value than is warranted. Whenever we fill in the mean 
of a missing predictor in a meta-analysis model, the 
variance associated with that filled-in variable will be 
decreased. Table 17.3 compares the results of using mean 
imputation for the missing values of study age for the 
MCAR and MAR data. Note that different mean values 
are used to fill in the missing values for the MCAR and 
MAR data as the complete case mean for these two sce-
narios differ. For the MCAR data, the missing values 
were filled in with a mean study age of 20.08, whereas 
the missing values for the MAR data used a value of 
16.42. (In comparison, the mean study age of the full data 
is 20.35). The estimates and their standard errors for the 
MCAR data are consistent with the full data values, 
wrongly reflecting the amount of certainty in the esti-
mates given that 30 percent of the studies are missing 
study age. The estimates in the MAR data differ in mag-
nitude and direction. They also have standard errors that 
do not reflect the actual uncertainty present due to miss-
ing values. Under the assumption of MCAR, imputing 
the complete case mean might provide parameter esti-
mates close to the true values, but the standard errors will 
not be reflective of the uncertainty caused by missing data. 
It is likely that filling in a mean value for a missing pre-
dictor could lead a researcher to find statistical significance 
when it is not warranted.

17.4.3.2 Single-Value Imputation with Conditional 
Means A single-value imputation method that provides 
less biased results with missing data was first suggested 
a half century ago by S. F. Buck (1960). Each missing 

Table 17.3 Mean Imputation Results

MCAR MAR

Coefficient Estimate SE Estimate SE

Intercept
High dose
Moderate dose
Age of study

0.215
0.063

–0.029
–0.001

0.144
0.189
0.226
0.006

0.197
0.001

–0.132
0.003

0.128
0.160
0.216
0.006

source: Author’s compilation.
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value is replaced not with the complete case mean but 
instead with the predicted value from a regression model 
using the variables observed in that particular case as 
predictors and the missing variable as the outcome. This 
method is also referred to as conditional mean imputation 
or regression imputation. For each pattern of missing data, 
the cases with complete data on the variables in the pat-
tern are used to estimate regressions using the observed 
variables to predict the missing values. The result is that 
each missing value is replaced by a predicted value from 
a regression using the values of the observed variables in 
that case. When data are MCAR, each of the subsets used 
to estimate prediction equations are representative of the 
original sample. This method results in more variation 
than unconditional mean imputation because the missing 
values are replaced with those that depend on the regres-
sion equation. However, the standard errors using Buck’s 
method are too small because the missing values are 
replaced with predicted values that lie directly on the 
regression line used to impute the values. In other words, 
Buck’s method yields values predicted exactly by the 
regression equation without error.

Little and Rubin present the form of the bias for Buck’s 
method and suggest corrections to the estimated variances 
to account for the bias (2002). If we have two variables, 
Y1 and Y2 and Y2 has missing observations, then the form 
of the bias using Buck’s method to fill in values for Y2 is 
given by

( )( )− −( ) − sn n n 12 1
22.1

where n is the sample size, n(2) is the number of cases that 
observe Y2, and σ22.1 is the residual variance from the 
regression of Y2 on Y1. Little and Rubin also provide the 
more general form of the bias with more than two vari-
ables. This correction is applied to the variance-covariance 
matrix of the variables. To include this correction, the 
researcher would need to use the variance-covariance 
matrix to estimate the desired model.

Table 17.4 compares the results from regression impu-
tation with MCAR and MAR data. The imputation uses 
both the value of the effect sizes and the dose to gener-
ate the regression imputed values. The estimates in both 
analyses differ from the full data set. The MCAR esti-
mates for the coefficient of high dose are twice as large as 
those for the full data. Most notably, the standard errors 
are similar across all analyses, and thus do not reflect the 
uncertainty in the data. Thus, although regression imputa-

tion adds some variation to the estimates, the standard 
errors still do not reflect the uncertainty caused by missing 
data. In this simple example, even the MCAR estimates 
are biased.

Survey researchers have used a number of other single- 
value imputation methods to prevent the loss of infor-
mation from missing data including such strategies as 
hot-deck imputation, similar response pattern imputation 
and last observation carried forward (Enders 2010). Any 
single-value imputation strategy that does not adjust stan-
dard errors for the uncertainty caused by missing data 
will produce biased estimates no matter what mechanism 
leads to the missing observations.

17.4.4 Summary of Commonly Used Methods

When missing predictors in a meta-analysis are MCAR, 
complete case analysis can yield unbiased results, and the 
standard errors will reflect the sample size of the com-
plete cases used. Meta-analysts should be aware of the 
pattern of missing predictors so that they do not inadver-
tently use available case analysis when fitting effect-
size models. Single-value imputation methods will always 
underestimate the standard errors of the estimates and 
are not recommended for any meta-analysis. Researchers 
who use complete case analysis should be aware and 
should report that they are assuming that the missing data 
are MCAR in the analysis.

17.5 MODEL-BASED METHODS

Unfortunately, most commonly used methods for missing 
data produce biased estimates even when the data can be 
considered MCAR. Although the assumption of MCAR 
may be viable for some predictors in a meta-analysis 
model, the assumption of MAR data—that the probability 

Table 17.4 Regression Imputation Results

MCAR MAR

Coefficient Estimate SE Estimate SE

Intercept
High dose
Moderate dose
Age of study

0.223
0.137
0.074

–0.006

0.153
0.191
0.230
0.005

0.206
0.030

–0.075
0.001

0.136
0.173
0.221
0.006

source: Author’s compilation.
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for a missing predictor depends on another fully observed 
variable—may be more defensible in a meta-analysis. 
None of the commonly used methods produce unbiased 
estimates in the presence of MAR data. The general prob-
lem with commonly used methods is that they do not take 
into account the distribution of the hypothetically com-
plete data. For example, filing in the complete case mean 
for a missing observation may be a reasonable assump-
tion, but it is not based on a distribution for that variable. 
The missing data methods outlined begin with a model for 
the observed data, namely, that the data are distributed as 
multivariate normal, and assume that the missing data 
mechanism is ignorable, an assumption discussed later.

17.5.1 Assumptions for Model-Based Methods 

The general approach used in current missing data methods 
involves using the data at hand to draw valid conclusions, 
and not to recover all the missing information to create a 
complete data set. This approach is especially applicable 
to meta-analysis because missing data frequently occur 
because a variable was not measured and is not recover-
able. Researchers faced with missing data in meta-analysis 
should aim at testing the sensitivity of results to the pres-
ence of missing data rather than attempting to recreate a 
complete data set.

Model-based methods for missing data make strong 
assumptions about the distribution of the data, and about 
the mechanism that causes the missing observations. The 
set of methods most applicable to meta-analysis require 
the assumption that the joint distribution of the effect size 
and predictor variables is multivariate normal. A second 
assumption is that the reasons for the missing data do not 
depend on the values of the missing observations, that the 
missing data mechanism is either MCAR or MAR. As 
discussed, one major difficulty in applying missing data 
methods is that assumptions about the nature of the miss-
ing data mechanism cannot be tested empirically. These 
assumptions can only be subjected to the is-it-possible test, 
that is, is it possible that the reasons for missing obser-
vations on a particular variable do not depend directly 
on the values of that variable? Missing observations on 
income usually fail the test, because a well-known result in 
survey sampling is that respondents with higher incomes 
tend not to report their earnings. The following sec-
tion examines the assumptions needed for model-based 
methods for missing data in the context of meta-analysis.

17.5.1.1 Multivariate Normality The missing data 
methods rely on the assumption that the joint distribution 

of the data is multivariate normal. Thus, meta-analysts 
must assume that the joint distribution of the effect sizes 
and the variables coded from the studies in the review 
follow a normal distribution. One problematic issue in 
meta-analysis concerns the common incidence of catego-
rical predictors in effect-size models. Codes for character-
istics of studies often take on values that indicate whether 
a primary author used a particular method, such as random 
assignment, or a certain assessment for the outcome, such 
as standardized protocol or test, researcher developed 
rating scale, and so on. Joseph Schafer indicates that in 
the case of categorical predictors, the normal model will 
still prove useful if the categorical variables are com-
pletely observed, and the variables with missing observa-
tions can be assumed multivariate normal conditional on 
the variables with complete data (1997). This assumption 
holds in the oral anticoagulant data because the missing 
values of study age in the MAR data are randomly deleted 
within the studies that provided a high dose of the drug. 
We can still fulfill the multivariate normality condition 
if we can assume that the variable with missing observa-
tions is normally distributed conditional on a fully observed 
categorical variable. Some ordered categorical predictors 
can also be transformed to allow the normal assumption 
to apply. If key moderators of interest are non-ordered 
categorical variables, and these variables are missing 
observations, then missing data methods based on the 
multinomial model may apply. Although currently no 
research addresses how to handle missing categorical 
predictors in meta-analysis, researchers do discuss meth-
ods for nonnormal missing data that may hold promise 
for meta-analysis (see, for example, Schafer 1997; White, 
Royston, and Wood 2011).

17.5.1.2 Ignorable Response Mechanism Rubin dis-
cusses in detail the conditions under which a missing data 
mechanism is ignorable (1987). One of these conditions 
is that the probability of observing a value does not 
depend on the value that is missing, a condition that holds 
for both MCAR and MAR data. The two major model- 
based methods, maximum likelihood estimation using 
the EM algorithm and multiple imputation, will provide 
unbiased estimates with MCAR and MAR data. The MAR 
assumption holds only when the completely observed 
variables related to the probability of response for miss-
ing values are included in the model. Thus, research syn-
thesists using multiple imputation, for example, should 
include as many variables as possible when creating mul-
tiple imputations for a meta-analysis.
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17.5.2  Maximum Likelihood Methods  
Using EM Algorithm

Although maximum likelihood methods for missing data 
are widely used for missing data analysis, they have lim-
ited use in meta-analysis. Maximum likelihood methods 
using the EM algorithm (Dempster, Laird, and Rubin 
1977) provide unbiased estimates for the means and 
variance-covariance matrix given an ignorable response 
mechanism and distributional assumptions about the data. 
As discussed elsewhere, maximum likelihood methods for 
missing data in regression provide estimates of the sample 
means and covariance matrix, which can then be used to 
obtain the coefficients of the regression model (Little 
and Rubin 2002). A meta-regression model uses weighted 
least squares to account for the differences in precision of 
effect sizes rather than ordinary least squares assumed 
when using maximum likelihood methods for missing 
data using the EM algorithm. It is not clear how to esti-
mate effect-size regression models using weighted least 
squares from the means and variance-covariance matrix 
of meta-analytic data (Draper and Smith 1981). Thus, 
these methods currently have limited application in the 
meta-analysis literature. Little and Rubin provide a num-
ber of extensions of the EM algorithm that may prove 
useful for meta-analysis (2002).

17.5.3  Multiple Imputation for Multivariate 
Normal Data

Multiple imputation has become the method of choice 
in many contexts of missing data. The main advantage of 
multiple imputation is that the analyst uses the same sta-
tistical procedures in the analysis phase that were planned 
for completely observed data (Rubin 1987). In other 
words, in the analysis phase of multiple imputation, the 
researcher does not need to adjust standard errors as in 
Buck’s method from 1960, and does not need to estimate 
a regression from the covariance matrix as in maximum 
likelihood with the EM algorithm. Multiple imputation, 
as its name implies, is a technique that generates multiple 
possible values for each missing observation in the data. 
Each of these values is used in turn to create a complete 
data set. The analyst uses standard statistical procedures 
to analyze each of these multiply-imputed data sets, and 
then combines the results of these analyses for statistical 
inference.

Multiple imputation consists of three phases. The first 
involves the generation of the possible values for each 

missing observation. The second phase then analyzes 
each completed data set using standard statistical proce-
dures. The third phase combines the estimates from the 
analyses of the second phase to obtain results to use for 
statistical inference. Each of these phases is discussed 
conceptually in the following sections (for more detail, 
see Enders 2010; Schafer 1997). A final note concerns the 
use of multiple imputation in small samples. John Graham 
and his colleagues provide evidence that multiple impu-
tation performs best in samples of at least fifty cases 
(Graham 2009; Graham and Schafer 1999). Although many 
meta-analyses in the social sciences include at least fifty 
studies, in other contexts (such as medicine), the number 
of available studies is much smaller. Research is needed 
to understand the performance of multiple imputation in 
small meta-analytic data sets.

17.5.3.1 Generating Multiple Imputations Multiple 
imputation relies on a model for the distribution of miss-
ing data given the observed data under the condition of 
MAR or MCAR data. Multiple imputation uses Bayesian 
methods to obtain random draws from the posterior pre-
dictive distribution of the missing observations given the 
observed observations. These random draws are com-
pleted in an iterative process. Given the means and cova-
riance matrix of our hypothetically complete multivariate 
normal data, we can obtain the form of the distribution of 
the missing observations given the observed data, and 
draw a random observation from that distribution. That 
observation would be one plausible value for a missing 
value for a given case. Once we have drawn plausible 
values for all our missing observations, we obtain a new 
estimate of our means and covariance matrix, and repeat 
the process. We assume that our response mechanism is 
ignorable so that the posterior distribution does not include 
a specification of the response mechanism.

To generate these random draws, however, we need to 
use simulation techniques such as Markov Chain Monte 
Carlo. These methods allow the use of simulation to obtain 
random draws from a complex distribution. This phase is 
the most complex statistically, but many commercial soft-
ware packages, including freeware, are available to gen-
erate these imputations, especially in cases when we can 
assume the complete data is multivariate normal. In R, 
the program Amelia II can generate these imputations. 
Major statistical packages such as SAS, STATA and SPSS 
also include programs for multiple imputation.

One basic issue in multiple imputations is the choice of 
the number of imputed data sets to generate and analyze. 
Little and Rubin (2002) and Schafer (1997) both recom-
mend between three to five imputed data sets. However, 
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more recent recommendations suggest many more impu-
tations to obtain the lowest possible standard errors and 
to improve the power of the analysis (Enders 2010). John 
Graham, Allison Olchowski, and Tamika Gilreath show 
that using more than ten imputations improves the power 
of the analysis and generally recommend one hundred 
imputations (2007). Craig Enders indicates that research-
ers use a minimum of twenty (2010). Ian White and his 
colleagues also discuss the number of imputations needed 
as a function of the percentage of missing data in the 
sample (2011).

Another issue is the question of what variables to 
include in the imputation model. Schafer suggests using 
as many complete variables in the data set as possible in 
order to capture the mechanism that may cause the miss-
ing data under the assumption of MAR (1997). Linda 
Collins, Schafer, and Chi-Ming Kam provide a thorough 
discussion and simulation study exploring strategies for 
choosing variables for the multiple imputation model 
(2001). In general, they recommend using a more inclu-
sive strategy for the imputations, even if the data analysis 
does not include all of the variables used in the imputa-
tion model. Most meta-analysts code a large number of 
characteristics of studies, and thus should have many 
variables to use to create imputations. In this chapter, I 
assume that effect sizes are completely observed in the 
data set, and thus, effect sizes would also be included in 
the model used to generate the imputations. Another issue 
is whether the standard errors of the standardized mean 
difference should be included in the imputation model. 
The examples provided later in the chapter omit the stan-
dard errors from the imputation model because the stan-
dard errors are not strictly predictors of the effect-size 
magnitude in a meta-regression. More research is needed 
about whether standard errors of the standardized mean 
difference should be included in the imputation model.

17.5.3.2 Analyzing Completed Data Sets In this 
second step, the researcher obtains a series of completed 
data sets, with each missing observation filled in using 
the methods in the prior section. Once the imputations are 
generated, the analyst uses whatever methods were orig-
inally planned for the data. These analyses are repeated 
for each completed data set. In this phase, the analyst 
takes each completed data set and obtains estimates for 
the originally planned model. The researcher also needs 
to take into account the effort involved in conducting the 
planned analysis for each imputed data set. If the analysis 
is complex, twenty imputations may increase the overall 
cost of the meta-analysis.

17.5.3.3 Combining Estimates Rubin (1987) and 
Enders (2010) provide the formulas for combining the 
multiply-imputed estimates to obtain overall estimates and 
their standard errors. Let us denote the mean of our target 
estimate for the jth parameter across all j imputations as
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where qij is the estimate of the ith parameter from the jth 
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given by

( ) = + +SE q vw vb
vb

m
.i i i

i

As discussed earlier, multiple imputation is based on 
large sample theory, and using these methods with small 
samples may lead to biased estimates. John Barnard and 
Rubin provide a correction to account for small sample 
sizes when conducting hypothesis tests of multiply-imputed 
estimates for small samples (1999).

Table 17.5 presents the results using multiple imputa-
tion with ten imputations for the oral anticoagulant data 
with study age deleted using an MAR mechanism. The 
effect size and dose were used in the model to generate 
the missing values for study age. All of the estimates 
of the coefficients of the meta-regression model are in the 
same direction as the full data. Notably, the standard 
errors are much larger, providing a more conservative 
estimate and reflecting the fact that missing data causes 
uncertainty in the data. If we were checking the sensitiv-
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ity of our meta-analysis results to the presence of missing 
data, we would compare our complete case results in the 
MAR data in table 17.2 to those in table 17.5. In this 
small example, two of the coefficients have opposite signs 
in the two analyses, suggesting that our results may be 
sensitive to missing information. Note that this simple 
example uses less than the minimum of imputations rec-
ommended, and that the data set includes fewer than fifty 
cases. The results from this example suggest that results 
are sensitive to missing data, and caution is needed in the 
interpretation of our results.

Multiple imputation methods are now widely used in 
statistical analysis, and much guidance exists about the 
use of multiple imputation in a variety of contexts (Enders 
2010). Although meta-analysts have not uses multiple 
imputation extensively, many statistical packages can 
generate multiple imputations for meta-analysis that can 
then be used within many of the meta-analysis programs 
available. For the example here, I used the Amelia pro-
gram in R (Honaker, King, and Blackwell 2015) to gen-
erate multiple imputations, and metafor in R (Viechtbauer 
2010) to estimate the random-effects meta-regression 
model. The multiply-imputed estimates of the model can 
be combined in R or Excel.

17.6 RECOMMENDATIONS

Missing data are ubiquitous in meta-analysis. Research 
synthesists will encounter missing data because studies 
differ not only in the methods used but also in the com-
pleteness of their reporting of information. When missing 
data occur among predictors in meta-analytic models, the 
researcher should first understand the patterns of missing 
data and how those patterns might impact the models that 
the researchers want to estimate. Fitting a series of models 

to meta-analytic data without exploring the missing data 
patterns may lead a researcher to use widely different sets 
of cases to estimate each model.

Once a research synthesis understands the pattern of 
missing data, a next step is to explore the sensitivity of 
the results to the missing data. If a researcher can make 
the case that the missing predictors are MCAR, then the 
complete case analysis will provide unbiased estimates. 
The cost, however, of MCAR data may be power for the 
analysis if the quantity of missing data is large. A more 
realistic assumption is MAR, particularly if the meta- 
analysis includes a large number of study descriptors that 
are completely observed. In the case of a rich meta- 
analysis data set, multiple imputation provides a method 
to test the sensitivity of results to missing data in pre-
dictors. Given that methods for multiple imputation are 
implemented in many different computing packages, meta- 
analysts should increase their use of multiple imputation 
to test the robustness of their results. As discussed, multi-
ple imputation is a model-based method that requires the 
researcher to make clear assumptions about their data. 
Model-based methods for missing data are thus more 
defensible than the ad hoc methods typically used in meta- 
analysis, particularly for sensitivity analysis.

Advances in missing data methods for primary studies 
may lead to additional strategies for missing data in meta- 
analysis. Social scientists need to explore the use of meth-
ods for missing outcome data in meta-analysis that have 
been developed in medicine. In addition, methods for test-
ing the sensitivity of meta-analysis results when data are 
not MCAR or MAR are also needed.

Missing data in meta-analysis occurs because many pri-
mary studies do not report on variables that could be used 
to examine the variation in results across studies. Efforts 
to increase the transparency and reporting quality of pri-
mary studies will alleviate some of the problems miss-
ing data cause in meta-analysis. However, it is likely that 
missing data will continue to impact meta-analysis. In 
order to ensure that the results of meta-analysis are unbi-
ased, researchers should test the sensitivity of their results 
to missing data, increasing the transparency of both the 
potential implications and limitations of their results.
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18.1 INTRODUCTION

There is good evidence to suggest that unpublished scien-
tific results may systematically differ from published 
results, because selectivity may exist in deciding what 
to publish (see Dickersin, Min, and Meinert 1991, 1992; 
Song et al. 2000; Dickersin 2005). That phenomenon is 

frequently referred to as publication bias. For example, 
researchers may choose not to write up and submit studies 
with uninteresting or nonsignificant findings, or such 
studies may not be accepted for publication. Although 
publication bias refers to whether work is published, 
unpublished work still available for inclusion in meta- 
analyses does not technically contribute to bias in those 
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specific meta-analyses, even though the published studies 
themselves are a biased sample.

Examples of publication bias are everywhere. Philippa 
Easterbrook and her colleagues document the role of the 
perceived importance of findings in determining which to 
submit for publication (1991). Allan Coursol and Edwin 
Wagner present evidence of the role of statistical signifi-
cance in the publication process (1986). Jerome Stern and 
John Simes offer evidence that significant results are 
often published more quickly (1997). An-Wen Chan and 
his colleagues point out that, even if a study is published, 
there may be selectivity in which aspects are presented; 
significant outcomes may be given precedent over non-
significant ones (Chan, Hrobjartsson, et al. 2004; Chan, 
Krleza-Jeric, et al. 2004). That is, any selection mechanism 
may operate through suppression of particular results 
within a study, or all results from a particular sample may 
be affected. Sven Kepes and his colleagues discuss the dis-
tinction (2012). Additionally, research with positive or sta-
tistically significant results may be published in more 
prestigious venues and cited more times, making it more 
visible and easier to find (Koricheva 2003; Egger and 
Smith 1998). Indeed, the publication process should be 
thought of as a continuum and not a dichotomy (Smith 
1999). For example, material that has been published with 
incomplete reporting in a journal may have been circu-
lated with full reporting as a working paper. In keeping 
with the previous literature, these biases will be referred 
to simply as publication bias throughout the chapter, 
although dissemination bias is perhaps a more accurate 
name for the collection (Song et al. 2000).

In areas where any such selectivity exists, the literature 
is biased. That is true whether one is reading a single jour-
nal article or conducting a synthesis of many. Publication 
bias is therefore a major threat to the validity not only of 
meta-analysis and other synthesis methodologies, but also 
of the research literature itself. Indeed, one could argue 
that meta-analysis provides a partial solution to the prob-
lem, because researchers can at least attempt to identify 
and estimate the effect of such bias by considering the 
information contained in the distribution of effect sizes 
from the available studies. That is the basis of the major-
ity of statistical methods described here. It is important to 
note that most of these methods have been developed for 
use with the meta-analytic models advanced in the tradi-
tion of Larry Hedges and Ingram Olkin (1985). Many 
methods for testing and correcting publication bias are not 
suitable for the psychometric meta-analysis approaches 
proposed by James Hunter and Frank Schmidt (1990).

Researchers agree that prevention is the best solution 
to the problem of selectively reported research. Indeed, 
with advances in electronic publishing making the pre-
sentation of large amounts of information more eco-
nomically viable than traditional paper-based publishing 
methods, there is some hope that the problem will dimin-
ish, if not disappear. Many have suggested that open- 
access publication can assist with the problem (see, for 
example, Joober et al. 2012), but much of this advocacy 
appears in blog entries or in the mission statements of 
electronic journals. There is still little or no empirical evi-
dence of such an effect. Ridha Joober and his colleagues 
also point to the possibility that high fees associated with 
open-access publication could actually lead to publica-
tion bias (2012). Moreover, open access does not offer a 
solution to the suppression of information due to vested 
economic interests (Halpern and Berlin 2005).

Jesse Berlin and Davina Ghersi, among others, have 
advocated the use of prospective registries of studies for 
selecting studies to be included in systematic reviews 
(2005). The practice provides an unbiased sampling frame 
guaranteeing the elimination of publication bias (relating 
to the suppression of whole studies, at least). However, 
trial registration does not guarantee availability of data, 
and an obligation to disclose results in an accessible form 
is also required. Registries exist for randomized con-
trolled trials in numerous medical areas, and there is an 
expectation that this practice will ultimately reduce pub-
lication bias (Zarin et al. 2011). Such a solution will not 
be feasible for some forms of research, however, includ-
ing research relating to analysis of observational data, 
where the notion of a study that can be registered before 
analysis may be nonexistent. The idea of registries for 
research in the social sciences has been put forth but it is 
far from the norm, and controversy surrounds the effec-
tiveness of preregistration in that context (Anderson 2013; 
Gelman 2013; Humphreys, de la Sierra, and van der 
Windt 2013; Monogan 2013). The notion of prospec-
tively designing multiple studies with the intention of 
carrying out a meta-analysis in the future has also been 
put forward as a solution to the problem (Berlin and 
Ghersi 2005), but again may be difficult to orchestrate in 
many situations.

Carrying out as comprehensive a search as possible 
when obtaining literature for a synthesis will help mini-
mize the influence of publication bias. In particular, this 
may involve searching for studies not formally published 
(chapter 6 in this volume; Hopewell, Clarke, and Mallett 
2005), as well as using methods other than simple electronic 
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searches (such as journal browsing and reference chas-
ing). Since the beginning of the internet, the feasibility 
and accessibility of publication by means other than com-
mercial publishing houses have greatly increased.

Despite researchers’ best efforts, at least in the current 
climate, alleviation of the problem of publication bias may 
not be possible in many areas of science. In such instances, 
graphical and statistical tools have been developed to 
address publication bias within a meta-analysis frame-
work. The remainder of this chapter provides an overview 
of these methods. If a research synthesis does not con-
tain a quantitative synthesis (for example, if the data being 
synthesized are not quantitative), publication bias may still 
be a problem, but methods to deal with it are limited to pre-
vention through registration and rigorous literature searches 
(Petticrew et al. 2006). Terese Bondas and Elisabeth Hall 
suggest that careful identification of unpublished studies, 
such as dissertations, may help, but that has not proven to 
be consistently effective for quantitative synthesis, so it 
may be of limited value for qualitative synthesis (2016). 
Simon Lewin and his colleagues observe that evidence of 
publication bias in qualitative literature is lacking (2015). 
They also state that methodological advances are in devel-
opment, but are not currently available.

18.2  MECHANISMS THAT CAUSE  
PUBLICATION BIAS

There is considerable discussion in the literature about 
the precise nature of the mechanisms that lead to suppres-
sion of whole studies and other forms of publication bias. 
These mechanisms may operate on specific results within 
a particular study (outcome bias) or on the entire study 
(dissemination bias). Both of these levels can contribute 
to the overall presence of publication bias (Kepes et al. 
2012). If these mechanisms could be accurately specified 
and quantified, then the appropriate adjustments to a 
meta-analytic data set would be straightforward. How-
ever, measuring such effects is difficult, and the mecha-
nisms vary with data set and subject area.

Evidence is ample that statistical significance, effect 
magnitude and direction, study size, and other factors can 
all influence the likelihood of a study being published. 
Colin Begg and Jesse Berlin address the role of p-values 
and direction of effect (1988). Harris Cooper, Kristina 
DeNeve, and Kelly Charlton confirm the existence of 
filters in the research process other than bias against the 
null hypothesis (1997). Robert Rosenthal and John Gaito 
present evidence for cliff effects associated with conven-

tional levels of significance (1963, 1964), as do Nanette 
Nelson, Robert Rosenthal, and Ralph Rosnow (1986). 
Deborah Barnes and Lisa Bero show that funding source 
can lead to selection bias (1998). Justin Bekelman, Yan Li, 
and Cary Gross discuss the role of industry funding (2003). 
Kathleen Coburn and Jack Vevea mention industry fund-
ing and preferences for results that are consistent with cur-
rent beliefs, trends, and cultural expectations as sources of 
bias (2015; see also Kepes, Banks, and Oh 2014; Kepes, 
Bennett, and McDaniel 2014). José Duarte and his col-
leagues also provide evidence that social preferences can 
influence publication (2015), citing the work of Stephen 
Abramowitz, Beverly Gomes, and Christine Abramowitz, 
that liberal reviewers were less likely to publish research 
with results favoring conservatives (1975), and of Stephen 
Ceci, Douglas Peters, and Jonathan Plotkin, that “reverse 
discrimination” proposals were approved less often (1985).

The sections that follow outline and demonstrate 
methods to identify and adjust for publication bias. These 
methods assume different underlying mechanisms for 
publication bias, and all of those assumptions are wrong. 
Accordingly, the focus in these sections includes not only 
an up-to-date overview of available methods, but also 
attention to the assumptions of each approach. It is not 
plausible, for example, that publication bias occurs solely 
because of statistical significance, or that it arises purely 
from a relationship between effect size and standard 
error, or that it follows a deterministic pattern, such as 
elimination of the largest negative effects. For that rea-
son, these methods should be regarded as tools for sensi-
tivity analysis, and triangulation using multiple techniques 
is essential. Kepes and McDaniel propose reporting a 
range of estimates across various methods to assess the 
effect of publication bias (2015). Reporting standards for 
meta-analysis endorsed by the American Psychological 
Association (2008) and the Cochrane Collaboration 
(Higgins and Green 2011) also recommend this approach. 
Despite these suggestions, evidence indicates that only 
about 3 percent of meta-analyses use more than two pro-
cedures to address publication bias (Ferguson and Brannick 
2012; van Enst et al. 2014).

18.3  METHODS FOR IDENTIFYING  
PUBLICATION BIAS

18.3.1 The Funnel Plot 

Since its introduction by Richard Light and David Pillemer 
in 1984, the funnel plot has been a preferred exploratory 
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tool for investigating publication bias and, like the forest 
plot, for presenting a visual summary of a meta-analytic 
data set (Sterne, Becker, and Egger 2005). In its original 
form, the funnel plot is a scatterplot with effect estimates 
on the horizontal axis and sample size on the vertical axis. 
Sample size is closely related to study precision, which is 
usually defined as the reciprocal of either the sampling 
variances or the standard errors of the effect sizes. More 
recent forms of the funnel plot typically use such a mea-
sure of precision (or, alternatively, the reciprocal of preci-
sion) in place of sample size. The expectation is that the 
plot should appear symmetric with respect to the distribu-
tion of effect sizes and should resemble a funnel. The 
effect sizes should be evenly distributed around the 
underlying true effect size, and show more variability 
in the smaller studies than the larger ones because of 
the greater influence of sampling error. This results  
in a funnel-shaped plot that narrows as study precision 
increases. If publication bias is present, we might expect 
some suppression of smaller, unfavorable, and non-
significant studies that could be identified by a gap in one 
corner of the funnel or a decrease in density nearer the 
center of the funnel, inducing asymmetry in the plot.

Figure 18.1 depicts a relatively symmetric funnel plot 
produced in the traditional manner, using simulated data. 
However, that mode of presentation goes against the con-
vention of plotting an unknown quantity on the y-axis 
and a fixed quantity (such as N) on the x-axis. Figure 18.2 
shows the same plot with the more standard graphics 
conventions. Funnels in both orientations exist in the lit-
erature. The true effect in both plots is 0.5.

It is interesting that study suppression caused by study 
size, effect size, or statistical significance (one-sided), 
either individually or in combination, could produce an 
asymmetric funnel plot. It is also possible for two-sided 
statistical significance suppression mechanisms (that is, 
significant studies in either direction are more likely to be 
published) to could create a tunnel or hole in the middle 
of the funnel, particularly when the underlying effect size 
is close to zero. However, in most circumstances, it is 
implausible that a selection mechanism based on two-
tailed p-values would function the same way in both tails.

The most appropriate axes for the funnel plot is debated, 
particularly with respect to the measure of study preci-
sion (Vevea and Hedges 1995; Sterne and Egger 2001). 
Variance (and its inverse) and standard error (and its 
inverse) are options for use in place of sample size. This 
choice can affect the appearance of the plot considerably. 
For instance, if the variance or standard error is used, the 
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distribution of effect sizes covers an expanded range for 
smaller studies. This gives more plot space to the smaller 
studies, among which publication bias is more likely 
to be evident. Jonathan Sterne and Matthias Egger have 
published comparative plots (2001). Figure 18.3 plots the 
same effects as figure 18.2, this time against standard 
error rather than sample size. In figure 18.3, the larger 
studies appear at the left of the plot, rather than the right, 
as in figure 18.2, and the range of the plot associated 
with smaller sample sizes (and larger standard errors) 
is expanded. Figure 18.4 shows a highly asymmetrical 
funnel plot, using standard error on the x-axis.

When interpreting funnel plots, the meta-analyst should 
bear in mind that asymmetry may be due to phenomena 
other than publication bias. Any external influence asso-
ciated with both study size and effect size could con-
found the observed relationship. For example, small 
studies could be conducted under more carefully con-
trolled experimental conditions than large studies, result-
ing in differences in effect sizes. In other situations, a 
higher intensity of the intervention might be possible for 
the smaller studies, causing their true effect sizes to be 
larger. Conversely, smaller studies might be carried out 
under less rigorous conditions; for example, consider a 
meta-analysis that mixes results from large clinical trials 
with smaller observational studies that tend to have larger 
effects. Figure 18.4 actually depicts such a situation; the 
asymmetry is difficult to miss. Figure 18.5 portrays the 
same data, but adds information about study type. Neither 

type of study appears asymmetric, even though the com-
bined distribution is.

The utility of the funnel plot has been questioned because 
of the subjective nature of its interpretation. Norma Terrin, 
Christopher Schmid, and Joseph Lau find that researchers 
faced with an assortment of funnel plots cannot correctly 
identify which plots show bias (2005). Joseph Lau and his 
colleagues present similar evidence of inconsistent inter-
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pretation (2006). Jin-Ling Tang and Joseph Liu (2000), as 
well as James Hunter and his colleagues (2014), describe 
problems with interpretation in circumstances where the 
magnitude of effect sizes is associated with a measure of 
precision. This is particularly problematic for some out-
come measures, such as odds ratios, for which the esti-
mated effect size and its standard error are positively 
correlated. As a result, in such cases the funnel plot will 
not be symmetric even in the absence of publication bias. 
However, Jaime Peters and his colleagues find that the 
induced asymmetry is small for small and moderate 
effect sizes (2006).

If variance, standard error, or their inverses are used, it 
is possible to construct expected 95 percent confidence 
intervals around the pooled estimate that form guidelines 
for the expected shape of the funnel under a fixed-effect 
assumption. Such contour-enhanced funnel plots can also 
represent other confidence levels. Sterne et al. argue that 
they can aid in interpretation of the plot (2011). Peters and 
his colleagues propose that contour-enhanced plots can 
help the analyst distinguish between asymmetry due to 
publication bias and asymmetry caused by other factors 
(2008). Contour guidelines are approximate because they 
are constructed around the pooled meta-analytic estimate, 
which may itself be biased. Sometimes the main indi-
cation of asymmetry may be differences in the density 
of plotted points. This frequently occurs well within the 
bounds of the contour lines. In that case, the contour lines 
can deflect attention from such changes in density.

18.3.2 Cumulative Meta-Analysis

Cumulative meta-analyses are often used to determine 
when a meta-analytic effect size appears to stabilize in 
relation to some variable of interest, such as time of pub-
lication. Such a plot consists of a forest plot of meta- 
analytic results, starting with the oldest study, followed 
by a meta-analysis of the two oldest studies, and so on, 
until the final line in the forest plot represents the meta- 
analysis that includes all of the effect-size estimates. These 
plots can help identify circumstances in which large 
effects or results with very small p-values are published 
more quickly than others, a form of publication bias known 
as time-lag bias.

Recently, the approach has gained a role in the assess-
ment of other forms of publication bias as well. Kepes, 
Bennett, and McDaniel demonstrate the utility of cumu-
lative meta-analysis (2014). The analyst adds effect sizes 
one at a time in increasing (or decreasing) order of preci-

sion and creates a forest plot of this cumulative meta- 
analysis. If horizontal drift is present in the plot as studies 
are added, there is evidence of a relationship between 
study size and effect size, and therefore the possibility of 
publication bias. Note, however, that this method, like the 
funnel plot, cannot distinguish between associations due 
to publication bias and those due to other causes. A simi-
lar approach that bases the meta-analytic estimate on a 
subset of the most precise studies has also been proposed. 
Researchers differ on the number or percentage of studies 
to include for this method. Kepes, Brad Bushman, and 
Craig Anderson recently used the method using the five 
most precise studies (2017). In contrast, Tom Stanley, 
Stephen Jarrell, and Hristos Doucouliagos used the most 
precise 10 percent of the effect sizes (2010).

18.3.3 Nonparametric Correlation Test

Colin Begg and Madhuchhanda Mazumdar’s rank cor-
relation approach makes available a formal test for the 
presence of funnel plot asymmetry (1994). Along with 
the other methods presented in this section, it assesses 
whether a relationship between study size and effect size 
is present, but does not provide an adjusted estimate of 
effect size.

The rank correlation test works by estimating a fixed- 
effect meta-analytic mean, calculating deviations of indi-
vidual effects from that mean, and standardizing them 
using the standard error of the deviations from the mean 
(accounting for both the sampling uncertainty of the indi-
vidual effects and the standard error of the fixed-effect 
mean). Subsequently, one calculates a rank correlation 
between the deviations and their variances using a nor-
malized version of Kendall’s tau. Under the null hypoth-
esis of no association between effect and variance, the 
statistic is tested by reference to the standard normal dis-
tribution. As with any hypothesis test, nonsignificance 
should not be interpreted as a confirmation of the null 
hypothesis (in this case, that publication bias is absent). 
Any effect-size scale can be used as long as it is distrib-
uted asymptotically normal. The test is available in many 
statistical packages for meta-analysis.

Begg and Mazumdar’s original publication of the 
method acknowledged that it was underpowered for 
small meta-analyses (1994). Others echo that finding 
(Sterne et al. 2000). From comparisons between this and 
the linear regression test described later in this chapter 
(Sterne, Gavaghan, and Egger 2000), it appears that the 
linear regression test is more powerful, though results of 
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the two tests can sometimes be discrepant. Modifications 
of the rank correlation test have been proposed to address 
the power issue, with varying success (for a discussion of 
these extensions, see Kepes et al. 2012). Because of this 
concern about power, Jonathan Sterne and his colleagues 
propose interpreting the results of this test only when a 
data set includes more than ten effects (2011).

18.4  METHODS FOR ASSESSING THE IMPACT  
OF PUBLICATION BIAS

Here we examine a variety of approaches for assessing the 
impact of publication bias on a meta-analysis. Some of 
these provide an adjusted estimate, a formal test, or both.

For those methods that produce adjusted estimates, 
meta-analysts likely wish to label the degree of adjust-
ment, or the amount of bias present in their data. Several 
guidelines for doing so are proposed. Hannah Rothstein, 
Alexander Sutton, and Michael Borenstein refer to bias 
as “minimal” when the estimates of effect size are very 
similar, “modest” when the difference is substantial but 
the key finding does not change, and “severe” when the 
key finding is called into question (2005). Kepes, George 
Banks, and In-Sue Oh refine these definitions, classifying 
bias as “absent/negligible” when the difference between 
the unadjusted and adjusted estimates is less than 20 per-
cent, “moderate” when the difference is between 20 per-
cent and 40 percent, and “severe” when the difference is 
greater than 40 percent (2014). Toward the end of this 
chapter, we use both guidelines. However, assessing the 
degree of adjustment is fundamentally subjective, and 
these guidelines should not be viewed as ironclad.

18.4.1 Fail-Safe N

Robert Rosenthal introduced the method that has come 
to be called the fail-safe N (1979). It remains one of the 
most popular techniques for assessing publication bias 
today, particularly in the social sciences. The fail-safe N 
addresses the question of how many effect sizes averaging  
a null value would need to be missing from a meta-analysis 
to overturn the conclusion that there is a significant effect. 
Here, significance is defined in terms of inference based 
on combined p-values using the Z–score approach (see 
Stouffer et al. 1949).

Although the fail-safe N may be intuitively appealing, 
it is now generally regarded as valueless. Begg and Ber-
lin argue that the method should be considered nothing 
more than a crude guide due to a number of shortcomings 

(1988). Betsy Becker notes that no statistical model under-
lies the fail-safe N, and there is no clear-cut and justifiable 
criterion for a “large” fail-safe N value; she specifically 
states that the method should be abandoned (2005). One 
concern is that combining Z-scores does not directly 
account for the sample sizes of the studies. Another is 
that the choice of zero for the average effect of the unpub-
lished studies is arbitrary; a glance at a typical asymmetric 
funnel plot will suggest that it is effects below zero that 
are missing. Hence, in practice, many fewer studies than 
the number suggested by the fail-safe N might be required 
to overturn the meta-analytic result. Often, then, it has led 
to unjustified complacency about publication bias. Still 
another shortcoming is that the method does not adjust 
or deal with treatment effects—just p-values (and thus 
it provides no indication of the “true” effect size). Satish 
Iyengar and Joel Greenhouse point out that heterogeneity 
among the studies is ignored (1988). Robert Orwin notes 
that the shape of the funnel plot does not influence the 
method. For these reasons, it is difficult to recommend 
using the procedure.

It could be argued that, in addition to being hampered 
by those issues, the fail-safe N poses fundamentally the 
wrong question. Typically, except for meta-analyses that 
include very few effects, the power to detect even small 
combined effects is tremendous. Thus it is much more 
interesting to focus on the question of how many studies 
would have to be missing for the combined effect to be 
reduced to a trivial magnitude. Orwin presents an alter-
native fail-safe N that addresses that more interesting 
question (1983). His method allows the user to specify an 
average value for missing effects that may or may not be 
zero, and estimates the number of such effects that would 
need to be added to the analysis to move the estimated 
effect below the specified value. This variation is still used 
with some frequency. However, a glance at the literature 
that uses the method shows that many who use it accept 
the default value of zero for the average of the missing 
effects.

In short, with the possible exception of Orwin’s variant, 
the fail-safe N is not a valid method for assessing publi-
cation bias.

18.4.2 Methods Based on Observed p-Values

The three methods in this category are based not on effect 
size or study size but on the p-values associated with the 
effects. They have recently gained popularity among meta- 
analysts, although Blakeley McShane, Ulf Böckenholt, 
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and Karsten Hansen point out that two of these methods 
may be viewed as alternative implementations of exist-
ing (and more effective) selection models, and all three 
methods have restrictive assumptions and a series of 
documented flaws (2016; van Aert, Wicherts, and van 
Assen 2016; Bruns and Ioannidis 2016; Bishop and 
Thompson 2016; Ulrich and Miller 2015).

18.4.2.1 p-Curve and p-Uniform P-curve is a method 
for assessing publication bias, first published by Uri 
Simonsohn, Lief Nelson, and Joseph Simmons, that has 
gained popularity (2014). It is based on the notion that, 
if a given set of studies has evidential value (the average 
effect size represents a real effect and is not an artifact of 
bias), the distribution of those one-tailed p-values will be 
right skewed. This means that very small p-values (such 
as p < .025) will be more numerous than larger p-values if 
studies have evidential value. If the distribution of signif-
icant p-values is left skewed and large p-values are more 
numerous than expected, Simonsohn and his colleagues 
conclude that it is evidence of p-hacking—researchers 
may be striving to obtain p-values that fall just below .05.

P-curve uses two tests to assess whether the distribu-
tion is right skewed. The first is a binomial test compar-
ing the proportion of observed p-values above and below 
.025; the second is a continuous test that calculates the 
probability of observing each individual p-value under 
the null hypothesis. The probabilities produced by this 
second test are then dubbed the studies’ “pp” values. 
These tests for right skew assess what is called the full 
p-curve. To test for “ambitious p-hacking,” or p-hacking 
to reach below .025 rather than .05, p-curve conducts the 
same tests for right skew on only the observed p-values 
that are below .025, or the “half p-curve.” If these tests for 
right skew are not significant, indicating that the studies 
lack evidential value and no true effect may be present, 
p-curve conducts another pair of binomial and continuous 
tests to assess whether the studies were underpowered 
(defined as having power below 33 percent). Simonsohn, 
Nelson, and Simmons mention that an adjusted effect 
size can be calculated, and provide supplementary R code 
(R Core Team 2016) on their website (www.p-curve.com) 
for doing so, but the code is somewhat complicated, and 
adjusted effect sizes are not discussed here (2014). This 
method of obtaining an adjusted effect size based on the 
p-curve is an aspect of the p-curve approach that func-
tions similarly to p-uniform.

P-uniform is also a new method, first published by 
Marcel van Assen, Robbie van Aert, and Jelte Wicherts 
(2015). It assumes that the population effect size is 

fixed—that is, the observed effect sizes are homoge-
neous with neither systematic nor random heterogeneity. 
It also assumes that all studies with significant results are 
equally likely to be published or available for inclusion 
in a literature review, and that no significant studies are 
withheld. These are both restrictive assumptions. Most 
meta-analytic data are heterogeneous to some degree 
(Gelman 2015; McShane and Böckenholt 2014; McShane 
and Gal 2015), often despite researchers’ best attempts to 
maintain homogeneity (Klein et al. 2014). In addition, 
it is extremely unlikely that every significant test has been 
published and that every nonsignificant test remains 
unpublished.

Like p-curve, p-uniform is based on the idea that 
p-values, conditional on a true effect size, are uniformly 
distributed. If, for example, the hypothesized population 
effect is 0.50, and the conditional p-values for each study 
are not uniform when calculated under the null hypothesis 
that the true effect is 0.50, both methods assume that the 
studies do not reflect the true underlying effect, or that 
publication bias is present.

P-uniform performs two tests. The first assesses the null 
hypothesis that the population effect size is zero by trans-
forming the observed significant p-values using Ronald 
Fisher’s (1932) method and assessing whether their con-
ditional distribution is uniform. If it is, the test fails to 
reject the null hypothesis and concludes that there is no 
evidence of an effect. The second test is a one-tailed test 
of whether the population effect size equals the effect- 
size estimate produced by a traditional fixed-effect meta- 
analysis (van Assen, van Aert, and Wicherts 2015). Again, 
significant p-values are transformed, this time to represent 
the probability of observing a given effect size condi-
tional on both the fixed-effect average estimate and sta-
tistical significance. If this distribution deviates from a 
uniform distribution, p-uniform rejects the null hypothe-
sis and concludes that publication bias may be a threat. 
Finally, p-uniform provides an adjusted effect-size esti-
mate and confidence interval by searching for the popula-
tion effect size that does meet its qualification—the value 
where the distribution of conditional p-values is uniform. 
This is similar to the method p-curve employs, but the two 
methods use different algorithms for defining fit to the 
uniform distribution.

Both p-curve and p-uniform have several flaws. Robbie 
van Aert, Jelte Wicherts, and Marcel van Assen point 
out that these tests perform poorly when meta-analytic 
data contain p-values close to significance levels like 
.05 (2015). Obviously, many meta-analyses likely con-
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tain p-values in this range. These methods will always 
underestimate the true effect when p-hacking is present 
(although, to be fair, many of the other methods in this 
chapter will as well), and neither method can perform well 
with heterogeneous data (van Aert, Wicherts, and van 
Assen 2016). This leads to a recommendation that meta- 
analysts whose data are heterogeneous should divide their 
data into homogeneous subgroups prior to estimating the 
models, but this is often impractical. A traditional random- 
effects model actually outperforms p-curve and p-uniform 
with heterogeneous data, even in the presence of publi-
cation bias, the very situation in which both models are 
designed to work (van Aert, Wicherts, and van Assen 
2016). The models assume that all significant studies are 
published (or otherwise widely available), and are cal-
culated involving only significant p-values (McShane, 
Böckenholt, and Hansen 2016). Finally, Stephan Bruns 
and John Ioannidis discovered that p-curve has difficulty 
distinguishing between p-hacking and the presence of  
a true effect—the primary purpose for which the method 
exists (2016). Dorothy Bishop and Paul Thompson con-
firm their findings (2016), as do Rolf Ulrich and Jeff 
Miller (2015).

McShane, Böckenholt, and Hansen (2016) note that 
p-curve and p-uniform are both a modification of an early 
selection model presented by Hedges (1984), which forgo 
maximum likelihood estimation in favor of less efficient 
alternatives. The benefit of these models is their recent 
publicity and accessibility, which may increase aware-
ness of publication bias. Beyond that, however, simula-
tions dem onstrate that earlier selection models remain 
more effective under realistic assumptions (McShane, 
Böckenholt, and Hansen 2016). McShane et al. (2016) 
also provide mathematical evidence of their ineffective-
ness; they argue, based on Jensen’s Inequality (Jensen 
1906), that p-curve and p-uniform (as well as the early 
Hedges 1984 model) will be biased in the presence of 
heterogeneity.

These models appear to reinvent a wheel first discov-
ered over thirty years ago. The p-curve and p-uniform 
methods are certainly superior to some, like the fail-safe 
N or the excess significance test (see following section), 
and p-curve in particular has gained popularity, likely 
due to its accessibility. Any assessment of publication 
bias is better than none, and using all methods available 
is better than using only one. However, meta-analysts 
should remember that p-curve and p-uniform are modi-
fied versions of simplistic early weight-function models, 
and should consider using more sophisticated weight- 
function models as well.

18.4.2.2 Excess Significance Test The excess sig-
nificance test (or TES), first proposed by John Ioannidis  
and Thomas Trikalinos (2007), has been the subject of 
considerable debate. The method is a null hypothesis sig-
nificance test that takes a given set of studies and asks 
whether too many are statistically significant or “posi-
tive.” For example, if a meta-analysis collected three 
studies and all three were significant with p < .05, the 
excess significance test instructs the meta-analyst to cal-
culate the post hoc power of each study (assuming that the 
estimated effects are the true effects). The expected num-
ber of positive studies is calculated based on the studies’ 
power, and that expected number is compared with the 
observed number of positive studies using the chi-square 
statistic. Assuming that each study had 60 percent power, 
the probability that all three studies would reject the null 
hypothesis with p < .05 works out to the product of the 
power values, 0.603, or 0.22. Guidelines for the TES indi-
cate that a p-value less than .10 should be considered sig-
nificant (Francis 2014). Therefore, given that 0.22 > 0.10, 
the meta-analyst will fail to reject the null hypothesis and 
can conclude that the observed number of positive studies 
does not exceed the expected.

The simplicity of the excess significance test may ini-
tially be appealing. In 2012, Gregory Francis published a 
series of papers employing the test in various subfields to 
argue for the presence of publication bias (2012a, b, c, d, 
e, f, g) and concluded that the results from those subfields 
should be ignored (Simonsohn 2013). By late 2012, the 
test of excess significance was attracting more attention, 
primarily criticism (Balcetis and Dunning 2012; Galak 
and Meyvis 2012; Piff et al. 2012; Simonsohn 2012), and 
the test became the focus of a special issue in the Journal 
of Mathematical Psychology.

Criticism of Francis’s work and of the excess signifi-
cance test itself is rooted in a number of important issues. 
First, as Simonsohn (2013) pointed out, even the presence 
of publication bias should not result in the rejection of 
a field of research. The excess significance test does not 
assess the evidential value (or practical significance) of 
results. The method is a null hypothesis significance test, 
implying that it is a form of confirmatory research, despite 
the fact that it is exploratory at best. Perhaps most notably, 
Simonsohn writes that the excess significance test actu-
ally answers this question: “Has a large enough set of 
published studies been compiled to reject the obviously 
false null that all studies, regardless of outcome, would be 
reported?” (175).

Other criticism of the excess significance test includes 
the fact that no guidelines are in place for choosing which 
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tests to examine from a study, especially considering that 
studies often base multiple tests on the same data, which 
results in dependencies that affect the outcome of the 
excess significance test (Johnson 2013). The test does not 
provide any idea of the magnitude of publication bias or 
its implications; it also makes assumptions that violate 
the sequential nature of the publication process (Morey 
2013). The excess significance test itself suffers from a 
substantial lack of power, and simulations demonstrate that  
it cannot detect even extreme bias without prior knowl-
edge of the true population effect size (Vandekerckhove,  
Guan, and Styrcula 2013). The test is also likely to perform 
poorly when effect sizes are heterogeneous (Ioannidis and 
Trikalinos 2007). Finally, Kepes and Michael McDaniel’s 
simulations revealed that the test for excess significance 
is not robust to outliers (2015).

In comparison with the many other methods described 
in this chapter, which have fewer flaws and more redeem-
ing qualities, the excess significance test falls short. Much 
like the fail-safe N, the excess significance test is not use-
ful as a test for publication bias. Researchers should not 
popularize the test because of its simplicity. Researchers 
would also be wise to refrain from condemning entire 
fields of study on the basis of a single severely flawed test.

18.4.3 Trim and Fill 

The nonparametric trim and fill method was developed as  
a simpler alternative to parametric selection models (Duval 
and Tweedie 2000a, 2000b). It is one of the most popu-
lar methods for adjusting for publication bias (Borenstein 
2005; Moreno et al. 2009). Also, because the method 
formalizes the use of a funnel plot, the ideas underlying 
its statistical calculations can be communicated visually, 
increasing its accessibility.

The method is based on rectifying funnel plot asym-
metry. It assumes that the studies on either the far left-
hand or right-hand side of the funnel are suppressed and, 
therefore, it is a one-sided procedure. First, the method 
uses an iterative process to determine how many studies 
would have to be removed, or “trimmed,” from one side 
of the funnel for the remaining effect sizes to be symmet-
ric. It trims the asymmetric effect sizes, then uses one of 
three estimators to generate, or “fill in,” new effects that 
are mirror images of the remaining ones. The adjusted 
pooled effect size is then calculated based on this aug-
mented symmetrical data set, which can also be used to 
calculate an adjusted variance component (Jennions and 
Moller 2002). Although Eric Weinhandl and Sue Duval 
(2012) are currently working on allowing trim and fill to 

include a linear model for the mean effect, it is not yet 
developed for more than one linear predictor.

Either a fixed- or random-effects meta-analytic model 
can be used for the iterative trimming and filling parts  
of this method, and once effect sizes are filled in, either 
model can be used to obtain adjusted estimates. In this 
way, the method can accommodate random (or between- 
studies) heterogeneity, and it can produce an adjusted 
variance component estimate. The choice between fixed- 
and random-effects is important. Sue Duval and Richard 
Tweedie originally advised using a random-effects model 
for both steps, a process that they referred to as “random- 
random,” because doing so would yield more conser-
vative confidence intervals (2000a, 2000b). However, if 
publication bias is present and smaller studies are clus-
tered together, the random-effects model (which allows 
more weight to smaller studies) may be biased; as a result, 
Alexander Sutton advocates a “fixed-fixed” process (2005). 
The “fixed-random” process is a compromise, using a 
fixed-effect model for trimming and a random-effects 
model to estimate the adjusted effect, although the adjusted 
estimate may be overly conservative (Peters et al. 2007). 
Duval recommends the more conservative approaches, 
although she emphasizes that all three should be estimated 
and compared (2005).

During the iterative procedure, three possible estima-
tors of the number of missing studies may be employed. 
Two of these estimators, known as R0 and L0, are recom-
mended; the third, Q0, is merely a linear transformation 
of one of the others (Duval and Tweedie 2000a, 2000b). 
If choosing between the two (R0 and L0), L0 sometimes 
performs better (Jennions and Moller 2002). Others have 
found that R0 performs better (Peters et al. 2007). Duval, 
however, recommends estimating both and comparing the 
results, especially because the performance of the esti-
mators can depend on the number of observed versus miss-
ing effects (Duval 2005; Duval and Tweedie 2000b). 
Given space constraints, the details of these estimators 
are not provided here, but thorough examples of their 
calculation are available elsewhere (Duval and Tweedie 
1998; Duval 2005).

Duval and Tweedie initially evaluated this method 
through simulation, under homogeneous conditions and 
with a data suppression mechanism matching the model— 
that is, where the most extreme effect sizes were sup-
pressed (2000a, 2000b). Under those conditions, it per-
formed well. However, other simulations suggest it may 
perform poorly in the presence of between-study hetero-
geneity in the absence of any evidence of publication bias 
(Terrin et al. 2003). Peters and his colleagues conducted 
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simulations further evaluating the performance of trim 
and fill, finding that trim and fill underestimates the true 
effect size in the absence of publication bias (2007). They 
note that trim and fill is not ideal, in part because it can 
impute unrealistic effect sizes, although it can out perform 
the unadjusted random-effects model in the presence of 
publication bias, but should be considered a sensitivity 
analysis, as originally intended (Peters et al. 2007; Duval 
and Tweedie 2000a, 2000b). Guido Schwarzer, James 
Carpenter, and Gerta Rücker (2010) compare trim and 
fill to the Copas selection model (Copas and Shi 2000) 
and confirm that trim and fill is more conservative due 
to inflated standard errors.

All publication bias methods should be regarded as 
sensitivity analyses; therefore, saying the same of trim 
and fill is not a slight. Although trim and fill has its share 
of problems, it is both popular and accessible, and meta- 
analysts will likely benefit from including it in their 
arsenal of assessment methods.

18.4.4 Linear Regression Adjustment 

In 1997, Matthias Egger and his colleagues described a 
parametric test for funnel plot asymmetry based on linear 
regression. The test regresses the standard normal devi-
ate, or the effect sizes divided by their standard errors, on 
precision (defined as the inverse of the standard error). 
This regression fits a line to Rex Galbraith’s (1994) radial 
plot, in which the regression line is not constrained to go 
through the origin. Effect sizes from small studies will 
have a standard normal deviate that is close to zero 
regardless of their magnitude, and large studies will pro-
duce large standard normal deviates. Therefore, in the 
absence of publication bias, the regression line will run 
through the origin. If bias is present, small studies may 
differ systematically from larger studies, and the line will 
no longer run through the origin (Egger et al. 1997).

The regression intercept measures the magnitude and 
direction of asymmetry, and a significant t-test on the 
intercept indicates that asymmetry (and, by extension, 
publication bias) may be present. A negative intercept 
indicates that smaller studies have larger effects; a posi-
tive intercept indicates that they have smaller effects 
than expected. The regression model, as proposed above, 
is equivalent to a weighted meta-regression model, and 
the regression line can be displayed on a funnel plot for 
clarity of interpretation.

The model just presented is Egger’s linear regression 
in its original form. Several researchers have proposed 

extensions or modifications of this model (Macaskill, 
Walter, and Irwig 2001; Sterne and Egger 2005; Harbord, 
Egger, and Sterne 2006; Peters et al. 2006; Rücker, 
Schwarzer, and Carpenter 2008; Deeks, Macaskill, and 
Irwig 2005). Petra Macaskill, Stephen Walter, and Lesley 
Irwig propose a variation in which the effect sizes, rather 
than their standard normal deviates, are regressed on their 
study size and weighted by their inverse pooled variance 
(2001). This model and the next three variations reverse 
the role of the intercept and slope; the slope is expected to 
be zero in the absence of publication bias. Peters and his 
colleagues prefer regressing effect sizes on the inverse 
of their sample size (2006). Sterne and Egger advocate 
the regression of effect sizes on their standard errors, 
weighted by their inverse variance (2005). Gerta Rücker, 
Guido Schwarzer, and James Carpenter describe a varia-
tion of this for binary outcome data that has been arcsine- 
transformed (2008). Jonathan Deeks, Petra Macaskill, and 
Les Irwig propose a regression of the effect size involv-
ing the effective sample size (ESS), defined as 4n

1
n

2
/

(n1+n2) (2005). The effect size is regressed on the recip-
rocal of the square root of ESS and weighted by ESS. 
Finally, Roger Harbord, Egger, Jonathan Sterne recom-
mend regressing the efficient scores (defined as the first 
derivative of the log-likelihood) against the score vari-
ance (Fisher information), for which the intercept is a 
measure of bias (2006). For binary outcomes, because 
of the correlation between odds ratios and their standard 
errors, the original Egger’s regression has an inflated 
type I error rate, and variations are preferable (Moreno 
et al. 2009).

Clearly, there are several variations of the original 
Egger’s linear regression (Egger et al. 1997). Although 
these models differ in terms of outcome measure and pre-
dictor, and although the role of the intercept and slope 
occasionally change, the models are not discussed indi-
vidually for the sake of brevity. A mention of Egger’s 
linear regression or Egger’s test here refers to the entire 
class of models, unless otherwise specified.

If a meta-analytic data set contains systematic hetero-
geneity due to covariates, these must be considered when 
using any funnel plot–based assessment. With discrete 
covariates, separate assessments can be made for each 
group, although this approach may result in a consider-
able reduction of power. The meta-analyst can also extend 
the regression model to include study-level covariates, 
therefore estimating a mixed-effects weighted regression. 
In this way, Egger’s regression is capable of accommo-
dating some forms of heterogeneity, but it does not incor-
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porate random (or between-studies) heterogeneity and 
cannot estimate a variance component. Egger’s regres-
sion does, however, produce an adjusted estimate of the 
average effect size (the slope), although its estimate is 
biased because its predictor variable is subject to sampling 
error and therefore violates the assumptions of linear 
regression (Macaskill, Walter, and Irwig 2001). Although 
we are not aware of any research on the subject, it is 
theoretically possible to fit a measurement error model 
to overcome this bias; exploring such an idea could be 
promising.

Peters and his colleagues note that Egger’s regression 
is widely used in the medical literature (2006). In the social 
science literature, the fail-safe N is still the most common 
procedure, despite its deep-seated flaws, but Egger’s regres-
sion is gaining popularity (Ferguson and Brannick 2012). 
Egger’s regression does suffer from low power and poor 
performance when the number of studies is small, espe-
cially when there are fewer than twenty, or when the treat-
ment effect is large (Moreno et al. 2009; Sterne, Egger, 
and Smith 2001; Macaskill, Walter, and Irwig 2001). 
Egger’s regression is most powerful with a large number 
of effect sizes that range widely in terms of study size 
(Macaskill, Walter, and Irwig 2001). Its problems with 
power, however, are not unique among publication bias 
assessment methods, and it is still a useful tool.

18.4.5 PET-PEESE 

In 2014, Tom Stanley and Hristos Doucouliagos proposed 
PET-PEESE, and since then the method has appeared 
occasionally in the meta-analytic literature (Carter and 
McCullough 2014; Carter et al. 2015). PET-PEESE is 
actually an extended modification of Egger’s regression 
(Egger et al. 1997). Stanley and Doucouliagos instruct the 
meta-analyst first to estimate a regression of effect size on 
standard error, weighted by the inverse variance (2014). 
This is the exact model that Sterne and Egger propose 
(2005). Stanley and Doucouliagos point out that, though 
the slope of this model is a measure of bias, the intercept 
is also informative: it represents an estimate of the effect 
size when the standard error is zero (2014). Therefore, 
they argue that the intercept is an estimate of a perfectly 
precise study, or an effect size uninfluenced by publica-
tion bias (Stanley 2005). They call this first regression the 
Precision-Effect Test (or PET). Thus far, PET is a restate-
ment of the fact that, for certain variations of Egger’s 
regression, the intercept is an effect-size estimate adjusted 
for publication bias. A t-test on the intercept, using the null 

hypothesis that the intercept is zero, indicates whether a 
true effect is present.

Assuming that a test on the intercept is significant, or 
that a nonzero effect exists, results in a second problem. 
The issue with using this adjusted estimate is that, as 
mentioned previously, the estimate is biased. To avoid 
this problem, Stanley and Doucouliagos propose a sec-
ond conditional test (2014). If the intercept from PET is 
significant, they advise meta-analysts to conduct another 
regression, this time with effect size predicted by sam-
pling variance rather than standard error. This regression 
is called the Precision-Effect Estimate with Standard 
Error (PEESE). PEESE produces an intercept that is still 
biased, but simulations demonstrate that it is less biased 
than the intercept from PET (Stanley and Doucouliagos 
2014). Therefore, they advise that, if the PET test is sig-
nificant, meta-analysts should estimate PEESE and accept 
its intercept as an adjusted effect-size estimate. If PET is 
nonsignificant, there is not enough evidence that the true 
effect size differs from zero.

A problem with this approach is that bias in the inter-
cept estimate does not vanish when using variance as a 
predictor rather than its square root. PET-PEESE is not  
a new technique, although it is described as such; it is a 
combination of existing variations of Egger’s regression. 
Macaskill, Walter, and Irwig have explained the source of 
bias in the intercept (2001). The intercept is a biased esti-
mate not because of the choice of predictor, but because 
of a violation of one of the assumptions for linear regres-
sion. Both predictors, variance and standard error, are 
not fixed; they are random, and are estimated from the 
observed data. Therefore, using either PET or PEESE, 
measurement error is inherently present in the indepen-
dent variable, and the estimate of the intercept will be 
biased downward—the exact result that Stanley and 
Doucouliagos (2014) describe. Stanley and Doucouliagos  
also argue that PET-PEESE outperforms random-effects 
meta-regression in the presence of publication bias, 
although it still performs worse overall in the presence 
of high levels of heterogeneity.

Because it is a combination of two Egger’s regression 
variations, PET-PEESE possesses the same flaws. It has 
low power and cannot incorporate random or between- 
studies heterogeneity. When heterogeneity is present, it 
performs poorly (Stanley and Doucouliagos 2014) and 
the coverage rate of its confidence intervals is persis-
tently low (Moreno et al. 2009); in the presence of severe 
bias or when the data are homogeneous, its confidence 
intervals are too wide (Moreno et al. 2009). Finally, its 
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effect-size estimate is biased. When we consider the many 
other methods presented in this chapter that possess more 
redeeming features, including other variations of Egger’s 
regression, PET-PEESE appears to be a flawed method.

18.4.6 Selection Modeling

Selection models adjust meta-analytic data sets by speci-
fying a model that describes the mechanism by which 
effect sizes may be suppressed. This model is combined 
with an effect-size model that describes the distribution 
of effect sizes in the absence of publication bias.

If the selection model were known, selection methods 
would be straightforward, but the precise nature of the 
suppression will almost always be unknown. Instead, 
selection approaches attempt to estimate the selection 
model, along with adjusted estimates of the meta-analytic 
parameters. Although complex to implement, they are 
recommended over other methods, which can produce 
misleading results when effect sizes are heterogeneous 
(Terrin et al. 2003). Selection methods may perform poorly 
when the number of observed effects is small; an alter-
native involves specifying selection models of varying 
severity and estimating the meta-analytic parameters 
contingent on each hypothetical selection pattern. Jack 
Vevea and Carol Woods present such an approach (2005; 

see also table 18.1). These methods, which do not esti-
mate parameter values from the data, are sensitivity 
analyses by nature, although, of course, all bias assess-
ments are.

Two classes of selection models have been developed: 
those that model suppression as a function of an effect 
size’s p-value, and those that model suppression as a 
function of a study’s effect size and standard error simul-
taneously. Both are implemented using weighted distri-
butions that represent the likelihood of observing a given 
effect estimate if it occurs. These methods have gained 
popularity in the publication bias literature. Descriptions 
of the more complex selection models are presented here 
with limited statistical detail. Hedges and Vevea pub-
lished a comprehensive review of selection models avail-
able by the early 2000s that provides a more statistically 
rigorous account of some of the approaches described 
here (2005).

Although they do have flaws, namely, their complexity 
and sample size requirements, both classes of selection 
model tend to perform well in simulations and allow meta- 
analysts to evaluate data under a range of selection pat-
terns. Therefore, they are valuable tools in an arsenal of 
bias assessments.

18.4.6.1 Suppression as a Function of p-Value Only  
Selection models that depend solely on effect sizes’ 

Table 18.1 Sample Selection Patterns for the Vevea and Woods Method

Probability of Observing Effect

p Interval
Moderate One-Tailed 

Selection
Severe One-Tailed 

Selection
Moderate Two-Tailed 

Selection
Severe Two-Tailed 

Selection

.000–.005

.005–.010

.010–.050

.050–.100

.100–.250

.250–.350

.350–.500

.500–.650

.650–.750

.750–.900

.900–.950

.950–.990

.990–.995

.995–1.000

1.00
.99
.95
.90
.80
.75
.65
.60
.55
.50
.50
.50
.50
.50

1.00
.99
.90
.75
.60
.50
.40
.35
.30
.25
.10
.10
.10
.10

1.00
.99
.95
.90
.80
.75
.60
.60
.75
.80
.90
.95
.99

1.00

1.00
.99
.90
.75
.60
.50
.25
.25
.50
.60
.75
.90
.99

1.00

source: Author’s tabulation.
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p-values propose or estimate the likelihood of surviving 
selection as a function of those p-values. Hedges (1984) 
as well as David Lane and William Dunlap (1978) pro-
pose simple selection models that assume all statistically 
significant effect sizes are observed (for example, p < .05 
two-tailed, or p > .975 or p < .025 one-tailed) and all others 
are suppressed. With this approach, any effect size with a 
p-value < .05 has a probability of one (certainty) of being 
observed and a probability of zero otherwise. Iyengar and 
Greenhouse propose somewhat more sophisticated models, 
assuming that the likelihood of publication is a decreasing 
function of the p-value for studies that are not statistically 
significant (1988). In the years following, various authors 
have proposed more sophisticated models.

18.4.6.1.1 Dear and Begg. Keith Dear and Colin Begg  
introduce a semi-parametric method for assessing publi-
cation bias that uses a nonparametric weight function on 
the two-tailed p-value scale (1992). The method, they 
note, can easily be adapted for one-tailed p-values. The 
weight function is a step function with discontinuities at 
the alternate individual observed values of p. In other 
words, the Dear and Begg model takes the observed 
p-values of all effect sizes in the data set and orders them. 
It then includes every other p-value as discontinuities in 
the weight function. For example, if the first four p-values 
of a data set were .001, .01, .03, and .04, the first discon-
tinuity in the weight function would be set at p = .01, and 
weights would be estimated for p-values below .01 and 
p-values between .01 and .04. This means there are k/2 
weight parameters for a meta-analytic data set of size k. 
The model estimates a weight for each interval that rep-
resents the relative probability of surviving the selection 
process. To identify the model, the weights are con-
strained to fall between zero and one. However, they are 
not directly interpretable as probabilities because we lack 
information about the base rate of publication. No effect 
has 100 percent probability of publication.

Although the model can provide both an adjusted esti-
mate of the average effect size and a statistical test, Dear 
and Begg focus on using plots of the weights against 
p-values as a tool for visual assessment (1992). Spikes in 
the plot indicate that the weight for p-values in that par-
ticular range is large, meaning that studies with p-values 
in that range are more likely to be published and therefore 
observed. Valleys or dips in the plot indicate the opposite; 
studies with p-values in those ranges are less likely to be 
observed.

With this approach, weights for larger (less significant) 
p-values sometimes exceed the weights for the most sig-

nificant values, making visual assessment of bias diffi-
cult. If slight fluctuations in the weights are numerous, 
identifying the overall pattern may be complicated. Kaspar 
Rufibach presents an extension of the model that addresses 
this problem (2011). His approach is identical to Dear 
and Begg’s (1992), except that Rufibach has imposed a 
constraint, forcing the weights to be a monotone non- 
increasing function of p-values. Rufibach notes that the 
constraint improves the performance of estimates, yields 
more insight into the selection process, and leads to  
a more realistic weight function. The constraint also 
makes it easier for meta-analysts to interpret the func-
tion from plots.

The Rufibach model provides a useful plot of the 
weight function, and can be informative (2011). However, 
as the number of effect sizes in the meta-analysis increases, 
both the Dear and Begg (1992) and Rufibach models 
become difficult, if not impossible, to estimate. This prob-
lem occurs because, rather than allowing meta-analysts to 
restrict the number of p-value discontinuities, the models 
determine the number of discontinuities as k/2. For a 
meta-analysis with k = 20, this is manageable; for a 
meta-analysis with k = 200, estimating more than one 
hundred parameters (including a mean and variance com-
ponent) may be impossible. Furthermore, the difference  
in assumptions between the two models can point to rad-
ically different conclusions (see the example later in this 
chapter).

In keeping with the importance of triangulation, we 
encourage the use of these models as part of a toolbox 
of assessments, but warn meta-analysts that the models 
may be inestimable under some circumstances.

18.4.6.1.2 Hedges. Hedges proposed a similar model 
that assumes a step function over p-values (1992). His 
model differs from Dear and Begg’s (1992) approach 
because the analyst must specify steps at perceived mile-
stones in statistical significance. These milestones are 
based on the perception that a p-value of .049 is consid-
erably different from one of .051, that .011 is different 
from .009, and so on. (Often p = .50 is a particularly rel-
evant cut point because it reflects the point at which many 
effect-size metrics change from positive to negative.) 
Weights representing the relative likelihood of survival 
for the intervals are estimated in the context of a random- 
effects model, and all parameters (weights, the mean 
effect, and the variance component) are estimated simul-
taneously by the method of maximum likelihood. The 
model uses only two-tailed p-values, which cannot repre-
sent the direction of the effect. (Software for estimating 
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the two-tailed model is no longer available.) Vevea, 
Nancy Clements, and Hedges modified the model to use 
one-tailed p-values (1993). Models based on one-tailed 
p-values can still represent a two-tailed selection pattern. 
A pair of one-tailed p-values can define a two-tailed value 
by employing, for example, .025 and .975 in place of .05. 
This provides freedom from the constraint that selection 
must operate identically for positive and negative effects, 
which is an unlikely phenomenon. One- and two-tailed 
selection patterns fundamentally reflect the assumption 
of asymmetry (one-tailed) versus symmetry (two-tailed) 
of the weight-function model.

The method employs weighted distribution theory: the 
usual random-effects likelihood is multiplied by the weight 
for the p-value interval of each study, then renormalized. 
The software first estimates a conventional fixed- or 
random-effects model. Then the meta-analytic model is 
reestimated using the weighted likelihood. In addition to 
the mean and variance component, the model estimates all 
but one of the weights associated with the p-value inter-
vals. To identify the model, the weight for the most signif-
icant range of p-values is fixed at 1.0. Other weights are 
interpreted relative to that first weight, and can actually 
exceed 1.0. Hence, they are not directly interpretable as 
probabilities. This weighted model provides mean and 
variance component estimates adjusted for publication 
bias, as well as estimated weights reflecting the relative 
likelihood of observing effect sizes in each interval. In 
addition, a likelihood-ratio test for publication bias com-
pares the conventional model to the adjusted model.

18.4.6.1.3 Vevea and Hedges. Vevea and Hedges (1995) 
later added the possibility of including study-level covari-
ates to the Vevea, Clements, and Hedges (1993) model. 
This can remove confounding effects in the distribution 
of effect sizes if asymmetry in the funnel plot is partly 
due to the presence of covariates. This weight function 
model can accommodate a full linear model for the 
mean effect, including dichotomous and continuous pre-
dictors, and can provide estimates of those predictors 
adjusted for publication bias. A particular advantage is 
that in some cases, certain classes of effects may remain 
virtually unaffected by the presence of the selection 
model, while others may be strongly affected.

The model does have some flaws—in particular, it does 
not perform as well with smaller meta-analyses, and it 
cannot estimate weights for ranges of p-values in which 
no observed effect sizes fall. It requires no precise number 
of effect sizes. Instead, meta-analysts must ensure that 
there are at least some observed effects in each range of 

p-values they specify, and must keep in mind that weights 
for intervals with few observed effects will be poorly 
estimated. Additionally, the model is a selection model, 
and selection models are often dismissed for their com-
plexity. The model does require users to think about the 
selection process and to specify some relevant p-value 
breakpoints, but this is not necessarily a flaw. It is unlikely 
that a phenomenon as complex and multifaceted as pub-
lication bias could be adequately handled without some 
careful consideration.

Despite its flaws, the model has a number of positive 
features. First and most important, it is capable of han-
dling both random and systematic heterogeneity. Many 
other assessments cannot accommodate linear models; 
meta-analysts can still use them on homogeneous sub-
sets, but this may not be practical and, for continuous 
moderators, may be impossible. Additionally, in terms of 
performance, a simulation shows that variations of the 
Hedges model outperform both p-curve and p-uniform 
(1992). Such variations have narrower confidence inter-
vals and are robust both to heterogeneity and to differing 
selection strengths (McShane, Böckenholt, and Hansen 
2016). An earlier study by Hedges and Vevea also finds 
that such models are robust to violations of assumptions 
about the distribution of random effects—that is, to non-
normal distributions (1996).

Thus far, the Vevea and Hedges method has not seen 
much use, likely because no user-friendly software has 
been available (1995). However, Coburn and Vevea have 
released an R package to CRAN (the Comprehensive R 
Archive Network) titled weightr (2016a). The program is 
capable of estimating both the Vevea and Hedges model 
and the modified Vevea and Woods version described in 
the following section (2005). The same software is also 
available through a web-based point-and-click Shiny 
application (Coburn and Vevea 2016b).

Simulation studies of similar selection models indi-
cate that the Vevea and Hedges model bears promise and 
will likely perform well under realistic circumstances, 
whether in the presence of systematic heterogeneity, 
random heterogeneity, or both (Vevea and Hedges 1995; 
McShane, Böckenholt, and Hansen 2016). This class of 
models also appears robust to different patterns of selec-
tion, which is a crucial trait given that researchers can 
never know the true underlying selection pattern. Meta- 
analysts would be remiss to overlook this model in favor 
of its simpler counterparts. The release of software will 
allow the Vevea and Hedges model to see increased use.

18.4.6.1.4 Vevea and Woods. In 2005, Vevea and 
Woods published a paper presenting a modification of 
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the Vevea and Hedges (1995) model. Some meta-analysts 
were disappointed because their data sets were too small 
to allow estimation of the Vevea and Hedges model. (With 
small data sets, it is often not possible to estimate weights 
for more than one or two p-value intervals.) There was 
interest in a method that could allow the user to specify not 
only p-value cut points, but also weights for the p-value 
intervals—a sensitivity analysis tool that would enable the 
user to explore how the conditional means of a data set 
might vary under different bias patterns.

The Vevea and Woods model provides this adaptation 
(2005). With it, there is no need to ensure that the data set 
is large enough, or even that there are observed effect 
sizes in every p-value interval. The meta-analyst merely 
specifies the p-value cut points of interest and a set of 
hypothetical weights for the corresponding p-value inter-
vals, and the model produces estimates of the adjusted 
conditional means and variance component under the 
specified conditions. Because the model is not actually 
estimating parameter values, the standard errors and con-
fidence intervals are no longer meaningful, nor is the 
likelihood-ratio test comparing the unadjusted and adjusted 
models. This does not reduce the impact of the model, 
however. It is still a valid sensitivity analysis tool that can 
provide the curious meta-analyst information about how 
specified selection bias patterns could affect their data, 
or about how robust their data are to selection bias. When 
moderators are included in the analysis, the results may 
show that a subset of effects identified by the linear model 
are virtually unaffected by any trial bias pattern.

Because the pattern of bias is imposed by the researcher 
rather than estimated from the data, sometimes the mean 
and variance component estimates can be adjusted rela-
tive to an extreme or unrealistic selection pattern. Kepes 
and McDaniel record an example of this (2015). To under-
stand why, imagine a case in which the meta-analyst spec-
ifies weights of zero for all p-value cut points (indicating 
that no effect sizes can occur). In such a scenario, the esti-
mates will obviously be nonsensical, if the model even 
converges; estimates may blow up or reduce to zero if 
extreme selection patterns are imposed. Researchers must 
remember that they are merely observing the reaction of 
the estimates to varying scenarios; they should assess the 
change in estimates across scenarios to determine whether 
their data set is robust to different selection patterns.

The Vevea and Woods (2005) model is a convenient 
workaround for meta-analysts who wish to implement 
the Vevea and Hedges (1995) model, but who do not have 
enough effect sizes to estimate weights. In this way, it is 

a useful addition to the literature, and helps make selec-
tion modeling a feasible option for more researchers.

18.4.6.2 Suppression as a Function of Effect Size and  
Its Standard Error Another class of models addresses 
publication bias by assuming a relationship among effect 
sizes, their standard errors, and the likelihood of their 
surviving the selection process.

18.4.6.2.1 Copas and Shi. John Copas and Hu Li ini-
tially proposed a selection model that functions as a sen-
sitivity analysis in 1997; in subsequent years, Copas and 
Shi (2000, 2001) published several variations of the model. 
The method is frequently cited in discussions of selection 
models, as demonstrated by the fact that the original paper 
has received more than 340 citations, but it has not seen 
much practical use. Recently, Schwarzer, Carpenter, and 
Rücker (2016) created a software package called metasens 
using R (R Core Team 2016). The package implements 
the model and provides guidelines for its interpretation. 
As a result, the approach is gaining in popularity as more 
meta-analysts use it (Preston, Ashby, and Smyth 2004; 
Bennett et al. 2004). Some researchers even advocate  
a Bayesian implementation, which may avoid the issue 
of specifying values for the a and b parameters (Mavridis 
et al. 2012).

The Copas and Shi selection method (2001) combines 
two models: a population model that is equivalent to the 
usual random-effects meta-analytic model, and a model 
in which the probability of a study being published is a 
linear function of its reported standard error. There are 
two parameters in this linear model, the intercept (a, or 
the overall proportion of studies published when the stan-
dard error of those studies is zero) and the slope (b, or 
the relationship between standard error and publication). 
This linear model can be rewritten as a propensity model, 
where a study is selected for publication if and only if its 
propensity is greater than zero (Copas and Shi 2001; 
Copas and Li 1997). A correlation parameter links the 
observed effect sizes and their estimated propensities. A 
correlation of zero indicates the complete absence of 
publication bias, or a case in which effect sizes are pub-
lished regardless of their standard error, while a positive 
correlation indicates the presence of bias (Copas and Shi 
2001). Therefore, the conditional random-effects model 
represents the observed effect sizes, given that their pro-
pensity score is greater than zero (Copas and Shi 2000).

The selection model involves a total of five parameters— 
the mean effect size, the variance component, the correla-
tion between effect sizes and propensities, and the slope 
and intercept (a and b) for the propensity model. No soft-
ware to incorporate moderator variables is currently 
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available, but Copas and Shi indicate that the random- 
effects population model could easily be replaced with a 
mixed-effects model (2001). The problem with estima-
tion, however, lies with the a and b parameters; they are 
not identified, because not enough information is avail-
able (the meta-analyst never knows how many studies 
remain unpublished). Copas and Shi demonstrate this by 
proving that the likelihood function for a and b is almost 
a plateau, so that using maximum likelihood estimation 
is near impossible. To solve this problem, they propose 
entertaining a series of specified values for a and b, then 
assessing the impact of those values on the average effect 
size and variance component. In that way, although all 
publication bias models should be treated as a sensitivity 
analysis, their model must be; it is a sensitivity analysis 
by nature, like the Vevea and Woods (2005) approach.

The Copas and Shi (2001) selection model features an 
algorithm that chooses a range of values for a and b and 
then uses maximum likelihood estimation to calculate the 
average effect size for each pair of values. (On occasions 
when the model chooses a range that produces uninter-
pretable results, the user can manually specify a range.) 
These results demonstrate how the average effect size 
changes as the likelihood of small studies being pub-
lished changes. The relationship is easier to observe 
graphically, and four types of plots aid in its interpreta-
tion. The first is a standard contour-enhanced funnel plot. 
The second is a contour plot of the adjusted effect size 
against the values of a (on the x-axis) and b (on the 
y-axis), with the values representing no publication bias 
in the top right (Carpenter et al. 2009). If the contour 
lines are spread far apart, the adjusted effect size does not 
change much as the values of a and b change, and appears 
robust. The third plot explores this further; it plots the 
probability of publishing the study with the smallest sam-
ple size (on the x-axis) against the corresponding adjusted 
effect size (on the y-axis). If this relationship has a slope 
of zero, the effect size appears to be robust; otherwise, it 
may be affected by bias (Carpenter et al. 2009). Finally, 
the fourth plot involves the p-values for a likelihood-ratio 
test that assesses whether selection bias remains. The 
p-values (on the y-axis) are plotted against the probability 
of publishing the smallest-N study (again on the x-axis). 
The point where the plotted curve crosses the horizontal 
dashed line indicates that the corresponding probability 
on the x-axis is the most likely probability according to 
the model (Carpenter et al. 2009).

The Copas and Shi selection model has several posi-
tive features (2001). It can accommodate not only random 

(between-study or unobserved) heterogeneity captured by 
the variance component but also systematic (or observed) 
heterogeneity through incorporation of moderators. It can 
produce adjusted estimates of all the parameters of inter-
est for each specified level of publication bias. In addition, 
the emphasis on sensitivity analysis encourages meta- 
analysts to view the model results as flexible, rather than 
accepting them as truth.

There is a dearth of information from simulations 
assessing the model’s performance. The vast majority of 
manuscripts exploring the Copas and Shi (2001) model 
do so empirically, comparing it with other publication bias 
assessments using a limited set of observed data sets 
(Carpenter et al. 2009; Mavridis et al. 2012; Schwarzer, 
Carpenter, and Rücker 2010). Rücker, Carpenter, and 
Schwarzer (2011) recently presented the results of a small-
scale simulation evaluating the Copas and Shi model, but 
noted that doing so was time-consuming and difficult, and 
that their simulation neglected to assess extreme hetero-
geneity and small sample sizes. A thorough simulation of 
the Copas and Shi model, perhaps along with competing 
selection models, would be informative.

The Copas and Shi model is a valuable addition to the 
body of selection models for publication bias, and its 
increasing popularity is promising (2001). Like the Vevea 
and Woods (2005) model, that of Copas and Shi does not 
estimate a selection pattern from the data; it imposes a 
range of possible patterns and observes the results. There-
fore, it may also work well with smaller meta-analyses. 
Software to implement the model is available, which may 
encourage its use in the future.

18.4.6.2.2 Rücker. Rücker, Carpenter, and Schwarzer 
first published the Rücker limit meta-analysis method in 
2011. The underlying model is an extended random- 
effects model that takes account of a possible relationship 
between effect size and sample size by allowing effect 
size to depend on standard error. Part of the model is 
based on earlier simulation work by Rücker, Schwarzer, 
and Carpenter (2008), which involved artificially inflating 
the sample size of effect sizes by a given factor of M. The 
model is also based on the original Egger’s linear regres-
sion (Egger et al. 1997).

The concept of limit meta-analysis begins with the usual 
random-effects model, with an added parameter alpha 
that represents a small-study effect by allowing effect 
size to depend on standard error (Rücker, Carpenter, and 
Schwarzer 2011). The method then considers a situa-
tion where the sample size of all observed effect sizes is 
inflated by a factor of M. As M approaches positive infin-
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ity, so does sample size; the effect sizes become infinitely 
precise, and variation due to sample size disappears—
between-studies heterogeneity is all that remains. Estimat-
ing an original Egger’s regression (Egger et al. 1997) on 
the observed effect sizes yields an intercept and slope. The 
intercept corresponds to the alpha parameter, and the 
slope is an estimate of the average effect size with a stan-
dard error of zero, or the infinitely precise effect. The limit 
meta-analysis method creates a new data set by transform-
ing the original effect sizes so that they are centered on the 
slope from the Egger’s regression. The slope of an Egger’s 
regression calculated on this centered data set is the esti-
mate of the average effect size, adjusted for small-study 
effects. A test on the intercept, or alpha, assesses the pres-
ence of a small-study effect. Finally, a test for heterogene-
ity on the centered data addresses the question of whether 
residual heterogeneity is present after adjustment.

Because it is based on Egger’s regression, limit meta- 
analysis may presumably also incorporate a linear model, 
although no manuscripts demonstrate this feature. Limit 
meta-analysis does not produce an adjusted variance com-
ponent, but does test for the presence of heterogeneity.

Rücker, Carpenter, and Schwarzer (2011) explored the 
performance of limit meta-analysis, generating and sup-
pressing the data according to the Copas and Shi model, 
and find that its adjusted estimate was less biased than 
those from trim and fill and the Copas and Shi model 
(2001). Of course, the Copas and Shi approach is purely 
a sensitivity analysis, so its bias depends on the particular 
parameter settings used in the simulation. Limit meta- 
analysis was the most conservative of the three. As the 
size of the small-study effect increases, so does the perfor-
mance of the limit meta-analysis method in comparison 
to the usual random-effects model (Rücker, Carpenter, and 
Schwarzer 2011).

Berlin and Robert Golub briefly explored the perfor-
mance of the limit meta-analysis method, but further 
research into its performance would be beneficial (2014). 
The question of bias also remains. This method relies 
on the adjusted estimate from Egger’s regression, so its 
overly conservative nature may be due to the same vio-
lated assumption that impacts PET-PEESE.

18.4.6.3 Bayesian Approaches After early interest 
in developing Bayesian approaches to address publica-
tion bias, there was a lengthy gap in new developments. 
Recently, however, there has been a resurgence of activ-
ity in Bayesian methods.

M. J. Bayarri and Morris DeGroot (1987) introduced  
a Bayesian method similar to Hedges’s (1984) early 

approach in that it restricts attention to statistically signif-
icant outcomes. Geof Givens, David Smith, and Richard 
Tweedie developed a method similar to Hedges’s (1992) 
early version of the step-function model (1997). Nancy 
Silliman (1997) presented, in a random-effects context, 
Bayesian models that estimate weight functions similar to 
those that both Hedges and Olkin (1985) as well as Iyengar 
and Greenhouse (1988) describe. Silliman also developed 
more complex weight-function models, including one 
that estimates weights as a step function of p-values with 
unknown cut points between intervals. Daniel Larose and 
Dipak Dey (1998) offered a similar method, emulating 
Iyengar and Greenhouse with a random-effects model.

More recently, Dimitris Mavridis and his colleagues dev-
eloped a Bayesian implementation of the Copas approach 
(2012). Maime Guan and Joachim Vandekerckhove (2016) 
describe a method that considers four possible models— 
no selection, extreme selection with only statistically signif-
icant effects, nonsignificant results published with unknown 
but constant probability, and the Givens and colleagues 
model (1997). Their approach is to use Bayesian model 
averaging over the four competing models. Although it 
could be argued that these four models are not necessarily 
the best choices, the idea of Bayesian model averaging in 
this context is intriguing.

Other papers proposing new Bayesian approaches to 
addressing publication bias are currently under review. 
Thus, the Bayesian toolbox is likely to be expanded in 
the near future.

All of these Bayesian approaches have a common short-
coming: to our knowledge, accessible estimation soft-
ware is not available. Hence, the meta-analyst who is not 
well versed in Bayesian estimation would find it difficult 
to employ these methods.

18.5  METHODS TO ADDRESS SPECIFIC 
DISSEMINATION BIASES

Incomplete data reporting may occur at various levels 
below the suppression of whole studies. Analyses of spe-
cific outcomes or subgroups, for example, may have been 
conducted but not written up and therefore are not avail-
able for meta-analysis. Similarly, all the details of an 
analy sis required for meta-analysis may not be reported. 
For example, the standard error of an effect size or a study-
level covariate, which is required for meta-regression, may 
not have been published.

This latter category of missing data may be entirely 
innocent, simply due to a lack of journal space or aware-
ness about the importance of reporting such information. 
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Such missingness may not be related to outcome, and data 
can be assumed missing (completely) at random. If that is 
the case, standard methods for dealing with missing data 
can be applied to the meta-analytic data set, though this 
is rarely done in practice (Little and Rubin 1987; Pigott 
2001; Sutton and Pigott 2004). More ad hoc methods can 
also be applied as necessary (Song et al. 1993; Abrams, 
Gillies, and Lambert 2005). However, meta-analyses in 
which data are missing completely at random are most 
likely quite rare.

If the data are missing for less innocent reasons, then it is 
probably safest to assume data are not missing at random. 
That is the typical assumption made when addressing pub-
lication bias, though it is not often framed as a missing data 
problem. Outcomes and subgroups may be suppressed 
under mechanisms similar to those acting on whole studies, 
so missingness may manifest itself in a similar way, and 
therefore the methods covered may be appropriate to 
address it. There may be advantages, however, to develop-
ing and applying methods that address specific forms of 
missing information. This area of research is in its infancy, 
although Coburn and Vevea have taken steps toward devel-
oping models in which the bias pattern may vary with study 
characteristics (2015).

18.5.1 Outcome Reporting Biases

Outcome reporting bias occurs when a study measures 
multiple outcomes, and those outcomes that are statisti-
cally significant are more likely to be published than 
those that are not. The issue of outcome reporting bias 
has received considerable attention in recent years, and 
empirical research indicates that it is a serious problem, 
especially for randomized controlled trials in medicine 
(Hahn, Williamson, and Hutton 2002; Chan, Hrobjartsson, 
et al. 2004; Chan, Krleza-Jeric, et al. 2004; Chan and  
Altman 2005). Although few studies examine outcome 
bias in the social sciences, some evidence indicates that it 
affects education research (Pigott et al. 2013). A recent 
survey of psychologists found that at least 63 percent did 
not report all outcome measures that they assessed (John, 
Loewenstein, and Prelec 2012). Together, this evidence 
reinforces the presence and severity of outcome bias.

Although most methods for assessing publication bias 
are sensitive to outcome reporting bias, they cannot dis-
tinguish between that and publication bias from other 
sources. These methods cannot accommodate patterns of 
missing data across multiple outcomes measured across 
all studies, or information across all reported outcomes. 

A method has been developed that does consider such 
patterns; it assumes that the most statistically signifi-
cant outcomes from some fixed number of identically 
distributed independent outcomes are reported (Hutton 
and Williamson 2000; Williamson and Gamble 2005). 
Although its assumptions are unrealistically strict, the 
model does provide an upper bound on the likely impact 
of outcome reporting bias, and could help determine 
whether contacting study investigators for the potentially 
missing data would be cost effective. However, the bulk 
of citations of these articles are methodological rather 
than empirical work, so it appears that employment of 
the method is not common.

Daniel Jackson, John Copas, and Alexander Sutton 
developed a selection model for a specific application—
success rates of surgery for emergency aneurysm repair—
to address outcome reporting bias (2005). The model 
relies on a specific outcome that it assumes was reported 
without bias to learn about an outcome that obviously 
was not. Assuming no other sources of bias at any level, 
the selection model was identifiable and yielded adjusted 
estimates. Of course, the assumption that no other bias 
exists is very restrictive, and Jackson and his colleagues 
report that a model capable of incorporating both outcome- 
and study-level bias is in development.

18.5.2 Subgroup Reporting Biases

Subgroup reporting bias is similar to outcome reporting 
bias in that it involves the omission of one or more unin-
teresting or nonsignificant subgroup analyses. Either some 
subgroup results are published and others are not, or 
all subgroup results may be excluded (Hahn et al. 2000). 
Subgroup bias has received little attention in the research 
literature, although there are indications that it exists in 
medical research (McIntosh and Olliaro 2000). Others 
note that the prevalence of outcome bias implies the 
existence of subgroup bias as well (Hahn et al. 2000).

Seokyung Hahn and his colleagues (2000) suggest a sen-
sitivity analysis approach, similar to the Jane Hutton and 
Paula Williamson (2000) approach for outcome reporting 
bias, which involves data imputation for missing sub-
group analyses under the assumption that the unpublished 
analyses were nonsignificant. This is a useful start; how-
ever, in general, the issue of subgroup bias is under- 
researched. In the meantime, research guidelines such 
as PRISMA (preferred reporting items for systematic 
reviews and meta-analyses) recommend that meta-analysts 
report all analyses, regardless of significance, and indicate 
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whether they were planned (Liberati et al. 2009). Doing 
so may help reduce the impact of subgroup bias.

18.5.3 Time-Lag Bias

Time-lag bias occurs when research with large effect 
sizes or significant results tends to be stopped earlier 
than originally planned, published more quickly, or both 
(Hopewell et al. 2007)—in other words, when the speed 
of publication depends on the direction or strength of the 
results (Jadad and Rennie 1998). When such bias oper-
ates, the first studies to be published will often show 
systematically greater effect sizes than subsequently pub-
lished investigations (Trikalinos and Ioannidis 2005). 
The cumulative effect size then diminishes over time.

The Proteus effect, named by Thomas Trikalinos and 
John Ioannidis (2005), is a similar time-related phenom-
enon in which the exciting findings of the first published 
study are followed by a series of equally exciting, contra-
dictory studies, while intermediate, less exciting studies 
are published later on. In the case of the Proteus effect, 
because large effect sizes in opposite directions are pub-
lished most quickly, the cumulative effect size may actu-
ally increase over time. The effect is named after Proteus, 
a god who rapidly transformed himself into different fig-
ures (Trikalinos and Ioannidis 2005).

Evidence that time-lag biases exist in the field of genetic 
epidemiology is strong (Ioannidis et al. 2001). It also 
appears in child psychiatry (Reyes et al. 2011), in clinical 
trial research (Clarke and Stewart 1998), and in manage-
ment and industrial-organizational psychology (Banks, 
Kepes, and McDaniel 2012; Kepes et al. 2012), among 
others.

Methods for the assessment of time-lag biases are 
thoroughly described elsewhere (Trikalinos and Ioannidis 
2005) and are not included in this chapter.

18.6 EXAMPLES

18.6.1 Data Sets

In this section, we illustrate some of the available methods 
using two empirical meta-analytic data sets that differ in 
size: one that is large (containing more than four hun-
dred effect sizes), and one that is small (containing fewer 
than twenty). Both data sets are available as supplemen-
tary material. The large data set is from a social science 
meta-analysis, consisting of standardized mean differences. 
The small data set comes from a medical meta-analysis, 
and consists of log risk ratios.

We use R version 3.2.4 for most analyses (R Core Team 
2016). As we describe our results, we include relevant 
sections of R code in the text so that interested readers 
can replicate the examples.

18.6.1.1 Psychotherapy Efficacy The first data set 
is from a well-known meta-analysis performed by Mary 
Smith, Gene Glass, and Thomas Miller on the efficacy 
of psychotherapy (1980). We use a subset of the original 
data that consists of studies in which the psychotherapy 
effects being compared include both behavioral and sys-
tematic desensitization treatments for phobias. The pho-
bias themselves are also divided into two groups, one 
consisting of patients suffering from “complex” (multi-
ple) phobias and one of those suffering from “simple” 
(only one) phobias. The original data set included some 
effect sizes that modern-day meta-analysts might consider 
implausibly large; for example, one study reported a stan-
dardized mean difference of 25.33. To avoid complica-
tions that such huge effects can induce, we deleted five 
cases with effect sizes larger than 4.0. Of the 489 effect 
sizes that remain, 216 employ behavioral treatments and 
273 employ desensitization therapies. Positive effect sizes 
indicate effectiveness of psychotherapy.

This is the same data set that Vevea and Hedges (1995) 
used to demonstrate the use of a linear model for estimat-
ing effect size in the presence of publication bias (one of 
the models included in this chapter). They find that a fun-
nel plot of the effect sizes demonstrated typical one-tailed 
selection, and the selection model resulted in a reduction 
of the mean effect size by as much as 25 percent, in the 
case of desensitization treatment of complex phobias. 
These results indicate that publication bias does affect 
this data set.

We read the psychotherapy efficacy data set into R with

glass <- read.csv(“data glass.csv”, 
header=TRUE)

and create variables for the effect sizes and sampling 
variances:

glass_y <- glass$g

and

glass_v <- glass$v

We also create variables for the three moderators  
we will be using: whether the therapy was behavioral 
modification,

glass_b1 <- glass$b1
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whether the patients’ phobia was simple or complex,

glass_b2 <- glass$b2

and whether there was an interaction,

glass_b3 <- glass$b3

which is the product of glass_b1 and glass_b2.
18.6.1.1.1 Funnel Plots. No special software is  

necessary to create a funnel plot using R. For users who 
prefer to do so, most common meta-analysis packages 
include a funnel plot function. Wolfgang Viechtbauer’s 
metafor includes funnel(), which yields both traditional 
and contour-enhanced funnel plots, with the enhanced 
plot as the default (2010). Schwarzer’s meta includes its 
own funnel(), which performs similarly (2016). The funnel 
plots presented here were created using the basic R scatter-
plot tools, with the margins extended so that there is 
approximately 5 percent white space between axes and 
data points. Adding white space aids in the interpretation 
of asymmetry if data points fall extremely close to the 
axes. We plot standard error on the x-axis and effect size 
on the y-axis.

Figure 18.6 shows the contour-enhanced funnel plot, 
using metafor’s funnel() function. This type of plot may 
be misleading under some circumstances, however, as dis-
cussed earlier.

We calculated the amount necessary to expand the range 
of the x and y axes by 5 percent. Then we created a space 
for the funnel plot with

plot(c(min(sqrt(glass_v))-.0465,
max(sqrt(glass_v)) + 0.0465),c(min(glass_y)-
0.3145,max(glass_y)+0.3145),type=’n’,
xlab=”Standard Error”,ylab=”Effect Size”)

We added the scatterplot points with

points(sqrt(glass_v),glass_y)

The resulting funnel plot appears in figure 18.7. We 
computed the mean effect size for this data set using the 
metafor package’s rma() function:

rma(glass_y, glass_v, method=’ML’)

We used a random-effects model and maximum likeli-
hood estimation. This yielded a mean of 0.70 and a vari-
ance component of 0.28, which corresponds to I2 of 66.51 
percent. I 2 is fairly large, indicating that the results of 
some methods—particularly those that cannot accommo-
date heterogeneity—may be less reliable.

This data set is large, so it is easier to assess asymme-
try in the funnel plot. There are many very large effect 
sizes (d > 1.00) with large standard errors ( > 0.60) that 
are not mirrored by small or negative effect sizes; in fact, 
only four effect sizes with standard errors greater than 
0.60 fall equally far below. This is an example of asym-
metry associated with characteristic one-tailed selection 
bias. The plot suggests that concern about publication 
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bias may be appropriate. (The curvature evident in the 
plot is due to the dependence of standard errors on stan-
dardized mean difference; studies with equal sample sizes 
will have increasingly large standard errors as their effect 
sizes increase.)

18.6.1.1.2 Cumulative Meta-Analysis. Both metafor 
and meta include a function for cumulative meta-analyses; 
in metafor this is cumul() and in meta it is metacum(). Users 
can create an object to store the results of these analyses 
and then pass that object to forest() using either package. 
We used metafor for our cumulative meta-analyses and 
forest plots.

The forest plot is not featured here. A forest plot of a 
cumulative meta-analysis involving 489 effect sizes is 
more or less impossible to read; the annotations are so 
tiny as to be invisible, and the average effect estimates 
resemble a thick black blur. Instead, it is more informa-
tive to consider the cumulative meta-analysis itself:

glass_cumul <- cumul(glass_rma, order =
order(sqrt(glass_v)))

The effect size with the least precision belongs to study 
100, with d = –0.40. As soon as the second least-precise 
effect, study 99, is added, the estimate of mean effect 
jumps to d = 0.14. It proceeds from there to d = 0.49 with 
the third least-precise effect and, by the time all effects 
are included, has drifted all the way to d = 0.78. This drift 
is a sign of a relationship between study size and effect 
size, which indicates the presence of publication bias.

18.6.1.1.3 Trim and Fill. We used the trimfill() func-
tion of the R package metafor. The R package meta also 
includes a trimfill() function. Users who are interested in 
separate control of fixed-effect and random-effects mod-
els for imputing data and estimating parameters may wish 
to use meta. Duval and Tweedie recommend that trim and 
fill be used as a sensitivity analysis (2000a, 2000b), so we 
present the results of trim and fill using both the L0 and 
the R0 estimators, and we consider the possibility of pub-
lication bias in favor of both smaller and larger effects.

For each data set, we estimated four trim and fill models. 
We specified that studies were missing on either the left or 
the right side of the funnel plot (suppression of smaller or 
larger effects). In view of the funnel plot, specifying miss-
ing effects on the right side makes little practical sense, but 
we included it for demonstration purposes. We also speci-
fied the L0 or R0 estimator. The literature is ambiguous 
about the performance of L0 versus R0; see section 18.4.3 
for details. We used the metafor function trimfill(), which 
can handle either “fixed-fixed” or “random-random” mod-

els. (The meta package is more versatile in this respect.) 
The results presented here are “random-random.” These 
factors yielded four separate models.

The models were variations of

trimfill(glass_rma, side=”left”, 
estimator=”L0”) 

where “L0” was exchanged for “R0” and “left” was 
exchanged for “right.” The results of the trim and fill 
analyses for the psychotherapy efficacy data set are pre-
sented in table 18.2.

Only L0 added effect sizes, and it did so on the left side 
of the plot (indicating a suppression of smaller effects). 
L0 added 117 effect sizes, reducing the average effect 
from 0.78 to 0.52 (a difference of 0.26, or 33 percent) and 
increasing the variance component from 0.29 to 0.58 (a 
difference of 0.29, or 100 percent).

It seems that this data set may not be robust to publi-
cation bias. Nevertheless, an effect persists, even after 
adjustment.

18.6.1.1.4 Egger’s Regression. The package meta con-
tains the function metabias(), which can be used for both 
Egger’s linear regression and the rank correlation test. 
The package metafor contains regtest(), which conducts 
Egger’s linear regression; we used regtest(). The function 
allows users to specify whether they want to estimate 
a standard Egger’s regression, a mixed-effects Egger’s 
regression, or a random-effects Egger’s regression. We 
estimated all three models to compare their conclusions, 
although because heterogeneity is present in the data set, 
the mixed- or random-effects models may perform better.

A standard Egger’s regression using a weighted regres-
sion model

regtest(glass_rma, model=”lm”)

was statistically significant, t(484) = 9.81, p < .0001, 
indicating that publication bias, or funnel plot asymme-
try, is present. The evidence under a random-effects meta- 
regression model acquired from

regtest(glass_rma)

was also statistically significant, z = 12.26, p < .0001.
We incorporated the moderators in this data set as well. 

There are three dichotomous moderators, as described. 
Their unadjusted conditional means are presented in the top 
row of table 18.2.

The mixed-effects variation of Egger’s regression was 
also statistically significant, z = 11.80, p < .0001. All three 
variations indicate a relationship between study size and 
effect size, or that bias may be present.



406   DATA DIAGNOSTICS

Table 18.2 Summary of Results for Psychotherapy Data

Method Overall Mean BMOD, SP BMOD, CP

Unadjusted 0.78 0.90 0.63

Trim and fill left, L0

right, L0

left, R0

right, R0

0.52 (32.99%, M) MO
0.78 (0%, A) MI
0.78 (0%, A) MI
0.78 (0%, A), MI

—
—
—
—

—
—
—
—

PET-PEESE –0.04 (105.13%, S) S — —

Vevea and Hedges p = 0.025
multiple
multiple, LM

0.68 (12.71%, A) MI
0.47 (39.67%, M) MO

—

—
—

0.65 (27.55%, M) MO

—
—

0.36 (42.36%, S) MO

Vevea and Woods moderate one-tailed
severe one-tailed
moderate two-tailed
severe two-tailed

—
—
—
—

0.78 (13.67%, A) MI
0.56 (37.44%, M) MO
0.82 (8.78%, A) MI
0.72 (20.11%, M) MO

0.49 (21.50%, M) MO
0.21 (65.92%, S) S
0.57 (9.55%, A) MI
0.49 (21.34%, M) MO

Copas and Shi 0.10 (87.16%, S) S — —

Rücker 0.09 (88.45%, S) S — —

p-uniform 1.06 (36.07%, M) MO — —

source: Author’s tabulation.
notes: Adjusted estimates are reported unless row is labeled “Unadjusted.” Percentage adjustment is in parentheses, followed by the 
Kepes, Banks, and Oh (2012) categorization (A for absent, or < 20 percent adjustment; M for moderate, or adjustment between 20 percent 
and 40 percent; S for severe, or adjustment > 40 percent). The Rothstein, Sutton, and Borenstein (2005) categorization follows in italics 
(MI for minimal, or adjustment is similar; MO for moderate, or adjustment is substantial, but key finding remains; S for severe, adjustment 
that calls the key finding into question). If both categorizations were “Severe,” the cell is boldface. BMOD = behavioral modification, 
SYSDS = systematic desensitization, SP = simple phobia, and CP = complex phobia. 1 is the variance component without moderators;  
2 is the variance component with moderators. Cells marked with a dash either were not or could not be estimated.

18.6.1.1.5 PET-PEESE. We were unable to locate any 
R package capable of implementing PET-PEESE. How-
ever, meta-analysts can easily construct the code them-
selves; PET-PEESE is a pair of linear regressions, which 
can be estimated using the base R function lm().

We estimated the PET regression:

pet <- lm(glass_y∼sqrt(glass_v),weights =
1/glass_v)

followed by the PEESE regression:

peese <- lm(glass_y ∼ glass_v, weights =
1/glass_v)

We stored the estimates from these regressions and 
kept the PET estimates if PET was nonsignificant; other-
wise, we kept PEESE.

PET was nonsignificant, indicating the absence of evi-
dential value, with p = .56. This means estimating PEESE 

is not necessary, and the adjusted estimate of effect size 
from PET, d = –0.04 (see table 18.2) is a result of publi-
cation bias. The unadjusted random-effects mean for this 
data set is 0.78; PET-PEESE reduced the mean by 0.82, 
or 105 percent. This indicates that the effect size is an 
artifact of publication bias.

18.6.1.1.6 Nonparametric Correlation Test. The meta 
package contains the function metabias(), which can per-
form the rank correlation test. The metafor package con-
tains ranktest(). We use ranktest() to conduct the analyses. 
The rank correlation test for funnel plot asymmetry is not 
model-based, and changing the meta-analytic model does 
not change the results. The rank correlation results we 
present here have all used Kendall’s tau, but the R func-
tion can accommodate other correlation coefficients.

The rank correlation test was provided by

ranktest(glass_rma)
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and was significant, with a Kendall’s tau of 0.32 and p < 
.0001. This indicates that we can reject the null hypothe-
sis of no correlation and conclude a danger of publication 
bias, or of funnel plot asymmetry.

18.6.1.1.7 p-Curve and p-Uniform. P-curve is not 
available as an R package, but Simonsohn, Nelson, and 
Simmons created a web application (www.p-curve.com) 
(2014). The application requires users to enter data in the 
form of the original test statistics rather than effect sizes, 
likely to encourage meta-analysts to think carefully about 
which tests are included. We include a caveat here—we 
are demonstrating p-curve using empirical sets of effect 
sizes and sampling variances, not raw test statistics from 
the corresponding studies. This exercise is solely for dem-
onstration purposes.

The graph produced by p-curve is presented in fig-
ure 18.8. The distribution of p-values is visibly right 
skewed. The binomial test for right skew, comparing the 

SYSDS, SP SYSDS, CP τ1
2 τ2

2

0.86 0.70 0.29 0.28

—
—
—
—

—
—
—
—

0.58 (98.98%, S) MO
0.29 (0%, A) MI
0.29 (0%, A) MI
0.29 (0%, A) MI

—
—
—
—

— — — —

—
—

0.61 (28.82%, M) MO

—
—

0.42 (40.63%, S) MO

0.27 (7.85%, A) MI
0.37 (26.28%, M) MO

—

—
—

0.36 (22.22%, M) MO

0.73 (16.76%, A) MI
0.51 (40.26%, S) MO
0.78 (8.75%, A) MI
0.69 (19.95%, A) MO

0.56 (20.60%, M) MO
0.28 (59.80%, S) MO
0.63 (10.23%, A) MI
0.54 (22.87%, M) MO

—
—
—
—

0.32 (15%, A) MI
0.44 (56.07%, S) MO
0.27 (5.36%, A) MI
0.24 (15.36%, A) MI

— — — —

— — — —

— — — —

proportions of p-values below and above .025, was non-
significant with p = .13, but continuous tests, both for 
the full p-curve and for the half p-curve, were significant: 
z = –3.64, p = .0001 and z = –4.17, p < .0001, respec-
tively. These results indicate that these studies do contain 
evidential value; the effect is not completely due to pub-
lication bias.

Although not entirely necessary because right skew is 
present, the binomial test for underpowered studies is sig-
nificant, p = .01. However, the continuous test for under-
powered studies is not, with z = –0.78 and p = .22. Despite 
the fact that evidential value is present, the continuous test 
indicates that data may be underpowered, or (according to 
the application) that the evidential value is inadequate. The 
studies conducted may have had reduced power; perhaps 
the researchers did not conduct a priori power analyses.

No R package for p-uniform is available on the Com-
prehensive R Archive Network, but Robbie van Aert 
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(2015) has uploaded a preliminary version of his package, 
called puniform, on GitHub. GitHub is a less regulated 
analog of CRAN. To install packages directly to R using 
GitHub, users must first install the R package devtools, 
then type install_github(“author/package”). For puni-
form, this would look like install_github(“RobbievanAert/ 
puniform”). The function requires that users specify the 
alpha level of included studies. We entered an alpha level 
of 0.05. The function also produces a plot of observed 
conditional p-values against expected ones, so users can 
visually assess deviation from uniformity.

We estimated p-uniform:

puniform(yi = glass_y, vi = glass_v,  
alpha = 0.05,side=”right”, method=”P”, 
plot=TRUE)

The plot of observed versus expected p-values is in fig-
ure 18.9. There is some deviation from uniformity in the 
areas of the graph between expected p-values of about 
.60 and 1.00 and between about .10 and .40. The one-
tailed test for publication bias was nonsignificant, with  
z = –7.96 and p > .999. The adjusted fixed-effect estimate 

was d = 1.06 (see table 18.2), p < .001. This is an increase 
of 0.44, or 71 percent.

P-uniform does not indicate that publication bias is a 
serious threat for this data set. It is unusual, though, that 
the mean was adjusted upward, indicating that larger 
studies were suppressed.

18.6.1.1.8 Excess Significance Test. No R package is 
available to implement the excess significance test. How-
ever, it is not complicated to conduct the test in base R by 
calculating the post hoc power for each significant study in 
your data set and multiplying them. We do not provide the 
R code in text as ours was lengthy and calculating power, 
of course, depends on the format of your effect sizes.

The product of the power for each significant effect size 
was 0.00 (p < 0.10), so we can reject the null hypothesis 
and conclude that publication bias may be present.

18.6.1.1.9 Dear and Begg. We faced an estimation 
problem with the psychotherapy efficacy data set, and 
were unable to obtain results from either the Dear and 
Begg (1992) weight-function model or the modified ver-
sion by Rufibach (2011), because both versions attempted 
to estimate n/2 (or 244) parameters.

18.6.1.1.10 Vevea and Hedges. In 2016, Coburn and 
Vevea released an R package titled weightr that can esti-
mate both the Vevea and Hedges (1995) model and the 
Vevea and Woods (2005) model. We use the package 
weightr to perform these demonstrations.

Meta-analysts who wish to use either the Vevea and 
Hedges (1995) or the Vevea and Woods (2005) model 
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will undoubtedly wonder about the p-value cut points—
how many to specify, whether to specify a one-tailed 
or two-tailed pattern, which to specify, and so on. The 
choice of cut points is entirely up to the researcher. We do 
not recommend any specific pattern over another, nor do 
we intend for the cut points used here to become a canon-
ical guideline. We cannot emphasize this enough. The 
researcher must consider the data set and select a series of 
cut points such that at least some observed effect sizes 
fall within each interval, and the cut points correspond to 
p-values that may be of psychological relevance. Regard-
ing the latter, it is poor practice to present only the results 
of a model with a cut point at, say, p = .129 if the results 
drastically differ when the cut point is changed (for 
instance, to p = .20). Do not select cut points to force the 
model into significance or nonsignificance. Specify sev-
eral different sets of cut points and observe the change 
in the adjusted estimates; if there are moderators, calculate 
conditional means and assess their changes as well. Per-
haps most important, present the results of all models spec-
ified, to compare the adjusted estimates across models. 
Always report the cut points specified (preferably along 
with their rationale).

No guideline is in place for the number of cut points 
meta-analysts should specify for a given k—though, of 
course, it is impossible to estimate more cut points than 
there are effect sizes, and therefore the number of cut 
points must be less than k. The meta-analyst should sur-
vey the distribution of observed p-values and ensure at 
least some observed effect sizes in each specified interval, 
a fact that can be verified using the table=TRUE argument 
in weightr. If an interval is empty of observed effect sizes 
or contains only a few effects, this will immediately be 
evident, because weightr will yield a warning and the 
parameter estimates may be nonsensical or missing due 
to model nonconvergence.

For these examples, to maintain consistency across 
data sets, we have specified the same set of p-value cut 
points. Remember: The unadjusted mean for the psycho-
therapy efficacy data set is d = 0.78, and the unadjusted 
variance component is 0.29. All these results are presented 
in table 18.2.

First, we specify one p-value cut point at p = .025.

weightfunct(glass_y, glass_v)

The p = .025 corresponds to the positive tail in a two-
tailed test with an alpha of 0.05. This yields a weight for 
the nonsignificant interval (.025 < p < 1.00) of 0.68, indi-
cating that nonsignificant studies are 68 percent as likely 
to survive selection as significant ones. The mean effect 

is adjusted downward to 0.68 (a change of 0.10, or 
13 percent), and the variance component is also adjusted 
downward to 0.27 (a change of 0.02, or 7 percent). The 
likelihood-ratio test comparing the adjusted and unad-
justed models is significant, p < .05, which indicates that 
the adjusted model fits the data better, and hence that 
publication bias is present.

Next, we estimate a more detailed one-tailed selection 
pattern ( p = .01, .025, .05, .10, .20, .30, .50, and 1.00). 
The first four cut points are at p-values that correspond to 
common alpha levels: p = .10 is often referred to as mar-
ginal significance; p = .025 corresponds to the positive tail 
of a two-tailed test at an alpha level of .05; p = 0.50 rep-
resents the point at which most effect-size measures 
become negative. There are no cut points after p = 0.50 
because we wish to specify one-tailed selection; p = .20 
and p = .30 are included because enough observed effects 
fall in that range for the model to estimate weights.

We enter:

weightfunct(glass_y, glass_v, steps=c(0.01,  
0.025,0.05, 0.30, 0.50, 1.00))

Now the adjusted mean effect size has been reduced 
even further, to 0.47 (a change of 0.31, or 40 percent), and 
the variance component has increased to 0.37 (a change of 
0.08, or 28 percent). The likelihood-ratio test is still signif-
icant, indicating that the adjusted model is a better fit.

Finally, we include a linear model for the mean. We 
specify the same pattern of one-tailed p-value cut points 
as before. The command is:

weightfunct(glass_y, glass_v, mods=∼glass_b1 
+ glass_b2 + glass_b3, steps=c(0.01, 0.025,  
0.05, 0.30, 0.50, 1.00))

The likelihood-ratio test comparing this adjusted model 
to its unadjusted counterpart is still significant, indicating 
that it is a better fit for the data. We are now presented 
with not only an adjusted variance component (of 0.36, 
a change of 0.07 or 24 percent) but also adjusted condi-
tional means for all six groups.

Some conditional means were adjusted more than 
others, likely based on how much the effect sizes in that 
particular group are susceptible to publication bias. More 
specifically, the conditional means for both systematic 
desensitization and behavioral modification with complex 
phobias appear to be more heavily affected by publica-
tion bias than the other two conditional means (a change 
of 41 percent and 42 percent, respectively). The other 
two conditional means were changed by 28 percent and 
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29 percent. This difference occurs because the less affected 
subset of effects is systematically larger than other effects, 
so that the bulk of them fall within the range of the highly 
significant cut points, where weights tend to be high. The 
model can adjust some means more than others, as neces-
sary. The results may indicate that more bias is present 
among these groups of effect sizes.

18.6.1.1.11 Vevea and Woods. The Vevea and Woods 
(2005) model also requires meta-analysts to specify a 
series of p-value cut points, this time along with a fixed 
weight for each interval. Because this model does not 
estimate any weights for the p-value intervals, it does not 
matter how many cut points the meta-analyst specifies. 
It is possible to specify more cut points than observed 
effect sizes (that is, the number of cut points can be 
greater than k). It is also possible to specify any weights 
for those intervals, bearing in mind that for convenience 
of interpretation the weights should be between 0 and 1. 
If the specified weights increase as the p-value cut points 
decrease—that is, if p-values < .05 are the most likely to 
survive—this represents traditional one-tailed selection. 
The model is flexible; researchers can specify two-tailed 
selection, or any selection pattern, using any p-value cut 
points.

Interpreting the results of the Vevea and Woods (2005) 
model comes with a caveat. The model does not estimate 
the pattern of selection; the researcher chooses a pattern of 
selection and imposes that pattern on the observed effect 
sizes, then the mean (or set of conditional means) and 
variance component are adjusted according to the pattern. 
The idea is to conduct multiple analyses with various weight 
patterns representing different degrees of selection sever-
ity. Some patterns may lead to ludicrous estimates of the 
mean (or conditional means). But often the mean, or a 
particular conditional mean, may be relatively unaffected 
by any reasonable pattern of weights. Under those cir-
cumstances, the researcher can be confident that the mag-
nitude of the mean is not principally an artifact of p-value 
based selection. But none of these estimates should be 
regarded as a true bias-corrected estimate.

The R package weightr can implement the Vevea and 
Woods (2005) adaptation. We used weightr to conduct the 
following analyses. We specified the sets of cut points 
and weights (“moderate” and “severe” one-tailed and 
two-tailed selection) mentioned in Vevea and Woods, 
but we emphasize that these are not hard and fast guide-
lines for severity of selection. They are merely an indica-
tion of what severity of selection bias might look like. 
Bias patterns most likely vary widely both across and 

within fields, and we are merely using these weights for 
demonstration purposes. We do not mean for them to 
become canonical specifications. These sets of weights, 
and the bias patterns they theoretically represent, are pre-
sented in table 18.1.

The results of the analyses appear in table 18.2. The 
code we used consists of variations on

weightfunct(glass_y, glass_v, mods=∼glass_b1 
+ glass_b2 + glass_b3, steps=c(0.005, 
0.010, 0.050, 0.100, 0.250, 0.350, 0.500, 
0.650, 0.750, 0.900, 0.950, 0.990, 0.995), 
weights=c(1, 0.99, 0.95, 0.80, 0.75, 0.65, 
0.60, 0.55, 0.50, 0.50, 0.50, 0.50, 0.50))

We replaced the weights vector with the corresponding 
set of weights for each selection pattern.

Some of the conditional means are affected more than 
others. All means are most attenuated in the severe one-
tailed bias condition, but the means for the group with 
simple phobias under both treatment conditions are reduced 
much less than the others. Even though all the conditional 
means are attenuated to one degree or another, however, 
these results at least indicate that none of the bias patterns 
we attempted reversed the direction of the effects, and 
only two means were reduced below 0.25 for any of the 
four selection patterns. This implies that, although publica-
tion bias has the potential to affect the mean estimates, the 
changes are only large for specific combinations of treat-
ment and complex phobias. Hence, it is unlikely that pub-
lication bias, if present, would overturn conclusions about 
the positive effects of psychotherapy for these conditions.

18.6.1.1.12 Copas and Shi. The Copas and Shi (2001) 
model can easily be implemented using the R package 
metasens (Schwarzer, Carpenter, and Rücker 2016) and 
the function copas() (Carpenter et al. 2009).

We first estimated a random-effects meta-analysis with 
maximum likelihood:

glass_meta <- metagen(TE = glass_y, seTE = 
sqrt(glass_v), method.tau = “ML”)

Then we estimated the Copas and Shi selection model:

cop.glass <- copas(glass_meta)
plot(cop.glass)
summary(cop.glass)

The four plots produced by the Copas and Shi (2001) 
selection model R function (Carpenter et al. 2009) are pre-
sented in figure 18.10. We begin with the top right plot, 
the contour plot. The contour lines are straight, indicating 
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little difficulty in model estimation, and most of the 
contour lines are close together, indicating that the data 
set is not very robust to changes in selection bias pat-
terns. The estimate at the top right of the contour plot, 
under little to no selection bias, is about d = 0.75. The 
unadjusted random-effects estimate for the psycho-
therapy data set is d = 0.78.

The treatment effect plot indicates that, with no selec-
tion bias (a probability of 100 percent), the estimated 
average effect size is about d = 0.80. When the probabil-
ity of publishing the effect size with the largest standard 
error reaches 50 percent, the average effect size has 
plummeted to about 0.30.

The p-value plot gives us some problems. The R func-
tion automatically scanned a range of a and b values for 
which the p-value associated with residual selection bias 
never becomes nonsignificant, as it does not cross the 
horizontal dashed line. This means that the R function 
cannot give us an adjusted estimate. However, the choices 
for a and b can be manually altered. The function allows 
users to specify a range of values for a and b. We can see 
the range that the function’s algorithm chose by looking 
at the axes of the contour plot; the algorithm scanned 
from –0.36 to 2 for a (gamma zero in the software nomen-
clature) and from 0 to 0.11 for b (gamma one). We change 
these and specify a wider range of values—from –2 to 
2 for a and from 0 to 1 for b. This yields the plots in 
figure 18.11.

It appears that our conclusion was correct; the function 
was simply not scanning a wide enough range of values 
by default. Now, if we look at the treatment effect plot, 
we get an estimated mean effect size for probabilities 
beyond 20 percent—the effect size has dropped as far as 
about 0.10. The p-value plot shows that, when the proba-
bility of publishing an effect size with the largest stan-
dard error reaches 10 percent or so, the test for residual 
selection bias finally becomes nonsignificant. The most 
likely scenario given these observed data is a probability 
of 10 percent. This is very strong selection bias.

The adjusted mean effect size that the Copas and Shi 
(2001) model provides for this most likely scenario is  
d = 0.10 (see table 18.2), a change of 87 percent from the 
unadjusted d = 0.78.

18.6.1.1.13 Rücker Limit Meta-Analysis. To implement 
the Rücker et al. (2011) limit meta-analysis method, we 
used the R package metasens and the function it provides, 
limitmeta(). The R function yields a test of heterogeneity, 
a test of small-study effects (on alpha), a test of residual 

heterogeneity after accounting for small-study effects, and 
an adjusted estimate of the average effect size.

We estimated the Rücker limit meta-analysis method:

glass_limit <- limitmeta(glass_meta)
summary(glass_limit)

The results indicate a significant relationship between 
effect size and standard error. The test for small-study 
effects was significant, Q(1) = 304.35, p < .0001, as was  
the test for residual heterogeneity, Q(487) = 1255.21,  
p < .0001.

The adjusted random-effects estimate for the mean 
effect is 0.09 (table 18.2), with a 95 percent confidence 
interval from 0.01 to 0.17. According to the model, the 
effect size for a study having infinite precision is 0.09. 
This is a change of 0.69, or 88 percent.

18.6.1.2 Irritable Bowel Syndrome The second data 
set consists of nineteen trials examining the response rate 
of patients with irritable bowel syndrome to complemen-
tary and alternative medicine (CAM) therapies (Dorn et al. 
2007). Only randomized, placebo-controlled trials were 
included. The CAM response rate was high across trials— 
more than 40 percent. Risk ratios greater than 1 indicate 
that patients undergoing CAM therapies had a higher 
response rate than those undergoing placebo therapies.

Spencer Dorn and his colleagues (2007) assessed pub-
lication bias using a funnel plot, Egger’s regression, and 
Begg and Mazumdar’s rank correlation test. They con-
cluded that the funnel plot displayed asymmetry and found 
that Egger’s regression was significant (p = .03) and the 
rank correlation was “trend[ing] towards significance” 
(632), with p = .06. They also noted that, of nineteen trials, 
twelve were statistically significant.

We read the irritable bowel syndrome data set into  
R with

ibs <- read.csv(“data IBS.csv”, 
header=TRUE)

and create variables for the effect sizes and sampling 
variances:

ibs_y <- ibs$LogRR

and

ibs_v <- ibs$v

(The “header=TRUE” component of the R command is 
appropriate if the data file contains variable names in the 
first row, as this one does.)



PUBLICATION BIAS   413

Figure 18.11 Copas and Shi, Psychotherapy Data, a = –2 to 2, b = 0 to 1

source: Author’s tabulation.
note: Gamma zero and gamma one represent a and b, respectively.
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18.6.1.2.1 Funnel Plots. We calculated the amount nec-
essary to expand the range of the x and y axes by 5 per-
cent. Then we created a space for the funnel plot with

plot(c(min(sqrt(ibs_v))-.0193, max(sqrt 
(ibs_v))+0.0193),c(min(ibs_y)-.1057, 
max(ibs_y) + 0.1057),type=’n’, xlab= 
”Standard Error”,ylab=”Effect Size”)

We added the scatterplot points with

points(sqrt(ibs_v),ibs_y)

The funnel plot for the irritable bowel syndrome data 
set is featured in figure 18.12. Again, we computed the 
mean effect size for this data set using the metafor pack-
age’s rma() function:

rma(ibs_y, ibs_v, method=’ML’)

We used a random-effects model and maximum likeli-
hood estimation. This yielded a mean effect size of 0.42 
and a variance component of 0.15 (see table 18.3), which 
corresponds to a large I 2 (72.90 percent). There are only 

Table 18.3 Summary of Results for Irritable Bowel Syndrome Data

Method Overall Mean τ2

Unadjusted 0.42 0.15

Trim and fill left, L0
right, L0
left, R0
right, R0

0.42 (0%, A) MI
0.42 (0%, A) MI
0.38 (9.09%, A) MI
0.418 (0%, A) MI

0.15 (0%, A) MI
0.15 (0%, A) MI
0.18 (20.26%, M) MO
0.15 (0%, A) MI

PET-PEESE –0.23 (155%, S), S —

Vevea and Hedges p = 0.025
multiple

0.16 (61.72%, S), MO
—

0.09 (41.18%, S), MO
—

Vevea and Woods moderate one-tailed
severe one-tailed
moderate two-tailed
severe two-tailed

0.32 (24.64%, M) MO
0.11 (74.64%, S) S
0.37 (11.00%, A) MI
0.32 (24.16%, M) MO

0.17 (10.46%, A) MI
0.23 (49.67%, S) MO
0.14 (11.11%, A) MI
0.11 (26.14%, M) MO

Copas and Shi 0.25 (40.19%, S) MO —

Rücker 0.09 (78.47%, S) S —

p-uniform 0.64 (53.11%, S) MO —

source: Author’s tabulation.
notes: Adjusted estimates are reported unless row is labeled “Unadjusted.” Percent adjustment is in parentheses, followed by the 
Kepes, Banks, and Oh (2012) categorization (A for Absent, or < 20% adjustment; M for Moderate, or adjustment between 20% and 
40%; S for Severe, or adjustment > 40%). The Rothstein, Sutton, and Borenstein (2005) categorization follows in italics (MI for 
Minimal, or adjustment is similar; MO for Moderate, or adjustment is substantial, but key finding remains; S for Severe, adjustment 
that calls the key finding into question). If both categorizations were “Severe,” the cell is bolded. Cells with “—” either were not 
or could not be estimated.
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nineteen effect sizes here, so this funnel plot is more dif-
ficult to assess. There does appear to be greater density at 
the top of the funnel than at the bottom, and several large 
effect sizes (> 0.90) with large standard errors are not 
mirrored by an equivalent number of smaller effects. 
Despite the small size of the data set, there are enough 
signs of asymmetry that bias may still be a concern.

18.6.1.2.2 Cumulative Meta-Analysis. We took the 
object containing the results of the random-effects meta- 
analysis, ibs_rma, and created a cumulative meta-analysis:

ibs_cumul <- cumul(ibs_rma, order = 
order(sqrt(ibs_v)))

Then we made a forest plot of the cumulative meta- 
analysis:

forest(ibs_cumul)

The forest plot for the irritable bowel syndrome data 
set appears in figure 18.13. The vertical dashed line rep-
resents an effect size—here, log(RR)—of 0.00. The least 
precise study is study 19, with log(RR) = 0.40. As more 
and more precise studies are added, the average effect 
size drifts to the left a bit, eventually going as far as 
log(RR) = 0.13. However, by the time the most precise 

studies are added, the average effect size has arrived back 
where it began, at log(RR) = 0.42. This is a very small 
drift, of about 0.02—not exactly indicative of a relation-
ship between study size and effect size. However, the pat-
tern is unusual. After the first few lines of the plot, the 
drift is consistently toward larger effects as studies with 
greater precision are added to the analysis. That would be 
consistent with publication in the unexpected direction.

18.6.1.2.3 Trim and Fill. Again, we estimated four 
trim and fill models. The first three were variations of

trimfill(ibs_rma, side=”left”, 
estimator=”L0”)

where “L0” was exchanged for “R0.” The second two 
were the same variations of

trimfill(ibs_rma, side=”right”, 
estimator=”L0”)

The results of the trim and fill analyses for the irritable 
bowel syndrome data set are presented in table 18.3. This 
time, only the R0 estimator added any additional effects. 
It imputed one effect on the left side of the funnel plot, 
reducing the mean from 0.42 to 0.38 (an attenuation of 
9.52 percent) and increasing the variance component 

+ Study 8
+ Study 15
+ Study 2
+ Study 12
+ Study 3
+ Study 18
+ Study 10
+ Study 1
+ Study 7
+ Study 11
+ Study 13
+ Study 17
+ Study 4
+ Study 16
+ Study 6
+ Study 5
+ Study 14
+ Study 9

Study 19 0.40 [ 0.10 , 0.69 ]
0.33 [ 0.12 , 0.55 ]
0.19 [ –0.06 , 0.43 ]
0.13 [ –0.09 , 0.35 ]
0.21 [ –0.03 , 0.46]
0.17 [ –0.05 , 0.39 ]
0.23 [ 0.01 , 0.45 ]
0.18 [ –0.04 , 0.40 ]
0.24 [ 0.01 , 0.46 ]
0.27 [ 0.05 , 0.49 ]
0.30 [ 0.09 , 0.51 ]
0.26 [ 0.05 , 0.47 ]
0.30 [ 0.09 , 0.51 ]
0.30 [ 0.10 , 0.50 ]
0.33 [ 0.13 , 0.53 ]
0.39 [ 0.17 , 0.60 ]
0.39 [ 0.18 , 0.59 ]
0.43 [ 0.21 , 0.66 ]
0.42 [ 0.20 , 0.63 ]

–0.20 0.00 0.20 0.40 0.60 0.80

Overall Estimate

Figure 18.13 Cumulative Meta-Analysis, Irritable Bowel Syndrome Data

source: Author’s tabulation.
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from 0.15 to 0.18 (a change of 120 percent). The average 
effect size has barely been reduced. The trim and fill 
results for this data set indicate that the irritable bowel 
data set is very robust to the effects of publication bias.

18.6.1.2.4 Egger’s Regression. We estimated a stan-
dard Egger’s regression of effect size on standard error 
using weighted regression with multiplicative dispersion

regtest(ibs_rma, model=”lm”)

resulted in a test for funnel plot asymmetry on the inter-
cept that was significant, t(17) = 2.22, p = .04. This indi-
cates that a relationship may exist between study size and 
effect size.

We also estimated a variation of Egger’s regression that 
predicts effect size with standard error using a random- 
effects meta-regression model

regtest(ibs_rma)

A test on the intercept of this model was also signifi-
cant, z = 2.64, p = .01. We can reject the null hypothesis 
and conclude that there may be some evidence of bias.

18.6.1.2.5 PET-PEESE. We estimated PET:

pet <- lm(ibs_y ∼ sqrt(ibs_v), weights = 
1/ibs_v)

followed by PEESE:

peese <- lm(ibs_y ∼ ibs_v, weights = 1/ibs_v)

We stored the estimates from these regressions and 
kept the PET estimates if PET was nonsignificant; other-
wise, we kept PEESE.

PET was nonsignificant, indicating the absence of evi-
dential value (p = .39). This means that estimating PEESE 
is not necessary, and the adjusted estimate of effect size 
from PET, d = –0.23 (table 18.3) is due to publication bias. 
the adjustment is an attenuation of about 156 percent.

18.6.1.2.6 Nonparametric Rank Correlation. The rank 
correlation returned by

ranktest(ibs_rma)

was nonsignificant, with Kendall’s tau = 0.26 (p = .13). 
This indicates a lack of any significant correlation 
between effect size and sampling variance, or that no sig-
nificant evidence of publication bias exists.

18.6.1.2.7 p-Curve and p-Uniform. The graph p-curve 
produced is presented in figure 18.14. This distribution  
of p-values is also visibly right skewed, and the tests that 
p-curve conducts agree. All three tests for right skew—
the binomial (p = .001), the continuous full p-curve 

(z = –4.47, p < .0001), and the continuous half p-curve 
(z = –2.87, p = .00)—were significant, indicating that 
the data set contains evidential value.

The binomial test (p > .999) and continuous test (p = .98) 
assessing whether the studies are underpowered were both 
nonsignificant. This indicates that the studies are not 
underpowered, which makes sense given that right skew 
is present (a sign of evidential value).

We estimated p-uniform:

puniform(yi = ibs_y, vi = ibs_v, alpha = 
0.05, side=”right”, method=”P”, plot=TRUE)

The plot of observed versus expected p-values for the 
irritable bowel syndrome data set is in figure 18.15.

This data set does not include many significant p-values. 
(Recall that p-uniform analyses only significant p-values.) 
The pattern of deviations from uniformity appears simi-
lar to that from the psychotherapy effectiveness data—
deviations occur more at the very small and very large 
parts of the x-axis.

The one-tailed test for publication bias was nonsignif-
icant, with z = –2.61 and p = .99. The adjusted fixed- 
effects estimate was d = 0.64 (0.41, 0.90), p < .001 (see 
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table 18.3). p-uniform indicates that publication bias is 
not a threat for this data set.

18.6.1.2.8 Excess Significance Test. For the irritable 
bowel syndrome data, the product of the power for each 
significant effect size was also 0.00. Publication bias may 
be present.

18.6.1.2.9 Dear and Begg. The Dear and Begg (1992) 
weight-function model can be implemented in R using 
the R package selectMeta and its function DearBegg(). 
Meta-analysts must first run DearBegg() on their effect 
sizes and sampling variances, then use the examples in 
the package manual to create a plot of the resulting 
weight function. DearBegg() itself produces matrices of 
all the weight estimates for p-value intervals, and these 
must be plotted to be meaningful.

We estimated the Dear and Begg weight-function 
model:

ibs_db <- DearBegg(ibs_y, sqrt(ibs_v), 
trace=FALSE)

The plot of the Dear and Begg model is presented in fig-
ure 18.16.

The weight function has a spike at the far left of the 
plot, near p = 0, indicating that effect sizes with p-values 
in that range are more likely to be observed (a sign of 
publication bias). However, for observed p-values in the 
range from about .18 to .60, the probability of surviving 
selection is also high, indicating that nonsignificant studies 
in that range are also likely to be observed. The spike at the 
far left, therefore, may not be a matter for concern. It is 

difficult to determine whether publication bias is a threat 
based on the plot.

Rufibach’s modification can be implemented using 
selectMeta, the same R package. The function for  
Rufibach’s modification is DearBeggMonotone(), and 
the results of this function also must be plotted to be 
meaningful. R code to construct plots is featured in the 
package manual.

We estimated the Rufibach (2011) weight-function 
model:

ibs_db <- DearBeggMonotone(ibs_y, 
sqrt(ibs_v), trace=FALSE)

The plot of the Rufibach weight-function model is fea-
tured in figure 18.17. This weight function indicates that 
all but the most significant studies have a low probability 
of surviving publication, and as p-value increases the 
likelihood of surviving decreases even further. For studies 
with a p-value near 1.00, this probability is close to .00. 
The plot does indicate that publication bias is a concern. 
The difference between this plot and the one observed 
for the Dear and Begg method is due to the constraint that 
the Rufibach model imposes on the weight function—the 
required monotonicity suppresses the higher weights for 
the 0.18 to 0.60 p-value range.

18.6.1.2.10 Vevea and Hedges. We refresh readers’ 
memory that the unadjusted mean for the irritable bowel 
syndrome data set is log(RR) = 0.42 and the unadjusted 
variance component is 0.15.
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Figure 18.15 p-Uniform, Irritable Bowel Syndrome Data

source: Author’s tabulation.
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We begin by specifying one p-value cut point, at p = .05:

weightfunct(ibs_y, ibs_v)

The weight for the interval p < .05 is, of course, fixed 
to one. The weight for the interval 0.05 < p < 1.00 is 
estimated at 0.19, indicating that nonsignificant studies 
are 19 percent as likely to survive selection as significant 
ones. The mean effect size is adjusted downward to 0.16, 
an attenuation of about 50 percent, and the variance com-
ponent is also adjusted downward to 0.09, an attenuation 
of 20 percent (see table 18.3).

Next, we attempt to specify the more detailed one-tailed 
pattern of p-value cut points, but we cannot estimate it—
several intervals have no effect sizes. Based on the model 
that distinguished only between significant and nonsignif-
icant studies, however, the mean effect size was reduced 
by half. It did not drop below zero, but a reduction this 
large likely indicates that the data set is not robust to pub-
lication bias.

18.6.1.2.11 Vevea and Woods. The results for the irri-
table bowel syndrome data set are presented in table 18.3. 
The code we used consists of the same variations that we 
used for the psychotherapy data. Again, we replaced the 
weights vector with the corresponding set of weights for 
each selection pattern. Because weights are fixed, it is 
irrelevant whether p-values actually fall in every interval.

None of the selection bias patterns adjusted the origi-
nal unadjusted effect size upward. The furthest downward 
that it is attenuated happens under severe one-tailed selec-

tion, where the adjusted effect size reaches 0.11 from its 
unadjusted 0.42. Despite this reduction, these results are 
encouraging. Even under the most severe one-tailed bias 
pattern we created, the average effect size did not become 
negative or too near zero; there still appears to be a positive 
effect. This data set does appear to be robust to the effects 
of publication bias.

18.6.1.2.12 Copas and Shi. We first estimated a random- 
effects meta-analysis with maximum likelihood:

ibs_meta <- metagen(TE = ibs_y, seTE = 
sqrt(ibs_v), method.tau = “ML”)

Then we estimated the Copas and Shi selection model:

cop.ibs <- copas(ibs_meta)
plot(cop.ibs)
summary(cop.ibs)

The four plots produced by the Copas and Shi (2001) 
selection model R function (Carpenter et al. 2009) are 
shown in figure 18.18.

The contour plot indicates that the data set is not ter-
ribly robust to the effects of selection bias; most of the 
contour lines are closer together. It also indicates that 
the model had some difficulty converging, as some of the 
contour lines curve. The top right estimate, under no 
selection bias, is about log(RR) = 0.40.

The treatment effect plot shows that, as the probability 
of publishing the study with the largest standard error 
decreases, the estimated average effect size decreases as 
well, moving from about log(RR) = 0.40 under no selec-
tion bias to about log(RR) = 0.10 in a situation where 
studies with the largest standard error are published only 
about 35 percent of the time.

Finally, the p-value plot shows that residual selection 
bias becomes nonsignificant when the least precise studies 
are published about 73 percent of the time. This situation 
includes publication bias, but is far from the extreme of the 
psychotherapy data set. The Copas and Shi model yields 
an adjusted estimate in this situation of log(RR) = 0.25, 
an attenuation of 40 percent (2001; see table 18.3).

18.6.1.2.13 Rücker Limit Meta-Analysis. We estimated 
the Rücker limit meta-analysis method:

ibs_limit <- limitmeta(ibs_meta)
summary(ibs_limit)

The results indicate a significant relationship between 
effect size and standard error. The test for small-study 
effects was significant, Q(1) = 14.03 (p = .0002), as was the 
test for residual heterogeneity, Q(17) = 48.37, p < .0001.
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Figure 18.17 Rufibach, Irritable Bowel Syndrome Data

source: Authors’ tabulation obtained directly via the R package  
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The adjusted random-effects estimate for the mean 
effect is 0.09 (see table 18.3), with a 95 percent confi-
dence interval from –0.22 to 0.39. This is a downward 
adjustment of 78.57 percent.

18.7 DISCUSSION

This chapter provides an overview of the problem of pub-
lication bias with a focus on the methods developed to 
address it in a research-synthesis context. Publication bias 
is a difficult problem. The mechanisms causing bias are 
unknown, and the merit of any method to address it depends 
on the truth of any assumptions the method makes. There-
fore, all methods should be viewed as sensitivity analyses, 
and triangulation across multiple approaches is advisable. 
Because of the different assumptions, users should not 
expect triangulation to lead to a consensus across methods 
and must exercise judgment that includes an assessment 
of the plausibility of the assumptions. Banks, Kepes, and 
McDaniel (2012) and Kepes and his colleagues (2012) dis-
cuss this issue.

Meta-analysts’ toolboxes are now likely to be full of 
publication bias assessments. The sheer number of possi-
ble methods can engender some confusion. As the earlier 
examples demonstrate, results for a single data set may 
vary widely across methods, due to the methods’ differing 
assumptions and strategies. Faced with such a range, what 
should the meta-analyst conclude?

Although all publication bias assessments are sensitivity 
analyses, some assessments are less sensitive than others. 
For instance, some methods (such as weight-function 
methods) are robust to violations of their assumptions; 
others are not. When conducting a meta-analysis, if the 
data set does not meet the assumptions of a particular 
bias assessment, and if that assessment is not robust, the 
researcher should be less willing to trust its results. On 
the other hand, if the data set does meet the assumptions, 
or if the assessment is robust to violations, the researcher 
should place more credence in its results. This chapter 
does not provide a specific list of methods that should or 
should not be included as part of the triangulation process. 
Instead, the researcher should observe the data set, esti-
mate a range of methods, and assess the body of results, 
bearing in mind that some results may be more meaning-
ful than others.

Table 18.2 compares the adjusted effect estimates for 
the psychotherapy data set. One of the more conservative 
methods (PET-PEESE) gives an adjusted effect size as 
small as –0.04. At the other end of the spectrum, p-uniform 

adjusts the estimate to 1.06. Other methods (trim and fill 
and Vevea and Hedges’s weight-function model) give esti-
mates that seem more consistent with the funnel plot, 
ranging from 0.47 to 0.78. The Vevea and Woods model 
suggests that the data set is robust to the effects of differ-
ent selection patterns (2005). In no case are the key find-
ings reversed or called into question. The conditional 
means for complex phobias are attenuated more than 
simple phobias, due to the smaller magnitude of effects 
for those groups, which makes them more likely to be 
affected by weights in the nonsignificant p-value ranges. 
Overall, across all the methods presented in table 18.2, it 
is plausible that some degree of publication bias is pres-
ent in this data set. However, with the exception of those 
methods that can accommodate neither systematic nor 
random heterogeneity, the key finding is never reversed 
or called into question.

Table 18.3 compares the adjusted estimates for the irri-
table bowel syndrome data. PET-PEESE yields a result 
so extreme that the adjusted finding (–0.23) suggests the 
treatment is harmful. Once again, p-uniform inflates the 
adjusted effect, likely due to the fact that it disregards 
nonsignificant effect sizes (in this case, ignoring 50 per-
cent of an already small data set). The Vevea and Woods 
results yield minimal to moderate adjustment except in 
the most severe one-tailed scenario (2005). Rücker’s 
method is conservative, producing an estimate similar to 
the most extreme case of the Vevea and Woods method. 
The other selection models (Vevea and Hedges, Copas 
and Shi) reduce the effect dramatically, into the range 
that Kepes (CITE) define as “severe.” It does appear, 
then, that the true effect may be substantially smaller than 
estimated in the meta-analysis.

The danger of reliance on a single approach is clear. A 
responsible analyst here would most likely discount the 
most extreme results and conclude that, although bias 
may be a problem, it is not likely to be the primary reason 
that a positive effect was found. A good sense of what 
various approaches can and cannot achieve is useful for 
this triangulation process. Table 18.4 summarizes the 
characteristics of many methods.

Freely available software has been developed that 
implements most of the methods described here, with the 
exception of the Bayesian approaches and methods for 
outcome, subgroup, and time-lag biases. The new ten-
dency among developers of methods is to make them 
accessible as open-source packages. R (R Core Team 
2016) packages implement various models previously 
inaccessible to typical users. Examples include Wolfgang 
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Viechtbauer’s metafor (2010), Guido Schwarzer’s meta 
package (2016), metasens by Guido Schwarzer and his 
colleagues (2016), and Coburn and Vevea’s weightr 
(2016a). Others have made their approaches available 
through web interfaces. Examples include Coburn and 
Vevea’s Shiny application (2016b), and Uri Simonsohn, 
Lief Nelson, and Joseph Simmons’s web application for 
p-curve (2014).

Future investigation may prove fruitful in several direc-
tions. One example is development of methods that simul-
taneously account for different possible sources of bias 
(for example, p-value as well as magnitude and direction 
of individual effect estimates). Further development of 
models that allow various selection patterns for differ-
ent study designs would be useful (for example, Sutton, 
Abrams, and Jones 2002). Extension of that idea to 
account for study characteristics that are not design related 
(for example, funding source, social preferences, or time) 
is a developing area (see, for example, Coburn and Vevea 
2016b). Dan Jackson points out that little is yet known 
about the effects of publication bias on the between- 
studies variance component (2006). Derrick Bennett and 
his colleagues investigated capture-recapture methods 
across electronic databases to estimate the number of 
missing studies, but evidence of further research on that 
approach is scant (2004). Kepes and McDaniel (2015) 
mention the need for development of methods that are 
suitable for psychometric meta-analysis.

Bayesian methods are likely to provide valuable new 
insights on the publication bias problem. Promising direc-
tions could include incorporating Bayesian model averag-
ing or Bayes factors. Bayesian methods also are likely to 
lead to models that address publication bias for statistical 
approaches that are more complicated than a standard meta- 
analysis, such as network meta-analyses.

Publication bias is a pervasive problem in the research 
literature, and meta-analysis provides a valuable opportu-
nity to assess its impact. This chapter discusses and illus-
trates a variety of methods that aid in this process. The 
issue of addressing more nuanced questions about publi-
cation is a rapidly developing field, and one that is likely 
to prove fruitful in the next few years.
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Reginald B. Adams Jr., Štěpán Bahník, Michael J. Bernstein, 
Konrad Bocian, et al. 2014. “Investigating Variation in 
Replicability: A ‘Many Labs’ Replication Project.” Social 
Psychology 45(3): 107–12.

Koricheva, Julia. 2003. “Non-Significant Results in Ecol-
ogy: A Burden or a Blessing in Disguise?” Oikos 102(2): 
397–401.

Lane, David M., and William P. Dunlap. 1978. “Estimating 
Effect-Size Bias Resulting from Significance Criterion in 
Editorial Decisions.” British Journal of Mathematical and 
Statistical Psychology 31(2): 107–12.

Larose, Daniel T., and Dipak K. Dey. 1998. “Modeling Pub-
lication Bias Using Weighted Distributions in a Bayesian 
Framework.” Computational Statistics & Data Analysis 
26(3): 279–302.

Lau, Joseph, John P. A. Ioannidis, Norma Terrin, Christopher H. 
Schmid, and Ingram Olkin. 2006. “The Case of the Mis-
leading Funnel Plot.” British Medical Journal. 333(7568): 
597–600.

Lewin, Simon, Claire Glenton, Heather Munthe-Kaas,  
Benedicte Carlsen, Christopher J. Colvin, Metin  
Gülmezoglu, Jane Noyes, Andrew Booth, Ruth Garside, 
and Arash Rashidian. 2015. “Using Qualitative Evidence 
in Decision Making for Health and Social Interventions: 
An Approach to Assess Confidence in Findings from Qual-
itative Evidence Syntheses (GRADE-CERQual).” PLoS 
Medicine 12(10): e1001895.

Liberati, Alessandro, Douglas G. Altman, Jennifer Tetzlaff, 
Cynthia Mulrow, Peter C. Gøtzsche, John PA Ioannidis, 
Mike Clarke, P. J. Devereaux, Jos Kleijnen, and David Moher. 
2009. “The PRISMA Statement for Reporting Systematic 
Reviews and Meta-Analyses of Studies That Evaluate Health 
Care Interventions: Explanation and Elaboration.” PLoS 
Medicine 6(7).

Light, Richard J., and David B. Pillemer. 1984. Summing Up: 
The Science of Reviewing Research. Cambridge, Mass.: 
Harvard University Press.

Little, Roderick J. A., and Don B. Rubin. 1987. Statistical 
Analysis with Missing Data. New York: John Wiley & Sons.

Macaskill, Petra, Stephen D. Walter, and Lesley Irwig. 2001. 
“A Comparison of Methods to Detect Publication Bias in 
Meta-Analysis.” Statistics in Medicine 20(4): 641–54.

Mavridis, Dimitris, Alex Sutton, Andrea Cipriani, and Georgia 
Salanti. 2012. “A fully Bayesian Application of the Copas 
Selection Model for Publication Bias Extended to Network 
Meta-Analysis.” Statistics in Medicine 32(1): 51–66.

McIntosh, Heather, and Piero Olliaro. 2000. “Artemisinin 
Derivatives for Treating Severe Malaria.” Cochrane Data-
base Systematic Reviews 2(2): CD000527.

McShane, Blakeley, and Ulf Böckenholt. 2014. “You Cannot 
Step into the Same River Twice: When Power Analyses 
Are Optimistic.” Perspectives on Psychological Science 9(6): 
612–25.

McShane, Blakeley, Ulf Böckenholt, and Karsten Hansen. 
2016. “Adjusting for Publication Bias in Meta-Analysis: 
An Evaluation of Selection Methods and Some Caution-
ary Notes.” Perspectives on Psychological Science 11(5): 
730–49.

McShane, Blakeley, and David Gal. 2015. “Blinding Us to 
the Obvious? The Effect of Statistical Training on the Eval-
uation of Evidence.” Management Science 62(6): 1707–18.

Monogan, James E. 2013. “A Case for Registering Studies 
of Political Outcomes: An Application in the 2010 House 
Elections.” Political Analysis 21(1): 21–37.

Moreno, Santiago G., Alex J. Sutton, A. E. Ades, Tom D. 
Stanley, Keith R. Abrams, Jaime L. Peters, and Nicola J. 
Cooper. 2009. “Assessment of Regression-Based Methods 
to Adjust for Publication Bias Through a Comprehensive 



PUBLICATION BIAS   427

Simulation Study.” BMC Medical Research Methodology 
9(1): 2.

Morey, Richard D. 2013. “The Consistency Test Does No—
and Cannot—Deliver What Is Advertised: A Comment 
on Francis (2013).” Journal of Mathematical Psychology 
57(5): 180–83.

Nelson, Nanette, Robert Rosenthal, and Ralph L. Rosnow. 
1986. “Interpretation of Significance Levels and Effect 
Sizes by Psychological Researchers.” American Psycholo-
gist 41(11): 1299–301.

Orwin, Robert G. 1983. “A Fail-Safe N for Effect Size 
in Meta-Analysis.” Journal of Educational Statistics 8(2): 
157–59.

Peters, Jaime L., Alexander J. Sutton, David R. Jones, Keith R.  
Abrams, and Lesley Rushton. 2006. “Comparison of Two 
Methods to Detect Publication Bias in Meta-Analysis.” 
Journal of the American Medical Association 295(6): 
676–80.

———. 2007. “Performance of the Trim and Fill Method 
in the Presence of Publication Bias and Between-Study 
Heterogeneity.” Statistics in Medicine 26(25): 4544–62.

———. 2008. “Contour-Enhanced Meta-Analysis Funnel 
Plots Help Distinguish Publication Bias from Other Causes 
of Asymmetry.” Journal of Clinical Epidemiology 61(10): 
991–96.

Petticrew, Mark, Matt Egan, Hilary Thomson, Val Hamilton, 
Renée Kunkler, and Helen Roberts. 2006. “Publication 
Bias in Qualitative Research: What Becomes of Qualita-
tive Research Presented at Conferences?” British Medical 
Journal 62(6): 552–54.

Piff, Paul K., Daniel M. Stancato, Stéphane Côté, Rodolfo 
Mendoza-Denton, and Dacher Keltner. 2012. “Reply to 
Francis: Cumulative Power Calculations Are Faulty When 
Based on Observed Power and a Small Sample of Studies.” 
Proceedings of the National Academy of Sciences 109(25): 
E1588.

Pigott, Therese D. 2001. “Missing Predictors in Models of 
Effect Size.” Evaluation and the Health Professions 24(3): 
277–307.

Pigott, Therese D., Jeffrey C. Valentine, Joshua R.  
Polanin, Ryan T. Williams, and Dericka D. Canada. 
2013. “Outcome-Reporting Bias in Education Research.” 
Educational Researcher 42(8): 424–32.

Preston, Carrol, Deborah Ashby, and Rosalind Smyth. 2004. 
“Adjusting for Publication Bias: Modelling the Selection 
Process.” Journal of Evaluation in Clinical Practice 10(2): 
313–22.

R Core Team. 2016. R: A Language and Environment for 
Statistical Computing. Vienna: R Foundation for Statistical 
Computing.

Reyes, Magdalena M., Kaitlyn E. Panza, Andrés Martin, 
and Michael H. Bloch. 2011. “Time-Lag Bias in Trials of 
Pediatric Antidepressants: A Systematic Review and Meta- 
Analysis.” Journal of the American Academy of Child & 
Adolescent Psychiatry 50(1): 63–72.

Rosenthal, Robert. 1979. “The File Drawer Problem and 
Tolerance for Null Results.” Psychological Bulletin. 86(3): 
638–41.

Rosenthal, Robert, and John Gaito. 1963. “The Inter-
pretation of Levels of Significance by Psychological 
Researchers.” Journal of Psychology 55(1): 33–38.

———. 1964. “Further Evidence for the Cliff Effect in 
Interpretation of Levels of Significance.” Psychological 
Reports 15(2): 570. DOI: 10.2466/pr0.1964.15.2.570.

Rothstein, Hannah R., Alexander J. Sutton, and Michael 
Borenstein. 2005. “Publication Bias in Meta-Analysis.” 
In Publication Bias in Meta-Analysis: Prevention, Assess-
ment and Adjustments, edited by Hannah R. Rothstein, 
Alexander J. Sutton, and Michael Borenstein. Chichester, 
UK: John Wiley & Sons.

Rücker, Gerta, James R. Carpenter, and Guido Schwarzer. 
2011. “Detecting and Adjusting for Small-Study Effects 
in Meta-Analysis.” Biometrical Journal 53(2): 351–68.

Rücker, Gerta, Guido Schwarzer, and James R. Carpenter. 
2008. “Arcsine Test for Publication Bias in Meta-Analyses 
with Binary Outcomes.” Statistics in Medicine 27(5): 
746–63.

Rücker, Gerta, Guido Schwarzer, James R. Carpenter, 
Harald Binder, and Martin Schumacher. 2011. “Treatment- 
Effect Estimates Adjusted for Small-Study Effects Via a 
Limit Meta-Analysis.” Biostatistics 12(1): 122–42.

Rufibach, Kaspar. 2011. “Selection Models with Monotone 
Weight Functions in Meta Analysis.” Biometrical Journal 
53(4): 689–704.

Schwarzer, Guido. 2016. “meta: General Package for Meta- 
Analysis” (4.4-0). R package.

Schwarzer, Guido, James Carpenter, and Gerta Rücker. 2010. 
“Empirical Evaluation Suggests Copas Selection Model 
Preferable to Trim-and-Fill Method for Selection Bias in 
Meta-Analysis.” Journal of Clinical Epidemiology 63(3): 
282–88.

———. 2016. “metasens: Advanced Statistical Models  
to Model and Adjust for Bias in Meta-Analysis” (0.3–0). 
R package.

Silliman, Nancy P. 1997. “Hierarchical Selection Models 
with Applications in Meta-Analysis.” Journal of the Amer-
ican Statistical Association. 92(429): 926–36.

Simonsohn, Uri. 2012. “It Does Not Follow: Evaluating the 
One-Off Publication Bias Critiques by Francis (2012a, b, 



428   DATA DIAGNOSTICS

c, d, e, f).” Perspectives on Psychological Science 7(6) 
597–99.

———. 2013. “It Really Just Does Not Follow, Comments 
on.” Journal of Mathematical Psychology 57(5): 174–76.

Simonsohn, Uri., Lief D. Nelson, and Joseph P. Simmons. 
2014. “p-Curve: A Key to the File-Drawer.” Journal of 
Experimental Psychology: General 143(2): 534.

Smith, Richard. 1999. “What Is Publication? A Continuum.” 
British Medical Journal 318(7177): 142.

Smith, Mary Lee, Gene V. Glass, and Thomas I. Miller. 1980. 
The Benefits of Psychotherapy. Baltimore, Md.: Johns 
Hopkins University Press.

Song, Fujan, Alison Easterwood, Simon Guilbody, Lelia 
Duley, and Alexander J. Sutton. 2000. “Publication and 
Other Selection Biases in Systematic Reviews.” Health 
Technology Assessment 4(10): 1–115.

Song, Fujan, Nick Freemantle, Trevor A. Sheldon, Allan 
House, Paul Watson, Andrew Long. 1993. “Selective Sero-
tonin Reuptake Inhibitors: Meta-Analysis of Efficacy and 
Acceptability.” British Medical Journal 306(6879): 683–87.

Stanley, Tom D. 2005. “Beyond Publication Bias.” Journal 
of Economic Surveys 19(3): 309–45.

Stanley, Tom D., and Hristos Doucouliagos. 2014. “Meta- 
Regression Approximations to Reduce Publication Selec-
tion Bias.” Research Synthesis Method 5(1): 60–78.

Stanley, Tom D., Stephen B. Jarrell, and Hristos Doucouliagos. 
2010. “Could It Be Better to Discard 90% of the Data? A 
Statistical Paradox.” American Statistician 64(1): 70–77.

Stern, Jerome M., and R. John Simes. 1997. “Publication 
Bias: Evidence of Delayed Publication in a Cohort Study 
of Clinical Research Projects.” British Medical Journal 
315(7109): 640–45.

Sterne, Jonathan A. C., Betsy J. Becker, and Matthias Egger. 
2005. “The Funnel Plot.” In Publication Bias in Meta- 
Analysis: Prevention, Assessment and Adjustments, edited 
by Hannah R. Rothstein, Alexander J. Sutton, and Michael 
Borenstein. Chichester, UK: John Wiley & Sons.

Sterne, Jonathan A. C., and Matthias Egger. 2001. “Funnel 
Plots for Detecting Bias in Meta-Analysis: Guidelines on 
Choice of Axis.” Journal of Clinical Epidemiology 54(10): 
1046–55.

———. 2005. “Regression Methods to Detect Publication 
and Other Bias in Meta-Analysis.” In Publication Bias in 
Meta-Analysis: Prevention, Assessment and Adjustments, 
edited by Hannah R. Rothstein, Alexander J. Sutton, and 
Michael Borenstein. Chichester, UK: John Wiley & Sons.

Sterne, Jonathan A. C., Matthias Egger, and George Davey 
Smith. 2001. “Investigating and Dealing with Publication 
and Other Biases in Meta-Analysis.” BMJ: British Medi-
cal Journal 323(7304): 101.

Sterne, Jonathan A. C., David Gavaghan, and Matthias Egger. 
2000. “Publication and Related Bias in Meta-Analysis: Power 
of Statistical Tests and Prevalence in the Literature.” Jour-
nal of Clinical Epidemiology 53(11): 1119–29.

Sterne, Jonathan A., Alex J. Sutton, John P. Ioannidis, Norma 
Terrin, David R. Jones, Joseph Lau, James Carpenter, Gerta 
Rücker, Roger M. Harbord, Christopher H. Schmid, Jennifer 
Tetzlaff, Jonathan J. Deeks, Jaime Peters, Petra Macaskill, 
Guido Schwarzer, Sue Duval, Douglas G. Altman, David 
Moher, and Julian P. T. Higgins. 2011. “Recommendations 
for Examining and Interpreting Funnel Plot Asymmetry in 
Meta-Analyses of Randomised Controlled Trials.” British 
Medical Journal 343(7818): 302.

Stouffer, Samuel A., Edward A. Suchman, Leland C.  
DeVinney, Shirley A. Star, and Robin M. Williams Jr. 1949. 
The American Soldier: Adjustment During Army Life. 
Studies in Social Psychology in World War II, vol. 1, edited 
by Samuel Stouffer and Edward A. Suchman. Princeton, 
N.J.: Princeton University Press.

Sutton, Alexander J. 2005. “Evidence Concerning the Con-
sequences of Publication and Related Biases.” In Publi-
cation Bias in Meta-Analysis: Prevention, Assessment and 
Adjustments, edited by Hannah R. Rothstein, Alexander J. 
Sutton, and Michael Borenstein. Chichester, UK: John Wiley 
& Sons.

Sutton, Alexander J., Keith R. Abrams, and David R. Jones. 
2002. “Generalized Synthesis of Evidence and the Threat 
of Dissemination Bias: The Example of Electronic Fetal 
Heart Rate Monitoring (EFM).” Journal of Clinical Epide-
miology 55(10): 1013–24.

Sutton, Alexander J., and Therese D. Pigott. 2004. “Bias in 
Meta-Analysis Induced by Incompletely Reported Studies.” 
In Publication Bias in Meta-Analysis: Prevention, Assess-
ment and Adjustments, edited by Hannah R. Rothstein, 
Alexander J. Sutton, and Michael Borenstein. Chichester, 
UK: John Wiley & Sons.

Tang, Jin-Ling, and Joseph L. Y. Liu. 2000. “Misleading 
Funnel Plot for Detection of Bias in Meta-Analysis.” Jour-
nal of Clinical Epidemiology 53(5): 477–84.

Terrin, Norma, Christopher H. Schmid, and Joseph Lau. 2005. 
“In an Empirical Evaluation of the Funnel Plot, Researchers 
Could Not Visually Identify Publication Bias.” Journal of 
Clinical Epidemiology 58(9): 894–901.

Terrin, Norma, Christopher H. Schmid, Joseph Lau, and 
Ingram Olkin. 2003. “Adjusting for Publication Bias in the 
Presence of Heterogeneity.” Statistics in Medicine 22(13): 
2113–26.

Trikalinos, Thomas A., and John P. A. Ioannidis. 2005. 
“Assessing the Evolution of Effect Sizes Over Time.” 



PUBLICATION BIAS   429

In Publication Bias in Meta-Analysis: Prevention, Assess-
ment and Adjustments, edited by Hannah R. Rothstein, 
Alexander J. Sutton, and Michael Borenstein. Chichester, 
UK: John Wiley & Sons.

Ulrich, Rolf, and Jeff Miller. 2015. “p-hacking by Post Hoc 
Selection with Multiple Opportunities: Detectability by Skew-
ness Test?: Comment on Simonsohn, Nelson, and Simmons 
(2014).” Journal of Experimental Psychology: General 
144(6): 1137–45.

van Aert, Robbie C. M. 2015. “puniform: Meta-analysis 
with p-uniform” (0.0.0). R package.

van Aert, Robbie C. M., Jelte M. Wicherts, and Marcel A. 
van Assen. 2016. “Conducting Meta-Analyses Based on 
p-Values: Reservations and Recommendations for Apply-
ing p-Uniform and P-Curve.” Perspectives on Psycho-
logical Science 11(5): 713–29.

van Assen, Marcel A., Robbie C. M. van Aert, and Jelte M. 
Wicherts. 2015. “Meta-Analysis Using Effect Size Distri-
butions of Only Statistically Significant Studies.” Psycho-
logical Methods 20(3): 293.

Vandekerckhove, Joachim, Maime Guan, and Steven A. 
Styrcula. 2013. “The Consistency Test May Be Too Weak 
to Be Useful: Its Systematic Application Would Not Improve 
Effect Size Estimation in Meta-Analyses.” Journal of Math-
ematical Psychology 57(5): 170–73.

van Enst, W. Annefloor, Eleanor Ochodo, Rob J.P.M. Scholten, 
Lotty Hooft, and Mariska M. Leeflang. 2014. “Investigation 

of Publication Bias in Meta-Analyses of Diagnostic Test 
Accuracy: A Meta-Epidemiological Study.” BMC Medical 
Research Methodology 14(1): 70–81.

Vevea, Jack L., Nancy C. Clements, and Larry V. Hedges. 
1993. “Assessing the Effects of Selection Bias on Validity 
Data for the General Aptitude Test Battery.” Journal of 
Applied Psychology 78(6): 981–87.

Vevea, Jack L., and Larry V. Hedges. 1995. “A General Linear 
Model for Estimating Effect Size in the Presence of Publi-
cation Bias.” Psychometrika 60(3): 419–35.

Vevea, Jack L., and Carol M. Woods. 2005. “Publication 
Bias in Research Synthesis: Sensitivity Analysis Using 
A Priori Weight Functions.” Psychological Methods 10(4): 
428–43.

Viechtbauer, Wolfgang. 2010. “Conducting Meta-Analyses 
in R with the metafor Package.” Journal of Statistical Soft-
ware 36(3): 1–48.

Weinhandl, Eric. D., and Sue Duval. 2012. “Generalization of 
Trim and Fill for Application in Meta-Regression.” Research 
Synthesis Methods 3(1): 51–67.

Williamson, Paula R. and Carol Gamble. 2005. “Identifi-
cation and Impact of Outcome Selection Bias in Meta- 
Analysis.” Statistics in Medicine 24(10): 1547–61.

Zarin, Deborah A., Tony Tse, Rebecca J. Williams, Robert M. 
Califf, and Nicholas C. Ide. 2011. “The ClinicalTrials.gov 
Results Database—Update and Key Issues.” New England 
Journal of Medicine 364(9): 852–60.





PART

VII
DATA INTERPRETATION





433

19
INTERPRETING EFFECT SIZES

 JEFFREY C. VALENTINE ARIEL M. ALOE
 University of Louisville University of Iowa

SANDRA JO WILSON
Vanderbilt University

C O N T E N T S

19.1 Introduction 434

19.2 What Are Effect Sizes and Why Do They Need to Be Interpreted? 434
19.2.1 How Not to Interpret Effect Sizes 435

19.3 Describing Effect Sizes 436
19.3.1 Continuous Outcomes 437

19.3.1.1 Correlation Coefficient 437
19.3.1.2 Cohen’s U Metrics 437
19.3.1.3 Common Language Effect Size 440
19.3.1.4 Binomial Effect-Size Display 440

19.3.2 Binary Measures of Effect Size 441
19.3.2.1 Correlation Coefficient 441
19.3.2.2 Odds Ratio 441
19.3.2.3 Risk Ratio 442
19.3.2.4 Risk Difference 442
19.3.2.5 Number Needed to Treat 442
19.3.2.6 Using Binary Translations in Conjunction with a Meta-Analysis 442

19.3.3 Using Effect-Size Translations with Confidence Intervals 443
19.3.4 Suggestions for Researchers 443

19.4 Benchmarking Effect Sizes 444
19.4.1 Comparing Effect Sizes with Norms 444
19.4.2 Comparing Effect Sizes with Policy-Relevant Goals or Gaps 445
19.4.3 Comparing Effect Sizes with Other Similar Interventions 446
19.4.4 Benchmarking Effect Sizes: Summary 447

19.5 Combining the Translation and Benchmarking Strategies 447

19.6 Conclusion 447



434   DATA INTERPRETATION

19.1 INTRODUCTION

Imagine you are responsible for overseeing the training 
of medical students. As part of their training, students 
are exposed to evidence-based medicine. This is simply 
the idea that clinical judgment and patient values should 
be used in conjunction with rigorous research evidence to 
make treatment decisions, but it has important implications, 
because among other things it means that students need to 
learn how to read, evaluate, and interpret research studies. 
For example, in the process of learning about chronic pain 
management, assume that students read two studies that 
evaluate the effectiveness of one approach to managing 
pain. One study found that an intervention improved pain 
symptoms by 10 points on a measure that is scaled to have 
a standard deviation of 15 points. Another study reported 
that the intervention improved pain symptoms by 5 points 
on a different pain measure that was scaled to have a stan-
dard deviation of 10 points. A meta-analysis of the two 
studies suggested that the overall weighted average effect 
size for the intervention is d +0.55. Is this effect large 
enough to have a meaningful impact on patient pain? More 
to the point from the perspective of a director of clinical 
training, what skills do your doctors-in-training need in 
order to help them make this determination?

Michael Borenstein and Larry Hedges introduce effect 
sizes and how to compute them in chapter 11 of this book. 
This chapter address how to interpret effect sizes. If you 
are like most people, knowing that d = +0.55 is not terribly 
helpful (imagine trying to explain what this effect size 
means to a patient suffering from chronic pain). We there-
fore start our discussion with an overview of effect sizes 
and why they are necessary. We then describe two general 
approaches to interpreting—making meaning of—effect 
sizes. We call these the descriptive approach and the 
benchmarking approach. (Ross Crosby, Ronette Kolotkin, 
and Rhys Williams, 2003, used the terms “distribution- 
based” and “anchor-based.”) We also show how these 
two approaches can be used together. In describing the 
approaches, we introduce several effect-size translation 
metrics. These translations are statistics that express the 

effect size in different ways, and our hope is that they will 
help both researchers and their consumers better under-
stand how much of an impact an intervention had, whether 
you are describing the results of a single study or the 
results of a meta-analysis. We provide definitional formu-
las for these translations, and in the appendices provide R 
code that will allow you to easily compute them with 
some additional input, such as the results from a meta- 
analysis (R Core Team 2016). Many of these translations 
are also available in a separate R package (Del Re 2014). 
Our primary recommendations are that researchers should 
express results in terms of the original measure as much as 
possible, routinely present results in easy to digest tables, 
provide readers with a suite of effect-size translations to 
help them understand the effects observed in their studies, 
and when possible provide external references against 
which study effects can be compared. We illustrate how to 
implement each of these recommendations.

19.2  WHAT ARE EFFECT SIZES AND WHY DO 
THEY NEED TO BE INTERPRETED?

Formally, an effect size is a statistic that expresses the 
magnitude of a relationship observed in a study. “The 
effect size was d = +0.55,” “The correlation was r = –.10,” 
and “Self-reported pain symptoms improved by 10 points” 
are all expressions of the magnitude of the effects observed 
in a study, and hence, all of these formulations express 
effect sizes. Occasionally, studies will report outcomes that 
need little or no additional interpretation. Outcomes such 
as lived or died, graduated or did not graduate, minutes 
spent in traffic, hourly wage, and annual salary are out-
comes like this. But what if some studies report wages in 
U.S. dollars and others in Singapore dollars? You will 
need to convert one form of currency to the other in order 
to make sense of the results. Similarly, a group of studies 
on traffic patterns might report minutes spent in traffic, 
while others will report fractions of an hour spent in traf-
fic. Again, you’ll need to convert one formulation to the 
other to make sense of the results.
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With a measure such as a pain scale, things are not so 
simple. In the example, the two pain scales resulted in 
measurements with different standard deviations. This 
implies two really important points. First, just as ten U.S. 
dollars have different purchasing power than ten Singa-
pore dollars, a ten on one pain scale means something dif-
ferent than a ten on another pain scale. Similarly, the same 
one-point change on two different pain scales means dif-
ferent things, just like the difference between ten and 
eleven U.S. dollars is not the same as the difference 
between ten and eleven Singapore dollars. But pain scales 
have an additional complication. Most people understand 
the currency of the country in which they live (for example, 
someone living in Singapore has a good idea about what 
one dollar buys). Almost no one has a deep conceptual 
understanding of what one point on a particular pain scale 
means. This suggests that consumers of research will ben-
efit from additional interpretations of study effects, and 
this is the focus of our chapter.

19.2.1 How Not to Interpret Effect Sizes

In our introduction, we asked whether the effect size  
d = +0.55 is large enough to be meaningful. Some read-
ers may have been disconcerted by the fact that we did 
not accompany the effect size with an indication of 
whether the corresponding analysis resulted in a rejection 
of the null hypothesis (in other words, that we did not say 
“d = +0.55, p < .05” or something like that). In fact, in the 
history of the social and medical sciences, probability 
values from null hypothesis significance tests have been 
the most widely used indication of the magnitude of a 
study’s effect. That is, researchers and research consumers 
have tended to believe that if p < .05 then the effect must 
be “big” (and “bigger” if p < .01, “really big” if p < .001) 
and, conversely, if p > .05 that the effect was zero. Unfor-
tunately, these judgments reflect a mistaken belief that 
stems from the widespread and persistent misconceptions 
many researchers have about what probability values 
mean (Cohen 1994). Probability values arising from 
inferential tests are a function of two independent dimen-
sions: the observed effect size and the sample size used to 
estimate it. As a result, any nonzero effect size can be 
statistically significant if the sample size is large enough. 
A correlation of r = +.001 will be statistically significant if 
the sample has about four million observations (as a very 
large survey or epidemiological study might). Similarly, 
an effect size that looks large (like an increase in the high 
school graduation rate from 30 percent to 60 percent) 

will not be statistically significant if the sample is small 
enough. Probability values arising from a null hypoth-
esis significance test should never be used to describe 
the magnitude of an effect.

After probability values, probably the next most com-
mon way that people have used to describe the magnitude 
of effects observed in a study is to use Jacob Cohen’s 
guidelines for what constitutes a small, medium, or large 
effect size (1988). Unfortunately, despite what is implied 
by the descriptors, Cohen never intended these to indicate 
the importance of effect sizes, nor did he intend them to be 
applied without regard to context (Cooper 2008). Instead, 
his interest was in a priori statistical power analysis for 
sample size planning. To use power analysis for study 
planning, one needs to be able to reasonably guess the 
population effect size. To help users with this difficult 
judgment, Cohen examined studies published in volume 61 
of the Journal of Abnormal and Social Psychology to get 
a sense of the magnitude of the effects that researchers 
might expect to observe (1962). To do this, it was conve-
nient for him to develop working definitions for small, 
medium, and large effects. This work generated the now 
familiar thresholds of d = 0.20 is a small effect size, d = 0.50 
is a medium effect size, and d = 0.80 is a large effect size 
(he presents corresponding values for correlation coeffi-
cients and odds ratios). The distinction between Cohen’s 
intent (to inform guesses about what effect sizes might be 
expected) and how his guidelines are used (to describe the 
importance of effect sizes, without regard to context) is 
critical, and you will not be surprised to learn that we 
believe Cohen’s rules are generally unhelpful as descrip-
tions of effect size importance. There are two main rea-
sons for this assertion. First, judgments of importance are 
just that—judgments. Different judges can value different 
aspects of a decision differently and hence, reach different 
judgments about whether or not a given effect size is 
important. A fixed set of rules does not respect these valid 
differences, and instead imposes a single standard for all 
judges. Related to this point, judgments about importance 
are inextricably bound to context. This is perhaps easiest 
to see with different outcomes. There is a big difference 
between a 5 percent increase in whether clients attend 
follow-up visits and a 5 percent increase in survival rates. 
Yet if the underlying base rates are the same the researcher 
blindly applying Cohen’s rules of thumb will treat these as 
similarly important. Like probability values arising from a 
null hypothesis significance test, we believe that Cohen’s 
rules should not be used to describe the magnitude of 
effects observed in a study.
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Now that we have discussed what researchers should 
not to perhaps it is time to start being helpful and provide 
advice on what we believe researchers should do. Cohen’s 
rules are so widely used in part because few have a good 
idea about what the standardized mean difference means. 
That is, as we suggested earlier not many people can 
express how much of a difference an effect size of d = +0.55 
means. Instead of relying on probability values from 
null hypothesis tests or Cohen’s guidelines, we believe 
that researchers should consider using translations of 
effect sizes that we believe have the potential to help 
explain how much of an effect the intervention under 
study had.

19.3 DESCRIBING EFFECT SIZES

As a starting point, researchers reporting the results of a 
single study should always use the original measure as 
one way to communicate study results. For binary out-
comes such as survived or did not survive, presenting the 
percentages of study participants who experienced each 
outcome is likely go a long way toward describing study 
results in an understandable way. For some outcomes 
scaled continuously, expressing the results in the original 
measure will be helpful (for example, minutes spent in 
traffic). Generally, if the scale is likely to be understood 
by the intended audience, this is the best way to go, and is 
even preferable to using commonly-reported standardized 
effect sizes like Cohen’s d. For example, Susan Carter, 
Kyle Greenberg, and Michael Walker conducted a study 
examining the effects of allowing students in college 
classrooms to access the internet during class (2016). 
They find that students who were allowed access scored 
lower (d = –0.18) on the final exam relative to students 
who were not allowed internet access, a statistically sig-
nificant difference. In this case, the difference in the scores 
on the final (71 percent versus 73 percent) is a more natu-
ral and understandable way of thinking about the magni-
tude of the experimental effect in this case. That said, as 
we have seen, many continuously scaled outcomes are 
like the pain scale example we used—one point on a pain 
scale does not have an inherent meaning, and as such sim-
ply saying that one group scored two points higher than 
another often will not be terribly helpful.

We should note here that research synthesists face a 
challenge that researchers reporting the results of a single 
study do not. That is, it is often the case that in a collec-
tion of studies on the same research question, the depen-

dent variable will be operationalized in different ways 
across studies, even when the construct of interest is the 
same. Pain is one example. Several measures are com-
monly used (see, for example, Galer and Jensen 1997; 
Jensen, Turner, and Romano 1994). All are scaled differ-
ently. As another example, in the United States many 
students who want to attend college must take an entrance 
examination. The two major tests are the SAT and the 
ACT, and most colleges and universities will accept either. 
The SAT typically has a standard deviation of around 
117 points, and the ACT of about 5 points. If you are 
interested in carrying out a research synthesis on the effect 
of programs that aim to prepare students in the United 
States to take college entrance exams, some studies in 
your meta-analytic database will use the ACT and others 
will use the SAT as the primary outcome, which means 
that the results are not in the same metric across studies. 
It is for exactly this reason that the standardized mean 
difference effect size is so handy. However, if you accept 
our contention that most people do not understand what a 
standardized mean difference of, say, d = –0.10 means, 
and that study results should be reported in the original 
metric, what should a researcher do when the original 
metric differed across studies?

The answer is that unless there is reason to believe 
otherwise, it is reasonable to assume operational exchange-
ability among measurements that share the same underly-
ing conceptual variable. That is, make the assumption that 
the effect size observed in studies that used one operation-
alization of the outcome is the same as the effect size in 
studies that used a different operationalization of the 
same outcome. Continuing with the SAT-ACT example, 
this means assuming that the effect size observed for the 
ACT is the same effect size that would have been observed 
had the researchers used the SAT instead. Therefore, in this 
case following our advice would lead researchers to report 
the results in terms of points on the ACT and in terms of 
points on the SAT. Extending the example might help illus-
trate this point. Assume that a good systematic review and 
meta-analysis examines the effects of coaching on perfor-
mance on college entrance exams. The overall effect size is 
d = +0.08, a statistically significant result. Because d is the 
effect of the treatment expressed in standard deviation 
units, we can multiply d by the standard deviation to com-
pute the treatment effect expressed on each test’s scale. 
Here, the effect of the intervention is to increase scores on 
the SAT by 117 × 0.08 = 9.4 points, and scores on the ACT 
by 5 × 0.08 = 0.4 points. Assume that we have data suggest-
ing that the mean score on the SAT is about 515, and that 
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the mean score on the ACT is about 21. Following the 
logic articulated, we suggest reporting results like this:

The effect of test coaching on college entrance test scores 
was d = +0.08, p = 0.02. Put in context, this effect size implies 
that the average student’s score would improve from 515 to 
524.4 on the SAT, and from 21 to 21.4 on the ACT.

Relative to simply stating that the intervention’s effect 
size was d = +0.08, we believe that when expressed this 
way, readers should have a much better chance of under-
standing what the effect size means in practical terms. We 
turn now to different translations of effect sizes and show 
how they can be used to describe effect sizes. We start 
with outcomes that are scaled continuously, then discuss 
translations for binary outcomes.

19.3.1 Continuous Outcomes

For continuous outcomes, we assume that the primary 
meta-analytic results are in the form of a standardized 
mean difference, d. You know by now that we are skepti-
cal that many people have a good feel for how to interpret 
these effect sizes, and will benefit from additional ways 
of describing that effect. In the sections below we discuss 
the correlation coefficient and its square (the proportion 
of variance explained), the binomial effect-size display, 
Cohen’s U metrics, and the common language effect size.

19.3.1.1 Correlation Coefficient Robert Rosenthal 
argues that because few consumers of research are familiar 
with standardized mean difference effect sizes but tend to 
be familiar with correlation coefficients, it is better to 
express study results in terms of correlation coefficients 
instead of standardized mean differences (1984). Further-
more, simple randomized experiments can be analyzed 
using the correlation coefficient as the test statistic. In 
chapter 11 of this book, Borenstein and Hedges provide 
a straightforward formula for converting a standardized 
mean difference to a correlation coefficient.

In our experience, converting the standardized mean dif-
ference to a correlation coefficient can be a helpful aid to 
understanding. But we also think that you should be aware 
of two potential areas of concern. The first is that for many 
readers (and some producers) of research, using the correla-
tion coefficient implies that the study did not examine 
potentially causal relationships. In reality though, causal 
statements are more closely related to research design than 
to statistical analysis. Further, many are not aware that the 
correlation coefficient can be used to analyze the results of 
a simple randomized experiment. Therefore, if you choose 

to present results in terms of a correlation coefficient, you 
should be aware of this common confusion and consider 
ways of proactively reducing it (for example, by reminding 
your audience of the tight link between the standardized 
mean difference and the correlation coefficient).

A second area of concern is that many readers will 
square the correlation coefficient to yield a proportion of 
variance explained. This is a valid thing to do and results 
in an accurate description of the study’s results.1 How-
ever, relative to other equally accurate ways of describing 
study results, the psychological impact of the proportion 
of variance explained is that it will lead readers to believe 
that the effect is smaller. For example, “the treatment 
explained 2 percent of the variance in pain symptoms” 
and “62 percent of treatment patients scored better than 
the typical control patient on the pain scale” both describe 
the same underlying effect size (d = +0.30, indicating that 
patients receiving the treatment scored 0.30 standard devi-
ations better on the pain scale than comparison patients), 
but the proportion of variance explained formulation 
feels like a smaller effect size. As a result, the proportion 
of variance explained should always be presented with 
another effect-size translation (if it is used at all).

19.3.1.2 Cohen’s U Metrics In his book Statistical 
Power Analysis for the Behavioral Sciences, Jacob Cohen 
introduces three effect-size measures based on the extent 
to which two hypothetical distributions (one treatment and 
one control) overlap with one another (1988). He some-
what mysteriously called these metrics U1, U2, and U3. U1 
expresses the percentage of population distribution non-
overlap. That is, imagine that you have two population 
distributions T (treatment) and C (control). The distribu-
tions are normal, are equally large, and have the same 
variance.

That assumed, to interpret U1, imagine that the standard-
ized mean difference effect size describing the mean dif-
ference between the two distributions is d = 0.00. If you 
superimpose distribution T on distribution C, you will see 
that the distributions overlap perfectly (that is, 100 per-
cent of distribution T overlaps with distribution C). Stated 
differently, the percentage of nonoverlap is zero. Now 
imagine that the standardized mean difference effect size 
describing the mean difference between the two distribu-
tions is d = +1.00 (the means are one standard deviation 
apart). If you superimpose distribution T on distribution C, 
you will see that the extent of nonoverlap is about half. 
More precisely, U1 = 55.4 percent if d = 1.0 (that is, 
44.6 percent of the total area of the two distributions over-
laps, and the nonoverlap is 55.4 percent)2 (see figure 19.1).
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U2 expresses the percentage in distribution T that 
exceeds the same percentage in distribution C. Stated 
differently, U2 tells us the percentage of scores in one 
distribution that exceed the same percentage of scores 
in the other distribution. If d = 0.00 then, as was the case 
with U1, the distributions overlap perfectly, and U2 = 50 
percent (50 percent of the scores in distribution T exceed 
50 percent of scores in distribution C). If d = +1.0, then 
U2 = 69.1 percent. That is, 69.1 percent of scores in distri-
bution T exceed 69.1 percent of scores in distribution C;  

Figure 19.1 Cohen’s U Metrics

source: Authors’ tabulation.
note: All three graphs illustrate a standardized mean difference effect size (d) of +1.0. The x-axis represents the effect size (in standard 
deviation units) and the y-axis represents probability density.

U1 (top left) represents the percentage of the total area in the treatment and control distributions that do not overlap with each other (the grey 
shading illustrates the nonoverlap). For d = +1.00, U1 is 55.4 percent (that is, 55 percent of the area of the two distributions do not overlap). 
See also figure 19.2.

U2 (top right) represents the percentage of scores in one distribution that exceed the same percentage of scores in the other distribution.  
For d = +1.00, U2 is 69.1%: 69 percent of scores in the treatment distribution (the distribution on the right) exceed 69 percent of the scores in 
the control distribution (on the left). The vertical line in this figure represents the point at which the two distributions intersect. The shaded 
area represents scores in each distribution that are larger than the value at which the distributions intersect. Here, approximately 69 percent of 
the scores in the treatment distribution exceed the intersection point. And, approximately 31 percent of the scores in the control distribution 
exceed the intersection point (hence, approximately 69 percent of the scores in the control distribution do not exceed the intersection point). 
See also figure 19.2.

U3 (bottom) represents the proportion of scores in the treatment group (the distribution on the right) that exceed the mean score in the con-
trol group (the distribution on the left). This illustrates the 1-P-d formulation of equation (19.1). The control group’s mean is represented with 
a vertical line running down the y-axis at that distribution’s apex. Because this figure represents an effect size of d = +1.0, and the correspond-
ing U3 for that effect size is 84.1 percent, we can see that about 84 percent of the scores in the treatment group are larger than the control 
group’s mean.
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do not be alarmed if this one is still a little baffling. It 
might help to look at figure 19.2.

U3 expresses the percentage of scores in distribution C 
that are exceeded by the mean of distribution T. Alterna-
tively, and perhaps more intuitively, U3 can be thought of 
as expressing the percentage of scores in distribution T 
that exceed the mean of distribution C. If d = 0.00, then 
50 percent of the scores in distribution exceed the mean 
of distribution C (just like 50 percent of the scores in 
distribution C exceed the mean of distribution T). If  
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d = +1.00 then 84.1 percent of scores in distribution T 
exceed the mean of distribution C. Out of all of Cohen’s U 
metrics, U3 is by far the most commonly used. For 
example, the U.S. Department of Education’s What Works 
Clearinghouse (WWC) routinely reports an “improvement 
index,” which is defined as U3—50 (so if d = +1.00, then 
the improvement index is equal to 84.1–50 = 34.1) (What 
Works Clearinghouse 2017). One way to think about  
the WWC’s improvement index is that it expresses the 
expected percentile gain if the typical student in distri-
bution C received the intervention. Larry Hedges and 
Ingram Olkin outline a suite of distribution overlap mea-

sures related to U3, and developed sampling variances for 
these indices (2016). And similarly, Jeffrey Valentine, 
Ariel Aloe, and Timothy Lau introduce a variation on U3 
that they call descriptive U3 (2015). This can be used 
when one has access to the underlying data.

Figure 19.1 shows each of Cohen’s U metrics express-
ing the same underlying effect size (d = +1.0). In addition, 
seeing how these effect-size translations are computed 
might also help you understand what each version is 
expressing. Like Cohen in 1988, we start with U3 because 
it is the easiest to think about. U3 can be computed using 
equation (19.1):

U P P1 (19.1)d d3 = = − −

where Pd is the cumulative distribution function of d. 
Therefore, Pd represents the percentage of scores in the 
control distribution that are exceeded by the mean of the 
treatment distribution, and 1 − P-d represents the percent-
age of scores in the treatment distribution that exceed the 
mean score in the control distribution. Either formulation 
yields the same value, so use the version that you think 
will make the most sense to you and your readers. We 
used the latter formulation to illustrate U3 in figure 19.1. 
Here, if d = +1.0 then 84.1 percent of the scores in the 
treatment distribution will exceed the mean of the control 
distribution. Many spreadsheet applications will compute 
this value. For example, in Google Sheets, the command 
=normsdist(d)*100 will yield U3 for the value of d that 
you choose. In R, the command pnorm(d, 0, 1) can be 
used to compute U3 for the value of d that you enter.

U2 is computed using equation (19.2):

U P (19.2)d2 2=

where all terms are defined as in equation (19.1). In many 
spreadsheet applications, the command = normsdist(d/2) 
*100 will yield U2 for the value of d that you choose.  
In R, the command pnorm(d/2, 0, 1) can be used to  
compute U2.

Finally, U1 is computed using equation (19.3):

U
U

U

2 1
(19.3)1

2

2

= −

with U2 defined as in equation (19.2). In many spreadsheet 
applications, U1 is easiest to compute by first computing 
U2 then computing U1 as suggested by equation (19.3).3 
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Figure 19.2 The Relationship Between U1 and U2.

source: Authors’ tabulation.
note: The letters A, B, C, and D represent different areas in two 
distributions: a control distribution and a treatment distribution. The 
area of the control distribution is given by A+B+C and the area of 
the treatment distribution is given by B+C+D. The letter A rep-
resents the proportion of the area of the control distribution that does 
not overlap with the treatment distribution. B and C represent the 
proportions of the areas of the two distributions that do overlap. D 
represents the proportion of the area in the treatment distribution 
that does not overlap with the control distribution. The vertical 
line that bisects B and C divides the shared area exactly in half, 
hence B = C. This property can be inferred from equation (19.2).  
U1 (the total area of the two distributions that does not overlap) is 
defined as (A+D)/(A+B+C+D). U2 (the percentage of scores in one 
distribution that exceed the same percentage of scores in the other 
distribution) is defined as C+D (or equivalently, A+B).

As an example, assume that d = 1.0 and that therefore using equa-
tion (19.2) and equation (19.3), U1 = 0.55 and U2 = 0.69. This infor-
mation can be used to determine the relevant area proportions. 
Because B+C+D = 1 and U2 = C+D = 0.69 we know that B + 0.69 = 1 
and therefore that B = 0.31. Because B = C, C = 0.31, and because 
B+C+D = 1 we know that D = 0.38 (and also, because A+B+C = 1, 
and B = 0.31 and C = 0.31, A = 0.38).

To complete the example, U1 is defined as (A+D)/(A+B+C+D) so 
U1 = (0.38+0.38)/(0.38+0.31+0.31+0.38) = 0.55), the same value as 
that yielded by equation (19.3). U2 is defined as C+D (or equiva-
lently, A+B) so U2 = 0.31+0.38 = 0.69, the same value as that yielded 
by equation (19.2).
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As a reminder, R code for computing all the U transfor-
mations is presented in the appendix.

Summary of Cohen’s U translations. It is not an acci-
dent that U3 has been the most widely used of Cohen’s U 
translations. Of the three, this translation is the easiest to 
understand. For example, assume that a psychological 
intervention results in an improvement of +0.30 standard 
deviation units in pain symptoms. To use U3 to communi-
cate to a parent what this effect size means, we would say 
that about 62 percent of patients who receive the psycho-
logical intervention report less pain than the average 
patient in the control condition. That said, U1 and U2 may 
be easier to understand if they come into common usage.

19.3.1.3 Common Language Effect Size The com-
mon language effect size (CLES), or the probability of 
superiority (McGraw and Wong 1992), represents the 
probability that a randomly selected observation from 
one group will be larger than a randomly selected obser-
vation from another group. Like Cohen’s U3, the CLES 
will be 0.50 (50 percent probability) when d = 0 and will 
approach 1.0 as d increases. The CLES can be written 
using equation (19.4):

CLES P (19.4)d
2

=

where Pd is defined as in equation 19.1 (the cumulative dis-
tribution function for d). In many spreadsheet applications, 
the CLES can be computed by =normdist((d/sqrt(2)))), 
where d is the standardized mean difference effect size you 
are translating. In R, the command pnorm(d/sqrt(2)) can be 
used to compute the CLES. As an example, assume that a 
good systematic review and meta-analysis concludes that 
the effect of a pain treatment is d +0.30 (the pain scores are 
reverse scaled, so higher numbers represent less pain, and 
a positively signed effect size means that the intervention 
patients are doing better than control patients). The CLES 
for this standardized mean difference is 0.58. The CLES of 
0.58 means that the probability that a patient receiving the 
treatment will score lower than a control patient is 0.58.

19.3.1.4 Binomial Effect-Size Display As we describe 
more fully further on, binary dependent variables are much 
easier to explain than continuous dependent variables. 
When the outcome is continuous, one way to make results 
easier to understand is to artificially dichotomize it. While 
doing this has well-known undesirable properties for 
analysis (see, for example, chapter 15) as a technique for 
describing and interpreting effect sizes it can be a helpful 
approach; in a sense this is what Cohen’s U3 does (recall 

that you can think of U3 as categorizing treatment group 
scores as exceeding the control group’s mean or not). 
Rosenthal and Donald Rubin introduce the binomial 
effect-size display (BESD) as another way to do this 
(1982). Essentially, the BESD asks “Assume the treat-
ment and control group scores are put together in a single 
distribution. What proportion of treatment group scores 
will be above the median? What proportion of the control 
group’s scores will be above the median?” The propor-
tion of the treatment group scoring above the median can 
be found by using equation (19.5):

rTreatment proportion above median .50 2 (19.5)= +

and the proportion of the control group scoring above the 
median can be found using equation (19.6):

rControl proportion above median .50 2 (19.6)= −

where r is the point-biserial correlation between the 
outcome and the treatment condition (scored, for exam-
ple, as 0 for the control group and 1 for the treatment 
group). For example, assume that the standardized mean 
difference effect size for an intervention is d = +0.30. 
Using the formula for translating d to r given in chapter 
11 of this book, we know that if d = +0.30, then r = +.15. 
Therefore applying equation (19.5), the patients in the 
treatment condition scoring above the median (that is, 
experiencing less pain than the average patient) is 0.50 + 
0.148/2 = 0.574, or 57.4 percent. Rounding to 57 percent, 
this implies that 43 percent of treatment patients are scor-
ing below the mean on the pain scale (meaning that they 
are experiencing more pain than the average patient). 
Applying equation (19.6) to the control group yields per-
centages of 43 and 57, and yielding the data for the BESD 
(see table 19.1).

In a study involving equal sample sizes and a perfectly 
normal distribution, BESD works out exactly. That is, if 
you applied the BESD formula to a set of normally dis-
tributed observations from a single study in which the 
treatment and control groups had the same sample size, 
you would get the same result as would be obtained by 
dummy coding whether an observation was above or 
below the median and figuring the percentages that way. 
But setting aside the clear benefits to communication, the 
main benefit of the BESD is that it can be used by people, 
like synthesists, who do not have access to the underlying 
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data and therefore cannot carry out the dummy coding 
exercise. We would be remiss not to note that the BESD 
has its critics (for example, Thompson and Schumacker 
1997). However, as Rosenthal suggests, the BESD is rea-
sonably accurate whenever the assumptions of the gen-
eral linear model are met and as such, results in generally 
credible translations of the effect size (1991).

19.3.2 Binary Measures of Effect Size

Binary outcomes such as graduated or did not graduate 
are much easier than continuous outcomes for most  
people to understand. One reason for this is that the raw 
data are easily understandable. Consider table 19.2, 
which shows data for a fictitious study of physical 
therapy. These data can be readily understood by most 
people, and that it is pretty clear that physical therapy 
“worked” in the sense that many more participants who 

received physical therapy were pain free than partici-
pants who did not receive physical therapy. One reason 
this effect is easy to comprehend is that it is large. Another 
is that the sample sizes were equal in the physical therapy 
and non-physical therapy groups. As can be seen in table 
19.3, often presenting the results in percentages can help 
if group sizes are unequal and in general, and this is prob-
ably the best way to present results.

19.3.2.1 Correlation Coefficient Another option is to 
express the results as a correlation coefficient (ε). Here, the 
correlation between assignment condition and being pain 
free after six months was r = +0.27, and its square is 0.07. 
Recall our earlier concern about proportion of variance 
explained as an effect size, which can easily be seen here. 
This effect is pretty dramatic, but it explains only 7 percent 
of the variance in treatment outcome.

19.3.2.2 Odds Ratio Binary outcomes can also be 
expressed as odds ratios, which can be defined as

OR (19.7)
a
b

c
d

=

where a, b, c, and d refer to cells in a 2 × 2 table (reading 
from top left, to top right, to bottom left, to bottom right). 
Here, the odds ratio is 3.0 (see table 19.2). As can be seen in 
the equation, the odds ratio is well named—it is comprised 
of the odds of being pain free in the physical therapy group 
(the numerator of the fraction), and the odds of being pain 
free in the non-physical therapy group (the denominator of 
the fraction). Hence, the odds ratio is literally the ratio of 
the odds in the treatment and control groups.

Despite the advantage of having a name that is literally 
true, the odds ratio is difficult to interpret. Most people do 

Table 19.1 Binomial Effect Size Display for 
a Continuous Outcome

% Scoring Above 
the Median 

(Less Pain Than 
Average)

% Scoring Below 
the Median 

(More Pain Than 
Average)

Treatment patients 57 43
Control patients 43 57

source: Authors’ tabulation.
note: Binomial effect size display for a meta-analysis yielding a 
standardized mean difference effect size of d = +0.30. The depen-
dent variable is a pain scale.

Table 19.2 Effects of Physical Therapy for  
a Binary Outcome

Pain-Free 
After 

Six Months

Not Pain-Free 
After Six 
Months

Received physical therapy 100 50

Did not receive physical 
therapy

 60 90

source: Authors’ tabulation.
note: Raw data for a binary outcome. Cell values are the number of 
participants in each condition-outcome combination.

Table 19.3 Effects of Physical Therapy for 
a Binary Outcome (Based on Percentages)

Pain-Free 
After 

Six Months

Not Pain-Free 
After Six 
Months

Received physical therapy 66.7 33.3

Did not receive physical 
therapy

40 60

source: Authors’ tabulation.
note: Outcomes of a study using the binary outcome from table 19.2, 
expressed as percentages. The cell varies are the percentages of 
participants in each condition-outcome combination
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not think in terms of odds, and even fewer are comfortable 
thinking about more than one set of odds at a time. Fur-
thermore, it has the inconvenient form of being centered 
on 1.0 (that is, when the null hypothesis is true the odds 
ratio is 1.0). It also ranges from 0 to positive infinity. As a 
result, an odds ratio of 0.50 is of the same magnitude, but 
is in the opposite direction, as an odds ratio of 2.0. Due in 
part to these complexities, analysis are often carried out 
on the natural log of the odds ratio, and we do not recom-
mend relying too much on the odds ratio if your goal is to 
make readers understand your results.

19.3.2.3 Risk Ratio The risk ratio is an alternative 
(and perhaps more understandable) expression of binary 
study results. A risk ratio is defined as

RR (19.8)
a

a b
c

c d
= +

+

where a, b, c, and d are defined as in equation (19.7). For 
the fictitious physical therapy study, the risk ratio is 1.7. 
Note that the designation of risk and success is completely 
arbitrary. That is, the risk ratio could be called the success 
ratio with no changes to its computation. Because the 
physical therapy intervention was attempting to reduce 
pain, we will refer it as a success ratio, and interpret it this 
way: The success rate in the physical therapy group was 
1.7 times greater than the success rate in the control group.

19.3.2.4 Risk Difference Another way to express the 
size of the effect for binary outcomes is the risk (or success) 
difference, which is defined as

RD (19.9)a
a b

c
c d= −+ +

where a, b, c, and d are defined as in equation (19.7). As 
can be seen, the success difference is just the difference 
in success rates between the experimental and control 
groups. Here, the success difference is 0.27.

19.3.2.5 Number Needed to Treat Finally, the num-
ber needed to treat (NNT), describes the number of partic-
ipants who would have to be in the experimental condition 
in order to generate one more success—for example, one 
additional individual is pain free after six months. NNT 
can be defined as

RDNNT 1 (19.10)=

where RD is the risk difference. For the physical therapy 
study, NNT is 1/.27 = 3.75. This implies that for approx-

imately every four individuals who participate in physi-
cal therapy, one additional person is pain free after six 
months, over and above the base rate of being pain free at 
six months.

Absolute versus relative measures of risk. The risk  
difference and the number needed to treat are absolute 
measures of risk; odds ratios and risk ratios are relative 
measures. The distinction is important for at least two rea-
sons. First, relative measures of risk are largely insensitive 
to differences in the base rate of events, whereas abso-
lute measures are very sensitive to these differences. In 
addition, people perceive relative risk and absolute risk 
differently; relative risk often seems to have a bigger psy-
chological impact (Baron 1997; Covey 2007). As a result, 
we suggest always presenting absolute and relative mea-
sures of risk together along with the original risks (for 
example, present the risk in the treatment group, the risk in 
the control group, the risk ratio, and the risk difference).

19.3.2.6 Using Binary Translations in Conjunction 
with a Meta-Analysis For continuous outcomes, the 
effect-size translations we discussed earlier can be used 
without any additional information. For binary outcomes, 
additional information is needed. The reason for this is 
that binary effect sizes vary as a function of the underlying 
base rate. To illustrate this point, assume that the effect of 
a treatment is to increase survival rates from 45 percent to 
55 percent (that is, survival rates are 45 percent in the con-
trol group and 55 percent in the treatment group). The 
odds ratio associated with this treatment effect is 1.5 (the 
odds of survival were 1.5 times greater in the treatment 
group than they were in the control group). If instead the 
survival rates were 75 percent and 85 percent in the con-
trol and treatment groups, this same 10 percentage point 
increase would be associated with an odds ratio of 1.9.

There are multiple ways to arrive at a base rate for the 
effect-size translations. In our experience, base rates are 
often available in studies, either in the form of a 2 × 2 table 
of frequencies or of reported percentages in the treatment 
and control groups. One option then is to use this infor-
mation to estimate a typical base rate (that is, the control 
group’s rate of success), and base the effect-size transla-
tions off of that base rate. In the rare case of a study that 
does not report enough information for you to derive the  
2 × 2 table, the base rate can be based on the studies that do 
provide that information. However, this means that the 
effect-size translations will be partly a function of the  
chosen base rate and should be interpreted in that light. 
Thus it might be helpful to present the effect-size transla-
tions for a reasonable range of base rates so that readers 
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can get a feel for what the effect size looks like at those 
different base rates.

19.3.3  Using Effect-Size Translations 
with Confidence Intervals

So far, we have addressed how to take an effect size from 
a single study, or from a meta-analysis of multiple stud-
ies, and convert that effect size into different metrics as an 
understanding aid. By providing a concrete expression of 
the precision of the estimated effect, confidence intervals 
can also aid understanding (see Cumming 2014; Valentine 
and Aloe 2016). They can also be used in conjunction with 
effect-size translations. As most readers will be aware, 
all common theoretical confidence intervals are formed by 
multiplying a standard error by a test statistic (for example, 
in a simple randomized experiment, multiplying the stan-
dard error for the difference between two means by the 
appropriate critical value of t will yield a confidence inter-
val for a mean difference). Although theoretical standard 
errors have been developed for many of the effect-size 
translations we provide, they have not been derived for all 
of them. However, a relatively straightforward strategy 
that can be easily applied to meta-analytic results is to first 
compute the lower and upper bounds of the confidence 
interval using the metric of the meta-analysis (usually the 
standardized mean difference, the Fisher’s z transformed 
correlation coefficient, or the natural log of the odds ratio), 
then apply the methods we describe to the lower and upper 
bounds of the confidence interval.

For example, recall that the meta-analysis of pain 
interventions described earlier resulted in a mean effect 
size of d = +0.55. Assume that the 95 percent confidence 
interval for this effect size was +/– 0.50. This implies that 
the lower bound of the confidence interval was +0.05 and 
that the upper bound was +1.05. If you were interested in 
discussing these results in terms of Cohen’s U3 transla-
tion, you might report this:

On average, patients in the treatment condition had better 
pain scores than patients in the control condition, d = +0.55, 
p = .03. The lower bound of the 95 percent confidence inter-
val was d = +0.05 and the corresponding upper bound was  
d = +1.05. The U3 metric expresses study effects in terms of 
the percentage of one group that exceeds the mean of another 
group (Cohen 1988). Here, the standardized mean difference 
of +0.55 suggests that about 71 percent of treatment patients 
had better pain scores the average control patient, with 
95 percent confidence interval ranging from a 52 percent to 
85 percent of treatment patients scoring better than the typical 
control patient.

This can also be done using binary outcomes. For 
example, assume that a good systematic review and 
meta-analysis investigates the effects of an interven-
tion designed to encourage employees to participate in a 
higher retirement savings category. The results suggest an 
odds ratio of 2.06, with a corresponding log odds ratio of 
.724 and a standard error of the log odds ratio of 0.154 
(for a description of how this standard error is computed, 
see chapter 13). If you were interested in discussing these 
results in terms of the risk difference, you might report as 
follows:

On average, employees in the treatment condition were more 
likely to select the higher savings category (OR = 2.06, 
logOR = 0.724, SElogOR = 0.154, p < .001). Overall about 
12 percent of employees in the control condition opted into 
the higher savings rate plan, and about 22 percent of treat-
ment employees did, a success (or “risk”) difference of 
0.10. Assuming a constant success rate in the control group 
of 12 percent, the effect size translates to a 95 percent con-
fidence interval ranging from a low risk difference of .05 
and a high risk difference of 0.16.

19.3.4 Suggestions for Researchers

Our discussion to this point has focused on effect sizes and 
some translations to help make effect sizes more under-
standable; we have presented these for both continuous 
and binary outcomes. One thing that should be clear is that 
presenting effect-size translations can be done a number  
of ways. Even though they are all technically accurate 
descriptions of study results, their psychological impacts 
can differ. Because there is no single correct effect-size 
translation (Rosenthal 1991), one option is to present sev-
eral translations to help readers come away with the most 
complete description possible. We illustrate how this might 
be done in tables 19.4, 19.5, and 19.6. Table 19.4 contains 
effect sizes and translations for a continuous outcome. 
Assume that a good systematic review and meta-analysis 
suggests that a physical therapy intervention results in 
improvement of d = +0.30 in pain symptoms. Table 19.5 
contains effect sizes and translations for a binary outcome. 
Assume that a good systematic review and meta-analysis 
suggests that the logged odds ratio describing the effect of 
a physical therapy intervention on whether patients were 
pain free after six months was +1.10. Both tables have col-
umns for the effect size or effect-size translation name, its 
formal interpretation, and a description of how we would 
write text that explains the metric to readers. Finally, to 
give you a feel for how the effect-size translations vary as 
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Table 19.4 Effect-Size Translations and Interpretation for Continuous Outcomes

Effect Size (or Translation) Formal Interpretation Value Interpretation for Pain Study

Standardized mean  
difference (d)

Mean difference between treatment and 
control group, expressed in standard 
deviation units

+0.30 The physical therapy group scored 
+0.30 standard deviations better on 
the pain scale than the control group

Point-biserial correlation 
coefficient (rpb)

Correlation between treatment condition 
and outcome

+.15 The point-biserial correlation between 
assignment condition (treatment = 1, 
control = 0) and pain at the posttest 
was +0.15.

Proportion of variance 
explained (r2

pb)
Proportion of variance shared between 

treatment condition and outcome
0.02 The treatment explained 2 percent of the 

variance in pain symptoms.

U1 Extent of nonoverlap between the treat-
ment and control distributions

21 Twenty one percent of the area in the 
distribution of treatment scores does 
not overlap with the distribution of 
control scores.

U3 Percentile rank of the typical participant 
receiving the treatment, relative to the 
control group

62 The average treatment participant had a 
better score on the pain inventory 
than 62 percent of control 
participants.

Common language 
effect size

Probability that a randomly selected 
member of the treatment group will 
outscore a randomly selected member 
of the comparison group

0.58 The probability that a randomly selected 
member of the treatment group would 
have a better pain score than a ran-
domly selected member of the control 
group is 0.58.

source: Authors’ tabulation.
note: Effect sizes and effect-size translations for a study examining the effects of an intervention on continuously scaled pain scores. The 
underlying effect size is d = +0.30.

a function of the underlying effect size, table 19.6 contains 
effect-size translations for a variety of values of d.

19.4 BENCHMARKING EFFECT SIZES

Although not as widely applicable as using effect-size 
translations, another strategy for describing effect sizes is to 
benchmark the observed effect against some external refer-
ence value or values. Carolyn Hill and her colleagues 
describe several types of benchmarks that we will elaborate 
on: comparing the effect size with normative expectations, 
policy-relevant goals or gaps, and the effects observed in 
similar interventions (Hill et al. 2008). Benchmarking 
requires information that is not necessary for most of the 
translations we described: at least one reference value. Not 
all outcomes will have an appropriate or available reference 
value criterion, but a little creativity and some information 

about the context of the interventions or outcomes at issue 
can help.

19.4.1 Comparing Effect Sizes with Norms

In education, many standardized tests have published 
norms that describe expected scores for students at differ-
ent grade levels. Hill and her colleagues computed grade-
to-grade gain effect sizes from such published norms 
of standardized tests and present those as benchmarks 
against which individual study authors or synthesists can 
evaluate their effect sizes (Hill et al. 2008). The norma-
tive gains are those that would be expected in the absence 
of any intervention, given the context in which the inter-
vention is used. For example, according to Hill and her 
colleagues (2008) the growth in achievement that typical 
students achieve between first and second grade in read-
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ing is about 1.0 standard deviations, whereas that between 
grades six and seven is about 0.25 standard deviations. A 
study (or a meta-analysis) of a reading intervention for 
first graders produces a standardized mean differences 
effect size of d = +0.15. Given that typical growth in the 
first-grade year is relatively larger than the effect of treat-
ment, we might conclude that the intervention’s effect is 
somewhat modest. If, however, our study is of an inter-
vention for sixth graders, an intervention that produces an 
effect of d = +0.15 might be deemed very effective. In the 
health sciences, large-scale epidemiologic studies that 
track changes in health behaviors and outcomes over 
time could be used in a similar manner.

A variation on this type of benchmarking that can 
be useful with both individual intervention studies and 

meta-analyses of intervention studies is to use untreated 
groups to create benchmarks. For example, in an indi-
vidual intervention study, the effect size indexing the 
gains experienced by the comparison group can be a 
benchmark for the effect size indexing the differences 
between the groups after treatment to answer questions 
about whether the observed treatment effect is relatively 
larger or smaller than typical growth.

19.4.2  Comparing Effect Sizes with 
Policy-Relevant Goals or Gaps

Some outcomes are a focus of public policy, and inter-
vention effects can be described in terms of how much 
progress might be made toward the public policy goal 

Table 19.5 Effect-Size Translations and Interpretation for Binary Outcomes

Effect Size (or Translation) Formal Interpretation Value Interpretation for Pain Study

Odds ratio The odds of success in the treatment 
group, divided by the odds of success 
in the control group

3.0 The odds of being pain free after six 
months were three times greater in 
the treatment group than in the  
control group

Risk ratio The ratio of rate of success (or rate of 
failure) in the treatment group divided 
by the rate of success (or the rate of 
failure) in the control group

1.67 The pain free rate was 1.67 times 
greater in the treatment group than in 
the control group.

Risk difference The difference is success (or risk) rates 
between the treatment and control 
groups

0.27 The difference in pain free rates 
between the treatment and control 
groups was 0.27.

Number needed to treat The number of participants needing to 
experience the treatment in order to 
result in one additional success

4 For every four participants who receive 
the treatment, we expect one additional 
participant will report being pain free 
after six months (rounded from 3.75).

Correlation (phi) The correlation between condition (here, 
treatment = 1 and control = 0) and 
outcome (here, pain free after six 
months = 1, not pain free after six 
months = 0)

+0.27 The correlation between assignment and 
being pain free after six months was  
r = +0.27.

Proportion of variance 
explained

Proportion of variance shared between 
treatment condition and outcome

0.07 The treatment explained 7 percent of 
the variance in whether participants 
reported being pain free after six 
months.

source: Authors’ tabulation.
note: Effect sizes and effect-size translations for a study examining the effects of a physical therapy intervention. The dependent variable is 
whether participants were pain free after six months. The underlying effect size is an odds ratio of 3.0.
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assuming that the intervention is widely adopted. For 
example, many organizations have guidelines for the 
number of minutes per week that adults should be physi-
cally active. The Canadian Society for Exercise Physiol-
ogy suggests 150 minutes per week (2012). Assume that 
on average, Canadian adults get 120 minutes of exercise 
per week. An intervention that results in participants 
engaging in fifteen minutes of additional physical activity 
per week can be said to reduce the gap between actual 
and goal behavior by 50 percent. Similarly, in the United 
States educators and policymakers often worry about the 
achievement gaps between students from economically 
disadvantaged backgrounds relative to students from 
more economically viable backgrounds. As an example, 
according to the nationally representative Education Lon-
gitudinal Study of 2002, 35 percent of students classified 
as low socioeconomic status (SES) obtained a postsecond-

ary degree or certificate within six years of exiting high 
school, compared with 50 percent of students classified 
as middle SES. Thus, the gap is 15 percentage points; an 
intervention that increases the postsecondary attainment 
rate of low-SES students by 5 percentage points can be 
said to reduce that gap by one-third. In both of these 
cases, benchmarking an intervention’s effect to a valued 
public policy goal can be a useful way to contextualize 
the magnitude of that effect.

19.4.3  Comparing Effect Sizes with Other  
Similar Interventions

Another benchmarking strategy, though potentially more 
labor intensive, involves comparing an effect size with 
those observed in other studies. To do this well, the 
effect sizes against which you are benchmarking should 

Table 19.6. Effect-Size Translation Equivalents

d r r2 U1 U2 U3 WWC-II CLES BESD

+ 4.00 +.89 80.0% 97.7% 97.7% 99.9% 50 99.8% 94.7%
+ 3.00 +.83 69.2 92.8 93.3 99.9 50 98.3 91.6
+ 2.00 +.71 50.0 81.1 84.1 97.7 48 92.1 85.4
+ 1.50 +.60 36.0 70.7 77.3 93.3 43 85.6 80.0
+ 1.00 +.45 20.0 55.4 69.1 84.1 34 76.0 72.4
+ 0.50 +.24 5.9 33.0 59.9 69.1 19 63.8 62.1
+ 0.40 +.20 3.5 27.4 58.0 65.5 16 61.1 59.8
+ 0.30 +.15 2.2 21.3 56.0 61.8 12 58.4 57.4
+ 0.20 +.10 1.0 14.8 54.0 57.9 8 55.6 55.0
+ 0.10 +.05 0.25 7.7 52.0 54 4 52.8 52.5

0.00 .00 0 0 50 50 0 50 50
–0.10 –.05 0.25 7.7 48.0 46 –4 47.2 47.5
–0.20 –.10 1.0 14.8 46.0 42.1 –8 44.4 45.0
–0.30 –.15 2.2 21.3 44.0 38.2 –12 41.6 42.6
–0.40 –.20 3.5 27.4 42.0 34.5 –16 38.9 40.2
–0.50 –.24 5.9 33.0 40.1 30.9 –19 36.2 37.9
–1.0 –.45 20.0 55.4 30.9 15.9 –34 24.0 27.6
–1.50 –.60 36.0 70.7 22.7 6.7 –43 14.4 20.0
–2.00 –.71 50.0 81.1 15.9 2.3 –48 7.9 14.6
–3.00 –.83 69.2 92.8 6.7 0.1 –50 1.7 8.4
–4.00 –.89 80.0 97.7 2.3 0.1 –50 0.2 5.3

source: Authors’ tabulation.
note: Effect-size translations for a variety of values of d. WWC-II is the What Works Clearing-
house’s improvement index. The value in the BESD column reflects the percentage of scores in the 
treatment distribution that score above the control distribution (see equation 19.5) and therefore 
represents the value that would be in the upper left data cell in a BESD table. Although generally the 
BESD should be presented in a table (like table 19.1), we present this statistic alone to facilitate 
comparison with other effect-size translations.
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come from a high-quality systematic review. As an 
example, Mark Lipsey and his colleagues were interested 
in benchmarking effects in the educational research in the 
United States (Lipsey et al. 2012). They carried out a 
systematic search and found 181 independent estimates of 
the effect of an educational intervention on academic 
achievement generated from randomized experiments. 
They then categorized the effects according to a number 
of dimensions, including the level of schooling (elemen-
tary, middle, and high school; roughly equivalent to the 
age of the students) and the type of achievement measure. 
The type of achievement measure was subdivided into 
researcher-developed tests, narrow-scope standardized 
tests, and broad-scope standardized tests. Their findings 
indicate the most data at the elementary school level, 
and as a result their conclusions about the different 
types of tests rest on the firmest ground. Researcher- 
developed tests tend to yield larger effect sizes (d = +0.40) 
than either narrow-scope standardized tests (d = +0.25) or 
broad-scope standardized tests (d = +0.08). Imagine two 
interventions aimed at elementary school students, one 
that uses a researcher-developed test as the dependent 
variable, and one that uses a broad-scope standardized 
test. The effect size for both interventions is d = +0.20. 
Many researchers would cite Cohen and label both as 
small effect sizes (1988). The Lipsey work, however, 
suggests that the intervention assessed with a researcher- 
developed test is actually about half the magnitude of 
the typical intervention aimed at elementary school stu-
dents, and that the intervention assessed using the 
broad-scope standardized test yielded effects that were 
more than twice as large as the typical intervention 
(Lipsey et al. 2012).

19.4.4 Benchmarking Effect Sizes: Summary

We hope we have convinced you that benchmarking 
effect sizes has the potential to shed light on the practical 
importance of effect sizes. You will not be able to 
benchmark in all situations, however. To benchmark, you 
need well-accepted policy goals, or for gaps, estimates 
that can be treated in essence as population parameters 
(either actual population data, or really good, precise 
estimates—simple cutoffs such as “educationally sig-
nificant effect size” or “medium effect size” will not 
do). To compare observed effects with what might be 
expected by a similar intervention, really good estimates 
are again needed. Despite these caveats, when the condi-
tions are right, benchmarking has the potential to high-

light the relevance of, and add context and nuance to, the 
interpretation of effect sizes.

19.5  COMBINING THE TRANSLATION  
AND BENCHMARKING STRATEGIES

We present the translation and benchmarking strategies 
separately; they can in fact be used together. One natural 
way to do this is with the BESD. Although the traditional 
BESD applied to continuous outcomes involves dichoto-
mizing at the median, benchmarks can provide additional 
options for dichotomizing that can facilitate the interpre-
tation of an effect size. For example, an important bench-
mark might be the percentage of students who score above 
some policy-relevant level on a state or national exam. 
In other situations, outcomes may have clinical thresh-
olds associated with them. For example, scores higher 
than 70 on the Child Behavior Checklist are commonly 
used to identify children in need of further diagnostic 
assessment. Valentine and Aloe show how research syn-
thesists can use these clinical thresholds in conjunction 
with meta-analytic results to produce a table like table 19.1, 
except instead of dichotomizing at the median, the dichot-
omization occurs at a clinically meaningful threshold or 
thresholds (2016). Using yet another alternative, a syn-
thesist can use a standardized mean difference effect size 
from a meta-analysis, translate that effect size into an 
odds ratio (see chapter 11), select a normative proportion 
from the literature for the comparator, and produce an 
expected percentage change associated with the treatment 
effect. For continuous outcomes, estimates of the norma-
tive proportion could come from published statistics on the 
proportion of students in a school district who are profi-
cient in math, when the outcome is continuous scores on 
math achievement, or the proportion of students in a school 
who were suspended for aggressive behavior, when the 
outcome is continuous scores on measures of aggressive 
behavior (for an example, see Wilson and Lipsey 2007). 
The most important point is that in many cases, researchers 
working with continuous outcomes face challenges in 
communicating their results. Creating easy to digest tables 
such as the binomial effect-size display can facilitate com-
munication, and benchmarks will also often provide a sen-
sible and useful way of doing so.

19.6 CONCLUSION

In this chapter, we discuss the importance of thoughtful 
interpretation of effect sizes, present several effect sizes 
and translations, and show how they might be used. Two 
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related strategies that we did not discuss are cost effective-
ness and benefit-cost analyses. Although we are optimistic 
about the potential for these types of analyses to contrib-
ute to decision making, in our experience most studies are 
not reported in enough detail to make even basic cost 
analyses possible at the meta-analytic level. For example, 
even implementation costs are difficult to estimate from 
the information presented in most studies (for an example, 
see Shemilt et al. 2012). We are hopeful that the increas-
ing use of online repositories to accompany journal arti-
cles and the increased attention being given to cost issues 
will improve this situation.

Still, this hints at an important point. We believe that 
effect-size interpretation can be facilitated by presenting 
the underlying results in multiple ways. Merely present-
ing multiple interpretations will often not be enough, 
however. In most cases, additional contextual informa-
tion will be needed beyond the statistical results and their 
translations. We wrote this chapter in part because of our 
skepticism about the value of the most commonly used 
effect-size interpretation (Cohen’s guidelines). This skep-
ticism stems from our belief that no fixed interpretation 
of an effect size can be applied regardless of context. This 
is where strategies such as benchmarking are particularly 
helpful: they help us bring information about the study’s 
context into our judgments about the meaning of effect 
sizes. Other dimensions of context will surely be relevant. 
Even an informal reckoning of the benefits and costs of an 
intervention is one such consideration. Any positive effect 
size, no matter how small, might be worthwhile if it is 
essentially free (that is, requires almost no resources or 
effort). Another dimension is the acceptability of the inter-
vention, both to those implementing it and to those experi-
encing it. For an example of this latter point, assume that a 
school is considering adopting one of two reading curric-
ula. Evidence suggests both have positive effects relative 
to the existing curriculum. If the effect of the intervention 
depends on the quality of implementation, and individuals 
responsible for implementing the curriculum were really 
excited about one and relatively unenthusiastic about 
the other, we would likely recommend adoption of the 
favored curriculum unless the weight of the evidence was 
pretty strongly against it.

The commonality behind our discussion is that people 
likely interpret different effect-size translations differ-
ently, even when the underlying effect is the same across 
translations. This likely happens in two ways: two differ-
ent readers may see the same translation and react to it 
differently, and the same judge might read two transla-

tions of the same underlying effect and react differently 
to them. Some evidence exists on the latter point (Baron 
1997; Covey 2007), and our assertion that the proportion 
of variance explained leads people to believe that the effect 
is smaller than other equally valid translations is probably 
uncontroversial. That said, it turns out that we actually 
know very little about how people interpret effect sizes and 
effect-size translations. For example, consider the number 
needed to treat translation. The following two statements 
describe the same underlying effect size: treating ten indi-
viduals results in one fewer death; treating one hundred 
individuals results in ten fewer deaths. Because many 
people have a cognitive heuristic that more is better, we sus-
pect that people reading the effect if it is framed in terms of 
larger numbers will perceive the effect as being larger than 
if it is framed in terms of the smaller numbers. Examples 
of this sort are numerous, yet strikingly little related empir-
ical work has been undertaken. It is for this reason that we 
suggest that multiple effect sizes and effect-size transla-
tions be used. That is, we recommend that researchers 
present their readers with a suite of relevant effect sizes 
and effect-size translations, and benchmark these when 
possible. We also believe that researchers should routinely 
present results in a form of an easy to digest table (for 
example, a binomial effect-size display like table 19.1 for 
continuous outcomes, or a table with the percentages of 
successes and failures by group for binary outcomes like 
table 19.3). And finally, we believe that researchers should 
also present results in the metric of the most original scales 
used in their analyses. Our hope is that by providing read-
ers with a rich description of the observed effect from 
multiple perspectives, they will arrive at a fuller under-
standing of how important that effect might be.

19.7 APPENDIX

19.7.1  R Code to Compute Effect-Size Transla-
tions (Continuous Outcomes)

The following code is a function written for R that will 
take a user-defined standardized mean difference (d) 
and its standard error, and will compute the effect-size 
translations discussed in this chapter (see table 19.1 
and table 19.4). Users can enter the code into R, and it 
will generate the translations for d = +0.30 (SE = 0.18).4 
Users can change these values as desired. The function 
will also produce effect-size translations at the lower and 
upper limits of the effect size’s confidence interval.
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#——————————————————————————
# Transforming Across Effect-Size Metrics
# Valentine, Aloe, Wilson
#--------------------------
# Starting with the standardized mean 
  difference (d)
# and its standard error
#--------------------------

 # Read both functions first

 es.trans <- function(d, se){
 # Point-biserial correlation coefficient
  A <- 4 # assumes equal sample sizes 
across groups
  # if groups are not equal in size,  
comment off the line above,
   # uncomment the next lines of code 
(beginning nt, nc, and A) and

   # enter sample sizes for treatment (nt) 
and control (nc) groups

  # nt <- enter treatment group sample size 
here
  # nc <- enter control group sample size  
here
 # A <- ((nt + nc)^2)/ (nt*nc)
   r <- d/sqrt(d^2 + A)
 # Proportion of variance explained
 r2 <- r^2
 # Cohen’s u3
 u3 = pnorm(d)*100
 # Cohen’s u2
 u2 = pnorm(d/2)*100
 # Cohen’s u1
  u1 = (2*(pnorm(abs(d)/2)) - 1) /
(pnorm(abs(d)/2))* 100
 cles <- pnorm(d/sqrt(2))
   res.es <- c(d = d, r = r, r2 = r2,  

u1 = u1, u2 = u2, u3 = u3, cles = cles)
   # BESD
    a <- (.5 + r/2) * 100 # percent  

treatment above median
    b <- (1 - a/100) * 100 # percent  

treatment below median
    c <- (.5 - r/2) * 100 # percent control 

above median
    d <- (1 - c/100) * 100 # percent  

control below median
    # 2 by 2 table for BESD

    mytab <- matrix(c(a,b,c,d), ncol = 2, 
byrow = TRUE)

      colnames(mytab) <- c(“% Above the 
Median”, “% %Below the Median”)

      rownames(mytab) <- c(“Treatment”, 
“Control”)

      res_mytab <- as.data.frame(round 
(mytab, 2))

      res_mytab <- as.data.frame(round 
(mytab, 2))

    res.all <- list(res.es, res_mytab)
 return(res.all)
 }

  es.com <- function(d, se, conf_level = 
.95, dist_ci = ‘qnorm’, . . . ){

  args <- list(p = (1 - conf_level)/2, 
lower.tail = FALSE, . . . )

  value <- do.call(eval(parse(text =  
dist_ci)), args)

 d.ci <- d + c(-1, 1) * value*se
  Estimate <- round(es.trans(d = d, 
se = se)[[1]],2)

  Lower <- round(es.trans(d = d.ci[1], 
se = se)[[1]],2)

    Lower[‘u1’] <- ifelse(Lower[‘u1’] < 0, 
0, Lower[‘u1’])

  Upper <- round(es.trans(d = d.ci[2],  
se = se)[[1]],2)

    Upper[‘u1’] <- ifelse(Upper[‘u1’] > 100, 
100, Upper[‘u1’])

  Names.es <- c(“d”, “r”, “r^2”, “U1”, 
“U2”, “U3”, “CLES”)

  res <- data.frame(cbind(Names.es,  
Estimate, Lower, Upper))

   l <- paste0(conf_level*100,”%”)
   lower <- paste(l, “CI”, “Lower”)
   upper <- paste(l, “CI”, “Upper”)
   names(res) <- c(“Effect Size”,  

“Estimate”, lower, upper)
   rownames(res) <- NULL
return(list(res, es.trans(d = d, se = se)
[[2]]))
 }

  # Enter the mean effect size and its 
standard error here

 d <- .30 # standardized mean difference (d)
 se <- .18 # standard error of d
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 es.com(d = d, se = se, conf_level = .95)
  # Note that the desired confidence level 
can be changed
  # Note that users can adopt a different 
distribution but if so
  # other arguments for specific distribution 
must be specified.
  # In the example below the t distribution 
is used
  # thus the degrees of freedom are 
included
  es.com(d = d, se = se, dist_ci = ‘qt’,  
df = 9, conf_level = .99)

19.7.2  R Code to Compute Effect-Size  
Translations (Binary Outcomes)

The following code is a function written for R that will 
take a user-defined log odds ratio and its standard error, 
and will compute the effect-size translations discussed in 
this chapter (see table 19.3 and table 19.5). Users can 
enter the code into R, and it will generate the translations 
for log OR = 0.6466 (se = 0.12) and assuming a base rate 
of 40 percent. Users can change these values as desired. 
The function will also produce effect-size translations at 
the lower and upper limits of the effect size’s confidence 
interval.

#--------------------------
# Transforming Across Categorical Metrics
# Valentine, Aloe, Wilson
#--------------------------
# Starting with the natural log odds  
ratio (LOR),
# its standard error (seLOR)
# and the success rate for control  
group (SRC)
#--------------------------

# Read both functions first

es.cat <- function(LOR, seLOR, SRC){
 OR <- exp(LOR) # transform ln(OR) to OR
  c <- SRC # enter the base rate of success 
(or events) in the control group (for 
example, 10, 50, 70)
  d <- 100-c # determines the percentage of 
failures (or non-events) in the control 
group

 OddsC <- c/d
  OddsT <- OddsC * OR # computes the odds 
in the treatment group (a/b)

  b = 100/(OddsT+1) # computes the percent-
age of failures (or non-events) in the 
treatment group

  a = 100-b # computes the percentages of 
successes (or events) in the treatment 
group

 # Risk Ratio
  RR = (a/(a+b))/(c/(c+d))
 # Risk Difference
  RD = (a/(a+b))-(c/(c+d))
 # Number Needed to Treat
  NNT <- 1/RD
 # Correlation coefficient (phi)
   r <- ((a*d)-(b*c))/

sqrt((a+b)*(c+d)*(a+c)*(b+d))
 # Proportion of variance explained
  r2 <- r^2
      res.es <- c(LOR = LOR, OR = OR,  

RR = RR, RD = RD, NNT = NNT, r = r, 
r2 = r2)

      return(res.es)
 }

  es.com <- function(LOR, seLOR, SRC , conf_ 
level = .95, dist_ci = ‘qnorm’, . . . ){

  args <- list(p = (1 - conf_level)/2, 
lower.tail = FALSE, . . . )

  value <- do.call(eval(parse(text =  
dist_ci)), args)

 LOR.ci <- LOR + c(-1, 1) * value*seLOR
  Estimate <- round(es.cat(LOR = LOR,  
seLOR = seLOR, SRC = SRC),2)

  Lower <- round(es.cat(LOR = LOR.ci[1], 
seLOR= seLOR, SRC =SRC),2)

  Upper <- round(es.cat(LOR = LOR.ci[2], 
seLOR = seLOR, SRC = SRC),2)

  Names.es <- c(“lnOR”, “Odds Ratio”,  
“Risk Ratio”, “Risk Difference”, 
”Number Needed to Treat”, “r”, “r^2”)

  res <- data.frame(cbind(Names.es,  
Estimate, Lower, Upper))

   l <- paste0(conf_level*100,”%”)
   ll <- paste(l, “CI”, “Lower”)
   uu <- paste(l, “CI”, “Upper”)
   names(res) <- c(“Effect Size”,  
“Estimate”, ll, uu)
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 rownames(res) <- NULL
 return(res)
 }

  # Enter the mean effect size and its 
standard error here
  LOR <- 1.10 # enter the meta-analytic log 
odds ratio
  seLOR <- .12 # enter the standard error 
of the meta-analytic log odds ratio
  SRC <- 40 # enter the base rate of  
success (or events) in the control  
group (for example, 10, 50, 70)

 es.com(LOR = LOR, seLOR = seLOR, SRC = SRC)

  # Note that the desired confidence level 
can be changed
  # Note that users can adopt a different 
distribution but if so
  # other arguments for specific distribution 
must be specified.
  # In the example below the t distribution 
is used
  # thus the degrees of freedom are included
  es.com(LOR = LOR, seLOR = seLOR, dist_ci = 
‘qt’, SRC = SRC, df = 9, conf_level = .99)

19.8 NOTES

1.  Note that in a meta-analysis, this assertion is not true. 
Some of the unexplained variance is random sampling 
error and is therefore unexplainable, and the proportion 
of variance explained understates the “true” variance 
explained (see Aloe, Becker, and Pigott 2010). 

2.  It is probably best to think of U1 as a measure of 
nonoverlap than as a measure of overlap (, 1-U1), 
even though both are possible and overlap may seem 
a bit more intuitive. The reason to prefer non-overlap 
is that as the underlying effect size increases, non-
overlap also increases (if expressed as overlap, the 
opposite will be true).

3.  If d is negative, compute U1 by first computing U2 
using the absolute value of d, then use that result to 
compute U1.

4.  Users can download the code to copy and paste into R  
at http://www.russellsage.org/publications/handbook- 
research-synthesis-and-meta-analysis.
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20.1 INTRODUCTION

When we speak about heterogeneity in a meta-analysis, 
we usually refer to the extent to which the effect size var-
ies from one population to the next. If the meta-analysis 
assesses the impact of a treatment, a small amount of  
heterogeneity tells us that the treatment’s impact will be 
reasonably consistent across populations, whereas a large 
amount of heterogeneity tells us that the impact will be 
substantially larger in some populations than in others. 
This, along with the mean effect size, speaks to the poten-
tial utility of the treatment.

Unfortunately, this simple fact tends to be lost in reports 
of heterogeneity that often focus on the wrong questions 
and then address these with the wrong statistics. Research-
ers ask whether there is any heterogeneity, rather than ask-
ing how much heterogeneity there is. They use the  
I2 statistic to tell us how much the effects vary, when in 
fact I2 does not provide this information. They classify 
heterogeneity as being small, moderate, or large, when 
these classifications are meaningless in the absence of 
additional context. They suggest that heterogeneity may 
hurt the quality of the evidence, when in fact it can be a 
core strength of the analysis.

My goal in this chapter is to provide clarity. I explain 
what we mean by heterogeneity and what role hetero-
geneity plays in a meta-analysis. I introduce the various 
statistics that quantify specific aspects of heterogeneity 
and explain the unique role of each. With this as back-
ground, I offer a template for reporting heterogeneity. 
Most meta-analyses report Q, df, p, I2, and T2 as indices 
of heterogeneity, but these provide little (if any) informa-
tion about how the effects are dispersed. By contrast, if 
we compute the prediction interval and report (for exam-
ple) that “the effect size varies from as little as 0.30 in 
some populations, to as much as 0.70 in others,” we have 
provided the information that readers need, in a clear and 
concise format.

20.2 OVERVIEW

A meta-analysis is a synthesis, and the goal of a meta-anal-
ysis is not simply to report the mean effect size, but 
instead to understand the pattern of effects. The studies 
included in the meta-analysis may vary in any number of 
ways, including the populations, the specific variant of 
the intervention, and the scale used to assess outcomes, 
among others. The first step in the analysis is to deter-
mine how the effect size varies across the array of studies.  
If the effect size is reasonably consistent, we would focus 
on the mean and report that the effect size is consistent 
despite variation in the populations and methods. On the 
other hand, if the effect size varies in substantive ways, 
we would shift our focus to the variation in effects and 
report, for example, that the intervention increases the 
mean score by 10 points in some populations and by 90 
points in others. Finally, we might want to explain some 
of the variation—for example, to report that the effect 
size was higher in studies that enrolled older patients, or 
in studies that employed a more intensive variant of the 
intervention. When we look at heterogeneity in this way, 
it enables us to explore important questions that we could 
not address if the studies were essentially replicates of 
each other. In that sense, the heterogeneity becomes a  
key strength, rather than a potential problem, of the 
meta-analysis (Althuis, Weed, and Frankenfeld 2014; 
Berlin 1995; Higgins, Thompson, and Spiegelhalter 
2009; Lau, Ioannidis, and Schmid 1998; Sutton and  
Higgins 2008; Thompson 1994).

20.3  HETEROGENEITY AND  
THE STATISTICAL MODEL

Most meta-analyses are based on either the fixed-effect 
or the random-effects model. The fixed-effect model 
(sometimes called the common-effect model) is appropri-
ate when all studies in the meta-analysis are estimating 
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the same parameter. Operationally, this means that all stud-
ies sample from the same population and are identical in all 
material respects. The random-effects model is appropriate 
in all other cases (Borenstein et al. 2010; Hedges and Vevea 
1998; Higgins, Thompson, and Spiegelhalter 2009; 
Nikolakopoulou, Mavridis, and Salanti 2014).

The sampling frame that calls for the fixed-effect 
model is relatively rare. The overwhelming majority of 
meta-analyses are based on studies performed with non-
identical populations, and therefore the random-effects 
model applies. This chapter addresses the issue of hetero-
geneity in these meta-analyses.

20.4  CONFIDENCE INTERVALS  
AND PREDICTION INTERVALS

Consider a meta-analysis of studies that assess the impact 
of tutoring on student scores. In each study, students are 
randomly assigned to be tutored after school, or to a  
control condition. The effect size is the difference in 
mean scores between the two conditions. Based on the 
meta-analysis, we report that the mean effect size is  
50 points with a standard error of 2.5 points and a stan-
dard deviation of 10 points.

The standard error is an index of precision, and it tells us 
how precisely we have been able to estimate the mean effect 
size. The mean plus or minus 1.96 standard error yields a 
confidence interval of approximately 45 to 55. If the confi-
dence interval is accurate, then in 95 percent of all analyses, 
the confidence interval will include the true mean. The mean 
tells us how well the intervention is performing on average, 
and the confidence interval tells us how precisely we know 
the mean. But these statistics tell us nothing about how 
widely the effect size varies across populations. For that, 
we turn to the standard deviation and prediction interval.

The standard deviation is an index of dispersion, and it 
tells us how widely the effect sizes are distributed. The 
mean plus or minus 1.96 standard deviations yields a pre-
diction interval of approximately 30 to 70. If the predic-
tion interval is accurate, then some 95 percent of 
populations will have an effect size in this interval. The 
interval is called a prediction interval because if we were 
asked to predict the impact of the intervention for a ran-
domly selected population, we would predict that the 
effect size would fall between 30 and 70, and we would 
be correct some 95 percent of the time.

Consider three separate meta-analyses, for three separate 
interventions. In each case, the mean effect size is 50. In 
one case, the standard deviation is 5 points and the predic-

tion interval extends from 40 to 60—the treatment has 
approximately the same impact in all populations. In the 
second case, the standard deviation is ten points and the 
prediction interval extends from 30 to 70—there are some 
populations where the effect is weak, some where it is mod-
erate, and some where it is very strong. In the third case, the 
standard deviation is 20 points and the prediction interval 
extends from to 10 to 90: in some populations, the impact is 
trivial, in some moderate, and in some exceptional. These 
three cases are very different from each other, and the pre-
diction interval is what captures this difference.

20.4.1  Confidence Interval Versus  
Prediction Interval

Because this is a chapter on heterogeneity, I talk primar-
ily about the prediction interval. The reason I discuss the 
confidence interval as well is that researchers sometimes 
confuse the two, and I want to draw a clear distinction 
between them.

Figure 20.1 presents a fictional set of studies for the 
meta-analysis to assess the impact of tutoring. At the bot-
tom of the plot are two diamonds. The first shows the 
confidence interval for the fixed-effect model, the second 
for the random-effects model. The first diamond has a 
width of 7.5 points, the second of 17.9 points. Research-
ers sometimes assume that the span for the random- 
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Figure 20.1 Confidence Intervals and Prediction Interval 
for a Fictional Meta-Analysis

source: Author’s tabulation.
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effects model tells us that the effects are dispersed over 
this (wider) range. This is incorrect—both diamonds 
speak only to the precision of the estimate for the mean.

The confidence interval labeled FE is based on the 
standard error for the fixed-effect model. If all studies are 
sampled from the same population, and we are generaliz-
ing from these samples to this one population, then this 
confidence interval will usually include the true effect 
size in this population.

The confidence interval labeled RE is based on the 
standard error for the random-effects model. If the  
studies are sampled from different populations, and we 
are generalizing to the universe of similar populations, 
then this confidence interval will usually include the true 
mean effect size in this universe.

Critically, the second diamond is wider than the first 
because it includes an additional source of sampling error. 
Under the fixed-effect model, the error comes from sam-
pling people from a common population. Under the ran-
dom-effects model, the error comes from sampling people 
from each population, and populations from a universe of 
populations. The additional width in the second diamond 
reflects additional error in estimating the summary effect. It 
tells us nothing about how widely the effects are actually 
dispersed, however.

To address the dispersion of effects, we turn to the pre-
diction interval, which is denoted as PI. The prediction 
interval is 49.4 points wide. We expect that in some 95 per-
cent of all relevant populations, the treatment will increase 
scores by at least 25 points to as much as 75 points.

20.5 STATISTICS FOR HETEROGENEITY

The statistics typically reported for heterogeneity are Q, 
df, p, I2, T2, T, and the prediction interval. These are 
related to each other, but each addresses a specific aspect 
of heterogeneity. To explain the meaning of each statistic, 
it is helpful to keep in mind that we are working with two 
distinct distributions—the distribution of observed effects 
and the distribution of true effects. Some statistics quan-
tify variation in observed effects, some quantify variation 
in true effects, and some address the relationship between 
the two.

20.5.1 Observed Effects Versus True Effects

In a primary study with one level of sampling, we typi-
cally treat the observed scores as identical to the true 
scores. By contrast, in a meta-analysis, we need to distin-
guish between an observed effect size and a true effect 
size. The observed effect size is what we see in a study. It 
serves as the estimate of the effect size in the study’s pop-
ulation, but invariably differs from the true effect size in 
that population due to sampling error. By contrast, the 
true effect size is the actual effect size. It is the effect size 
that we would see with an infinitely large sample size, 
and (it follows) no sampling error.

Figure 20.2 displays a fictional meta-analysis in which 
the error variance is the same in all studies. The left-hand 
plot shows the observed effects. This is the plot that is 
typically included with a published meta-analysis. The 
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Figure 20.2 Observed Effects and True Effects for a Fictional Meta-Analysis

source: Author’s tabulation.
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standard deviation of the observed effects is 27.4, and we 
expect that some 95 percent of all observed effects will 
fall within two standard deviations of the mean. This cor-
responds to a range of 110 points (−0.05 to +1.05) as sug-
gested by line [A].

By contrast, the right-hand plot shows the true effects 
for the same analysis. This is the plot that we would see 
if every study had an extremely large sample size, so that 
the sampling error was close to zero. This is the plot that 
we care about because it tells us how much the effect size 
actually varies. The standard deviation of the true effects 
is 13.69, and we expect that some 95 percent of all true 
effects will fall within two standard deviations of the 
mean. This corresponds to a range of 55 points (23 to 77) 
as suggested by line [B]. This is the prediction interval 
discussed earlier.

For the present discussion, the key point is that the vari-
ance of the observed effects tends to be larger than the 
variance of true effects. To understand why that is true, 
consider what would happen if the true effect size were 
identical in all studies. When the variance of true effects is 
zero, the expected variance of observed effects (VOBS) 
would be equal to the typical error variance (VERR). That is,

V V . (20.1)OBS ERR=

In words, the variance of observed effects is equal to 
the variance due to sampling error.

The same paradigm applies when the true effects vary, 
as they do here. If T2 is the variance of true effects, then 
the expected variance of the observed effects is given by

V T V . (20.2)OBS ERR
2= +

In words, the variance of observed effects is equal to 
the variance of true effects plus variance due to sampling 
error.

The two plots are intended to convey the idea that the 
variance of true effects tends to be smaller than the vari-
ance of observed effects. I do not mean to suggest that 
any specific study on the right corresponds to a specific 
study on the left.

20.5.2 Quantifying Variation in Observed Effects

The Q-statistic refers to the left plot in figure 20.2, and is 
defined as the sum of squared deviations (of each observed 
effect from the mean effect) on a standardized scale. If all 

studies share a common true effect size (and all the vari-
ance in observed effects is due to sampling error), Q 
would approximately follow a chi-squared distribution 
with degrees of freedom equal to the number of studies 
minus 1. We can use this to obtain a p-value for a test of 
the null hypothesis that there is no variation in true 
effects. In this example Q is 10.67 with 8 degrees of free-
dom. The p-value for a test of the null (that all studies 
share a common true effect size) is 0.22 (for caveats, see 
Hoaglin 2016).

20.5.3 Quantifying Variation in True Effects

The statistic called T (tau) is the standard deviation of 
true effects. As such, it serves the same role as the stan-
dard deviation in a primary study. We can use the mean 
plus or minus 1.96 standard deviations to compute the 
approximate prediction interval. If the effects are normally 
distributed, then the true effect size in some 95 percent of 
all comparable populations will fall within this interval. In 
this example, T is 13.69. The mean of 50 plus or minus 
1.96 standard deviations yield a prediction interval of 
approximately 23 to 77 (line B in figure 20.2).

This formula assumes that the mean effect size and 
standard deviation are known precisely. In practice, we 
use formula (20.7), which takes account of the fact that 
these statistics are estimated rather than known.

The statistic called T2 is the variance of true effects. 
This is simply the standard deviation squared. As is true 
in a primary study, the variance is not a terribly intuitive 
measure given that it uses squared rather than linear 
units. However, it has statistical properties that make it 
useful in the computations. In particular, the variance is a 
component in the weight assigned to each study for pur-
poses of computing the mean effect size. In this example, 
T2 is 187.50.

20.5.4  Quantifying Relationship Between  
True and Observed Effects

If the right plot shows the variance of true effects and the 
left plot shows the variance of observed effects, it might 
be useful to have a statistic that quantifies the relationship 
between the two. This statistic is called I2, defined as the 
ratio of true to total variance,

I
V

V

V

V V

T

V
100 100 100.

(20.3)

TRUE
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TRUE
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2
2

= × =
+

× = ×
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If I2 is the ratio of true to total variance, then it is also 
the proportion of the observed variance that would 
remain if we could somehow remove the sampling error 
from the plot. Equivalently, it is the ratio of the variance 
in the right plot to the variance in the left plot.

Here, the variance in the right-hand plot is 187.50 and 
the variance in the left plot is 750.0, so we can compute 
I2 as

I
V

V

T

V
100 100

187.50

750.00
100 25%.

(20.4)

TRUE

Obs Obs

2
2

= × = × = × =

We work with I2 (the ratio of variances) rather than I 
(the ratio of standard deviations) because variances are 
additive while standard deviations are not. However, I2 is 
not a terribly intuitive index. Consider figure 20.2. Sup-
pose we are presented with the forest plot of observed 
scores (at left), and told that I2 is 25 percent. Then we are 
asked to imagine what the dispersion of true score might 
look like. This is a difficult task, at best.

By contrast, if we take the square root of I2 to get I, we 
have the ratio of standard deviations. This is in linear 
units, and as such is more intuitive. In this case

I
S

S

T

S
100 100

13.69

27.49
100 50%.

(20.5)

True
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= × = × = × =

This corresponds to the ratio of the lines under the two 
plots in figure 20.2. The observed effects are dispersed over 
a range of 110 points [A]. If we multiply that by 50 percent, 
we know that the true effects will be dispersed over a range 
of 55 points [B].

20.5.5 Statistics Are Not Interchangeable

To this point, I have introduced a series of statistics for 
heterogeneity. These are all mathematically related to 
each other, but they are not interchangeable—each quan-
tifies a specific aspect of heterogeneity. Thus, if we want 
to report on some aspect of heterogeneity, we need to 
choose the statistic that addresses that aspect. This should 
be an obvious point, but in practice is often overlooked.

Some papers treat Q and its degrees of freedom as a 
surrogate for the amount of variation. In fact, these are 
simply an interim step in computing the standard devia-
tion of true effects, and can tell us only that the estimated 

variance is (or is not) zero. Others focus on the variance, 
T2. The variance is a key component in the process of 
assigning a weight to each study, but does not directly tell 
us how much the effects vary. Often, papers present I2 as 
a surrogate for the amount of dispersion. This approach is 
so widespread that we discuss it in the common mistakes 
section of this chapter. As explained there, I2 does not tell 
us how much the effects vary.

Rather, if we want to know how much the effect size 
varies, the only relevant statistic is the standard deviation 
of true effects, T, and the prediction interval.

20.6  STANDARD DEVIATION  
AND PREDICTION INTERVAL

In a primary study, if we want to report how much the 
scores vary, we invariably use the standard deviation. The 
standard deviation is a useful index because we intui-
tively understand what it says about the distribution of 
scores. If we are told that the mean score is 50 with a 
standard deviation of 10, we immediately understand that 
most scores fall in the range of 30 to 70. This process is 
so automatic that we do not think about it. But I want to 
be explicit about it here, and make the point that the stan-
dard deviation is not intrinsically useful—rather, it is use-
ful because it yields a direct link to the prediction interval. 
The relevance of this point will become obvious shortly.

Researchers invariably report the standard deviation 
(S) in a primary study but rarely report the standard devi-
ation (T) in a meta-analysis. Today, the reason for this 
practice is simply that researchers follow the common 
template. Originally, the reason was that although the 
standard deviation is an intuitive statistic for some effect-
size indices, it is not for others.

Specifically, when we are working with a mean, mean 
difference, standardized mean difference, or a risk differ-
ence, the standard deviation is in the same metric as the 
effect size itself. In these cases, the standard deviation 
could serve the same function that it does in a primary 
study. If we are told that the mean effect size is a stan-
dardized mean difference of 0.50 and that the standard 
deviation is 0.10, we know that most effects will fall in 
the range of 0.30 to 0.70.

By contrast, when we work with a risk ratio or an odds 
ratio, the standard deviation is reported in log units, and 
few of us know what a standard deviation of (for example) 
0.10 log units means. Additionally, we cannot use the 
mean risk ratio plus or minus 2 standard deviations to 
compute a prediction interval. Because the risk ratio is 
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reported in ratio units and the standard deviation in log 
units, the results of this computation would be meaning-
less. We face a similar problem with correlations (where 
the standard deviation may be reported in Fisher’s Z 
units), prevalence (where it may be reported in logit 
units) and other indices.

This is why the standard deviation is not widely used 
as an index of heterogeneity in meta-analyses, but there is 
a simple way to bypass the problem. The key is that the 
standard deviation is not intrinsically important—instead, 
it is important because it allows us to intuit the prediction 
interval. If we can report the prediction interval in an 
intuitive metric, then the fact that the standard deviation 
may be in another metric becomes irrelevant (Borenstein 
et al. 2009, 2017; Higgins, Thompson, and Spiegelhalter 
2009; Riley, Higgins, and Deeks 2011; Roth 2009).

In fact, it is possible to compute the 95 percent predic-
tion interval in an intuitive metric for all effect sizes using

Interval M T1.96 , (20.6)= ±

if we simply convert M and T to the same units. For 
example, if T is in log units and M is in ratio units, we 
convert M to log units, compute the interval in log units, 
and then convert the limits back to ratio units. The same 
idea applies if we are working with correlations (where 
we might convert M to Fisher’s Z units), prevalence 
(where we might convert M to logit units), or other indi-
ces where we employ a transformation.

This simple solution entirely solves the problem out-
lined. However, we still need to address an entirely sepa-
rate problem, which is that formula (20.6) works well 
only if M and T are known precisely. To address the fact 
that they are estimated with error, we can use

Interval M t V T . (20.7)df m
2= ± +( )

As before, we would convert all values to the same 
metric before applying the formula. This formula includes 
three adjustments to (20.6), as follows:

First, we have replaced T with the square root of T2. 
This is the identical value, but this format allows us 
to combine two variance components in the next 
step.

Second, we have added the variance of the mean (VM) 
to account for the fact that the true mean may be 
lower or higher than M.

Third, we have replaced the factor of 1.96 (which is the 
critical z-value for a 95 percent interval) with the 
critical t-value for df, to account for the fact that  
the standard deviation of effects is estimated, rather 
than known.

An Excel spreadsheet to perform these computations is 
available at www.Meta-Analysis/Prediction. To use it, we 
need only four values—the mean effect size (M), the 
upper limit of the confidence interval, the between-study 
variance (T2), and the number of studies (k). Virtually all 
computer programs report these values, and so the spread-
sheet can be used regardless of what program is used for 
the basic analysis.

Here, I present four examples that show how we would 
report and interpret the prediction interval for four effect-
size indices. The computations for these examples are 
provided in (Borenstein et al. 2017).

20.6.1 Standardized Mean Difference

Xavier Castells and his colleagues performed a meta- 
analysis of seventeen studies that assessed the impact of 
methylphenidate on cognitive function in adults with 
ADHD (2011). The effect size is the standardized mean 
difference (d) between the treated and control groups on 
a cognitive task. The mean effect size is 0.51. We expect 
that in some 95 percent of all populations, the true effect 
size will fall in the approximate range of 0.06 to 0.95. 
The take-home message here might be that the treatment 
has a trivial effect in some cases, a moderate effect in 
others, and a substantial effect in others. Because the 
impact is always positive (not harmful) we might recom-
mend that this treatment be employed immediately.

20.6.2 Risk Ratio

Alexander Tsertsvadze and his colleagues performed a 
meta-analysis of nineteen studies that evaluated the 
impact of Viagra on sexual function (2009). The outcome 
was the patient’s report that he was (or was not) satisfied, 
and the effect-size index was the risk ratio. The mean 
effect size is 2.5, and we expect that in some 95 percent 
of all populations, the true effect size will fall in the 
approximate range of 1.8 to 3.5. The take-home message 
here might be that this treatment works well, and consis-
tently. From a substantive perspective, if the drug 
increases the likelihood of success by 180 percent in 
some populations, and by 350 percent in other popula-
tions, it would probably be worth trying for everyone.
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20.6.3 Prevalence

Mariana Cabizuca and her colleagues performed a meta- 
analysis to synthesize data from eleven studies that reported 
prevalence of post-traumatic stress disorder (PTSD) in 
mothers of children with chronic illness or undergoing 
invasive procedures (2009). The mean prevalence is  
18 percent, and we expect that in some 95 percent of all 
populations, the true prevalence will fall in the approxi-
mate range of 5 percent to 47 percent. The take-home 
message here might be that the prevalence of PTSD varies 
so widely, that the mean prevalence is of little relevance. 
We need to understand where the risk of PTSD is rela-
tively low, and where it is relatively high, which will 
allow us to target the populations with the higher risk.

20.6.4 Correlation

Thomas Wright and Douglas Bonett performed a meta- 
analysis to synthesize data from twenty-seven studies 
that reported the correlation between attitudinal commit-
ment and job performance (2002). The mean effect size is 
0.17. We expect that in some 95 percent of all popula-
tions, the true correlation will fall in the approximate 
range of –0.08 to 0.41. The take-home message here 
might be that the correlation varies so widely, that the 
mean correlation is of little relevance. We need to under-

stand where the correlation is trivial (or negative), and 
where it is modest.

20.6.5 In Sum

My goal here is to provide examples of how the predic-
tion interval provides context for understanding the 
results of the analysis. My evaluation that the effect size 
ranges from trivial to substantial (for the treatment of 
ADHD) is clearly subjective. Others will have a different 
opinion. My point is that the prediction interval is what 
we have in mind when we ask how much the effect size 
varies across studies, and the evaluation should be based 
on this rather than some other statistic.

20.7  HOW HETEROGENEITY AFFECTS MEAN  
AND STANDARD ERROR

To this point, I have focused primarily on the issue of 
heterogeneity itself. A separate issue is that heterogeneity 
will have an impact on our estimate of the mean effect, 
and also the precision with which we can estimate the 
mean. These issues are addressed here.

Figure 20.3 shows a fictional meta-analysis of six stud-
ies as displayed by the computer program Comprehen-
sive Meta-Analysis Version 3 (Borenstein et al. 2014). 
The individual studies are displayed at the top, followed 
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Figure 20.3 Meta-Analysis Showing Relative Weights for Fixed-Effect and Random-Effects Models

source: Author’s tabulation.



HETEROGENEITY IN META-ANALYSIS   461

by two rows that display the summary effect. The first 
[A] shows the summary effect for the fixed-effect model; 
the second [B] shows the summary effect using the random- 
effects model.

Under the fixed-effect model, T2 is 0.000, and under 
the random-effects model, T2 is estimated as 0.037. 
Therefore, by comparing the two rows, we can see what 
happens as the heterogeneity increases. First, the mean 
effect size shifts. Second, the confidence interval becomes 
wider, indicating that our estimate of the mean is less pre-
cise. I address each of these in turn.

20.7.1  How the Statistical Model Affects 
Estimates of the Mean

The mean effect size in a meta-analysis is computed as 
the weighted mean of the effect size in all studies. Larger 
studies (more accurately, studies with less error variance) 
always get more weight than smaller studies, but the 
extent of the difference depends on the statistical model. 
Under the fixed-effect model, the difference between 
large and small studies can be relatively extreme, whereas 
under the random-effects model the differences are more 
moderate. Therefore, as we move from a fixed-effect 
model to a random-effects model (that is, when we take 
account of between-study variance), large studies lose 
influence and small studies gain influence. This follows 
the logic of the two statistical models, as follows.

Consider a meta-analysis where our goal is to estimate 
the mean score for all students in a school. We draw ten 
random samples of various sizes, compute the mean 
score in each sample, and then synthesize the results. The 
fixed-effect model applies here because all studies are 
estimating the same parameter (the school mean). 
Because all studies are estimating the same value, if one 
sample has one hundred students and another has one 
thousand students we would assign ten times as much 
weight to the second sample.

By contrast, consider a meta-analysis for which our 
goal is to estimate the mean score for all schools in a 
district. We randomly sample ten schools, with the sample 
size in each school ranging from one hundred to one 
thousand students. In this case, the random-effects model 
applies. Here, we do not want to assign too much weight 
to the sample of one thousand. Although we know the 
mean in that school precisely, there is no reason to think 
that the mean in this particular school falls any closer to 
the district mean than the mean in any other school. Con-
versely, we also do not want to assign too little weight to 

a sample of one hundred. Although we do not know the 
mean in that school precisely, that sample provides the 
only estimate we have of that particular school’s mean. 
So, we might assign (for example) twice as much weight 
(rather than ten times as much weight) to the larger sam-
ple as compared to the smaller one.

This logic finds expression in the weight assigned to 
each study, which is

W
V T

1
, (20.8)i

i
2=

+

where Vi is the error variance for the ith study, and T2 is 
the between-study variance. Critically, Vi is unique for 
each study but T2 is the same for all studies. When T2 is 
small relative to the typical V, the weights will be driven 
primarily by V. At the extreme, when T2 is 0.00, a study 
with V of 10 will get ten times the weight of a study with 
V of 100. Conversely, when T2 is large relative to the typ-
ical V, the weights will be driven primarily by T2. At the 
extreme, if T2 approached infinity, all studies would get 
essentially the same weight.

In figure 20.3, we can see why the summary effect 
shifted to the left when we moved to the random-effects 
model. In this example, the largest study (Donat) happens 
to have a high effect size, which would tend to pull the 
mean to the right. Under the fixed-effect model, this 
study was given 39 percent of the weight in the analysis, 
and so pulled the mean all the way to 0.414. Under the 
random-effects model, this study was given only 23 per-
cent of the weight, and so pulled the mean only to 0.358. 
Also, as we moved from the fixed-effect to the ran-
dom-effects model, the smaller studies, which tended to 
have smaller effects, gained influence, and were able to 
pull the mean further to the left. That is why the effect 
size shifted to the left in this example when the heteroge-
neity increased, but the shift can be either in direction. If 
Donat happened to have a small effect size, the mean 
would have shifted to the right as heterogeneity increased.

20.7.2  How the Statistical Model Affects 
Confidence Interval Width

The second difference was that as we moved from the 
fixed-effect model to the random-effects model, the con-
fidence interval expanded. This will always be true (pro-
vided that T2 is estimated as greater than zero), and the 
logic is reasonably straightforward.
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Under the fixed-effect model, the true effect size is the 
same in all studies, so the only source of error is the fact 
that the observed effect size in each study differs from the 
true effect size in that study. The standard error of the 
common effect size is given by

SE
S

N
, (20.9)M

2

=

where S2 is the common within-study error variance, and 
N is the total number of subjects, accumulated across 
studies.

By contrast, under the random-effects model there are 
two sources of error. One is that the observed effect size in 
each study differs from the true effect size in that study. The 
second is that the true mean in each study differs from  
the mean of all studies in the relevant universe of studies. 
The standard error of the mean effect size is given by
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As before, S2 is the typical within-study error variance, 
and N is the total number of subjects, accumulated across 
studies. But we have added a new term to account for the 
second source of sampling error. In this term, T2 is the 
between-study variance, k is the number of studies. It is 
what allows us to generalize from the studies in the analysis 
to the universe from which the studies were sampled.

As we move from formula (20.9) to (20.10), the first 
component of the error variance remains the same but the 
second component is additional. Therefore, unless T2 is 
estimated as zero, the standard error will always be higher 
using (20.10) than using (20.9). The extent of the increase 
depends on the amount of heterogeneity and the number 
of studies in the analysis.

Researchers sometimes assume that a meta-analysis 
with a large number of subjects will yield a precise esti-
mate of the mean effect size, but this is not necessarily true. 
There are two components to the error term—within-study 
error and between-study error. Whereas S2 is divided by 
the total number of subjects, T2 is divided by the number of 
studies. Therefore, if the between-study variance is sub-
stantial, the only way to obtain a precise estimate of  
the mean effect size is to include a substantial number of 
studies in the analysis. Increasing the number of subjects 
within these studies will reduce the within-study error but 
have no impact whatsoever on the between-study error.

Formulas (20.9) and (20.10) are useful for didactic 
purposes, but not in practice because they require that the 
within-study variance (S2) be the same for all studies. In 
practice, we use a formula that allows S2 to vary from 
study to study. Here, I used S2 to denote within-study 
variance, to highlight the parallel to T2, which denotes 
between-study variance. Normally, we use V rather than 
S2 for thus purpose, and I return to that designation later.

In this example, I compared the mean effect for the fixed- 
effect model versus the random-effects model. Although our 
interest in this chapter is limited to the random-effects 
model, the example is nevertheless instructive because the 
fixed-effect model is computationally identical to a random- 
effects model when T2 is zero. Therefore, in comparing the 
two models we can see what happens as T2 increases. In this 
example, T2 increases from zero to 0.037, but the same idea 
applies more generally. As was true in this example, as T2 
increases,

• the impact of small studies on the mean will increase, 
while the impact of larger studies will decrease; and

• the standard error of the mean will increase.

20.8 MISTAKES

In published meta-analyses, it is not unusual to see reports 
that interpret heterogeneity statistics incorrectly. These 
issues are explored elsewhere and summarized here (for 
more, see Borenstein 2019).

20.8.1  Using a Test for Heterogeneity  
to Choose a Statistical Model

As discussed earlier, most meta-analyses are based on 
either of two statistical models. The fixed-effect model is 
appropriate when all studies in the analysis are essen-
tially replicates of each other. The random-effect model 
is appropriate in all other cases. By this criterion, when 
studies for the meta-analysis are culled from the pub-
lished literature, the random-effects model will almost 
always apply. Some researchers have adopted the prac-
tice of starting the analysis with the fixed-effect model 
and then switching to the random-effects model if the test 
for heterogeneity meets the criterion for statistical signifi-
cance. This practice is strongly discouraged (for a  
more extensive discussion and differing approaches, see 
Borenstein et al. 2010; Cooper and Hedges 2009; Cooper, 
Hedges, and Valentine 2009; Higgins, Thompson, and 
Spiegelhalter 2009; Viechtbauer 2007).
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20.8.2  Assuming That I2 Tells Us How Much 
Effects Vary

In some fields of research, I2 has become the statistic most 
frequently cited as an index of heterogeneity in meta-anal-
ysis. A low value of I2 is taken to mean that the effect size 
varies little across populations, and a high value that the 
effect size varies substantially. The use of I2 as an index of 
absolute dispersion may be ubiquitous, but is nevertheless a 
fundamental mistake. I2 is a proportion, not an absolute 
value. It tells us what proportion of the observed variance 
reflects variation in true effects, it does not tell us how much 
variation there is. Because I2 is a proportion, by definition, 
it can never tell us how much the effects actually vary.

Consider the ADHD analysis introduced earlier. The 
researchers performed a meta-analysis of seventeen stud-
ies that assessed the impact of methylphenidate on cogni-
tive function in adults with ADHD. The mean effect size 
is a standardized mean difference (d) of 0.50 and I2 is  
47 percent. If we are asked how widely the effects vary, 
we cannot answer based on this information. Before pro-

ceeding, take a moment and ask yourself how you would 
get from an I2 of 47 percent to an estimate of the actual 
dispersion. It cannot be done.

Not only does I2 not tell us the absolute amount of dis-
persion, it also does not reliably tell us the relative amount. 
If we know that I2 in one meta-analysis is 25 percent and 
in a second is 75 percent, we might assume that there is 
more variation in the second analysis than the first. How-
ever, that is true only if the observed variance was com-
parable in the two analyses. Consider the two fictional 
analyses shown in figure 20.4. The first row shows the 
dispersion of observed effects (left) and true effects (right) 
for one intervention. The second row shows the dispersion 
of observed effects (left) and true effects (right) for a dif-
ferent intervention.

In the top row, the variance of observed effects is 750, 
I2 is 25 percent and the prediction interval is 55 points 
wide. In the bottom row, the variance of observed effects 
is 187.5, I2 is 50 percent and the prediction interval is  
39 points wide. Thus, the larger value of I2 corresponds to 
the smaller range of effects.
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Observed Effects True Effects

I 2 = 25%

I = 50%

I 2 = 50%
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Figure 20.4 Observed Effects and True Effects for Two Fictional Meta-Analyses

source: Borenstein 2019.
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The problem of using I2 as a surrogate for the amount 
of dispersion is analogous to the well-known problem 
that researchers tend to use the p-value as a surrogate for 
the effect size. A significant p-value is assumed to reflect 
a large effect, and a nonsignificant p-value is assumed to 
reflect a smaller (or null) effect. It is true that significant 
p-values do tend to be associated with larger effects, but 
for any single study this fact is not terribly useful. 
Because the p-value is a function of the effect size and 
the sample size, a significant p-value may reflect a large 
effect but could also reflect a trivial effect size in a large 
study. Conversely, although a nonsignificant p-value can 
reflect a small effect size, it can also reflect a large effect 
size in a small study. Perhaps more to the point, even if a 
significant p-value does reflect a large effect size in a 
given case, if we are told the p-value, we do not know 
how large the effect size is. By contrast, if we are simply 
told the effect size, then we know the effect size, and no 
speculation is needed.

By analogy, in meta-analyses, the I2 statistic is being 
pushed into service as a surrogate for the amount of dis-
persion. A high value of I2 is assumed to mean that the 
effects vary widely, while a small value of I2 is assumed 
to mean that the effects are consistent. Although it is true 
that high values of I2 to tend to be associated with more 
dispersion, for any single meta-analysis this fact is not 
terribly useful, as is evident in figure 20.4. We need to 
multiply I2 by the variance of observed effects to get the 
variance of true effects. Therefore, if I2 is high the true 
effects could vary substantially but could also fall within 
a narrow range. Conversely, if I2 is low the true effects 
could fall within a narrow range but could also vary 
widely. Perhaps more to the point, even if a high value of 
I2 does reflect substantial dispersion in a given case, it we 
are told the value of I2, we still don’t know how much the 
effects vary. By contrast, if we are simply told the predic-
tion interval, then we know the extent of dispersion, and 
no speculation is needed.

The correct way to use I2 is to provide context for the 
forest plot. If I2 is high, then the plot of true effects 
would look very similar to the plot of observed effects. If 
I2 is low, then much of the dispersion would disappear, 
and the points would all move substantially toward the 
mean. At the extreme, if I2 is 0 percent, then all of the 
dispersion would disappear, and all true effects would 
fall precisely at the mean. So, if we are reading a 
meta-analysis and the only information we have is the 
forest plot and I2, then we could use I2 to get a general 
sense of the dispersion. On the other hand, if we are 

reporting a meta-analysis, we should report the predic-
tion interval.

The original papers on I2 are by Julian Higgins and his 
colleagues (Higgins and Thompson 2002; Higgins et al. 
2003; for more detailed discussion of the issues raised  
in this section, see Borenstein et al. 2017; see also  
Borenstein 2019; Coory 2010; Higgins 2008; Huedo- 
Medina et al. 2006; Ioannidis 2008; Patsopoulos,  
Evangelou, and Ioannidis 2008; Rücker et al. 2008).

20.8.3 Classifying Heterogeneity

Researchers sometimes classify heterogeneity as being 
small, moderate, or large based on the value of I2. This is 
wrong for two reasons. First, it is based on a statistic (I2) 
that does not reflect the amount of variance. Second, it is 
not useful without additional context to describe variance 
as being small, moderate, or large. Dispersion that might 
be trivial in some contexts will be large in others. The idea 
of using these classifications was proposed for a specific 
context (to compare the amount of dispersion among stud-
ies within the Cochrane Database of Systematic Reviews) 
and the authors never intended for these designations to be 
extended beyond that context (Higgins et al. 2003).

20.8.4  Conflating Confidence  
and Prediction Intervals

A key theme in this chapter is that the prediction inter-
val is the preferred way to report the dispersion in 
effect sizes. Researchers sometimes confuse the predic-
tion interval with the confidence interval (Higgins, 
Thompson, and Spiegelhalter 2009). These are two 
entirely separate indices, and it is important not to con-
fuse one with the other (Borenstein et al. 2009; Guddat 
et al. 2012; Higgins, Thompson, and Spiegelhalter 2009; 
Roth 2009).

20.8.5 Failure to Report the Prediction Interval

When someone asks whether the effect size varies, they 
usually intend to ask how much it varies. The prediction 
interval is what captures this information and yet the pre-
diction interval is rarely reported. The most common rea-
son is probably that researchers are simply not familiar 
with this interval, but some who are familiar with it have 
raised concerns.

Some suggest that the prediction interval sometimes 
covers a wide swath of effects and may include the null. 
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That is true, but is also precisely why it is important to 
report this information. If the mean effect is positive but 
in some populations the effect will be nil (or even harm-
ful), the details speak to the utility of the intervention and 
are critical information. An old joke tells of a statistician 
who drowned in a creek with a mean depth of three feet. If 
the creek is six feet deep in places, we need to know that.

20.8.6 When T 2 Is Estimated as Zero

As explained earlier, the fixed-effect model assumes that 
the true effect size is the same in all studies, whereas the 
random-effects model allows that the true effect size may 
vary from study to study. Under the fixed-effect model, we 
are estimating a common effect size, whereas under the  
random-effects model we are estimating a mean effect size.

If we are using the random-effects model, T2 will some-
times be estimated as zero. Because the weight assigned to 
each study under the random-effects model is

W
V T

1
, (20.11)i

i
2=

+

and the weight assigned to each study under the fixed- 
effect model is

W
V

1
, (20.12)i

i
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when T2 in (20.11) is estimated as zero, this equation 
becomes functionally identical to (20.12) and the two  
models yield identical estimates for all statistics. In cases 
where someone has elected to use the random-effects 
model and it turns out that T2 is estimated as zero, it is 
common for the researcher to report that the analysis is 
based on the fixed-effect model. That, however, is not cor-
rect. The analysis is based on a random-effects model, 
which in this case happens to yield the same values as a 
fixed-effect model.

This is an academic point, but an important one. The 
selection of a statistical model must conform to our 
understanding of the inference population. If the fixed- 
effect model applies, then our results can be generalized 
only to the one population studied. If the random-effects 
model applies, then our results can be generalized to the 
universe of populations sampled. In this case, if T2 is 
indeed near zero, we would report that the effect size is 
consistent across the populations in this universe.

Parenthetically, if the studies are based on multiple 
populations and t 2 is estimated as zero, we can assume 
that we have underestimated the true value, since the 
actual variance is almost certain to be positive. Indeed, 
we will underestimate t 2 in about half of all cases, and if 
the correct value is small we can easily end up with a 
negative value (which is then set to zero).

20.9 WHEN WE HAVE ONLY A FEW STUDIES

When a meta-analysis includes only a few studies, our 
estimate of the variance, standard deviation, prediction 
interval, and I2, will be unreliable. The extent of the prob-
lem is not generally recognized because researchers tend 
to look at the number of subjects and assume that if we 
have hundreds of subjects in the analysis, our estimate of 
these statistics must be reasonably precise. Again, that is 
simply not true. Our ability to estimate the amount of dis-
persion is driven primarily by the number of studies, not 
the number of subjects. Our ability to estimate the vari-
ance of effects based on five studies is no better (and is 
indeed worse) than our ability to estimate the variance of 
scores in a primary study based on five subjects.

The importance of this problem will vary by field of 
study. If we are working with studies that draw on similar 
populations, employ similar methods, and assess the 
impact of an intervention that tends to have a consistent 
effect, the concern may be mitigated. Conversely, if we 
are working with studies that draw from a universe where 
the populations and methods vary, and assess the impact 
of an intervention whose effect varies, the concern may 
be potentiated.

A related problem is the fact that we want to generalize 
from the studies in our analysis to a wider universe. We 
need to think carefully about how we define that universe, 
and the extent to which the studies in our sample are rep-
resentative of that universe. When the analysis includes 
only a few studies, it might not be plausible to assume that 
these studies are representative of the larger universe.

As noted, this problem affects all heterogeneity sta-
tistics. If T2 is unreliable then I2, T, and the prediction 
interval will all be unreliable. Ironically, the practical 
impact of the problem is more pronounced for the pre-
diction interval. An incorrect estimate of I2 or T2 will 
have little practical impact because researchers do not 
actually use those values (except to report them). By 
contrast, the prediction interval does address important 
information, and an incorrect estimate will have practi-
cal import.
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20.10 CONCLUSION

In the second edition of this book, Harris Cooper and Larry 
Hedges wrote,

for yesterday’s synthesist, the variation among studies was 
a nuisance. It clouded interpretation. The old methods of 
synthesis were handicapped severely when it came to 
judgments of whether a set of studies revealed consistent 
results and, if not, what might account for the inconsis-
tency. . . . For today’s synthesist, variety is the spice of life. 
The methods described in this handbook make such analyses 
routine. When the outcomes of studies prove too discrepant 
to support a claim that one estimate of a relationship under-
lies them all, current techniques provide the synthesist with 
a way of systematically searching for moderating influ-
ences, using consistent and explicit rules of evidence. 
(Cooper and Hedges 2009, 563)

In the relatively brief span since that edition was pub-
lished, the field has continued to evolve. Researchers are 
more likely to take account of heterogeneity when com-
puting the mean effect and its confidence interval. Most 
meta-analyses report indices of heterogeneity, and many 
attempt to explain some of that heterogeneity using such 
tools as subgroups analysis or meta-regression as dis-
cussed elsewhere in this volume (see also Borenstein  
et al. 2019; Borenstein and Higgins 2013).

However, although the goal posts have shifted some-
what, the way the goals are being addressed is seriously 
problematic.

One issue is that researchers often report the wrong 
statistics for heterogeneity and then interpret them incor-
rectly. Researchers might report a p-value for heteroge-
neity or the value of I2. Then they discuss the implications 
of the heterogeneity when in fact these statistics tell us 
nothing about how much heterogeneity there actually is. 
When this is done in a single meta-analysis, we lose a lot 
of potentially useful information. When this is done con-
sistently, the entire field suffers.

When we speak about heterogeneity in a meta-analysis, 
what we usually have in mind is how widely the effect 
size varies. The way to address this question is to report 
the prediction interval and then discuss the substantive 
implications of this interval. For example, the prediction 
interval will allow us to report that

• The effect size is essentially the same in all studies, or

• The effect size varies somewhat, but the impact is 
non-trivial in all cases, or

• The effect size varies from trivial to exceptional, but 
is never harmful, or

• The intervention is harmful in some cases, and help-
ful in others.

One can argue about whether a given effect size is trivial or 
substantive, but it should be clear that the discussion should 
focus on the information captured by this interval, rather 
than statistics that quantify other aspects of heterogeneity.

20.11 Excel Spreadsheet

An Excel spreadsheet to perform all the computations is 
available at www.Meta-Analysis.com/Prediction or from 
the author at Biostat100@GMail.com.
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21.1 INTRODUCTION

Complete and transparent reports of research syntheses 
are necessary both to understand their results and for other 
investigators to reproduce their methods and (using the 
same data) obtain the same results (Goodman, Fanelli, 
and Ioannidis 2016). Unfortunately, many studies are 
wasted because they are not described accurately, com-
prehensively, and transparently in publicly accessible 
reports (Glasziou, Altman, et al. 2014; Lund, Juhl, and 
Christensen 2016). Reviews of research syntheses demon-
strate that they may use many methods to answer similar 
questions (Valentine et al. 2010), and many research syn-
theses do not describe the information that would be 
required to reproduce their findings (Page, Shamseer,  
et al. 2016). Reports of research syntheses are more likely 
to be usable by fellow scientists and decision makers 
(Moher et al. 2016) by following standards for transpar-
ency that apply to all areas of science (Nosek et al. 2015).

Whereas other chapters describe how to conduct 
research, this chapter focuses specifically on reporting 
research. Because systematic reviews with meta-analyses 
that summarize the evidence about predefined research 
questions are the most common research synthesis method, 
this chapter provides practical instructions for reporting 
the design, conduct, analysis, and findings of these studies. 
It includes three major sections corresponding to important 
steps in the research synthesis process: registering the 
study, writing a protocol, and producing a final report.

In the past, it might have been difficult for a single man-
uscript to include all information described in this chapter. 
Today, journals will publish both protocols and final 
reports of research syntheses, and page limits are not bar-
riers to transparency because most journals allow authors 
to include online materials (for example, describing their 
methods or results completely), and authors can use free 
online resources to share materials, code, and data.

21.2  REGISTRATION: BEGINNING  
A RESEARCH SYNTHESIS

Registration is the first step toward promoting the trans-
parency and reproducibility of research syntheses (Booth 
et al. 2011b; Straus and Moher 2010). Many journals 
endorse reporting guidelines that emphasize the impor-

tance of registration (Liberati et al. 2009; Manchikanti  
et al. 2009; Whiting et al. 2011); thus, the prospective reg-
istration (that is, before beginning study screening and 
data collection) of research syntheses is increasingly 
expected in reports submitted for publication. A research 
synthesis can be registered several ways. Most notably, 
PROSPERO is an international prospective register of 
systematic reviews with health-related outcomes. The 
database is open to the public; users can create accounts 
and register reviews quickly and at no cost (Booth et al. 
2013). PROSPERO prompts researchers to provide a min-
imum dataset by answering a series of questions about 
their research questions and methods (Booth et al. 2012, 
2011a). Staff review new entries and, once approved, 
assign a unique identification number to each review. 
Because peer reviewers and editors increasingly ask for 
information about study registration, researchers who reg-
ister on PROSPERO may find their registration numbers 
useful when they publish detailed protocols (for example, 
online or in a journal article) and when they publish their 
final reports. For those conducting reviews that do not 
have health-related outcomes, the Open Science Frame-
work (OSF) allows prospective registration of any type of 
study; users can create transparent and complete registra-
tion records for projects by taking “snapshots” (with the 
completed protocols and data extraction forms) prior to 
data collection. Authors using the OSF should include all 
relevant fields of information requested by PROSPERO.

Two major producers of systematic reviews also ask 
researchers to register their reviews before writing proto-
cols. First, the Cochrane Collaboration publishes system-
atic reviews and meta-analyses about a range of topics 
related to biomedicine, behavioral health, and public 
health. Second, the Campbell Collaboration publishes 
systematic reviews about social interventions within the 
policy areas of crime and justice, education, social wel-
fare, and international development. Both also publish 
reviews about research methods, such as the impact of 
reporting guidelines to improve research transparency 
(Turner et al. 2012). Researchers who register a title with 
either organization commit to publishing a detailed pro-
tocol and final report with the organization. Cochrane 
reviews are registered automatically in PROSPERO, and 
they are published in the Cochrane Database of System-
atic Reviews, which is indexed in Medline and other data-
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bases. Whatever method one uses to register a research 
synthesis, the registration should be as complete as possi-
ble to demonstrate to future readers whether the ques-
tions and methods used were decided a priori.

By registering research syntheses and searching for 
related registrations, scientists can increase confidence in 
their findings, prevent duplication of effort, and identify 
research collaborators. Registration also can have unex-
pected benefits. For example, researchers in the United 
Kingdom and Pakistan met when they tried to register a 
Cochrane review about the same question (Imdad et al. 
2010); rather than conduct two separate reviews, the 
teams worked together to complete the project faster than 
either could have done alone. More broadly, prospective 
registration of the hundreds of systematic reviews pub-
lished each year would make research syntheses more 
credible and informative for practice (Ioannidis 2016; 
Page, Shamseer, et al. 2016).

21.3  THE PROTOCOL: DESCRIBING PLANS  
FOR RESEARCH SYNTHESES

Writing detailed protocols demonstrates researchers’ com-
mitment to transparency and reproducibility, and there are 
several direct benefits to publishing protocols. Because sys-
tematic reviews may be biased if they fail to follow speci-
fied methods (Kirkham, Altman, and Williamson 2010; 
Silagy, Middleton, and Hopewell 2002), tools used to 
assess the quality of research syntheses emphasize the 
importance of protocols (Shea et al. 2007; Whiting et al. 
2016). Moreover, both the Cochrane and Campbell Collab-
orations require that researchers publish their protocols 
before collecting and analyzing data. Writing a protocol 
and tracking amendments can help guide the conduct of a 
research synthesis and maintain consistency across mem-
bers of the team for the duration of the study. Moreover, 
information in a protocol may be used to write the introduc-
tion and methods for the final report, leading to faster pub-
lication. Finally, referencing a published protocol can 
reduce the need to include detailed methods in the report, 
freeing space to report results and discuss conclusions.

Protocols are usually more detailed than registrations. 
Protocols should typically include a title, introduction 
(background) and objectives, and methods. Of these, the 
methods section is likely to be the longest and most detailed, 
including descriptions of the planned research questions, 
search strategy, eligibility criteria, data extraction, quality 
assessment, and analysis. Reporting guidelines—most nota-
bly the PRISMA extension for protocols—have been devel-
oped by leaders in research synthesis methods to improve 
the transparency and completeness of systematic review and 

meta-analysis protocols (Moher et al. 2015; Shamseer et al. 
2015). The Cochrane Collaboration has also published two 
handbooks that describe what to include in review protocols 
for diagnostic tests (Deeks, Bossuyt, and Gatsonis 2010) 
and review protocols for intervention reviews (Higgins and 
Green 2011), and both are available online at no cost.

Several journals publish protocols of research syntheses. 
Most prominently, Systematic Reviews publishes protocols 
for several types of research syntheses, such as intervention 
effectiveness reviews with meta-analysis, systematic 
reviews on research methods and reporting, qualitative evi-
dence syntheses, and realist reviews, amongst others. Addi-
tionally, some journals such as Psychological Science have 
begun awarding “badges” for registering study design and 
analysis plans; some will review reports based on the proto-
col and agree to publish the results without regard to their 
direction or statistical significance. Badges were introduced 
to foster open science, and they may help reduce reporting 
biases (Kidwell et al. 2016).

Although publication in an open-access journal may be 
the best way to maximize visibility and access, authors 
who want to share their protocols without publishing in 
journals can use institutional or public repositories (for 
example, figshare, https://figshare.com/) to post dated 
documents with permanent IP addresses. In addition to 
registering studies, the OSF provides a comprehensive 
solution to project management, which also allows 
researchers to share materials and data.

21.3.1 Title

A clear title improves the likelihood that an interested 
reader will find, read, and use a research synthesis. Because 
many journals and reports are published every year, most 
readers use electronic searches and automated alerts to 
identify research that is relevant to their needs. To help 
readers find a research synthesis, the title should state the 
research question and method, as well as identify the report 
as a protocol (for example, “a protocol for a systematic 
review”). Although some journals allow creative titles 
(such as those using wordplay or allusions), these should 
be avoided because they reduce the chance that a review 
would be identified through an electronic search or by 
scanning titles for relevance.

21.3.2 Introduction 

The introduction should explain the rationale and motiva-
tion for the research synthesis. For example, common 
scientific reasons to conduct a systematic review and 
meta-analysis are (1) to resolve differences in results 
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across studies of the same question and (2) to estimate an 
effect or association more precisely by combining the 
results of individual studies. Research syntheses are used 
to inform policy decisions and to design new primary 
studies; if relevant, the introduction might explain that a 
research synthesis was conducted to develop clinical 
guidelines or to identify priorities for future research (Li 
et al. 2012).

Most guidance has been developed specifically for sys-
tematic reviews of interventions. Normally, the introduc-
tion should describe the problem or association of interest 
and how the independent variable or variables might be 
related to the dependent variable or variables. It should 
summarize what is already known and what the results of 
the review will add. The introduction should state if pre-
vious systematic reviews and meta-analyses have been 
conducted and, if so, it should explain how this review 
would differ from them. For example, a new review may 
be appropriate if the previous review is outdated.

The Cochrane Collaboration provides required and 
recommended headings used to structure the backgrounds 
of reviews about interventional studies; these headings 
and others are required for submitting a review using the 
Cochrane Collaboration’s software (RevMan 5.3. 2014):

• description of the condition

• description of the intervention

• how the intervention might work

• why it is important to do this review

For a review of diagnostics test accuracy, these are 
(RevMan 5.3, 2014):

• target condition being diagnosed

• index test(s)

• clinical pathway

• prior test(s)

• role of index test(s)

• alternative test(s)

• rationale

• objectives

Authors should provide a brief statement about the 
objectives of a research synthesis. For systematic reviews, 
this typically involves an operationalization of the question 
or questions to be addressed, including: the eligibility crite-
ria, independent and dependent variables, comparisons, 

and eligible study types (Squires, Valentine, and Grim-
shaw 2013). Each of these items should be described in 
detail in the methods section.

21.3.3 Methods

Several guidelines for conducting systematic reviews have 
been published, and authors of review protocols should 
consult them when writing their methods sections. For 
example, the Institute of Medicine (IOM) guidelines are 
widely used, and many federal funders in the United States 
require or anticipate that researchers will follow them 
(Institute of Medicine 2011). The Cochrane Collaboration 
has produced a checklist, Methodological Expectations of 
Cochrane Intervention Reviews, or MECIR (Chandler  
et al. 2013), which is used internationally. Although report-
ing guidelines for protocols ask researchers to state whether 
they will use specific methods (Moher et al. 2015), IOM 
and Cochrane guidelines state that reviews are expected to 
use specific methods associated with rigor and transpar-
ency. Thus, they are useful resources when deciding which 
methods to include in a protocol for a systematic review.

21.3.3.1 Inclusion and Exclusion Criteria To be 
transparent and reproducible, the criteria used to decide 
which studies are included and excluded in a research 
synthesis must be stated clearly and unambiguously. The 
protocol should state, as precisely as possible, the eligi-
bility criteria, defining each relevant term as needed. Eli-
gibility criteria should typically address the following:

• study designs (for example, randomized trials)

• participants or places (for example, young people 
age twelve through eighteen diagnosed with major 
depressive disorder)

• independent variables (for example, group cognitive 
behavioral therapy)

• eligible comparisons (for example, usual care)

Some research syntheses are limited to a specific study 
design (for example, randomized controlled trials) but 
others include multiple study designs; whatever approach 
is used, the protocol should describe exactly which types 
of studies will be included and excluded.

Interventions are often described according to their goals 
or aims, and many reports do not include enough informa-
tion to reproduce interventions described in research reports 
(Glasziou, Macleod, et al. 2014). The protocol should 
describe the specific content and structure of eligible inter-
ventions as objectively as possible (Montgomery et al. 
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2013), including any restrictions by format, duration, or 
other aspects of intervention implementation.

In addition to the inclusion criteria, the protocol should 
state whether any exclusion criteria will be applied. For 
example, a research synthesis might be limited to 
English-language reports, or participants might be excluded 
because of comorbid problems (for example, substance 
misuse, serious mental illness) or because people cannot 
receive an intervention (for example, because of language 
or geographic restrictions).

Finally, protocols should anticipate handling studies 
that include a mix of eligible and ineligible participants 
or variables. For example, a researcher interested in ado-
lescents between the ages of fifteen and eighteen might 
find a study that assessed adolescents between fourteen 
and seventeen. The protocol should explain if disaggre-
gated data would be sought and, if the researchers cannot 
obtain data for each group, the protocol should state 
which studies would be included or excluded (for exam-
ple, depending on the proportion of participants that meet 
the inclusion criteria).

21.3.3.2 Dependent Variables (Outcomes) Although 
often described with eligibility criteria, researchers 
should normally consider the dependent variables (out-
comes) of interest separately from the inclusion criteria. 
Many primary research reports do not include all of the 
outcomes measured. Moreover, most studies are not reg-
istered prospectively and most registered studies do  
not define their outcomes in enough detail to determine 
which outcomes they actually assessed (Cybulski, Mayo- 
Wilson, and Grant 2016; Zarin et al. 2011). Thus, exclud-
ing studies based on the outcomes or time-points reported 
in a journal article or other research report may lead to the 
inadvertent exclusion of eligible studies. If a study is eligi-
ble but does not report the outcomes of interest, researchers 
may contact the study authors to request information that 
would be needed to include the study in the review.

Protocols should include the following information, or 
state explicitly why this information is not included:

• dependent variables (for example, school attendance)

• moderators or mediators of interest (for example, sex, 
changes in depression)

• eligible time-points (for example, after one year)

Guidelines for registering clinical trials recommend 
describing several elements to define each outcome of 
interest (Zarin et al. 2011). Protocols for systematic reviews, 
however, rarely include all of the information required to 

define their outcomes (Saldanha et al. 2014). For example, 
researchers should anticipate in the protocol how they will 
handle multiple related outcomes (for example, multiple 
questionnaires for measuring depression).

21.3.3.3 Searching for Studies A complete description 
of the literature search is needed to critically appraise or 
reproduce the search strategy (Atkinson et al. 2015). 
Important items to describe include information about elec-
tronic databases, journals, bibliographies of identified stud-
ies, forward citation searches, searching for unpublished 
documents, and direct contact with authors and experts.

In particular, systematic reviews use highly sensitive 
search strategies to identify relevant studies. A search of 
electronic databases (for example, PsycINFO, MED-
LINE), done in collaboration with an information scien-
tist, is often the centerpiece of this process. Because all 
results of the review will depend on the studies identified, 
it is essential to document electronic search strategies 
clearly. Documentation should include the exact search 
terms used, the Boolean operators used to combine them, 
and the fields searched.

Because the results of unpublished research often dif-
fer from the results of published research (Chan et al. 
2004; Cuijpers et al. 2010; Dwan et al. 2013), many 
research syntheses include additional methods to identify 
unpublished studies and outcomes (Agency for Health-
care Research and Quality 2014; Higgins and Green 
2011; Institute of Medicine 2011). Researchers increas-
ingly have access to databases and to unpublished 
research reports; if relevant, protocols should describe 
plans to search for unpublished data, study materials, and 
analytic code. These might include contacting authors, 
requesting data from companies or regulators (such as the 
Food and Drug Administration), or reviewing reports to 
specific funders or agencies.

After the search has been conducted and citations have 
been retrieved, researchers decide which reports merit 
further consideration. The screening process is normally 
conducted in duplicate, and the methods for screening 
studies and determining eligibility should be described in 
the protocol. The results should be documented clearly so 
they can be included in the final report.

21.3.3.4 Data Extraction The protocol should describe 
which information will be extracted and how it will be 
recorded. Researchers should publish a dated copy of the 
final form used for data collection (for example, as an 
online supplement) with the protocol or the final report.

Like study screening, data extraction is usually conducted 
in duplicate. If done by two researcher, discrepancies  
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during the data collection should be documented and the 
methods to resolve them should be described (for exam-
ple, discussion). These might include simple errors (for 
example, typos) as well as disagreements about subjec-
tive coding decisions.

Data collection has been conducted historically using a 
paper form and then entering the information into a 
spreadsheet or database. Today, several systems allow 
researchers to extract data directly into online databases. 
For example, researchers can follow guidance for extract-
ing data using Systematic Review Data Repository 
(SRDR), a free online system that supports form develop-
ment and data sharing (Li, Vedula, et al. 2015), or 
EPPI-Reviewer, an online software program for manag-
ing and analyzing data in research syntheses.

21.3.3.5 Risk of Bias in Individual Studies Assess-
ing risk of bias, that is, threats to internal validity, is a 
hallmark of systematic reviews and may be especially 
important for reviews with subjective outcomes (Page, 
Higgins, et al. 2016). Several scales have been used to 
rate study quality, but methods to derive a single sum-
mary score have been unsuccessful (Valentine and  
Cooper 2008). They are consequently discouraged.

The protocol should identify how the review will rate 
risk of bias in each included study. The Cochrane risk of 
bias tools for randomized studies and nonrandomized 
studies are commonly used (Higgins and Green 2011; 
Higgins et al. 2013; Sterne et al. 2016). The Design and 
Implementation Assessment Device (DIAD) also helps 
researchers assess the specific and overall quality of 
intervention research (Valentine and Cooper 2008). Other 
scales have been developed for critical appraisal and for 
syntheses of observational (Stroup et al. 2000), epidemi-
ological (Sanderson, Tatt, and Higgins 2007; Shamliyan, 
Kane, and Dickinson 2010), case-control (Wells et al. 
2014), diagnostic (Whiting et al. 2011, 2013), and quali-
tative studies (Tong et al. 2012).

Many systematic reviewers assess risk of bias but fail 
to consider bias in their synthesis and conclusions 
(Katikireddi, Egan, and Petticrew 2015). The protocol 
should describe how the review will incorporate the 
assessment of bias in their data analysis (for example, by 
conducting sensitivity analyses) and when summarizing 
the overall results and conclusions.

21.3.3.6 Summary Measures The protocol should 
describe the planned methods for describing study results, 
including continuous and categorical data from each 
included study. For example, results from included stud-
ies might be expressed using odds ratios, relative risks, or 

risk differences. Precision could be expressed as confi-
dence intervals or standard errors (Valentine, Aloe, and 
Lau 2015). When possible, expressing information in the 
same way across studies will make it easier to compare 
them.

21.3.3.7 Unit of Analysis Systematic reviews may 
include studies with different units of analysis. The pro-
tocol should specify if studies with different units will be 
included and, if so, how studies will be compared in an 
unbiased manner.

Many studies of interventions compare groups (clus-
ters) rather than individuals. For example, studies of edu-
cational interventions could compare students, teachers, 
classrooms, schools, states, or countries. An intervention 
might be delivered to schools and outcomes might be 
measured for students; the statistical analysis should 
address correlation among students in a classroom. If the 
review will include clustered studies, the protocol should 
describe how clustering will be addressed in the risk of 
bias assessment, statistical analysis, and conclusions 
(Richardson, Garner, and Donegan 2016).

Studies of diagnostic tests might include individuals 
who receive more than one test. The unit of analysis 
should also be considered for crossover studies of inter-
vention, which are often reported incompletely and 
incorrectly. For example, studies in which participants 
receive more than one intervention should specify plans 
for handling missing data (for example, participants who 
complete some but not all periods), report results for each 
period, and include the period effect in their analysis (Li, 
Yu, et al. 2015).

21.3.3.8 Statistical Synthesis The protocol should 
explain how the results of individual studies will be pre-
sented and, if appropriate, combined. A statistical synthe-
sis of results (meta-analysis) may be possible if the 
included studies assess similar outcomes in similar ways. 
In some cases, it would be inappropriate to combine stud-
ies making different comparisons or measuring different 
outcomes. Whether meta-analysis is used or not, research-
ers should consider how they will organize the review to 
address different comparisons, outcomes, time-points, 
and statistical information across studies.

If a meta-analysis may be conducted, the protocol 
should describe the methods that will be used to combine 
studies, including the effect metric (such as standardized 
mean difference or relative risk), the methods that will be 
used to calculate effects (such as Hedges g or Cohen’s d), 
and the methods that will be used to combine studies (for 
example, random effects or fixed effect, or Bayesian 
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methods). Missing data is common, and the methods 
should also describe plans for handling missing data 
(such as assumptions about dropouts) and for selecting 
results from included trials that report estimates for dif-
ferent analysis populations (Li et al. 2014; Liu, Wei, and 
Zhang 2006). Formulas need not be included in the pro-
tocol, but the statistical packages or procedures that will 
be used should be referenced clearly so that another ana-
lyst could identify and reproduce the analysis.

21.3.3.9 Subgroup and Sensitivity Analyses Sub-
group analyses in research syntheses allow researchers to 
consider potential differences across populations or other 
variables that could differ within studies or between stud-
ies. For example, subgroup analyses might explore 
whether an intervention has similar effects in different 
countries or whether the effects differ for boys and girls. 
The first analysis might simply organize the overall results 
of each study according to the country in which the study 
was conducted. For the second analysis, a researcher 
might need to extract two results for each trial (that is, one 
result for boys and one for girls). Within-study compari-
sons are likely to be more informative than between-study 
comparisons, and the protocol should describe if one or 
both types of comparisons would be made.

Sensitivity analyses might be used to explore differ-
ences across studies or to explore the impact of certain 
methods (for example, inclusion and exclusion criteria). 
For example, a researcher might compare the results of 
studies at high risk of bias with studies at low risk of bias. 
A sensitivity analysis might also be performed by repeat-
ing an analysis using a different method (such as fixed 
effect versus random effects).

For subgroup and sensitivity analyses, the protocol 
should specify both the type of variables that will be used 
for analysis (for example, country) and the exact catego-
ries that will be compared (for example, all countries in 
Asia compared with all countries in Africa, China versus 
Japan versus Korea). To limit false positives and to pre-
vent bias, most reviews should include few planned sub-
group and sensitivity analyses, and there should be few 
categories in most subgroup and sensitivity analyses. The 
protocol should specify which analyses will be con-
ducted, the reasons one might expect a difference between 
studies or groups, and the anticipated direction of effects.

21.3.3.10 Heterogeneity Studies included in a sys-
tematic review or meta-analysis might find different 
effects because of chance or because of clinical or meth-
odological heterogeneity. For example, results for the 
same intervention might differ across places that have 

different standards of care (that is, normal services that 
all participants receive in addition to the intervention 
being investigated). The presentation of study character-
istics and subgroup analyses can identify potential 
sources of heterogeneity. Furthermore, it may be import-
ant to identify clinical and methodological heterogeneity 
even in the absence of statistical heterogeneity; the proto-
col should describe planned qualitative methods for 
assessing heterogeneity.

If a meta-analysis might be conducted, the protocol 
should describe statistical tests for heterogeneity and how 
the results of the review will be interpreted if there is 
more heterogeneity than one would expect by chance 
(Higgins et al. 2003). In an analysis with a great amount 
of heterogeneity, the average effect might be uninforma-
tive; the protocol should anticipate under what circum-
stances, if any, the results of individual studies would not 
be combined.

21.3.3.11 Risk of Reporting Bias Publication bias 
refers to the selective reporting of entire studies based on 
their results. Selective outcomes reporting refers to the 
partial reporting of results from studies based on the 
magnitude or significance of the results. Both types of 
reporting bias have similar consequences and can result 
in meta-bias in systematic reviews and meta-analyses 
(Goodman and Dickersin 2011).

There are several methods for identifying reporting 
bias. Some authors directly compare multiple reports for 
evidence of underreporting (Mathieu et al. 2009). Most 
statistical tests use a funnel plot (Sterne and Egger 2001) 
to determine whether the effects of small studies differ 
from larger studies; some procedures have been devel-
oped for “correcting” for publication bias (Duval and 
Tweedie 2000), though these tests may perform poorly 
when heterogeneity between studies is substantial (Peters 
et al. 2007).

Review protocols should describe planned methods to 
minimize the risk of reporting bias on the review (for 
example, searching for grey literature and contacting 
authors), or state that no such methods were used. Proto-
cols should also describe planned methods to assess pub-
lication bias and to “correct” for publication bias, or state 
that no statistical tests will be conducted. Researchers 
should describe any circumstances under which planned 
tests would not be conducted (for example, because of 
the number of included studies). Finally, the protocol 
should describe how the researchers will evaluate the 
potential impact of reporting biases on their results and 
conclusions.
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21.4  THE FINAL REPORT: CLEAR AND  
COMPLETE REPORTING

21.4.1  Incorporating Information  
from the Protocol

When a researcher has a complete protocol, many sec-
tions in the protocol can be incorporated easily in the 
final report, either directly or by reference. The title may 
be nearly identical and, as appropriate, should use words 
that identify the type of review (for example, systematic 
review, research review, research synthesis) and the 
methods used (for example, meta-analysis, network 
meta-analysis).

21.4.2 Reporting Guidelines

Reporting guidelines can help authors write reports that 
include all the information needed to understand their 
methods and results. The most commonly used reporting 
guideline for systematic reviews focuses on interventional 
studies (Liberati et al. 2009). Extensions to the PRISMA 
statement describe specific information needed for inter-
ventional reviews related to health equity (Welch et al. 
2012) and harms (Zorzela et al. 2016) and for reviews 
using specific methods such as network meta-analysis 
(Hutton et al. 2015) and individual participant data meta- 
analysis (Stewart et al. 2015).

Reporting guidelines other than PRISMA have been 
underused (Fleming, Koletsi, and Pandis 2014). Some 
are broad and relate to multiple types of reviews, includ-
ing the meta-analysis reporting standards (MARS) guide-
lines (APA 2008). Others provide guidance for reviews 
combining epidemiological (Manchikanti et al. 2009), 
diagnostic accuracy (Whiting et al. 2011), or qualitative 
studies (Tong et al. 2012). Some journals require that 
reviews not only conform to reporting guidelines but also 
include a checklist documenting where each piece of 
information is included in the report.

21.4.3 The Abstract

Many readers will read only the abstract, particularly in 
non-open-access journals, so this may be the most 
important part of the final report. Therefore, it is essential 
that the abstract provide an accurate and complete sum-
mary of the review. If possible, the abstract should  
be structured and follow relevant reporting guidelines 
(Beller et al. 2013).

21.4.4 Introduction

Journals have highly variable expectations for introduc-
tions. Some journals allow a few hundred words. Other 
journals require or expect much more comprehensive 
description of existing literature. Consequently, the intro-
duction might span several pages, drawing much from 
the study protocol, or the introduction might provide a 
brief summary of information in the protocol.

21.4.5 Methods

If no changes were made to the researchers’ plans, the 
objective and methods in the final report may be essen-
tially the same as the protocol. Journals typically see pub-
lished protocols as strengths (for example, to identify 
revisions in research synthesis methods or assess the 
extent of selective outcome reporting in a meta-analysis) 
and do not consider them duplicate publications. Changes 
to planned methods are extremely common, and research-
ers should not be abashed about explaining that plans 
changed during the conduct of their studies. Instead, devia-
tions from protocols should be documented and explained 
in final reports.

21.4.6 Results

Study Selection The study selection process should be 
reported in a flowchart (Liberati et al. 2009), and the final 
report should describe the qualifications and training of 
people who conducted each step in the review process. 
Researchers should report the date on which each search 
was conducted and the number of citations retrieved from 
each source (for example, electronic database). The 
review should report the number of citations remaining 
after duplicate citations have been identified and removed.

Once a list of unique citations has been identified, all or 
some of the selection process may be conducted in dupli-
cate. Each researcher may identify studies that are poten-
tially eligible based on the title or abstract. The report 
should describe the number of potentially relevant citations 
identified by at least one researcher and the number of cita-
tions that were selected for full-text review. To report this 
information, it is often helpful for each researcher to keep a 
record of their work by retaining copies of reference librar-
ies sorted by each reviewer at each stage of the process.

The number of full-text reports assessed for eligibility 
should be described. Following full-text review, the num-
ber of included studies as well as the number of reports 
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about the included studies should be stated. Researchers 
should also report the number of excluded studies, and 
for studies that were similar to those included, the rea-
sons for excluding each study (for example, did not 
include an eligible comparator).

In addition to articles including enough information  
to assess eligibility, researchers often encounter reports 
(such as conference abstracts) that do not provide enough 
information to assess eligibility. Researchers might con-
tact authors for more information, and the final report 
should describe how any reports were handled when the 
researchers could not obtain enough information to deter-
mine eligibility.

It might not be necessary to report agreement statistics 
if two researchers discussed each potentially relevant 
citation and reached consensus about the included studies.  
Because of resource constraints, some researchers dou-
ble-code only a sample of citations; in these cases, levels 
of agreement or inter-rater reliability for double- 
coded citations should be reported.

If authors of primary studies were contacted for unpub-
lished data, these methods and the data received should 
be described.

Data Extraction Procedures for data extraction should 
be described in the protocol, and any deviations from the 
protocol should be described in the final report, includ-
ing dated copies of changes to the extraction form and 
related documents (such as guidance for using the form 
and codebooks).

The final report should indicate who extracted data, 
their qualifications, and any training provided. As with 
study selection, some reviews report the level of initial 
agreement between independent data extractors; in 
reviews that extract all data in duplicate and resolve dif-
ferences through discussion, the level of initial agree-
ment may be unimportant. If only some of the data were 
extracted in duplicate and other data were extracted by a 
single researcher, the final report should describe agree-
ment between researchers for the data extracted in dupli-
cate. Agreement statistics may be especially important 
for reporting the consistency of subjective assessments 
(for example, risk of bias assessment).

Characteristics of Included Studies Before describ-
ing the results of the included studies, it is often useful to 
summarize the study characteristics (for example, study 
design, participants, interventions, comparisons, and set-
tings). The final report review should include data for the 
variables specified a priori in the protocol, which is often 
done in a table of included studies (Higgins and Green 

2011). Commonly, researchers also discover information 
about participants or differences across studies that were 
not anticipated in the protocol; these can also be 
described, and the report should explain why these vari-
ables were added.

Excluded Studies The report should describe the num-
ber of studies excluded for each reason, and citations to 
excluded studies may be provided in a table or appendix.

Studies not meeting all inclusion criteria for a system-
atic review or meta-analysis may, nonetheless, include 
important information about the topic under review. It 
can be tempting to describe the results of excluded stud-
ies in the interpretation of findings. Researchers should 
take caution in discussing studies that did not meet the 
inclusion criteria; for example, the search strategy might 
not have identified all studies that would have been 
excluded for the same reason, so the results of excluded 
studies may not be representative of the overall evidence.

Results of Individual Studies The results of individ-
ual studies should be organized and presented following 
methods described in the protocol. For each outcome, the 
report should present the results of each individual study 
including its average result (such as mean difference  
or relative risk) and a measure of precision (usually a  
95 percent confidence interval).

If it is not possible to follow the protocol because stud-
ies made unanticipated comparisons, researchers should 
describe the changes from protocol and their potential 
effects on the overall evidence and conclusions. Research-
ers should also describe any included studies that mea-
sured important outcomes but failed to report adequate 
statistical information for meta-analysis.

Synthesis of Results Research syntheses add value 
by summarizing evidence and providing overviews of 
what is known, how much confidence can be placed in 
the available evidence, and what is not known. Particu-
larly in large research syntheses, reporting the results of 
all included studies individually provides little benefit to 
the readers. The synthesis of extracted data may be done 
with or without meta-analysis, and results in final reports 
should be organized consistent with the outcomes defined 
in protocols.

In reviews with meta-analyses, results should be reported 
using the pre-specified summary measures, including the 
overall results (for example, mean difference), precision 
(for example, confidence interval), heterogeneity (for 
example, I2), and statistical significance of the hetero-
geneity. For each outcome, the results of the individual 
studies and the overall synthesis may be reported together 
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in a forest plot. In reviews without meta-analyses, final 
reports should present the individual findings clearly (for 
example, in tables) and provide summaries of the overall 
results. In summarizing the results, researchers should be 
careful to consider the size and precision of the individ-
ual studies, as one would in a meta-analysis.

Subgroup analyses and sensitivity analyses should be 
reported for predefined categories. Any outcomes or anal-
yses added post hoc should be identified and reported as 
exploratory analyses. Results for subgroup and sensitivity 
analysis should focus on the interactions between vari-
ables; reviews should not report effects for individual sub-
groups without also reporting results from statistical 
analyses examining differences between subgroups (that 
is, interactions).

Just as results in a study might vary across participants 
as a result of chance, some heterogeneity between studies 
would be expected by chance. The final report should 
describe the amount of observed heterogeneity in the 
results, including any statistical tests, and the potential 
sources and importance of those differences.

Risk of Bias The final report should describe threats 
to internal validity in each included study and an overall 
summary of the risk of bias (figure 21.1). This may be 
accomplished by providing a table showing the risk of 
bias for each item assessed in each included study and a 
figure showing an overall summary for each item.

The specific methods related to managing risk of bias 
may differ by type of intervention; for example, pharma-
cological and nonpharmacological interventions might 
use different methods to mask participants (Boutron et al. 
2007). Moreover, in reviews with multiple outcomes, risk 
of bias might differ across them (for example, masking 

participants might affect their rating of quality of life but 
not mortality). The final report should describe the ways 
in which potential biases were addressed and the ways in 
which bias could have affected the results, including the 
likely direction of effects.

Finally, the report should describe potential biases in 
the review itself. For example, if some studies could not 
be included in the meta-analysis because eligible results 
were not published, the review might be vulnerable to 
reporting bias.

Overall Quality of the Evidence Some producers, 
including the Cochrane Collaboration, now ask researchers 
to rate their overall confidence in the body of evidence for 
key outcomes using the GRADE system (Brozek, Akl, 
Alonso-Coello, et al. 2009; Brozek, Akl, Jaeschke, et al. 
2009). GRADE provides a framework for incorporating 
evidence about the precision and consistency of evi-
dence, and it prompts researchers to consider risk of bias 
in the individual studies and risk of reporting bias. GRADE 
also helps researchers consider the directness of evidence 
(for example, if the outcomes relate to clinically import-
ant events or surrogates). For reviews of qualitative data, 
the Confidence in the Evidence from Reviews of Qualita-
tive research (CERQual) provides a transparent method 
for assessing how much confidence to place in findings 
from a qualitative evidence synthesis (Lewin et al. 2015). 
If GRADE was used, the final report should include a 
summary of findings table.

21.4.7 Discussion

The discussion section provides an opportunity to consider 
the totality of the evidence from the research synthesis and 

Low risk of bias Unclear risk of bias High risk of bias

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Blinding (performance bias and detection bias)

Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

0% 25% 50% 75% 100%

Figure 21.1 Summary of Risk of Bias in Included Studies

source: Authors’ tabulation.
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what it contributes to previous knowledge about the sub-
ject. It should normally begin with a summary of the 
review’s findings, including the main results, a summary of 
confidence in the findings, and a description of their impor-
tance. For example, researchers might consider whether the 
results are clinically meaningful and whether they are likely 
to be affected by ongoing research in the field.

The discussion should identify to whom the results are 
likely to apply and under what conditions they are likely 
to be relevant (Nasser et al. 2012). For example, if the 
included studies focused on a particular subset of the eli-
gible population, then the findings of the research synthe-
sis might be more limited than the inclusion criteria would 
otherwise suggest.

Research syntheses about the same topic sometimes 
come to different conclusions because of differences in 
methods (for example, inclusion criteria) or because dif-
ferent researchers interpret the same evidence differently 
(Grant et al. 2016). The discussion should compare the 
research synthesis with similar research syntheses, 
including their methods, results, and inferences.

The discussion should identify any important limita-
tions in the research synthesis. For example, the com-
pleteness of the review might be limited by restriction to 
English-language reports or by the dates of the searches. 
If the research synthesis sought to include unpublished 
data but did not acquire those data, or if it aimed to inves-
tigate mediators or moderators that were not reported 
consistently across studies, these limitations should be 
described. Researchers should also consider the potential 
effects of changes to the protocol.

Finally, the discussion should address the implications of 
the research synthesis for policy, practice, and future 
research. Many research syntheses conclude that more 
research is needed, which can be a vacuous claim. Given 
the results, the discussion should identify what specific 
types of research are needed to answer the most pressing 
questions that remain (Brown et al. 2006). For instance, use 
of the GRADE approach can identify whether future 
research needs to target important biases in the current liter-
ature (for example, investing resources to minimize partic-
ipant attrition) or provide more data for certain subgroups 
to explain heterogeneity in current meta-analyses.

21.5 SHARING DATA AND CODE

Researchers should make the analysis plan and the data 
used for analysis publicly available to ensure the repro-
ducibility (and validity) of reported analyses and to 

facilitate future research (Christensen 2016). Data shar-
ing is rapidly becoming a scientific norm, and efforts are 
under way to facilitate sharing primary study data used 
in research syntheses (Wolfenden et al. 2016). Several 
resources exist to help researchers maintain documenta-
tion of the workflow of a research synthesis: that is, the 
steps for collecting, coding, organizing, and analyzing 
data (Gandrud 2013; Gentzkow and Shapiro 2014; Long 
2008). For instance, it is often helpful to keep a record of 
each researcher’s initial extraction and to create a third, 
reconciled record for each study or report. A file or data-
base with the final reconciled data should be included 
with the final report. The exact code and dataset used for 
reporting analyses should be made freely and publicly 
available on the journal website or using services such as 
GitHub or the Open Science Framework—both of which 
support version control, or stored versions of all created 
files to facilitate easy comparison of file updates. The 
final code used to clean and analyze data should be anno-
tated well enough to allow other researchers to clean and 
merge the original datasets and to reproduce the reported 
analyses. Programs such as RMarkdown can provide a 
single, shareable output (that is, HTML, PDF, or MS Word 
file) containing statistical code, comments describing each 
line of code, and the output from analyses through 
which another researcher could reproduce analyses in 
one click.

21.6 Additional Resources

This chapter focused on systematic reviews with meta- 
analyses that investigate the effects of interventions, 
however, there any many resources for other types of 
research syntheses as well. For instance, the meta-anal-
ysis of observational studies in epidemiology (MOOSE) 
guidelines describe methods for reporting syntheses  
of observational studies (Stroup et al. 2000) and the 
RAMESES (realist and meta-narrative evidence syn-
theses: evolving standards) project has produced 
reporting standards for realist syntheses (Wong et al. 
2016) and meta-narratives (Wong et al. 2013). To facil-
itate user-friendliness, these checklists are organized  
in a format similar to the PRISMA statement and other 
established reporting guidelines. In addition, reporting 
standards for meta-ethnography, a specific type of  
qualitative synthesis, are currently under development 
(France et al. 2015). Last, several methodological  
standards may be useful for those conducting research 
syntheses, such as the Transparency and Openness  
Promotion guidelines, which include standards for the 
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production-to-dissemination cycle for any type of study 
(Nosek et al. 2015).

Reporting guidelines are useful for authors and peer- 
reviewers. Readers may also use related tools to assess 
the quality of research syntheses (Shea et al. 2007; Whiting 
et al. 2016).

Methods for conducting research syntheses are evolv-
ing rapidly, and new methods are emerging for conducting 
different types of reviews (for example, scoping reviews, 
rapid reviews). Before beginning a report or submitting a 
report for publication, researchers should check the library 

of reporting guidelines on the EQUATOR website for the 
most relevant and current guidelines.

21.7 CONCLUSION

Like the primary studies on which they rely, research 
syntheses may be more or less useful depending on their 
completeness and transparency. Editors increasingly 
demand that all reports follow guidelines for transpar-
ency in their final reports as well as earlier reports such as 
registrations and protocols (see box 21.1). Researchers 

Box 21.1 Checklist for Research Synthesis Transparency

•  Prospectively register and publish the protocol for the research synthesis, including at least following information:
 Review title (stating the study is a research synthesis)
 Anticipated or actual start and completion dates
 Stage of research synthesis
 Authors, their organizational affiliations, and their contact information
 Funders, sponsors, and collaborators for research synthesis
 Declarations of interests
  Research questions, including a clear description of the participants, interventions, comparators, outcomes, 

and other items as appropriate
 Eligibility criteria for studies and the process for assessing studies for eligibility
  Information sources (such as electronic databases, contacting study authors, and bibliographies of identified 

studies) and a reproducible search strategy
  Process for extracting data from included studies and the data to be extracted (such as primary and secondary 

outcomes, information related to risks of bias, and descriptive information)
  Describe planned method of extracting data from reports (such as piloting forms, done independently, in 

duplicate), any processes for obtaining and confirming data from investigators
  Primary and secondary outcomes
  Process for synthesizing data, including quantitative and/or qualitative syntheses, sub-group and sensitivity 

analyses, and assessing the certainty of the evidence
  Processes for managing records and data throughout the research synthesis
  Identify updates to the registration and protocol as such, identifying changes from the last version

• Publish the completed report, containing at least the following information:
  Reference to the registration and protocol, indicating any changes to methods described in the last version
  Give numbers of studies screened, assessed for eligibility, and included in the review, ideally using a flow 

diagram
  Characteristics of included studies, including risks of bias and individual study results
  Results of all planned research syntheses
  Summary of the main findings of the research synthesis, including the certainty of the evidence for each finding
  Limitations of the individual studies, bodies of evidence for each finding, and research synthesis methods
  Implications for future research, policy, and practice

• Post data and analytic code to a trusted, publicly and freely accessible repository

source: Authors’ tabulation.
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should use relevant guidelines and tools for reporting 
their work at every stage in the research process (see 
box 21.2). Publishing protocols, and including informa-
tion in supplemental files (that is, online), may help 
researchers describe their research transparently while 
adhering to limits on manuscript length.
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22.1 INTRODUCTION

This chapter focuses on the major rationales for research 
synthesis and on the validity of the inferences that individ-
ual meta-analyses claim. We contend that meta-analysis 
provides a set of tools to facilitate the evolution of knowl-
edge about the direction and strength of associations, 
especially causal ones, and about the conditions on which 
such associations depend and across which they continue 
to be robust. Relying on the specific formal meta-analytic 
assumptions detailed in previous chapters, we use a falsi-
ficationist framework that stresses the extent to which 
secure knowledge depends on ruling out alternative inter-
pretations as opposed to amassing exact replication of the 
same association under the same conditions and using 
the same methods. To this end, we translate violations of 
the statistical assumptions undergirding meta-analysis 
into concretely labeled threats to valid inference that have 
to be ruled out if secure knowledge is to result.

The special promise of meta-analysis is to foster empir-
ical knowledge about valid causal relationships and the 
conditions under which they are warranted. The hope is 
for causal knowledge that is general—that is therefore 

robust across a wide variety of circumstances or that is 
contingently specified so that the conditions are clear 
under which the size of the association varies. No ratio-
nale for meta-analysis is more important than its ability 
to identify the realms within, and over which valid 
causal knowledge holds. Does an association hold with 
specific populations of persons, settings, times and ways 
of varying the cause or measuring the effect as well as 
across different populations of people, settings, times 
and ways of operationalizing a cause and effect? Can it 
be extrapolated to other populations of people, settings, 
times, causes, and effects than those that have been studied 
to date? These generalization tasks are faced in all 
research, but perhaps most explicitly in meta-analysis.

Meta-analysis faces a special challenge, though. The 
past forty years of practice have amply demonstrated 
that the general inferences meta-analysts seek cannot 
depend on formal sampling theory alone. The primary 
studies available rarely present a census, or even a ran-
dom sample, of all the populations, universes, catego-
ries, classes, or entities (terms we use interchangeably) 
relevant to a particular causal issue. The rare exception 
is when random sampling occurs from some clearly 
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designated universe, thus warranting valid generaliza-
tion to the population from which the sample was drawn, 
usually a human population in the social sciences. This 
is a rare occurrence, and even then most studies take 
place at a single time, in quite restricted settings (a liv-
ing room, for instance) and the relevant cause and effect 
constructs are purposively manipulated and measured 
without question of random selection from the domain 
of a causal agent or some possible impact. Moreover, 
many people are not interested in the population a partic-
ular random sample represents, asking instead, but does 
that same association hold with a different kind of per-
son, in a different setting, at a different time, or with a 
different cause or effect? Such questions concern gener-
alization as extrapolation from particular study samples 
rather than what the study samples “represent” in more 
general terms (Cook 1990, 2014). How can we extrapo-
late from studied populations to populations with many, 
few or even no overlapping attributes?

Warrants are needed for the general inferences meta- 
analysists seek other than in formal statistical sampling the-
ory alone. This chapter assumes that ruling out threats to 
validity can serve as an important (though imperfect) war-
rant to justify generalized inferences. Doing so is not as 
simple or as elegant as sampling with known probability 
from a well-designated universe, but it is more flexible and 
has been used with success to justify how manipulations or 
measures are chosen to represent cause and effect con-
structs (that is, construct validity). If meta-analysis is to 
deal with generalization understood as using sample-level 
data to represent more general entities, or extrapolating 
from these samples to entities that are manifestly different 
from those sampled, or describing the range over which a 
relationship holds so as to test robustness or identify the 
contingencies under which a relationship does or does not 
hold, then we have to identify ways of using a particular 
data base to justify conclusions about the populations that 
its sample-level data represent, the conditions across which 
any demonstrated associations hold, and how the data can 
be used to extrapolate to other kinds of persons, settings, 
times, causes, and effects than those that have been directly 
studied to date.

This chapter is not the first to propose that a framework 
of validity threats allows us to probe the validity of research 
inferences when a fundamental statistical assumption has 
been violated. Donald Campbell (1957) introduced his 
internal validity threats for instances when primary studies 
lack random assignment, creating quasi-experimental 
design (Campbell and Stanley 1963) as a legitimate exten-

sion of the thinking R. A. Fisher had begun. Similarly, this 
chapter seeks to identify threats to valid inferences about 
generalization that arise in meta-analyses, particularly 
those that follow from infrequent random sampling in 
meta-analysis. Of course, Donald Campbell and Julian 
Stanley also had a list of threats to external validity, and 
these also have to do with generalization (1963). But their 
list was far from complete and was developed more with 
single primary studies in mind than research syntheses. 
More recently, frameworks for appraising primary studies 
have been proposed in the specific context of meta- 
analyses (see chapter 7, this volume) and systems have 
been develop to grade the combined evidence of system-
atic review, for instance, strength of recommendation 
taxonomy, or SORT (Ebell et al. 2004), and grading of rec-
ommendations assessment, development and evaluation, 
or GRADE (Guyatt et al. 2008). This chapter does not 
propose another system for appraising the quality of the 
evidence. Instead, it asks how can one proceed to justify 
claims about the generality of an association when the 
within-study selection of persons, settings, times, and mea-
sures is almost never random and when it is also not even 
reasonable to assume that the available sample of studies is 
itself an unbiased representation of the universe of existing 
studies about a particular association? The chapter pro-
poses a threats-to-validity approach rooted in a theory of 
construct validity as one way to throw provisional light on 
how to justify general inferences.

22.1.1 Why We Conduct Research Syntheses

At the core of every research synthesis is an association 
about which we want to learn something that cannot be 
gleaned from a single existing study. These associations 
can be of many kinds, such as the relationship between a 
risk factor (such as secondhand smoke exposure) and a dis-
ease outcome (such as asthma severity), between a treat-
ment (such as antidepressive medication) and an effect 
(such as negative affect), between a predictor (such as 
SAT) and a criterion (such as college GPA), or between a 
dose (such as hours of psychotherapy) and either a single 
response (say, psychological distress) or a response change 
(such as weight loss).

Many primary studies have relatively small sample sizes 
and thus low statistical power to detect a meaningful popu-
lation effect. So it is commonly hoped that meta-analysis 
will increase the precision with which an association is esti-
mated (Cohn and Becker 2003). The relevant intuition here 
is that combining estimates from multiple parallel studies 
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(or “exact replications”) will increase the total number of 
primary units for analysis (for example, people), thus 
reducing the sampling error of an association estimate 
(Anderson and Maxwell 2016). However, parallel studies 
are rare and truly exact replications are impossible. More 
typical are studies of an association that differ in many 
ways, including how samples of persons were selected so 
that it is unreasonable to assume they are from the same 
population. So we need to investigate how inferences about 
associations are threatened when a meta-analysis is con-
ducted. This is especially important when the topically rel-
evant studies are few in number and heterogeneous in their 
samples of persons, settings, interventions, outcomes, and 
times. In our experience, most associations with which 
meta-analysts deal are causal, of the form that manipulating 
one entity (that is, treatment) will induce variability in the 
other (that is, outcome). So a second reason for conducting 
research syntheses is to examine how causal inference is 
threatened or enhanced in meta-analyses. A third rationale 
for research syntheses is to strengthen the generalization of 
an association (causal or otherwise) that has been examined 
across the available primary studies, each with its own time 
frame, ways of selecting persons and settings, and of imple-
menting the treatment and outcome measures.

In meta-analytic practice, conclusions are rarely 
warranted via statistical sampling theory or even strong 
explanatory theories. Instead, heavy reliance is placed on 
less familiar principles for exploring generalizations about 
specific target universes, for identifying factors that might 
moderate and mediate an association, and for extrapolating 
beyond whatever universes are in the available data base 
(Cook 1990, 1993, 2014). We need to examine these other, 
less well-known principles to help identify the threats to 
validity that can be extracted from them.

22.1.2 Validity Threats

In the meta-analytic context, validity threats describe fac-
tors that can induce spurious inferences about the exis-
tence or size of an association, the likelihood it is causal, 
or its generalizability. Meta-analytic inferences are more 
compelling the better the identified threats have been 
ruled out either because they are empirically implausible 
or because other evidence indicates they did not operate 
in the research under consideration. Ruling out alterna-
tives requires a framework of validity threats, some taken 
from formal statistical models, others from theories about 
generalization, and others emerging as empirical prod-
ucts born of critical reflection on the conduct of research 

syntheses. Any list of validity threats so constructed is 
bound to be subject to change. Indeed, such change is 
desirable, reflecting improvements in theories of method 
and in critical discourse about the practice of research 
synthesis. New threats should emerge as others die out 
because they are rare in actual research practice.

Some threats relevant to research syntheses also apply 
to individual primary studies (for example, unreliability 
in measuring outcomes). Others are extensions to threats 
that apply to primary studies, but are now reconfigured 
to reflect how a threat is distributed across studies (for 
example, the failure to find any studies that assign treat-
ment at random). Other threats are unique to meta-analyses 
because they depend on how estimates of association are 
synthesized across single studies (for example, publica-
tion bias). These last have higher-order analogs in gen-
eral principles of research design so that publication bias 
can be considered a particular instance of the more gen-
eral threat of sampling bias. However, publication bias is 
application focused, one of the highly specific ways in 
which meta-analysts encounter sampling bias. So when 
two labels are possible we prefer to formulate a threat in 
the form closest to actual meta-analytic practice.

A list of validity threats can be used in two major ways. 
Retrospectively, it can help discipline claims emerging 
from a research synthesis by identifying which threats are 
plausible in light of current knowledge and by indicating 
the additional evidence needed to assess the plausibility of 
a threat and thereby evaluate how well the causal claim is 
justified. Secondly, validity threats can also be used pro-
spectively for planning a research synthesis. The purpose 
then is to anticipate as many potential threats as possible 
and to design the research so as to rule them out. Identify-
ing threats prospectively is better than retrospectively, 
though each is valuable.

22.1.3 Generalized Inferences

The generalized inferences possible in a research synthe-
sis are different from those in a primary study because 
inferences in the latter are inextricably limited to the rela-
tively narrow ways in which times, research participants, 
settings, and cause and effects are usually sampled or 
measured. In contrast, research syntheses involve multi-
ple samples of diverse persons and settings as well as 
many treatment implementations and outcome measures, 
collected at unique times and over varying times. This 
potential for heterogeneous sampling provides the frame-
work for generalizing to broader classes or universes than 
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a single study permits. But why is this, because the most 
secure path to generalization—formal sampling theory—
does not generate the heterogeneity that meta-analysts 
typically find and use for generalization purposes? Inter-
estingly, even advocates of random selection use purpo-
sive selection for choosing the items they put into their 
surveys; in so doing, they rely on theories of construct 
validity to justify generalizing from the items selected to 
the more general constructs these measures are intended 
to represent. Our theory of generalization in the meta-an-
alytic context depends on factors ultimately derived from 
theories of construct validity rather than formal sampling. 
Each of these theories uses sampling particulars to justify 
inferences about abstract entities; construct validity uses 
systematic sampling to warrant inferences about the 
constructs a measure or manipulation represents whereas 
sampling theory uses random sampling. Our theory of 
generalization also relies on general principles of evolu-
tionary epistemology according to which different studies 
examine variants of an association that help identify con-
ditions that make and do not make a difference regarding 
the magnitude and direction of an association and that are 
being retained if they make a positive difference. How 
then does construct validity and evolutionary epistemol-
ogy justify general inferences? Thomas Cook proposes 
five principles that are potentially useful for this purpose 
(1990, 1993).

22.1.3.1 Demonstrating Proximal Similarity In the 
1980s, Donald Campbell first introduced the principle of 
proximal similarity in the context of construct validity 
(1986). For research syntheses, proximal similarity refers 
to the correspondence in attributes between an abstract 
entity (for example, an outcome construct, a class of set-
tings) about which inferences are sought and the particular 
instances of the entity captured by the studies included in 
the meta-analysis. To make inferences about these abstract 
target entities, meta-analysts first seek to identify which  
of the potentially relevant studies are indeed members of the 
target class. That is, their attributes include those that theo-
retical analysis indicates are prototypical of the construct 
being targeted (Rosch 1973, 1978; Smith and Medin 
1981). For example, if the target population is people—let 
us say Asian Americans in particular—then we need to 
know whether the participants have ancestors who come 
from certain nations. If we want to generalize to factories, 
we want to know whether the research actually took place 
in factory settings. Do the studies all occur in the late twen-
tieth and early twenty-first centuries—the historical period 
to which generalization is sought? Are the interventions 

instances of the category labeled decentralized decision 
making in that all affected parties are represented in delib-
erations about policy? And, are the outcome operations 
plausible measures of the higher-order construct produc-
tivity in the sense that a physical output is measured and 
related to standards about quantity or quality? These kinds 
of questions about category membership are obvious and 
the sine qua non of any theory of representation. Alas, 
though, category membership justified by proximal sim-
ilarity is not sufficient for inferring that the sampled 
instances represent the target class. More is needed.

22.1.3.2 Exploring Heterogeneous and Substantively 
Irrelevant Third Variables In his theory of construct 
validity, Campbell also required ruling out theoretical and 
methodological irrelevancies (1986). These are features of 
the sampled particulars that substantive experts deem irrel-
evant to a category but that can be part of the sampling 
particulars used to represent that category. Analysts must 
therefore have a theory of which aspects of a target entity 
are prototypical, or central to its understanding, as well as 
aspects that are peripheral and do not make much of a con-
ceptual difference. If it can be shown that these substantive 
irrelevancies make no difference, then an association is 
deemed robust with respect to these features. Evidence con-
cerning the robustness of an association is also of impor-
tance from an evolutionary perspective because those 
features make no positive difference and provide no adap-
tive advantage. As a result, the generalization is strength-
ened because the association being tested does not depend 
on largely or totally irrelevant features that happen to 
be correlated with the prototypical features. Research syn-
theses benefit from heterogeneous implementations across 
primary studies because this makes the irrelevancies associ-
ated with each construct heterogeneous. In the relatively 
rare case when a synthesis depends on primary studies that 
have the same substantive irrelevancy, then that attribute 
does not vary and is confounded with the target class. This 
presents a limiting scenario from an evolutionary perspec-
tive because it preempts new contingencies to be tested and 
new knowledge about robustness to evolve. For instance, if 
all the Asian Americans in a particular set of studies were 
Vietnamese or male, then the general Asian American cate-
gory would be confounded with a single nation of origin or 
with a single gender. Similarly, if an association is limited 
to studies of public schools that are all in affluent suburbs 
with volunteer participants, then public schools are con-
founded with both the suburban location and the volunteer 
respondents. If all the measures of productivity tap into 
the quantity but not quality of what has been produced, then 
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the productivity concept would be confounded with its 
quantity component. The obvious requirement for uncon-
founding the targets of interest and the way they are 
assessed is ensuring that the studies sampled for meta- 
analysis vary in the country of origin among Asian Amer-
icans, in location among public schools, and in how pro-
ductivity is measured.

22.1.3.3 Probing Discriminant Validity Even ruling 
out the role of theoretical irrelevancies is not enough. Any 
relationship that is not robust across substantively relevant 
differences invites the analyst to identify the conditions 
that moderate or mediate the association. Research synthe-
ses include primary studies with their own populations of 
people, their own categories of setting, their own time 
period and their own theoretical descriptions of what a 
treatment or outcome class is and how it should be manip-
ulated or measured. The issue is not then to generalize to a 
single common population; it is to probe how general the 
relationship is across populations and to determine the spe-
cific conditions under which it varies. This is also tied to 
general principles of evolutionary epistemology. Only 
when there is enough variation in the conditions examined 
in the primary studies is it possible to learn about how they 
might affect the magnitude and direction of an association. 
Does the effect of antidepressive medication hold in 
children, adolescents, adults, and the elderly? Is the effect 
of secondhand smoke different in pre- and postmenopausal 
women? Is the effect of psychotherapy conducted in clini-
cal practice settings different from that in university 
research settings? Questions like these address the general-
izability of meta-analytic findings by probing their dis-
criminant validity. From an evolutionary perspective, it is 
the identification of moderator conditions that make a pos-
itive difference that produces general knowledge about the 
treatment, outcome, setting, and population variants that 
matter; that is, the conditions that affect the direction and 
magnitude of an association.

22.1.3.4 Studying Empirical Interpolation and 
Extrapolation The recent discussion deals only with sit-
uations where the synthesized studies contain instances 
of the classes about which we want to generalize. How-
ever, in some cases we seek to extrapolate beyond the 
available data and draw conclusions about domains not 
yet studied (Cronbach 1982; Cook 2014). This is an intrin-
sically difficult enterprise, but even here it is plausible to 
assert that research syntheses have advantages over pri-
mary studies. Consider a relationship that is demonstrably 
robust across a wide range of conditions. The analyst may 
then want to induce that the same relationship is likely to 

hold in other, as-yet unstudied, circumstances given that it 
has held so robustly over the wide variety of circum-
stances already examined. Consider, next, the case in 
which specific causal contingencies have been identified 
for which the association does and does not hold. This 
knowledge can then be used to help identify situations for 
which extrapolation is not warranted, the more so if a 
general theory can be adduced to explain the variation in 
effectiveness. Now, imagine a sample of studies that is 
relatively homogeneous on some or all attributes. There is 
then no evidence of the association’s empirical robustness 
or of the specific circumstances that moderate when it is 
observed, making inductive extrapolation to other uni-
verses quite insecure. Of course, conceptual examination 
is always required to detect moderating variables, even 
with a heterogeneous collection of studies. For instance, 
many pharmaceutical drugs are submitted to regulatory 
agencies for approval with adults and may not have been 
tested with adolescents, young children, or the elderly. Yet 
individual physicians make off-label prescriptions where 
they extrapolate from approved groups (for example, 
adults) to nonstudied groups (such as adolescents, chil-
dren, elderly). Indeed, some experts estimate that 80 to 
90 percent of pediatric patients are prescribed drugs 
off-label, requiring thoughtful physicians to assume that 
the relevant physiological processes do not vary by age—
an assumption that may or may not be true for a given 
drug (Tabarrok 2000; Brauner et al. 2016; Arocas Casañ 
et al. 2016). Extrapolation depends here not just on the 
empirical robustness of an association across the studied 
age groups, but also on substantive theory about age dif-
ferences in physiological processes.

22.1.3.5 Building on Causal Explanations In the 
experimental sciences, generalization is justified not from 
sampling theory but instead from attempts to achieve com-
plete understanding of the processes causally mediating an 
association. The crucial assumption here is that, once these 
processes have been identified, they can then be set in 
motion by multiple causal agents, including some not yet 
studied but plausible on theoretical or pragmatic grounds. 
Indeed, the general public is often asked to pay for basic 
science on the grounds that ameliorative processes will be 
discovered that can be instantiated in many ways, making 
them viable across a wide range of persons and settings 
today and tomorrow. Research syntheses have the poten-
tial to enhance our understanding of conditions mediating 
the magnitude and direction of an association because 
the variety of persons, settings, times and measures avail-
able in the data base will be greater than that which any 
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single study can capture. The crucial issue then becomes 
what the obstacles (that is, threats) are that arise when 
using meta-analysis to extrapolate findings by identifying 
the processes by which a class of interventions produces an 
effect? This is a difficult issue to pursue because explicit 
examples of causal explanation remain rare in meta-analysis 
because the concern has been more with identifying causal 
relationships and some of their moderating rather  
than mediating factors (see, for example, Becker 2001; 
Cook et al. 1992; Harris and Rosenthal 1985; Premack and 
Hunter 1988; Shadish and Sweeney 1991). But even so, 
moderation provides clues to mediation through the way 
results are patterned; and many meta-analyses do include 
individual studies making claims about causal mediation. 
It would be stretching the point to claim that detecting 
causal mediation is a strength of meta-analysis today, and 
it remains to be seen whether the potential for explanation 
in meta-analyses can be realized (Cook 1992).

The five principles we have just enumerated for strength-
ening generalized inference in meta-analyses are not 
independent; they are invoked simply because they 
describe current efforts at generalization within a synthesis 
framework and because they are linked to efforts to war-
rant generalization via theories of construct validity and 
evolutionary epistemology rather than formal sampling or 
well corroborated and well demarcated substantive theory. 
Taken together, the principles suggest feasible strategies 
for exploring and justifying conclusions about the general-
ization of an association. However, they are more relevant 
for conclusions about what the sampling particulars in a set 
of studies represent and what the limits of generalization 
might be than they are for the intrinsically more problem-
atic task of extrapolating to unstudied entities.

The rest of the discussion in this chapter follows from the 
benefits promised by research synthesis in regard to threats: 
those relevant to meta-analyses that primarily seek to 
describe the degree of association between two variables; 
those to the inference that a relationship is causal in the 
manipulability or activity theory sense (Collingwood 1940; 
Gasking 1955; Whitbeck 1977); generalization, beginning 
with validity threats that apply when generalizing to partic-
ular target populations, constructs, or categories; general-
ization pertinent to moderator variable analyses that concern 
the empirical robustness of an association and thus affect its 
strength and even direction (Mackie 1974); and finally gen-
eralization threats that apply when meta-analysis is used to 
extrapolate to novel, as-yet-unstudied universes. Threats 
discussed earlier almost always apply later in regard to the 
increasingly more complex inferential tasks of causation 

and generalization. To avoid repetition, we discuss only 
the unique threats relevant to the later sections.

22.2  THREATS TO INFERENCES ABOUT THE  
EXISTENCE OF A TREATMENT-OUTCOME 
ASSOCIATION

The threats discussed here deal with issues that may lead 
to erroneous conclusions about the existence of a rela-
tionship between two classes of variables, including 
treatment (that is, cause) and outcome variables (that is, 
effect). In hypothesis testing language, these threats lead 
to type I or type II errors arising from deficiencies in 
either the primary studies or the research synthesis pro-
cess. A solitary deficiency in a single study is unlikely to 
jeopardize meta-analytic conclusions in any meaningful 
way. More problematic is whether a specific deficiency 
operates across all or most of the studies being reviewed 
or whether different deficiencies fail to cancel each other 
out across studies such that one direction of bias predom-
inates, either to over- or underestimate an association 
(see chapter 7). The need to rule out these possibilities 
leads to the list of validity threats presented in table 22.1.

22.2.1 Unreliability in Primary Studies

Unreliability in implementing or measuring treatments 
and in measuring outcomes attenuates the effect-size esti-
mates from primary studies as well as the average effect-
size estimates computed across such studies. Attenuation 
corrections have been proposed and, if their assumptions 

Table 22.1  Threats to Inferences About the Existence 
of a Treatment-Outcome Association

 1. Unreliability in primary studies
 2. Restriction of range in primary studies
 3. Missing effect sizes in primary studies
 4. Unreliability of codings in meta-analyses
 5. Capitalizing on chance in meta-analyses
 6. Biased effect-size sampling
 7. Publication bias
 8. Bias in computing effect sizes
 9. Lack of statistical independence among effect sizes
10. Failure to weight effect sizes proportional to precision
11. Underjustified use of fixed- or random-effects models
12. Lack of statistical power for detecting an association

source: Authors’ compilation.
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are accepted, may be used to provide estimates that 
approximate what would have happened had treatments 
and outcomes been observed without error, or were the 
error constant across studies rather than variable (Hunter 
and Schmidt 2004; Rosenthal 1991; Wolf 1990; Salgado, 
Moscoso, and Anderson 2016); also see chapter 15). How-
ever, there are limits to what can be achieved because the 
implementation of interventions is less understood than the 
measurement of outcomes, and may not be documented 
well in primary studies. Some primary researchers do not 
report the reliability of the scores on the outcomes they 
measured. These practical limitations impede comprehen-
sive attempts to correct individual effect-size estimates, 
and force some meta-analysts either to ignore the impact 
of unreliability or to rely on (untested) assumptions about 
what the missing reliability would have been in a given 
study. For these reasons, attenuation corrections remain a 
controversial approach to dealing with unreliability in 
primary studies.

22.2.2 Restriction of Range in Primary Studies

When the range of a treatment or predictor variable is 
restricted (for example, the treatment and control condi-
tions differ little from each other; low dosage treatment), 
the restriction reduces effect-size estimates relative to 
what would have been observed had a wider range been 
studied. In contrast, if the outcome variable range is 
restricted, the within-group variability will be reduced rel-
ative to a study that had included a wider range of persons 
unless measured statistical controls accounted for all of 
this person variability. Restricting range on the outcome 
will otherwise decrease the denominator of the effect-
size estimate, d, and thus increase effect-size estimates. 
For example, if a weight-loss researcher limits participa-
tion to subjects who are at least 25 percent but not more 
than 50 percent overweight, this strategy will likely result 
in less within-group variability in weight loss than were 
all overweight subjects included, increasing the effect-
size estimate by decreasing its denominator. Thus, range 
restrictions in primary studies can attenuate or inflate effect-
size estimates, depending on which variable is restricted. 
As Wolfgang Viechtbauer points out, two standardized 
effect sizes based on the same outcome measures from 
two studies could be incommensurable if the samples 
were drawn from populations with different variances 
(2007). This problem can be avoided if the raw units of 
outcome measures are consistent across the studies of a 
meta-analysis, making it unnecessary to standardize the 

effect size. For instance, this was the case when Jean 
Twenge and Keith Campbell used the Rosenberg self- 
esteem scale and the Coopersmith self-esteem inventory 
to conduct a meta-analysis of birth cohort differences in 
adults and children, respectively (2001; see also Le and 
Schmidt 2006).

Given the possibility of counterbalancing range restric-
tion effects within individual studies and across all the 
studies in a research synthesis, it is not easy to estimate 
the overall impact of range restriction. Nonetheless, 
meta-analysts have suggested adjustments to mean esti-
mates of correlations (and their standard error) to control 
for the attenuation due to different types of range restric-
tion (Hunter and Schmidt 2004; Hunter, Schmidt, and  
Le 2006; Le and Schmidt 2006; see also chapter 15). When 
valid estimates of the population range or variance are 
available, these adjustments provide reasonable estimates 
of the correlation that would be observed in a population 
with such variance. However, it is more problematic to 
adjust for range restriction in a manipulated variable (that 
is, a carefully planned intervention) for which population 
values may not be known.

22.2.3 Missing Effect Sizes in Primary Studies

Missing effect sizes occur when study reports fail to 
include findings for all the sampled groups, outcome mea-
sures, or times. This sometimes happens because space 
limitations in a journal prevent reporting results in full 
detail, although the increased availability of online supple-
mental materials makes this reason less plausible. Missing 
effect size may also come about when research reports 
focus on only a part of the overall study, or when authors 
decide to report only a subset of their findings (for exam-
ple, short-term effects, treatment completers, or place-
bo-controls). Some effect sizes also go unreported because 
the findings were not statistically significant, thus inflating 
the average effect size from a meta-analysis. Except for the 
last example, the impact of unreported effect sizes will 
vary, depending on why an author decided to include some 
findings and exclude others.

To prevent this kind of bias, it is desirable to code the 
most complete version of a report (for example, disserta-
tions and technical reports rather than published articles) 
and to contact study authors to obtain additional informa-
tion, as Steven Premack and John Hunter (1988) and 
George Kelley, Kristi Kelley, and Zung Vu Tran (2004) did 
with some success. However, this last strategy is not feasi-
ble if authors cannot be located or they have discarded the 
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needed information. Meta-analysts must then code research 
reports for evidence of missing effect sizes and use sensitiv-
ity analyses to explore how the data known to be missing 
might have affected overall findings. This can involve 
examining whether studies with little or no missing data 
yield comparable findings to studies with more missing 
data or missing data that is patterned a particular way.

Another approach is to pursue the imputation strategies 
discussed in chapter 17 of this book, though it is clear that 
they hold only under certain model assumptions. When 
these assumptions cannot be convincingly justified, the 
impact of these procedures must then be questioned. An 
example of this comes from early meta-analyses of the 
effects of psychotherapy, where it was assumed that the 
most likely estimate for a missing effect size was zero, 
based on the assertion that researchers failed to report only 
those outcomes that did not differ from zero (that is, were 
not statistically significant). Although this assumption has 
never been comprehensively tested, David Shapiro and 
Diana Shapiro coded 540 unreported effect sizes as zero 
and then added them to 1,828 reported effects, reducing 
the average effect from 0.93 to 0.72 (1982). But effects 
sizes may be unreported for many other reasons—for 
example, when they are negative, or positive but associ-
ated with unreliable measures—raising concern about the 
assumption that they average zero (for a general intro-
duction to multiple imputation methods, see Little and 
Rubin 2002; Rubin 1987; Sinharay, Stern, and Russell 
2001; for applications in meta-analysis, see Sutton 
2000; Kelley 2004; Shadish et al. 1998).

22.2.4 Unreliability of Codings in Meta-Analyses

Meta-analytic data are the product of a coding process sus-
ceptible to human error. Unreliability at the level of research 
synthesis (such as unreliable determination of means, 
standard deviations, or sample sizes) is not expected to bias 
average effect-size estimates. This is because in classical 
measurement theory, measurement error is independently 
distributed and uncorrelated with true scores. However, 
measurement error will increase the variance of the 
observed effect sizes, increasing estimates of standard 
error and reducing statistical power for hypothesis tests. 
Chapter 9 in this volume discusses several strategies for 
controlling and reducing error in coding. In our experience 
pilot testing the coding protocol, comprehensive coder 
training, engaging coders with expertise in the substantive 
area being reviewed, consulting external literature, contact-

ing primary authors, using reliability estimates as controls, 
generating confidence ratings for individual codings, and 
conducting sensitivity analyses are all helpful strategies for 
reducing and controlling for error in data coding

22.2.5 Capitalizing on Chance in Meta-Analyses

Although research syntheses may combine findings from 
hundreds of studies and thousands of individual respon-
dents, they are not immune to inflated type I error when 
many statistical tests are conducted without adequate con-
trol for error rate—a problem that is exacerbated in research 
syntheses with few studies. Typically, meta-analysts con-
duct many analyses as they probe the robustness of an 
effect size across various methodological and substantive 
characteristics that might moderate effect sizes, and as 
they otherwise explore the data. To reduce capitalizing on 
chance, researchers must adjust error rates, examine fam-
ilies of hypotheses in multivariate analyses, or stick to a 
small number of a priori hypotheses.

22.2.6 Biased Effect-Size Sampling

Research reports frequently present more than one esti-
mate, especially when multiple outcome measures, multi-
ple treatment and control groups, and multiple delayed 
assessment time points are involved. Some of these effect 
estimates may be irrelevant for a particular topic, and some 
of the relevant ones will be substantively more important 
than others. Meta-analysts must then decide which esti-
mates will enter the meta-analysis. Bias occurs when esti-
mates are selected that are as substantively relevant as 
those not selected but that have different average effect 
sizes. Georg Matt (1989) discovered this when three inde-
pendent coders recoded a subsample of the studies in 
Mary Lee Smith, Gene Glass, and Thomas Miller’s (1980) 
meta-analysis of the benefits of psychotherapy. Following 
what seemed to be the same rules as Smith and col-
leagues for selecting and calculating effect estimates, the 
recoders extracted almost three times as many effect 
estimates whose mean effect size was approximately 
0.50 against the 0.90 from the original codings. Rules are 
required in each meta-analysis that clearly indicate which 
effect estimates to include. Best practice is to specify these 
rules before data collection begins. If several plausible 
rules are identified, it is then important to examine whether 
they lead to the same results. Specifying such rules is rela-
tively easy, but implementing them validly (and reliably) 
depends on training coders to identify relevant effect sizes 
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within studies. Data analyses should also explore for 
possible coder differences in results.

22.2.7 Publication Bias

Some studies are conducted but never written up; of those 
written up, some are not submitted for publication; of 
those submitted, some are never published; and of those 
published, some are difficult to find and retrieve. Publica-
tion bias exists when the average effect estimate from 
published studies differs from that of the population of 
studies ever conducted on the topic. Anthony Greenwald 
(1975) and Robert Rosenthal (1979) both argue that pub-
lished studies in the behavioral and social sciences are 
likely to be a biased sample of all the studies actually car-
ried out, because studies with statistically significant find-
ings supporting a study’s hypotheses are more likely to be 
submitted for publication and ultimately published, given 
reviewer and editor biases against the null hypothesis. An 
extension of this bias may even operate among published 
studies if those that are easier to identify and retrieve have 
different effect sizes than other studies. This could arise 
because of the greater visibility of studies in “major” pub-
lications that are abstracted clearly by the major referenc-
ing services, because authors in major outlets are better 
connected in professional networks, or because the paper’s 
title or abstract is more likely to contain keywords rele-
vant for a particular meta-analysis. Unsuccessful replica-
tions by lesser known researchers are not likely to appear 
in major journals, however appropriate they might be for 
a conference or a more obscure publication.

Strenuous attempts should be made to find unpublished 
or difficult-to-retrieve studies, and separate effect-size esti-
mates should be calculated for published and unpublished 
studies as well as for studies that varied in how difficult 
they were to locate. In a review of thirty-five meta-analyses 
of randomized trials, Ikhlaaq Ahmed, Alexander Sutton, 
and Richard Riley find that only ten discussed or investi-
gated the potential for publication bias (2012). The chapters 
in this book on scientific communication (chapter 4), refer-
ence databases (chapter 5), grey literature (chapter 6), and 
publication bias (chapter 18) all provide additional sugges-
tions for dealing with publication bias (see also Rothstein, 
Sutton, and Borenstein 2005).

Several developments are especially important. First, 
research registries are particularly promising for avoiding 
publication biases, especially in research domains under 
the influence of regulatory agencies (such as the Food and 
Drug Administration). Second, the Cochrane Collaboration 

has taken the idea of research registries one step further, 
developing a registry for prospective research syntheses, in 
which eligible studies for a meta-analysis are identified and 
evaluated before their findings a re e ven k nown. T hird, 
meta-analysts can now rely on a set of powerful exploratory 
data analysis methods to detect biases in published studies 
(Egger et al. 1997; Sterne and Egger 2001; Sutton, Duval, 
et al. 2000; Sutton, Song, et al. 2000; Peters et al. 2006). 
Finally, if the evidence indicates that effect estimates 
depend on publication history, the likely consequences of 
this bias should be assessed with a variety of methods, 
including Larry Hedges and Jack Vevea’s selection 
method approach (Vevea and Hedges 1995; Hedges and 
Vevea 1996; Vevea, Clements, and Hedges 1993; Vevea 
and Woods 2005), and Susan Duval’s trim and fill method 
(Duval and Tweedie 2000; Sutton, Duval, et al. 2000).

22.2.8 Bias in Computing Effect Sizes

Meta-analyses typically require transforming findings from 
primary studies into a common metric such as the correla-
tion coefficient, a standardized mean difference, or an odds 
ratio (see chapter 11). This is necessary because studies dif-
fer in the type of quantitative information they originally 
provide, and bias results if some types of transformation 
lead to systematically different estimates of average effect 
size or standard error when compared to others.

The best understood case of transformation bias con-
cerns the situation in which probability levels are aggre-
gated across studies and some have been truncated 
(Rosenthal 1990; Wolf 1990), for instance, when a study 
reports a group difference statistically significant at p < .05 
without specifying the exact probability level. A conserva-
tive estimate of the observed effect size can be obtained by 
assuming that p = .05 then finding the relevant critical 
value of the test statistic that would have been observed 
(given the appropriate degrees of freedom). Because it is 
known that the actual probability value was smaller than 
the one assumed, the transformed effect size is known to 
be conservatively biased.

Michael Rosenberg points out a potential bias in the 
conversion of χ2 statistics to correlations if the expected 
values in treatment and control groups or not equal (2010). 
Another case of potential bias involves studies that used 
dichotomous outcome measures or continuous variables 
that have been dichotomized (for example, improved ver-
sus not improved, convicted versus not convicted). Julio 
Sánchez-Meca, Fulgencio Marín-Martínez, and Salvador 
Chacon-Moscoso compare seven approaches to convert-
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ing effect sizes derived from continuous and dichotomous 
outcome variables into a common metric, concluding that 
the Cox and Probit–based effect-size indices showed the 
least bias across simulated population effect sizes, δ, 
ranging from 0.2 to 0.8 (2003). Whenever possible, 
meta-analysts are advised to calculate effect sizes directly 
from means, standard deviations, or the like rather than 
from approximations such as truncated p-levels or propor-
tions improved. This will be possible for many studies, 
though not all. Simulation studies of the performance of 
different indicators like that of Sánchez-Meca and his col-
leagues can help make an informed choice, and additional 
tools for retrieving accurate effect size estimates from 
incomplete summary data in primary studies are needed 
(Olkin 2012). But when they are not available, meta- 
analysts should empirically examine whether estimates 
differ by the type of effect-size transformation used.

22.2.9  Lack of Statistical Independence 
Among Effect Sizes

Stochastic dependencies among effect sizes may influence 
average effect estimates and their precision. The effect-
size estimates in a meta-analysis may lack statistical inde-
pendence for at least four reasons: collecting data on 
multiple outcomes for the same respondents; comparing 
different interventions to a single control group, or differ-
ent controls to a single intervention; calculating an effect 
estimate for each of several subsamples of person within 
the same study (for example, women and men); and the 
same research team conducts multiple studies on the same 
topic (Hedges 1990). These situations can be conceptual-
ized hierarchically—for instance as multiple outcomes or 
repeated assessments of the same measure nested within 
each study. Ignoring or misspecifying the resulting covari-
ance structure of effect sizes can lead to invalid estimates 
of mean effect sizes and their standard errors (see also 
chapter 13, this volume).

There are several approaches to dealing with such depen-
dencies. The most simple involves analyzing for each study 
only one of the set of possible correlated effects, for exam-
ple, the mean or median of all effects, a randomly selected 
effect estimate, or the most theoretically relevant estimate 
(Lipsey and Wilson 2001). Another involves Bonferroni 
and “ensemble adjusted” p-values. Although these strate-
gies are relatively simple to apply, each is conservative and 
fails to take into account all of the available data. Larry 
Hedges and Ingram Olkin therefore developed a multivari-
ate statistical framework in which dependencies can be 

directly modeled (1985; see also Raudenbush, Becker, and 
Kalaian 1988; Rosenthal and Rubin 1986). More recently, 
Larry Hedges, Elizabeth Tipton, and Matthew Johnson 
developed a robust estimator of the covariance matrix of 
meta-regression coefficients for within-study correlated 
effect-size estimates (2010), and Emily Tanner-Smith and 
Elizabeth Tipton (2014) develop and tested corresponding 
software macros. Bayesian, hierarchical linear (HLM), 
and structural equation (SEM) modeling approaches have 
also been successfully applied to deal with multiple effect 
sizes within studies (Raudenbush and Bryk 1985; van 
Houwelingen, Arends, and Stijnen 2002; Saleh et al. 2006; 
Eddy, Hasselblad, and Shachter 1990; Sutton and Abrams 
2001; Scott et al. 2007; Nam, Mengersen, and Garthwaite 
2003; Hox and Leeuw 2003; Prevost, Abrams, and 
Jones 2000; Cheung 2008, 2014; Cheung and Chan 2005; 
see also chapter 13, this volume). These multivariate models 
are more complex than the previously discussed univariate 
techniques, and some require estimates of the covariance 
structure among the correlated effect sizes that may be diffi-
cult to obtain, in part because of missing information in pri-
mary studies. Moreover, the gains in estimation due to using 
these multivariate techniques may be small.

22.2.10  Failure to Weight Effect Sizes 
Proportional to Their Precision

Everything else being equal, studies with larger sample 
sizes yield effect-size estimate that are more precise (that 
is, smaller standard errors) than studies with smaller ones. 
Simply averaging effect sizes of different precision may 
yield biased average effects and sampling errors even if 
each study’s estimates are themselves unbiased. Therefore, 
when effect sizes are combined, it has become common 
practice to use weighted averages, allowing more precise 
estimates to have a stronger influence on the overall find-
ings. Larry Hedges shows that the optimal weight is the 
inverse of the sampling variance of an effect size (1982; 
Hedges and Vevea 1998). Michael Brannick and his 
colleagues and Fulgencio Marín-Martínez and Julio 
Sánchez-Meca demonstrate this outcome in a Monte Carlo 
simulation for random-effects meta-analysis under scenar-
ios common in organizational research (Brannick, Yang, 
and Cafri 2011; Marín-Martínez and Sánchez-Meca 2010). 
This validity threat was common in early meta-analyses 
of psychotherapy outcomes but has become increasingly 
rare in recent years in meta-analyses using common effect-
size metrics, such as d, r, and odds ratios (Shapiro and 
Shapiro 1982; Smith, Glass, and Miller 1980). Although 
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this remains controversial, there appears to be continued 
interest in overall effect estimates based on effect-size 
weights that take into account differences between studies 
in their methodological quality (Doi et al. 2015; Doi and 
Thalib 2009, 2008).

22.2.11  Underjustified Use of Fixed-  
or Random-Effects Models

When analyzing effect sizes, Hedges and Olkin (1985) 
and Hedges and Vevea (1998) stress the importance of 
deciding on a model with fixed or random effects. Per-
haps the most important difference between the two mod-
els concerns the inferences they allow. In its simplest 
form, a fixed-effect model assumes that all the studies in 
a meta-analysis involve independent samples of partici-
pants from the same population, and so it is legitimate to 
postulate a single but unknown effect-size parameter. If 
that is the case, each study in a meta-analysis provides an 
independent estimate of this unknown effect-size param-
eter, estimates of which differ only as a result of sam-
pling variability. In a more complex fixed-effects model, 
effect sizes may differ between fixed groups or levels 
such that each study within a group or level provides an 
estimate of that unknown effect-size parameter. In con-
trast, random-effects models assume that each study has 
its own unique “true” effect and to be a sample realiza-
tion from a universe of related, yet distinct effects. Thus, 
observed differences in treatment effects have two sources: 
different samples of participants (as in the fixed-effect 
model) and true differences in treatment effects between 
studies (relative to a single true effect size in the fixed 
model). This means that in the random-effects model, treat-
ment effects are best represented as a distribution of true 
effects represented by their expected value and variance.

These two models have important implications for the 
analysis and interpretation of effect-size estimates (Hedges 
and Vevea 1998; see chapter 12, this volume). The fixed- 
effect model is analytically simpler, requiring estimates of 
the specific fixed effects of interest (for example, mean 
effect sizes for treatment A, B, and C) and their precision 
(that is, standard error). The random-effects model requires 
estimating the population variance associated with the uni-
verse of treatment effects given the estimates observed in a 
sample of treatments and their precision. As a consequence 
of the different underlying statistical models, fixed-effects 
analyses limit inferences to the specific fixed levels of a 
factor that were included in a meta-analysis (for example, 
treatments A, B, and C). In contrast, random-effects mod-

els strive for inferences about the population of levels of a 
factor (for example, population of treatments consisting of 
A, B, C, F, . . . , Z), given the samples of levels that were 
included in a meta-analysis (for example, sample of treat-
ments consisting of C, G, M, and T).

The decision to assume a fixed- or random-effects 
model is primarily influenced by the substantive assump-
tions meta-analysts make about the processes generating 
an effect and about the desired inferences. That is, are dif-
ferent studies estimating a single common fixed effect or 
do the effects vary between studies? Are the treatments, 
settings, outcomes, and participants examined in different 
studies sufficiently standardized and similar (that is, fixed) 
that they should be considered equivalent for purposes of 
interpreting treatment effects? Are we only interested in 
drawing inferences about the specific instances of treat-
ments, settings, outcomes, and participants that were 
studied (that is, fixed-effect model)? Or, are we interested 
in drawing more general inferences about the classes of 
treatments, settings, and outcomes to which the specific 
instances that were studied belong (that is, random-effect 
model)? Decisions about fixed- or random-effects models 
should not be influenced by the heterogeneity observed 
in the data and the results of a homogeneity test. This is 
because such tests cannot provide meaningful results if 
they are applied to a meta-analysis of studies estimating 
the same fixed effects (for instance, the speed of light). 
Heterogeneity tests should also be used cautiously in 
meta-analyses of a random effects (for instance, the effects 
of supplemental instruction in introductory college courses). 
This is because tests of homogeneity tend to have low 
statistical power in situations commonly found in research 
syntheses, for example, modest heterogeneity, unequal 
sample sizes; small within-study sample sizes (Hardy and 
Thompson 1998; Harwell 1997; Hedges and Pigott 2001; 
Jackson 2006). In summary, there is no simple indicator of 
which model is correct, and the choice of a fixed- or 
random-effects model should be based on our understand-
ing of the nature of the effect and our understanding of how 
the included primary studies sample the effects.

22.2.12  Lack of Statistical Power for 
Detecting an Association

Although the focus of meta-analyses is on estimating the 
magnitude of effects and their precision rather than null 
hypothesis testing, meta-analysts often report findings 
from hypothesis tests about the existence of an associa-
tion. Under most circumstances, the statistical power for 
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detecting an association in a meta-analysis is influenced 
by the number of studies, the sample sizes within studies, 
the type of assignment of units to experimental conditions 
in the primary studies, such as cluster randomization, and, 
for analyses employing random-effects assumptions, the 
between-studies variance component (Hedges and Pigott 
2001; Donner, Piaggio, and Villar 2003; Cohn and Becker 
2003). When compared with statistical analyses in primary 
studies, tests of mean effect sizes will typically be more 
powerful in meta-analyses, particularly in fixed-effect 
models estimating the average effect of a class of interven-
tions based on many similar studies. There are some para-
doxical exceptions to this rule in random-effect models, for 
instance, when small studies add more between-studies 
variance than they compensate for by adding information 
about the mean effect (Hedges and Pigott 2001). Similarly, 
research syntheses of cluster randomization trials must take 
design effects into account to obtain correct estimates of 
statistical power (Donner, Piaggio, and Villar 2001, 2003).

Some meta-analysts are limited to a few studies, each 
having small sample sizes. Other meta-analysts are inter-
ested in examining effect sizes for subclasses of treatments 
and outcomes, different types of settings, and different 
subpopulations. Careful power analyses can help clarify 
the type II error rate of a test failing to reject a null 
hypothesis, and Jeffrey Valentine, Therese Pigott, and 
Hannah Rothstein (2010) provide a useful primer on statis-
tical power for meta-analysis for fixed and random models. 
The meta-analyst then has to decide which trade-off to 
make between the number and type of statistical tests and 
the statistical power of these tests.

22.3  THREATS TO INFERENCES ABOUT  
THE CAUSAL NATURE OF THE  
TREATMENT-OUTCOME ASSOCIATION

Threats to inferences about whether an association between 
treatment and outcome classes is causal or spurious arise 
mostly out of the designs of primary studies. It is at the 
level of the individual study that the temporal sequence of 
cause and effect, randomization of units to conditions, and 
other design features aimed at strengthening causal infer-
ences are implemented.

The following threats (see table 22.2) are in addition to 
those presented earlier that refer to the likelihood of an 
association between treatment and outcome classes. The 
logic of causal inference is fairly straightforward at the 
primary study level, but is complicated at the research 
synthesis level because findings from partially flawed 

primary studies often need to be combined. Inferences about 
causation are not necessarily jeopardized by deficiencies in 
primary studies because—at least in theory—individual 
sources of bias in the primary studies may cancel each other 
out exactly when aggregated in a research synthesis. So, at 
the research synthesis level, a threat only arises if the defi-
ciencies within each primary study combine across studies 
to create a predominant direction of bias.

22.3.1  Absence of Studies with Successful 
Random Assignment

In primary studies, unbiased causal inference requires 
establishing the direction of causality and ruling out 
third-variable alternative explanations. Inferring the 
direction of causality is easy in experimental and quasi- 
experimental studies where knowledge is usually available 
about the temporal sequence from manipulating the treat-
ment to measuring its effects. In theory, third-variable 
alternative explanations are ruled out when participants 
in primary studies are randomly assigned to treatment 
conditions or if a regression-discontinuity study is done 
(Shadish, Cook, and Campbell 2001; West, Biesanz, and 
Pitts 2000; Imbens and Lemieux 2008).

In research syntheses of well-implemented random-
ized trials, the strong causal inferences at the primary 
study level are transferred to the causal inferences at the 
level of the research synthesis. This is why, for exam-
ple, the Cochrane Collaboration originally restricted 
systematic reviews of medical research to randomized 
controlled trials (Chalmers 1993). Systematic reviews 
conducted through the Campbell Collaboration cover 
interventions from broader range of disciplines (including 
criminal justice, education, social welfare, and international 
development) and may include randomized experiments, 
high-quality quasi-experiments, and observational studies 
(Shemilt et al. 2008). If randomization was poorly imple-
mented or absent, then causal inferences are ambiguous 
and the pervasive possibility of third-variable explanations 
arises (Campbell and Boruch 1975). This was illustrated in 

Table 22.2  Threats to Inferences About the Causal 
Nature of the Treatment-Outcome 
Association

1. Absence of studies with successful random assignment
2. Primary study attrition

source: Authors’ compilation.
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a meta-analysis of quasi-experimental studies of neuro-
cognitive functioning in post-traumatic stress disorder 
(PTSD), where PTSD diagnoses may be confounded with 
seeking treatment and comorbid conditions (Scott et al. 
2015). If lack of random assignment in primary studies 
yields a predominant bias across these studies, causal infer-
ence at the level of the research synthesis is jeopardized.

One approach to this threat compares the average effect 
estimates from studies with random assignment to those 
studies on the same question with more systematic assign-
ment. If effect estimates differ, causal primacy must then 
be given to findings from randomized designs, assuming 
that the randomized and non-randomized studies are 
equivalent on other characteristics. Though a set of ran-
domized experiments and quasi-experiments sometimes 
result in similar estimates, there are some notable excep-
tions (Shadish, Luellen, and Clark 2006; Jacob and 
Ludwig 2005; Boruch 2005; Lipsey 1992; Smith, Glass, 
and Miller 1980; Wittmann and Matt 1986; Chalmers  
et al. 1983).

A second strategy involves the careful explication of 
possible biases caused by flawed randomization or associ-
ated with a particular quasi-experimental design in each 
primary study as Cobb Scott and colleagues attempted to do 
(Scott et al. 2015). Based on a sufficiently complete under-
standing of possible biases, adjustments for pretreatment 
differences between groups can sometimes be made to 
project causal effects, controlling for the identified biases. 
The problem here of course is justifying that all important 
biases have been identified and their operation has been 
correctly modeled. This latter approach is particularly use-
ful when the first approach fails if too few primary studies 
with randomized designs exist (for further discussion of 
these issues and a checklist for meta-analysts planning to 
include non-randomized studies, see Norris et al. 2013; 
Wells et al. 2013; Reeves et al. 2013; Higgins et al. 2013).

22.3.2 Primary Study Attrition

Attrition of participants from treatment or measurement is 
common in even the most carefully designed randomized 
experiments and quasi-experiments. If attrition in these 
primary studies is differential across treatment groups, 
effect estimates may then be biased, inflating or deflating 
causal estimates. If the biases operating in each direction 
completely cancel out, then causal inference at the research 
synthesis level is not affected. However, if predominant 
bias persists across the primary studies, then causal infer-
ences from the synthesis are called into question. For 

instance, Mark Lipsey’s (1992) meta-analysis of juvenile 
delinquency interventions found that the more amenable 
juveniles might have dropped out of treatment groups and 
the more delinquent juveniles out of control groups. The 
net effect at the level of the research synthesis is a potential 
bias. Ying Yuan and Roderick Little (Yuan and Little 2009) 
examined the effect of missing data in primary studies on 
estimates of treatment effect and concluded that standard 
random-effects models lead to biased estimates if study-
level attrition rates and effect sizes are correlated. The 
magnitude of the bias is positively associated with the 
strength of the association and the relative size of the with-
in-study and between-study variance and may be corrected 
for using methods they developed.

To address this threat, it is crucial to code, for each 
primary study, information about the level and differen-
tial nature of attrition from the treatment groups. The 
latter information cannot be inferred from the sheer 
level of attrition, but requires the primary study to have 
reported the possible differential attrition of partici-
pants. If this information is available, the analyst can 
then examine the effect of attrition on effect estimates by 
disaggregating studies according to their level of total 
and differential attrition. Jeffrey Valentine and McHugh 
use this strategy in combination with sensitivity analyses 
to explore whether the reported levels of attrition pre-
sented plausible threats in randomized experiments in 
education (2007).

22.4 THREATS TO GENERALIZED INFERENCES

Although some of the threats already discussed are ger-
mane to generalization (for example, underjustified use of 
fixed and random-effects models), we now turn explicitly 
to generalization issues, first discussing threats that may 
lead to erroneous conclusions about target constructs and 
universes of people, treatments, outcomes, and settings 
(threats 1–7 in table 22.3). Some of these threats have their 
origins in deficiencies and constraints of the primary stud-
ies; others are independent of primary studies and linked to 
deficiencies of the coding and rating system a meta-analyst 
uses. Next, we examine the threats pertinent to analyses 
of potential moderator variables from which generalized 
inferences are drawn about empirical robustness and 
causal contingency (threats 8–13 in table 22.3). This is 
followed by an additional threat (14) relevant to general-
izations that extrapolate findings beyond the universes 
included in a meta-analysis to unstudied people, treat-
ments, outcomes, and settings.
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22.4.1 Biased Sampling of Inference Domains

Statistical sampling theory is sometimes invoked as the 
justification for generalizing from the obtained instances 
(or samples) of people, treatments, outcomes, and set-
tings to the universes or domains they are thought to rep-
resent, and about which researchers want to draw 
inferences. However, it is rare in individual primary 
studies for instances to be selected at random from their 
target universes, just as it is rare in research syntheses to 
randomly sample primary studies, treatments, outcomes 
or settings from the universe of research on a given 
topic. Some exceptions are noteworthy, as when Robert 
Orwin and David Cordray (1985) and Georg Matt (1989) 
randomly sampled studies from those included in the 
Smith, Glass, and Miller (1980) meta-analysis of the 
psychotherapy outcome—assuming it had a census of all 
studies or a random sample from the census. Perhaps the 
most feasible random selection in meta-analysis is when, 
as some methodologists have suggested (Lipsey and 
Wilson 2001), only one effect size is sampled per study 
so as to provide an unbiased estimate of the mean effect 
size per study.

More common study selection strategies are for meta- 
analysts to seek collecting the entire population of pub-
lished and unpublished studies on a topic, or restricting 
the selection of studies to all those with specific person, 
treatment, outcome, setting or time characteristics of 
substantive importance (Mick et al. 2003; Moyer et al. 
2002). In either of these circumstances, inferences from 
the samples to their target universes may be biased if the 
meta-analysts are unable to retrieve all studies from the 
target populations and the missing studies have different 
average effect sizes than those that were included. As a 
result, generalizations can easily be overstated, even if 
they are supported by data from hundreds of studies and 
thousands of research participants.

22.4.2  Underrepresentation of  
Prototypical Attributes

Research syntheses should start with the careful explica-
tion of the target constructs about which inferences are to 
be drawn, at a minimum identifying their prototypical 
attributes and any less central features at the boundaries 
with other constructs. Thus, it can be that the collection 
of primary studies in the research synthesis does not con-
tain representations of all the prototypical elements. This 
was the case when William Shadish and his colleagues 
attempted to investigate the effects of psychotherapy in 
clinical practice, for example (2000). They observed that 
many studies included a subset of prototypical features of 
clinical practice, but no single study included all of its fea-
tures as they defined them. As a result, generalization to 
real-world psychotherapy practice is problematic, despite 
thousands of studies on the effectiveness of psychotherapy 
practice. In such a situation, the operations implemented 
in the primary studies force us to revise the construct 
about which inferences are possible, reminding us that 
we cannot generalize to the practice of psychotherapy 
as it is commonly conducted in the United States. An 
important task of meta-analysis is to inform the research 
community about the underrepresentation of prototypical 
elements of core constructs in the literature on hand, turn-
ing attention to the need to incorporate them into the sam-
pling designs of future studies.

22.4.3  Restricted Heterogeneity of Substantively 
Irrelevant Third Variables

Even if sampling from the universes about which gener-
alized inferences are sought were random and important 
prototypical elements were represented in the reviewed 

Table 22.3  Threats to Generalized Inferences  
in Research Syntheses

Inferences to Target Constructs and Universes

 1.  Biased sampling of inference domains
 2.  Underrepresentation of prototypical attributes
 3.  Restricted heterogeneity of substantively irrelevant 

third variables
 4.  Mono-operation bias
 5.  Mono-method bias
 6.  Rater drift
 7.  Reactivity effects

Inferences About Robustness and Moderating Conditions

 8.  Restricted heterogeneity in inference domains
 9.  Moderator variable confounding
10.  Failure to test for homogeneity of effect sizes
11.  Lack of statistical power for homogeneity tests
12.  Lack of statistical power for studying  

disaggregated groups
13. Misspecification of causal mediating relationships

Extrapolations to Novel Constructs and Universes

14. Misspecification of models for extrapolation

source: Authors’ compilation.
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studies, a threat arises if a research synthesist cannot 
demonstrate that the causal association is robust and 
holds across substantively irrelevant characteristics. For 
instance, if the reviewed studies on the effectiveness of 
homework in middle school were conducted by just one 
research team, relied on voluntary participation by stu-
dents, or depended on teachers being highly motivated, 
the threat would then arise that all conclusions about the 
general effectiveness of homework are confounded with 
substantively irrelevant aspects of the research context. 
To give an even more concrete example, if private schools 
were explicated to be those where school expenses come 
from student fees, donations, and the proceeds on endow-
ments (rather than from taxes), it is irrelevant whether the 
schools are parochial or nonparochial, military schools or 
elite academic schools. To generalize to the universe of 
private schools requires being able to show that relation-
ships are not limited to one or a few of these contexts—
say parochial or military schools.

Limited heterogeneity of universes will also impede 
the transfer of findings to new universes (that is, extrapo-
lation), because it hinders the ability to demonstrate the 
robustness of a causal relationship across substantive 
irrelevancies of design, implementation, or measurement 
method. The wider the range and the more substantively 
irrelevant aspects across which a finding is robust, and the 
better moderating influences are understood, the stronger 
the belief that the finding will also hold under the influ-
ence of not yet examined contextual irrelevancies.

22.4.4 Mono-Operation Bias

The coding and rating systems of research syntheses often 
rely exclusively on single items to measure such complex 
target constructs as setting, diagnosis, or treatment type. 
It is well known from the psychometric literature that 
single-item measures have poor measurement properties. 
They are notoriously unreliable, tend to underrepresent a 
construct, and are often confounded with irrelevant con-
structs. To address and improve on common measurement 
limitations of meta-analytic coding manuals, rigorous pro-
cedures for establishing inter-rater reliability and standard 
scale development procedures have to become common 
practice to allow valid inferences about target constructs of 
a meta-analysis.

22.4.5 Mono-Method Bias

This bias occurs if the measurement method in a meta- 
analysis relies on a single coder who reads and codes a 

research publication, following the operations delineated 
in a coding manual. To avoid this bias, coding procedures 
for meta-analyses have to incorporate multi-method coding 
approaches. This could include having multiple coders 
(perhaps with different substantive backgrounds related 
to the research topic) code all items of a coding manual, 
contacting the original authors to provide clarification and 
additional information, obtaining additional write-ups of a 
study, such as complete dissertations or reports to a funding 
agency, and relying on external, supplementary sources, 
such as to describe psychometric properties of an outcome 
measure or allegiance and experience of a researcher 
(Robinson, Berman, and Neimeyer 1990). In the absence 
of such improvements, conclusions about important target 
constructs relying on single coder ratings remain suspect.

22.4.6 Rater Drift

Reading, understanding, and coding publications of multi-
faceted primary studies involve many cognitively challeng-
ing tasks. Over time, coders learn through practice, develop 
heuristics to simplify complex tasks, fatigue and become 
distracted, and may change their cognitive schemas as a 
result of exposure to study reports. As a consequence, the 
same coder may unknowingly change over time such that 
earlier codings of the same evidence differ from later ones. 
To address this validity threat, rater drift needs to be moni-
tored as part of a continuing coder training program as 
Bryce McLeod, John Weisz, and Jeffrey Wood do in their 
meta-analysis of the association between parenting and 
childhood depression (2007). Moreover, changes in coding 
manuals should be made publicly to reflect changes in the 
understanding of a code, which may necessitate recoding 
studies that were examined under the prior coding rules.

22.4.7 Reactivity Effects

A measure is said to be reactive if the measurement process 
itself influences the outcome (Webb et al. 1981). In the case 
of a research synthesis, the coding process itself may 
inadvertently influence the coding outcome. For instance, 
knowing that the author of a study is a well-known expert 
in the field rather than an unknown novice may predispose 
a coder to rate research design characteristics more favor-
ably for the expert. Similarly, knowing that the treatment 
yielded no benefits over the control condition may bias a 
coder to rate the implementation of the treatment condition 
more critically. To minimize reactivity biases, it is desirable 
to mask raters to influences that could bias their codings, 
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including authorship and study results. Further, as much as 
possible, attempts should be made to avoid reactivity biases, 
including codings that require as little inference as possible 
on the part of the raters. For example, rather than asking 
raters to arrive at an overall code describing study quality, it 
would be better to ask them to code specific aspects of stud-
ies that pertain to quality, such as the method of allocating 
participants to groups and attrition, which are less likely to 
be reactive (see chapters 7 and 9, this volume).

22.4.8  Restricted Heterogeneity  
in Inference Domains

Inferences about the conditions moderating the magnitude 
and direction of an association are facilitated if the rela-
tionship can be studied for a large number of diverse 
domains or universes of people, treatments, outcomes, set-
tings, and times. This is the single most important poten-
tial strength of research syntheses over individual studies. 
Although meta-analyses of standardized treatments and 
specifically designated outcomes, populations, and settings 
may increase the precision of some effect-size estimates, 
such restrictions hamper our ability to better understand the 
conditions under which such relationships can and cannot 
be observed. Rather than limiting a meta-analysis to a 
review of a single facet of the universe of interest or lump-
ing together a heterogeneous set of facets, we encourage 
meta-analysts—sample sizes permitting—to explicitly 
represent and take advantage of such heterogeneities.

Such advice has implications for those observers 
who have suggested that causal inferences in general—
and causal moderator inferences in particular—could 
be enhanced if meta-analysts relied only on studies with 
superior methodology, particularly randomized experi-
ments with standardized treatments, manifestly valid out-
comes and clearly designated settings and populations 
(Chalmers et al. 1989; Chalmers and Lau 1992; Sacks 
et al. 1987; Slavin 1986). Such a strategy appears to be 
useful in areas where research is fairly standardized. How-
ever, other limitations arise because this standardization 
limits the heterogeneity in research designs, treatment 
implementations, outcome measures, recruitment strate-
gies, subject characteristics, and the like. Hence it is not 
possible to examine empirically how robust a particular 
effect is that has been obtained in a restricted, standard-
ized context, leaving uncharted the realm of applica-
tion of meta-analytic conclusions.

Meta-analysis has the potential to increase confidence 
in generalizations to new universes (that is, extrapolation) 

if findings are robust across a wide range and large number 
of different universes. The more robust the findings and the 
more heterogeneous the populations, settings, treatments, 
outcomes, and times in which they were observed, the 
greater the belief that similar findings will be observed 
beyond the populations studied. If the evidence for stub-
born empirical robustness can be augmented by evidence 
for causal moderating conditions, the novel universes in 
which a causal relationship is expected to hold can be even 
better identified.

The logical weakness of this argument lies in its induc-
tive basis. That psycho-educational interventions with 
adult surgical patients have consistently shown earlier 
release from the hospital across a broad range of major and 
minor surgeries and across diverse respondents and of 
treatment providers throughout the 1960s, 1970s, and 
1980s cannot logically guarantee the same effect will hold 
for as-yet-unstudied surgeries, and in the future (Devine 
1992). However, the robustness of the relationship does 
strengthen the belief that psycho-educational interventions 
will have beneficial effects with new groups of patients 
and with novel surgeries in the near future (that is, extrap-
olation). Homogeneous populations, treatments, outcomes, 
settings, and times limit the examination of causal contin-
gencies and robustness, and consequently, impede infer-
ences about the transfer of findings to novel contexts.

22.4.9 Moderator Variable Confounding

At the synthesis level, moderator variables describe  
characteristics of the classes of treatment, outcomes, set-
tings, populations, or times across which the magnitude or 
direction of a causal effect differs—a generalizability 
question. Claims about moderator variables are involved 
when a research synthesist concludes that treatment type A 
is less effective in population C than D, stronger with out-
come of type E than F, weaker in setting G than H or posi-
tive in past times but not recently. Moderator variables 
are even involved when the claim is made in a synthesis 
that treatment type A is superior to treatment type B, for 
this assumes that the studies of A are equivalent to those 
of B on everything correlated with the outcome other than 
A versus B. Any uncertainty about this pertains to the role 
that average study differences might have played in achiev-
ing the obtained difference between studies of A and B; 
thus it is an issue of moderator variables.

Threats to valid inference about the causal moderating 
role in research syntheses are pervasive (Lipsey 2003; 
Shadish and Sweeney 1991; Scott et al. 2007; Valentine 
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and Thompson 2013). This is because participants in  
primary studies are rarely assigned to moderator condi-
tions at random, for example, to outcome type E versus F 
or to settings G versus H (see chapter 2, this volume). 
Claims about the causal role of moderators are often ques-
tionable in syntheses because any one moderator is often 
confounded with other study characteristics. For instance, 
studies of smoking cessation in medical primary care facil-
ities are likely to attract older participants than similar 
studies on college campuses. Likewise, behavioral treat-
ments tend to involve behavioral outcome measures of a 
narrow target behavior, whereas psycho-dynamic inter-
ventions are likely to rely on broader measures of adjust-
ment. If the moderator variable (for example, primary care 
setting versus college campus) is confounded with charac-
teristics of the design, setting, or population (for example, 
age), differences in the size or direction of a treatment effect 
that might be attributable to the moderator are instead con-
founded with other attributes of the set of studies in one 
setting and the set of studies in another.

To deal with this possibility, meta-analysts should 
examine within-study comparisons of the moderator effect 
because these are obviously not prone to between-study 
confounds. For instance, if the moderating role of treat-
ment types A, B, and C is at stake, a meta-analysis can be 
conducted of all the studies with internal comparisons of 
treatment types A, B, and C (for example, Shapiro and 
Shapiro 1982). Or, if the moderating role of subject 
gender is of interest, inferences about gender differences 
might depend on within-study contrasts of males and 
females rather than on comparisons of studies with only 
males or females or that assess the percentage of males. 
An extension of direct head-to-head within-study compar-
isons has emerged out of networks of randomized trials 
(Salanti et al. 2008; Song et al. 2003; Salanti 2012). 
Known as mixed treatment comparison meta-analyses 
and network meta-analyses, this approach aims to improve 
meta-analyses comparing multiple treatments by provid-
ing a formal model for comparing treatments (for instance, 
ranking A, B, C, D) based on different multiple-treatments 
studies, none of which directly compared all treatments. 
Although such network meta-analyses are subject to 
potential moderator variable confounding (for instance, 
studies comparing A with B differ from those comparing 
B with C), they make transparent the network of available 
evidence and make explicit critical assumption regarding 
indirect comparisons based on multi-treatment studies, 
that is, consistency and transitivity. This allows the explo-
ration of potential biases through sensitivity analyses and 

statistical model (Higgins et al. 2012; White et al. 2012). 
The latter is a common general approach to the explora-
tion of a moderator variables (Shadish and Sweeney 
1991; Donegan et al. 2015). The validity of the causal 
inferences based on such models depends on the ability 
of the meta-analyst to identify and reliably measure all 
confounding variables. Multivariate statistical adjust-
ments can be informative here, but not definitive given the 
difficult task of conceptualizing all such confounds and 
then measuring them well across the studies under review.

22.4.10  Failure to Test for Homogeneity 
of Effect Sizes

Under a fixed-effect statistical model, a statistical test for 
homogeneity assesses whether the variability in effect esti-
mates exceeds that expected from sampling error alone 
(Hedges 1982; Rosenthal and Rubin 1982). If the null 
hypothesis of homogeneous effect sizes is retained, a single 
population effect size provides a parsimonious model of 
the data, and the weighted mean effect size provides an 
adequate estimate. If the null hypothesis is rejected, the 
implication is that subclasses of studies may exist that dif-
fer in population effect size, triggering the search to iden-
tify the nature of such subclasses. Hence, heterogeneity 
tests play an important role in examining the robustness 
of a relationship and in initiating the search for potential 
moderating.

The failure to test for heterogeneity may result in lump-
ing manifestly different subclasses of people, treatments, 
outcomes, settings, or times into one class. This problem 
has been referred to as the apples and oranges problem of 
meta-analysis. However, Gene Glass, Robert Rosenthal, 
and Georg Matt have argue that apples and oranges should 
indeed be mixed if the interest is in generalizing to 
such higher-order characteristics as fruit or whatever else 
inheres in an array of treatments, outcomes, settings,  
people, and times (Glass 1978; Smith, Glass, and Miller 
1980; Rosenthal 1990; Matt 2003, 2005). We should 
indeed be willing to combine studies of manifestly differ-
ent subclasses of people, treatments, outcomes, settings, 
or times if they yield equivalent results in reviews. In this 
context, the homogeneity test indicates when studies 
yield such different results that a single, common average 
effect size needs to be disaggregated through blocking on 
study characteristics that might explain the observed 
variance in effect sizes.

Coping with this threat is relatively simple, and homo-
geneity tests have become standard both as a way of 
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identifying the most parsimonious statistical model to 
describe the data and as a means of testing model speci-
fication (see chapter 12). However, the likelihood of 
design flaws in primary studies, of publication biases 
and the like makes the interpretation of homogeneity 
tests more complex (Hedges and Becker 1986; Schulze 
2004). Evidence also indicates that the choice of the 
effect-size metric, such as r versus Fisher z-transform 
or odds ratio versus log odds, affects the outcome of hetero-
geneity tests (Engels et al. 2000). If all the studies being 
meta-analyzed have the same flaw, or if studies with zero 
and negative effects are less likely to be published, then a 
consistent bias results across studies and can make the 
effect sizes appear more homogeneous than they really 
are. Further, even if the collection of studies is not biased, 
a failure to reject the null hypothesis that observed effect 
sizes are a sample realization of the same population 
effect does not prove it. Conversely, if all the studies 
have different design flaws, effect sizes could be hetero-
geneous even though they actually have the same popu-
lation effect. Obviously, the causes of heterogeneity 
that are of greatest interest are substantive rather than 
methodological. Consequently, it is useful to differenti-
ate between homogeneity tests conducted before and 
after the assumption, that all study-level differences in 
methodological irrelevancies have been accounted for, 
has been defended.

22.4.11  Lack of Statistical Power  
for Homogeneity Tests

A homogeneity test examines whether the observed vari-
ability in effect sizes is more than would be expected from 
sampling error alone. It is thus the gatekeeper test for decid-
ing to continue the search for variables that moderate the 
average effect size obtained in a review—a generalization 
task. But when these homogeneity tests have little statistical 
power, as is usually the case (Gavaghan, Moore, and 
McQuay 2000), their type II error rate will be large and lead 
to the erroneous conclusions that the search for moderator 
variables should be abandoned (Jackson 2006; Hedges and 
Pigott 2001; Harwell 1997). Moreover, Elena Kulinskaya, 
Michael Dollinger, and Kirsten Bjørkestøl developed a 
modification of the standard Q test that provides more accu-
rate results especially for small and moderate study sizes 
(2011b). They show that the improved accuracy leads to a 
decrease in power for risk difference effect sizes and an 
increase in power for standardized mean difference effect 
sizes (2011a). When statistical power is suspect, statisti-

cally nonsignificant homogeneity tests provide inclusive 
evidence and should not be exclusively relied on to justify 
conclusions about the robustness of an association.

22.4.12  Lack of Statistical Power for  
Studying Disaggregated Groups

If there is reason to believe treatment effects may differ 
across types of treatments, outcomes, people, settings, or 
over time (that is, moderator effects), highly aggregated 
classes (for example, therapy or well-being) have to be 
disaggregated to examine the conditions under which an 
effect changes direction or magnitude. Such subgroup 
analyses rely on fewer studies than main effect analyses 
and involve additional statistical tests that may necessitate 
procedures for type I error control, lowering the statistical 
power for the subanalyses in question. Consequently, the 
chances are reduced to find statistically significant differ-
ences even if such differences exist in the population. The 
flaws of this erroneous inference are compounded if a 
meta-analyst then concludes that an effect generalizes 
across subgroups of the universe because no statistically 
significant differences were found. Large samples of stud-
ies mitigate this problem to some extent, although the 
power in research syntheses is more complex than in pri-
mary studies. This is because power depends not only on 
the effect size, type I error rate, and sample size of  
primary study participants, but also on the number of 
studies and the underlying statistical model (Cohn and 
Becker 2003; Hedges and Pigott 2004; Valentine, Pigott, 
and Rothstein 2010).

22.4.13  Misspecification of Causal  
Mediating Relationships

Mediating relationships are examined to shed light on 
the processes by which a causal agent, such as second-
hand smoke, transmits its effects on an outcome, such as 
asthma exacerbation. They provide highly treasured 
explanations of otherwise merely descriptive causal asso-
ciations. Instead of simply noting that a treatment affects 
an outcome, mediating relationships inform us why and 
how a treatment affects an outcome. Explanatory models 
rely on causal mediating relationships to justify extrapola-
tions and to specify causal contingencies; both are import-
ant generalization tasks.

Few meta-analyses of mediating processes exist, and 
those that do utilize quite different strategies. Monica Harris 
and Robert Rosenthal’s meta-analysis of the mediation of 
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interpersonal expectancy effects used the available exper-
imental studies that had information on at least one of the 
four mediational links abstracted from relevant substan-
tive theory, which were never tested together in any indi-
vidual study (1985). Steven Premack and John Hunter’s 
meta-analysis of mediation processes underlying individ-
ual decisions to form a trade union relied on combining 
correlation matrices from different studies on subsets of 
variables believed to mediate a cause-effect relationship 
(1988). The entire mediation model had not been probed 
in any individual study. Betsy Becker’s meta-analysis 
relied on the collection of individual correlations or cor-
relation matrices to generate a combined correlation matrix 
(1992). That is, individual studies may contribute evidence 
for one or more of the causal links postulated in the medi-
ational model. This approach has been further developed 
in an effort to conduct meta-analyses of structural equation 
models based on a pooled correlation matrix (Cheung and 
Chan 2005). Recent advances on this topic and persistent 
challenges are discussed in a special issue of Research 
Synthesis Methods (Cheung and Cheung 2016; Cheung 
and Hafdahl 2016; Gnambs and Staufenbiel 2016; Hedges 
2016; Oort and Jak 2016; Sheng et al. 2016; Wilson, 
Polanin, and Lipsey 2016; Yuan 2016). All these approaches 
examine mediational processes where the data about links 
between variables come from within-study comparisons. 
However, a fourth mediational approach infers causal 
links from between-study comparisons. William Shadish’s 
research on the mediation of the effects of therapeutic orien-
tation on treatment effectiveness is a salient example 
(Shadish 1992; Shadish and Sweeney 1991).

Although the four approaches differ considerably, they 
all struggle with the same practical problem—how to test 
mediational models involving multiple causal connec-
tions when only few (or no) studies are available in which 
all the connections have been examined within the same 
study. A major source of threats to the meta-analytic study 
of mediation processes arises from between-study hetero-
geneity (Hedges 2016) such that the different correlation 
matrices or different mediational links are supported by 
different quantities and qualities of evidence, perhaps 
because of excessive missing data on some mediational 
links, the operation of a predominant direction of bias in 
some studies, or publication or attrition biases involving 
yet other parts of the mediational model. How to quantify 
and model this heterogeneity remains an important issue 
to be addressed.

On the basis of the earlier meta-analyses of causal medi-
ational processes as well as more recent meta-analyses of 

structural equation models, it is clear that missing data is 
a pervasive reason for misspecifying causal models in a 
meta-analysis (Cook et al. 1992). Missing data within 
studies may or may not be completely at random, and 
reported correlations may or may not provide consistent 
estimates. Missing correlations within studies may lead 
meta-analyst to omit important mediational links from the 
model that is actually tested and may also prevent consid-
eration of alternative plausible models. Although in many 
substantive areas large numbers of studies are probing a 
particular descriptive causal relationship, in far fewer are 
large numbers of studies providing a broad range of infor-
mation on mediational processes, and even fewer where 
two or more causal mediating models are directly com-
pared. There are many reasons for these deficiencies. 
Process models are derived from substantive theory, and 
these theories change over time as they are improved or as 
new theories emerge. Obviously, the novel constructs in 
today’s theories are not likely to have been measured well 
in past work. Moreover, today’s researchers are reluctant 
to measure constructs from past theories that are now out 
of fashion or obsolete. Thus, the dynamism of theory 
development does not fit well the meta-analytic require-
ment for a stable set of mediating constructs or the 
simultaneous comparison of several competing substan-
tive theories. Another relevant factor is that, even if a large 
number of mediational variables have been measured, they 
are often measured less well and documented less thor-
oughly than measures of cause and effect constructs are. 
Measures of mediating variables are given less attention, 
and are sometimes not analyzed unless a molar causal 
relationship has been established. Given the pressure to 
publish findings in timely fashion and to write succinct 
rather than comprehensive reports, the examination of 
mediating processes is often postponed, limited to selected 
findings, or based on inferior measures.

22.4.14  Misspecification of Models  
for Extrapolation

The most challenging type of generalization involves 
inferences to new populations, treatments, outcomes, and 
settings. Such extrapolations to novel conditions have to 
rely on the available empirical evidence and specifically 
on the strength of the generalized inferences this evidence 
allows to the target universes represented in these studies. 
Therefore, all threats discussed to this point for generalized 
inferences to target universes (1–7 in table 22.3) and 
robustness and moderators (8–13 in table 22.3) necessarily 
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apply and affect extrapolations to novel constructs and 
universes.

Based on the available evidence, extrapolations rely on 
explicit and implicit models or informal heuristics to proj-
ect treatment effects under yet unstudied conditions, such 
as the effects of a new cancer drug in pediatric patients 
based on evidence in adult populations or the effects of 
psychotherapy in clinical practice based on studies con-
ducted in research settings. At issue, then, is the validity of 
the model used to project the effects of an off-label use of 
a drug (based, for example, on weight, metabolism, devel-
opment stage of organs) or the effects of psychotherapy in 
practice (based on caseload of therapists, patient mix, 
manualized or eclectic therapy). Under the best condi-
tions, these models are informed by a comprehensive 
understanding of the causal mediating processes and 
empirical evidence about the robustness of effects and 
their moderating conditions across a broad range of sub-
stantively relevant and irrelevant variables. To the extent 
that this is not the case, the threat arises that the explicit or 
implicit extrapolation models may be misspecified, creat-
ing the risk for incorrect projections of effects under novel 
conditions.

Our discussion makes it clear that extrapolations to 
novel conditions carry higher uncertainty than general-
ized inferences to universes from which particulars 
have been studied. In this situation, the delicate goal  
of the meta-analyst is to communicate the existing evi-
dence and the models from which an extrapolation is 
made, the assumptions built into such models, the uncer-
tainty of the inference, and the conditions necessary to 
reduce the uncertainty. For the user of a meta-analysis, it 
may then be possible to weigh the risks and harm of an 
incorrect extrapolation against the likelihood and benefits 
of a correct extrapolation.

22.5 CONCLUSION

We argue that the major promise of research syntheses lies 
in strengthening empirical generalizations of associations 
between classes of treatments and outcomes. The history of 
meta-analytic practice, however, has demonstrated that this 
promise is threatened, because meta-analysts cannot rely 
on the two major scientific warrants for generalizability 
claims, random sampling from designated populations and 
strong causal explanations. This chapter offers an alterna-
tive approach, a threats-to-validity framework, to explore 
and make a case for generalized inferences in meta-analysis 
when the established models cannot be applied.

Following Donald Campbell and Lee Cronbach, we dis-
tinguish between three types of generalized inferences that 
are central to meta-analyses (Campbell and Stanley 1963; 
Cook and Campbell 1979; Cronbach 1980). The first deals 
with inferences about an association in target universes of 
people, treatments, outcomes, and settings based on partic-
ulars sampled from these universes. The second concerns 
the robustness and conditional nature of an association 
across heterogeneous, substantively relevant and irrelevant 
conditions. The third concerns extrapolating or project-
ing an association to novel, as-yet unstudied universes. 
The proposed threats-to-validity framework seeks to assist 
meta-analysts in exploring alternative explanations to the 
generalized inferences of interest. Because meta-analysts 
cannot realistically rely on the elegance and strength of 
sampling theory to warrant generalizability claims, the 
proposed framework offers a falsificationist approach to 
identify and rule out plausible alternative explanations to 
justify generalized inferences in meta-analyses.

Although the threats-to-validity framework makes no 
assumptions about random sampling or comprehensive 
causal explanations, it does require that we critically inves-
tigate all plausible concerns that can lead to spurious infer-
ences and rule out each concern on grounds that it is 
implausible or based on evidence that it did not operate in 
a specific situation. Similar to the causal inferences based 
on Campbell’s threats to validity for quasi-experimental 
designs, the generalized inferences based on the proposed 
threats to validity for meta-analyses are tentative and only 
as good as the critical evaluation of the plausible threats. 
The threats we present are, in large measure, a summary of 
what other scholars have identified since Gene Glass’s pio-
neering work (Glass 1976; Smith, Glass, and Miller 1980). 
We expect the list to continue to change at the margin as 
new threats are identified, current ones are seen as less 
relevant than we now think, and as meta-analysis is put to 
new purposes.

To the fledgling meta-analyst, our list of validity threats 
may appear daunting and the proposed remedies over-
whelming. More experienced practitioners will be less 
intimidated by the numerous threats because they operate 
from an implicit theory about the differential seriousness 
and prevalence of these threats and can recognize when 
the needed substantive and technical expertise and resources 
are on hand. Even so, all research syntheses have to make 
important trade-offs between partially conflicting goals. 
Thus, should methodologically less rigorous studies be 
excluded to strengthen causal inferences if this also limits 
the ability to explore potential moderating conditions and 
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the empirical robustness of effects? Should resources be 
allocated to code fewer study features with greater valid-
ity or to code more study features that might capture even 
more potentially important reasons why effect sizes dif-
fer? When should one stop searching for more relevant 
studies if they are increasingly fugitive, or stop trying to 
obtain missing data from primary study authors, or stop 
checking coder reliability and drift? To the experienced 
practitioner, the definitive research synthesis is perhaps 
even more of a fiction than the definitive primary study. 
The goal is research syntheses that answer important 
questions about the generalizability of an association 
while making explicit the limitations of the findings 
claimed, raising new and important questions about the 
boundaries of our understanding, and setting the agenda 
for the next generation of research.

In the earlier editions of this book, we called for the 
development of a viable new theory of generalization that 
can guide the design of research syntheses. We believe that 
the principles proposed by Cook (1990, 1993) and further 
elaborated by Shadish, Cook, and Campbell (2001) can 
serve as a starting point for such a theory. From this 
perspective, secure general knowledge can only emerge 
from studies that examine under different conditions het-
erogeneous variations of a common theme or template of a 
causal association. In combination, the proposed principles 
offer practical guidelines for exploring generalizability 
claims and ruling out threats to validity, for which meta- 
analyses can then provide empirical warrants. They are 
not, though, principles firmly ensconced in statistical 
theory as is the case with probability sampling. But the 
latter has a limited reach across the persons, settings, 
times and instances of the cause and effect that are neces-
sarily involved in generalizing from sampling details to 
causal claims. For all its undisputed theoretical elegance, 
probability sampling is most relevant to generalizing to 
populations of units and, sometimes, to settings. Its practi-
cal relevance to the other entities involved in causal gener-
alization is much less clear. Although the past forty years 
of practice have seen many improvements, significant fur-
ther progress is still needed to achieve a more complete 
understanding of how research syntheses can achieve even 
better causal generalization. The necessary condition for 
this is the existence of one or more comprehensive and 
internally cogent theories of causal generalization. But this 
we do not yet have in any form that leads to novel practical 
actions when conducting meta-analyses. Until we have 
such cogent theories of generalization, the proposed prin-
ciples and validity threats can guide the meta-analyst to 

identify the realm of application of a knowledge claim to 
sustain the evolution of scientific knowledge.
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23.1 INTRODUCTION

We suspect that readers of this volume reacted to it in one 
of two ways: some may have been overwhelmed by the 
number and complexity of the issues that arise in a research 
synthesis. Alternatively, and perhaps simultaneously, 
some may have been delighted to have available a man-
ual to help them through the synthesis process. We fur-
ther suspect that the reaction experienced depended on 
whether the book was read while the reader was thinking 
about or while actually performing a synthesis. In the 
abstract, the concerns raised in this handbook may seem 
daunting. Concretely however, research syntheses have 
been carried out for decades and will be for decades to 
come, and the problems encountered in their conduct do 
not really go away when they are ignored. Knowledge 
builders need a construction manual to accompany their 
blueprints and bricks.

Further, there is no reason to believe that a sound 
research synthesis is any more complex than sound pri-
mary research. The analogies between research synthesis 
and survey research, content analysis, or even quasi- 
experimentation fit too well for this not to be the case. 
Certainly, each type of research has its unique character-
istics. Still, when research synthesis procedures have 
become as familiar as primary research procedures, much 
of what now seems overwhelming will come to be viewed 
as difficult, but manageable, and obligatory.

Likewise, expectations have changed. As mentioned in 
chapter 1, we do not expect a primary study to provide 
unequivocal answers to research questions, nor do we 
expect it to be performed without flaw. Research synthe-
ses are the same. The perfect research synthesis does not 
and never will exist. Synthesists who set standards that 
require them to implement all of the most rigorous tech-
niques described in this book are bound to be disap-
pointed. Time and other resources (not to mention the 
logic of discovery) will prevent such an accomplishment. 
The synthesist, like the primary researcher, must balance 
methodological rigor against practical feasibility.

In this chapter, we revisit some of the major issues that 
have emerged from the preceding pages. We state once 
more unique contributions that research synthesis can 
make to our understanding of scientific evidence. We 
suggest a few limitations and offer our hopes for how the 
usefulness of research syntheses can improve in the 
future. Finally, we briefly share some perspectives on 
what makes a knowledge synthesis of any kind, not just a 
research synthesis, most valuable to its readership.

23.2  UNIQUE CONTRIBUTIONS  
OF RESEARCH SYNTHESIS

23.2.1 Increased Precision and Reliability

Some comparisons were made in chapter 1 between pri-
mary research and research synthesis. It was suggested 
that the two forms of study had much in common. In con-
trast, when we compare research synthesis as it was prac-
ticed prior to the introduction of meta-analytic techniques 
it is the dissimilarities that capture attention. Perhaps 
most striking are the improvements in precision and reli-
ability that new techniques have made possible.

Precision in literature searches has been improved dra-
matically by the procedures described herein. The revolu-
tion in information wrought by the internet has changed 
the way science is conducted and communicated. The 
development and maintenance of comprehensive research 
databases mean that a searcher for scientific literature can 
reach into thousands of journals. The proliferation of 
research registers means that literature searchers can 
know about research that is ongoing and can even reach 
into another researcher’s data files. In addition, the near 
limitless information capacity of computers in the digital 
age means that the common excuse for incomplete report-
ing (that journal space is limited) is moot. Although the 
present process is far from perfect, it is an enormous 
improvement over past practice.

Related to discovering what literature is “out there” is 
access to the literature itself. The use of digital means to 
transmit copies of documents has simplified and sped 
immensely the acquisition of research reports. Gone are 
the days of spending hours in the library copying journal 
articles and dissertations (most of the latter were archived 
on microfiche, making copying particularly painful). 
Institutional subscriptions mean research intensive insti-
tutions can deliver electronic copies of scholarly work to 
searchers in seconds. And, open-access journals are pro-
liferating, making much research available to anyone 
with a connection to the internet (see the Directory of 
Open Access Journals, https://doaj.org/).

Finally, the movement to promote data sharing (for 
example, National Science Foundation, http://www.nsf.
gov/bfa/dias/policy/dmp.jsp) adds yet another level of 
potential precision and reliability to research syntheses. 
Now, synthesists can go directly to the data used in exper-
iments to recalculate statistics of interest and even to  
generate new statistics that were not included in research 
reports.
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The coding of studies and their evaluation for quality 
has also come a long way. The old process was rife with 
potential bias. In 1976, Gene Glass wrote,

A common method for integrating several studies with  
inconsistent findings is to carp on the design or analysis 
deficiencies of all but a few studies—those remaining fre-
quently being one’s own work or that of one’s students and 
friends—and then advancing the one or two “acceptable” 
studies as the truth of the matter. (4)

Today, research synthesists collect, code, and evaluate 
their studies with considerably more care to avoid bias. 
Explicit, well-defined coding frames are used by multiple 
coders. Judgments about quality of research are often 
eschewed entirely, allowing the data to determine if research 
design influences study outcomes.

Finally, the process of integrating and contrasting pri-
mary study results has taken a quantum leap forward. It is 
no longer acceptable to string together paragraph descrip-
tions of studies, with details of significance tests, and 
then conclude that “the data are inconsistent, but seem to 
indicate . . .” Today’s synthesist can provide (a) confidence 
and prediction intervals around effect-size estimates  
(b) for separate parts of a literature distinguished by both 
methodological and theoretical criteria (c) calculated sev-
eral different ways using different assumptions about the 
adequacy of the literature search and coding scheme as 
well as different underlying statistical models.

These are only a few of the ways that the precision and 
reliability of current syntheses outstrip those of their pre-
decessors. The increases in precision and reliability that a 
synthesist can achieve when a body of literature grows 
from two to twenty to two hundred studies are squandered 
with less rigorous methods.

23.2.2 Testing Generalizability of Claims

Current methods not only capitalize on accumulating evi-
dence by making estimates more precise, but also permit 
the testing of hypotheses that may have never been tested 
in primary studies. This advantage is most evident when 
the objective of the synthesist is to assess the generality 
or specificity of results. The ability of a synthesist to test 
whether a finding appears to vary across settings, times, 
people, measurements, and researchers surpasses by far 
the ability of most primary studies. However, for yes-
terday’s synthesist, the variation among studies was a 
nuisance; it clouded interpretation. The old methods of 

synthesis were handicapped severely when it came to 
judgments on whether a set of studies revealed consistent 
results and, if not, what might account for the inconsis-
tency. Yesterday’s synthesist often chose the wrong datum 
(statistical significance tests rather than effect sizes) and 
the wrong evaluation criteria (implicit cognitive algebra 
rather than formal statistical test) on which to base these 
judgments. For today’s synthesist, variety is the spice of 
life. The methods described in this handbook make such 
analyses routine. When the outcomes of studies prove too 
discrepant to support a claim that one estimate of a rela-
tionship underlies them all, current techniques provide 
the synthesist with a way of systematically searching for 
moderating influences, using consistent and explicit rules 
of evidence.

As mentioned in the introductory chapter, the repro-
ducibility of results in the social and medical sciences has 
become an issue of concern. We pointed out that attempts 
at direct replication of research findings seemingly often 
fail (Open Science Collaboration 2015). The mindset of 
research synthesists provides a different perspective on 
the replication issue. From this perspective, the results  
of the studies that go into the same meta-analysis are best 
thought of as conceptual replications, or tests of the same 
hypothesis, rather than direct replications. This may be 
true even for direct replication attempts, in part because 
researchers often do not have strong theories that inform 
them about why and how the relationships observed come 
about (it is hard to replicate an intervention when you do 
not know how the intervention works). For synthesists, 
then, variations in study methods are to be expected, as 
are variations in results.

Therefore, if studies in the social and medical sciences 
replicate less often than anticipated, this is perhaps not 
surprising. Furthermore, determining whether a study, or 
a series of studies, have “replicated” a given result is 
harder than it seems (Hedges and Schauer 2018). But per-
haps more interesting from the standpoint of a synthesist 
is that even protocol-based attempts at replication often 
result in a rejection of the null hypothesis of homoge-
neous effect sizes. Half of the direct replications that 
Richard Klein and his colleagues reported rejected the 
null hypothesis of effect-size homogeneity, a situation 
that most scholars would not have predicted (2014). It 
suggests that it is difficult to reproduce the exact condi-
tions under which a previous study has been conducted. 
We encourage synthesists to treat this as an opportunity 
to explore the causal mechanisms and the generality of 
findings across circumstances.
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23.3 LIMITATIONS OF RESEARCH SYNTHESIS

23.3.1 Correlational Nature of Review Evidence

Research syntheses have limitations as well. Among the 
most critical is the correlational nature of synthesis- 
generated evidence. As detailed in chapter 2, study- 
generated evidence appears when individual studies  
contain results that directly test the relation under consid-
eration. Synthesis-generated evidence appears when the 
results of studies using different procedures to test the 
same hypothesis are compared. As noted in chapter 2, 
only study-generated evidence can be used to support 
claims about causal relations (and even then, usually only 
when experimental designs are used to generate the evi-
dence). Specific confounds can be controlled statistically 
at the level of synthesis-generated evidence, but the result 
can never lead to the same confidence in inferences pro-
duced by study-generated evidence from investigations 
employing random assignment. This is an inherent lim-
itation of research syntheses. It also provides the synthe-
sist with a fruitful source of suggestions concerning 
directions for future primary research.

23.3.2 Post Hoc Nature of Synthesis Tests

It is almost always the case that researchers interested in 
conducting syntheses set upon the process with some, if 
not considerable, knowledge of the empirical data base 
they are about to summarize. They begin with a good 
notion of what the literature says about which interven-
tions work, which moderators operate, and which explan-
atory variables are helpful. This being the case, the 
synthesist cannot state a hypothesis so derived and then 
also conclude that the same evidence supports the hypoth-
esis. As Kenneth Wachter and Miron Straf point out, once 
data have been used to develop a theory, they cannot be 
used to test it (1990). Synthesists who wish to test spe-
cific, a priori hypotheses in meta-analysis must go to 
extra lengths to convince their audience that the genera-
tion of the hypothesis and the data used to test it are truly 
independent.

23.3.3 Need for New Primary Research

Each of these limitations serves to underscore an obvious 
point: a research synthesis should never be considered a 
replacement for new primary research. Primary research 
and research synthesis are complementary parts of a com-

mon practice, not competing alternatives. The additional 
precision and reliability brought to syntheses by the pro-
cedures described in this text do not make research inte-
grations substitutes for new data-gathering efforts. 
Instead, they help ensure that the next wave of primary 
research is sent off in the most illuminating direction. A 
synthesis that concludes a problem is solved, that no future 
research is needed, should be viewed with extreme skep-
ticism. Even the best architects can see how the structures 
they have built can be improved.

23.4  EMERGING DEVELOPMENTS  
IN RESEARCH SYNTHESIS

23.4.1 Improving Data in Research Syntheses

Two problems that confront research synthesists recur 
throughout this text. They concern the comprehensive-
ness of literature retrieval processes, especially because 
searches are influenced by publication bias and missing 
data in research reports. Despite new techniques for 
locating research, the correspondence between the stud-
ies that can be accessed by the synthesist and the target 
population of studies is an issue confronted during data 
collection, analysis, and interpretation. Data that goes 
unreported in research descriptions is an issue in coding, 
analysis, and interpretation as well.

There is little need to reiterate the frustration that syn-
thesists feel when they contemplate the possible biases in 
their conclusions caused by studies and results they can-
not retrieve. Instead, we note that the earlier editions of 
this book made a call for improvements in research syn-
thesis procedures related to ways to restructure the scien-
tific information delivery systems so that more of the 
needed information becomes available to the research 
synthesist. Obviously, this has occurred, as has improve-
ments in techniques for estimating and addressing prob-
lems associated with publication bias. That said, as Jack 
Vevea and Kathleen Coburn (chapter 18) suggest, there 
are no perfect publication bias tests. In fact, a strong 
argument can be made for the assertion that there are no 
good publication bias tests that can be applied univer-
sally. For this reason, synthesists need to be much more 
cautious than they typically are when making claims 
about publication bias, particularly its absence. There is 
no sense is which it is legitimate to read a reasonably 
symmetric funnel plot as proof that publication bias is not 
a problem. Furthermore, Vevea and Coburn argue for a 
triangulation approach to publication bias. Users can take 
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some comfort when multiple approaches yield approxi-
mately the same answer. It is also informative (though 
not very comforting!) when multiple approaches yield 
different conclusions.

With regard to missing data within studies, the past 
decade has witnessed a significant upgrading of standards 
for reporting of primary research results in professional 
journals. Numerous guidelines are now available to help 
ensure that research reports contain the information 
needed for full inclusion of studies in meta-analyses. Many 
of these can be found online. The EQUATOR Network 
(http://www.equator-network.org/) lists at least ten guide-
lines for health-related research. Psychology has such 
guidelines as well, the Journal Article Reporting Stan-
dards Working Group (Appelbaum et al. 2018). The 
American Educational Research Association also pro-
vides standards for reporting on empirical social science 
research (AERA 2006). These standards are meant to 
encompass the broadest range of research approaches, 
from experiments using random assignment to qualita-
tive investigations.

The second development that has enormous potential 
for ameliorating the problem of missing data is the 
establishment of auxiliary web sites by journals on 
which authors archive information about their research 
that could not be included in journal reports because of 
space limitations. For example, the American Psycho-
logical Association provides its journals with websites 
for this purpose. These are referred to in the published 
articles and access is free to anyone who reads the 
journal.

Journal reporting standards and auxiliary data storage, 
however, are only measures for addressing the problem 
of missing data. They do not address the issue of report-
ing biases. As noted, a partial solution to reporting biases 
is the continued development of research registries. 
Because research registers attempt to catalog investiga-
tions both when they are initiated and when they are 
completed, they represent a unique opportunity for over-
coming reporting biases. In addition, they may be able to 
provide research synthesists with more thorough reports 
of study results. Evan Mayo-Wilson and Sean Grant 
attest to the advance of research registers (chapter 21, 
this volume). We suspect that as science journals increas-
ingly provide incentives for registering studies before 
data collection begins, such as by agreeing to accept 
pre-registered studies regardless of their results, the 
issue of publication bias will become more trackable by 
research synthesists.

Of course, registers are not a panacea. Registers are 
helpful only if the researchers who register their studies 
keep and make available the results of their studies to 
synthesists who request them. Thus, we renew our call in 
the earlier editions of this book for professional standards 
that promote data sharing of even unpublished research 
findings. Still, forward-looking researchers, publishers, 
and funding agencies would be well advised to look 
toward the adoption of reporting standards and the cre-
ation of auxiliary websites and research registers as some 
of the most effective means for fostering knowledge 
accumulation. Given the pervasiveness of the publication 
bias and missing data problems, these efforts seem to 
hold considerable promise for helping research synthe-
sists find the missing science.

Finally, throughout this chapter we emphasize the 
extent to which technology has helped improve the qual-
ity of research syntheses, and the ease with which they 
are conducted. We anticipate that additional develop-
ments will soon occur that will fundamentally change 
how research syntheses are conducted. In particular, we 
are enthusiastic about the extent to which software can be 
developed and trained to semi- or even fully automate 
some of the tasks, like abstract screening and data cod-
ing, that currently represent large portions of the total 
person hours that are required for a research synthesis. 
For example, RobotReviewer automates several aspects 
of the review process, including trial identification, data 
extraction, and even risk of bias assessment (Marshall  
et al. 2018). Research syntheses require a significant 
investment of time and resources. If RobotReviewer and 
other text mining tools continue to be developed and 
refined, our hope is that the quality of research syntheses 
will increase, and the resources needed to complete them 
will decrease. Among many other benefits, using technol-
ogy to keep existing reviews up-to-date seems particu-
larly rewarding and promising.

23.4.2  Improving Usefulness  
of Research Syntheses

Although there is little doubt that research syntheses are 
increasingly perceived as critical to understanding what 
the evidence says about a particular relationship, we 
strongly believe that more needs to be done to make the 
results of syntheses more useful to consumers. Jeffrey  
Valentine and his colleagues Ariel Aloe and Sandra Jo 
Wilson note in chapter 19 that much work is needed to 
understand how research results are interpreted by users. 
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If this call is taken seriously by researchers and funders 
of research, then it should result in tools for effect-size 
translations (such as visual aids) that can be routinely 
presented with effect-size estimates.

In this vein, if research synthesists hope to influence 
public policy decisions, more efforts to help decision 
makers understand implementation costs are needed. 
Even small effects that are associated with minimal 
costs are likely to be worthwhile. At the same time, 
potentially large effects are not helpful if the interven-
tion costs are such that policymakers cannot justify the 
expense.

Similarly, we noted earlier that moderator tests can 
help researchers understand the association between 
characteristics of the research design, setting, and sample 
and effect-size estimates. It is common for potential users 
of a research synthesis to ask “Should I expect to see a 
similar effect in my context?” This is a particularly vex-
ing problem, and one might agree with Donald Campbell, 
who argues that looking for “proximal similarity” (that is, 
the similarity between the contexts in the research and 
the user’s context) is in some cases about the best that can 
be done (1986). It is usually not enough to point users to 
a confidence interval or even to a prediction interval and 
state that these present the range of likely effects for their 
context. Researchers have started to think seriously about 
this problem (see, for example, O’Muircheartaigh and 
Hedges 2014; Stuart, Bradshaw, and Leaf 2015). Devel-
opment of tools to implement the underlying statistical 
concepts can be beneficial to users of research syntheses. 
One example of such work is by Elizabeth Tipton and 
Kate Miller-Bains, who developed The Generalizer 
(https://www.thegeneralizer.org/). In our view, this work 
is promising and our hope is that researchers continue to 
refine and test both the underlying statistical methods and 
different tools for presenting these methods to users of 
research syntheses.

Finally, network meta-analysis has become popular 
in clinical research, and our sense is that wider exploita-
tion of this method will be helpful to those who would 
like to use research syntheses to inform decision mak-
ing. The primary benefit of network meta-analysis is 
that it provides a formal method for evaluating indirect 
comparisons. For example, research synthesists might 
be interested in school-based efforts to improve chil-
dren’s sense of belonging in school. There might be 
several types of interventions (such as teacher profes-
sional development on engaging children, after-school 

programs, and parent involvement programs). Most 
studies will likely examine the effect of one of the 
interventions relative to a business-as-usual control. A 
few might examine one intervention compared with 
another intervention. Network meta-analysis involves 
integrating the indirect comparisons (those implied by 
the fact that the interventions are assessed against a 
common comparator) and the direct comparisons (for 
example, teacher professional development versus an 
after-school program). Decision making often involves 
trying to determine which alternative course of action 
is “best,” and one of the appealing aspects of network 
meta-analysis is that the methodology maps well onto 
this reality. Readers interested in learning more about 
network meta-analysis should find the primer by Dimi-
tris Mavridis and his colleagues (2015) to be an excel-
lent introduction.

23.5  Criteria for Judging the Quality  
of Research Syntheses

In the previous chapter, Georg Matt and Thomas Cook 
began the process of extracting wisdom from tech-
nique. They attempt to help synthesists take the broad 
view of their work, to hold it up to standards that begin 
answering the question, “How valid (trustworthy) is this  
synthesis?”

The criteria for quality syntheses can vary with the 
needs of the reader. As long ago as 1981, Susan Cozzens 
found that readers using literature reviews to follow 
developments within their area of expertise valued com-
prehensiveness and did not consider important the repu-
tation of the author. However, if the synthesis was outside 
the reader’s area, the expertise of the author was import-
ant, as was brevity. Kenneth Strike and George Posner 
also address the quality of knowledge synthesis with  
a wide-angle lens (1983). They suggest that a valuable 
knowledge synthesis must have both intellectual quality 
and practical utility. A synthesis should clarify and resolve 
issues in a literature rather than obscure them. It should 
result in a progressive paradigm shift, that is, bring to a 
theory greater explanatory power, to a practical program 
expanded scope of application, and to future primary 
research an increased capacity to pursue unsolved prob-
lems. Always, a knowledge synthesis should answer the 
question asked; readers should be provided a sense of 
closure (or at the least a better sense of how the future 
research should proceed).
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In fact, readers have their own criteria for what makes 
a good synthesis. Cooper asked post–master’s degree stu-
dents to read meta-analyses and to evaluate five separate 
aspects of the papers (1986). The results revealed that 
readers’ judgments were highly intercorrelated: synthe-
ses perceived as superior on one dimension were also 
perceived as superior on other dimensions. Further, the 
best predictor of the readers’ quality judgments was their 
confidence in their ability to interpret the results. Synthe-
ses seen as more interpretable were given higher quality 
ratings. Readers were also asked to provide open-ended 
comments on papers, which were subjected to an infor-
mal content analysis. The seven dimensions that readers 
mentioned most frequently were organization, writing 
style, clarity of focus, use of citations, attention to vari-
able definitions, attention to study methodology, and 
manuscript preparation.

More specifically, today numerous checklists and other 
forms of guidance are available for assessing the quality 
of research syntheses and meta-analyses. Among the 
most frequently used is Assessing the Methodological 
Quality of Systematic Reviews (AMSTAR 2016). Coo-
per also developed an evaluative checklist for consumers 
of syntheses of social science research (2007, 2017). 
Table 23.1 provides the twenty questions Cooper offers 
as most essential to evaluating social science research 
syntheses. The questions are written from the point of 
view of a synthesis consumer and each question is phrased 
so that an affirmative response means confidence could 
be placed in that aspect of the synthesis’ methodology. 
The list is not exhaustive, but most of the critical issues 
discussed throughout this text find expression in the 
questions, as do the dimensions used in medical and 
health checklists that seem most essential to work in the 
social sciences.

It is important to make several additional points about 
the checklist. First, it does not use a scaling procedure 
that could calculate a numerical score for a synthesis, 
such that higher scores might indicate more trustworthy 
synthesis. This approach was rejected because of con-
cerns raised about similar scales used to evaluate the 
“quality” of primary research (see chapter 7, this volume; 
Valentine and Cooper 2008), in particular, that single 
“quality” scores are known to generate wildly different 
conclusions depending on what specific dimensions of 
quality are included and on how the different items on the 
scale are weighted. Also, when summary numbers are 
generated, studies with very different profiles of strengths 

and limitations can receive similar scores, making syn-
theses with very different validity characteristics appear 
more similar than they actually are.

Second, some questions on the checklist lead to clearer 
prescriptions than do others of what constitutes good 
practice by synthesists. This occurs for two reasons. 
First, the definition of good practice will depend at least 
somewhat on the topic under consideration. For example, 
the identification of information channels to search in 
order to locate studies that are relevant to a synthesis 
topic and what terms to use when searching reference 
databases are clearly topic-dependent decisions. So, the 
checklist can only suggest that syntheses based on com-
plementary sources and proper and exhaustive database 
search terms should be considered by consumers as more 
trustworthy; the checklist cannot specify what these 
sources and terms might be. As many of the chapters in 
this book suggest, a consensus has not yet emerged, even 
among expert synthesists, on some judgments about the 
adequacy of synthesis methods.

Finally, the checklist makes a distinction between 
questions that relate to the conduct of research synthesis 
in general and to meta-analysis in particular. This is 
because not all research areas will have the needed evi-
dence base to conduct a meta-analysis that produces 
interpretable results. However, this does not mean that 
other aspects of sound synthesis methodology can be 
ignored (for example, clear definition of terms, appropri-
ate literature searches).

In discussing several meta-analyses of the desegrega-
tion literature, Wachter and Straf point out that sophisti-
cated literature searching procedures, data quality 
controls, and statistical techniques can bring a research 
synthesist only so far (1990). Eventually, they write, 
“there doesn’t seem to be a big role in this kind of work 
for much intelligent statistics, as opposed to much wise 
thought” (182). These authors are correct in emphasizing 
the importance of wisdom in research integration. Wis-
dom is essential to any scientific enterprise, but wisdom 
starts with sound procedure. Synthesists must consider a 
wide range of technical issues as they piece together a 
research domain. This handbook is meant to help research 
synthesists build well-supported knowledge structures. 
But structural integrity is a minimum criterion for synthe-
sis to lead to scientific progress. A more general kind of 
design wisdom is also needed to build knowledge struc-
tures that people want to view, visit, and, ultimately, live 
within.
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Table 23.1 A Checklist of Questions for Evaluating Research Syntheses

Defining the problem
 1.  Are the variables of interest given clear conceptual definitions?
 2.  Do the operations that empirically define the variables of interest correspond to the variables’ conceptual 

definitions?
 3.  Is the problem stated so that the research designs and evidence needed to address it can be specified clearly?
 4.  Is the problem placed in a meaningful theoretical, historical, or practical context?

Collecting the research evidence
 5.  Were complementary searching strategies used to find relevant studies?
 6.  Were proper and exhaustive terms used in searches and queries of reference databases and research registries?
 7.  Were procedures employed to assure the unbiased and reliable (a) application of criteria to determine the  

substantive relevance of studies, and (b) retrieval of information from study reports?

Evaluating the correspondence between the methods and implementation of individual studies and the desired  
inferences of the synthesis
 8.  Were studies categorized so that important distinctions could be made among them regarding their research  

design and implementation?
 9.  If studies were excluded from the synthesis because of design and implementation considerations, where these 

considerations (a) explicitly and operationally defined, and (b) consistently applied to all studies?

Summarizing and integrating the evidence from individual studies
10.  Was an appropriate method used to combine and compare results across studies?
11.  If effect sizes were calculated, was an appropriate effect size metric used?
12.  If a meta-analysis was performed (a) were average effect sizes and confidence intervals reported, and (b) was an 

appropriate model used to estimate the independent effects and the error in effect sizes?
13.  If a meta-analysis was performed, was the homogeneity of effect sizes tested?
14.  Were (a) study design and implementation features (as suggested by question 8) along with (b) other critical  

features of studies, including historical, theoretical and practical variables (as suggested by question 4) tested as 
potential moderators of study outcomes?

Interpreting the cumulative evidence
15.  Were analyses carried out that tested whether results were sensitive to statistical assumptions and, if so, where 

these analyses used to help interpret the evidence?
16.  Did the research synthesists (a) discuss the extent of missing data in the evidence base and (b) examine its  

potential impact on the synthesis’s findings?
17.  Did the research synthesists discuss the generality and limitations of the synthesis findings?
18.  Did the synthesists make the appropriate distinction between study-generated and review-generated evidence 

when interpreting the synthesis’s results?
19.  If a meta-analysis was performed, did the synthesists (a) contrast the magnitude of effects with other related  

effect sizes or (b) present a practical interpretation of the significance of the effects?

Presenting the research synthesis methods and results
20.  Were the procedures and results of the research synthesis clearly and completely documented?

source: Author’s tabulation.
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GLOSSARY

A Posteriori Tests: Tests that are conducted after exam-
ination of study results. Used to explore patterns that seem 
to be emerging in the data. The same as Post Hoc tests.

A Priori Tests: Tests that are planned before the examina-
tion of the results of the studies under analysis. The same as 
Planned tests.

Aggregate Analysis: The integration of evidence across 
studies when a description of the quantitative frequency or 
level of an event is the focus of a research synthesis.

Agreement Rate: The most widely used index of inter-
rater reliability in research synthesis. Defined as the num-
ber of observations agreed on divided by the total number 
of observations. Also called “percentage agreement.”

Apples and Oranges Problem: A metaphor for studies that 
appear related, but are actually measuring different things. A 
label sometimes given as a criticism of meta-analysis because 
meta-analysis combines studies that may have differing 
methods and operational definitions of the variables involved 
in the calculation of effect sizes.

Artifact Correction: The modification of an estimate of  
effect size (usually by an artifact multiplier) to correct for the 
effects of an artifact. See also Artifact Multiplier.

Artifact Distribution: A distribution of values for a par-
ticular artifact multiplier derived from a particular research 
literature.

Artifact Multiplier: The factor by which a statistical or 
measurement artifact changes the expected observed value 
of a statistic.

Artifacts: Statistical and measurement imperfections that 
cause observed statistics to depart from the population 
(parameter) values the researcher intends to estimate.

Artificial Dichotomization: The arbitrary division of scores 
on a measure of a continuous variable into two categories.

Attenuation: The reduction or downward bias in the 
observed magnitude of an effect size produced by method-
ological limitations in a study such as measurement error or 
range restriction.

Available Case Analysis: Also called pairwise deletion, a 
method for missing data analysis that uses all available data 
to estimate parameters in a distribution so that, for example, 
all available pairs of values for two variables are used to esti-
mate a correlation.

Bayes Posterior Coverage: A Bayesian analogue to the 
confidence interval.

Bayes’s Theorem: A method of incorporating data into a 
prior distribution to obtain a posterior distribution.

Bayesian Analysis: An approach that incorporates a prior  
distribution to express uncertainty about population parame-
ter values.

Best Evidence Synthesis: Research syntheses that rely on 
study results that are the best available, not an a priori or  
idealized standard of evidence.

Between-Studies Sample Size: The number of studies in 
a meta-analysis.

Between-Study Moderators: Third variables or sets of 
variables that affect the direction or magnitude of relations 
between other variables. Identified on a between-studies basis 
when some reviewed studies represent one level of the mod-
erator and other studies represent other levels. See Within- 
Study Moderators.

Between-Study Predictors: Measured characteristics of 
studies hypothesized to affect true effect sizes.
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Bibliographic Database: A collection of records describ-
ing publications. Typically each record provides the title, 
author, source information, and date. Many databases also 
include an abstract. Some databases may add subject index 
terms and other codes to facilitate retrieval. Also known as 
a reference database.

Bibliographic reference management software: Software 
to manage records that have been downloaded from bib-
liographic databases. Examples include EndNote, Reference 
Manager, RefWorks, and Mendeley.

Bibliographic Search: An exploration of literature to find 
reports relevant to the research topic. A search is typically 
conducted by consulting sources such as paper indexes, 
reference lists of relevant documents, contents of relevant 
journals/books, and electronic bibliographic databases.

Binomial Effect Size Display: A 2 × 2 table created by 
considering two groups of scores as a single distribution. 
The binomial effect size display describes the proportion of 
each group that falls above and below the median of that 
distribution.

Birge Ratio: The ratio of certain chi-square statistics 
(used in tests for heterogeneity of effects, model fit, or 
that variance components are zero) to their degrees of 
freedom. Used as an index of heterogeneity or lack of fit. 
Has an expected value of one under correct model speci-
fication or when the between-studies variance component 
is zero.

Buck’s method: A method for missing data imputation 
that replaces missing observations with the predicted value 
from a regression of the missing variable on the completely 
observed variable; first suggested by Buck (1960).

Categorical (Grouping) Variable: A variable that can take 
on a finite number of values used to define groups of studies.

Certainty: The confidence with which the scientific com-
munity accepts research conclusions, reflecting the truth 
value accorded to conclusions.

Citation Search: A literature search in which documents are 
identified based on their being cited by other documents.

Coder: A person who reads and extracts information from 
research reports.

Coder Reliability: The equivalence with which coders 
extract information from research reports.

Coder Training: A process for describing and practicing 
the coding of studies. Modification of coding forms, coding 
conventions, and code book may occur during the train-
ing process.

Coding Conventions: Specific methods used to transform 
information in research reports into numerical form. A pri-

mary criterion for choosing such conventions is to retain as 
much of the original information as possible.

Coding Forms: The physical records of coded items 
extracted from a research report. The forms, and items on 
them, are organized to assist coders and data entry 
personnel.

Combining Results: Putting effect sizes on a common 
metric (for example, r or d) an calculating measures of 
location (for example, mean, median) or combining tests 
of significance.

Comparisons: Linear combinations of means (of effect 
sizes), often used in the investigation of patterns of differ-
ences among three or more means (of effect sizes). The 
same as Contrasts.

Complete Case Analysis: A method for analysis of data 
with missing observations, which uses only cases that 
observe all variables in the model under investigation.

Concept: A topic or theme that forms part of a research 
question, for example, a population of interest such as  
children with attention deficit disorder.

Conceptual (or Theoretical) Definition: A description of 
the qualities of the variable that are independent of time 
and space but that can be used to distinguish events that are 
and are not relevant to the concept.

Conditional Distribution: The sampling distribution of a 
statistic (such as an effect size estimate) when a parameter of 
interest (such as the effect size parameter) is held constant.

Conditional Exchangeability of Study Effect Size: A 
property of a set of studies that applies when the investi-
gator has no a priori reason to expect the true effect size 
of any study to exceed the true effect size of any other 
study in the set, given the two studies share certain iden-
tifiable characteristics.

Conditional Mean Imputation: Another term for Buck’s 
method or regression imputation, a method for missing data 
imputation that replaces missing observations with the pre-
dicted value from a regression of the missing variable on the 
completely observed variable; first suggested by Buck (1960).

Conditional Variance: Variability due to sampling error 
that associated with estimation of an effect size. See also 
Within-Study Variance of an Effect Size.

Confidence Interval (CI): The interval within which a 
population parameter is expected to lie.

Confidence Ratings: A method for coders to directly rate 
their confidence level in the accuracy, completeness, and so 
on, of the data being extracted from primary studies. Can 
establish a mechanism for discerning high-quality from 
lesser-quality information in the conduct of subsequent 
analyses.
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Construct Validity: The extent to which generalizations 
can be made about higher-order constructs on the basis of 
research operations.

Controlled Vocabulary: The standard terminology defined 
by an indexing service for a reference database and made 
available through a thesaurus.

Correlation Coefficient: An index that gives the magni-
tude of linear relationship between two quantitative vari-
ables. It can range from –1 (perfect negative relationship) 
to +1 (perfect positive relationship), with 0 indicating no 
linear relationship.

Correlation Matrix: A matrix (rectangular listing arrange-
ment) of the zero-order correlations among a set of p vari-
ables. The diagonal elements of the correlation matrix equal 
one because they represent the correlation of each variable 
with itself. Within a single study the off-diagonal elements 
are denoted rij, for i, j =1 ti p, i ≠ j. The correlation rij is the 
correlation between variables i and j.

Covariates: Covariates are variables that are predictive of 
the outcome measure and are frequently incorporated into 
the analysis of categorical data. In randomized intervention 
studies, they are sometimes adjusted for in order to improve 
the precision with which key parameters are estimated and 
to increase the power of significance tests. In nonrandom-
ized studies, they are adjusted for in order to eliminate the 
bias caused by confounding, that is, the presence of charac-
teristics associated with both the exposure variable and the 
outcome variable.

Credibility Interval: Interval within which the true effect 
sizes vary across primary studies examining ostensibly the 
same relationship. It can also be interpreted as a possible 
range of true effect sizes.

Cumulative Distribution Function: The probability that 
a random continuous or discrete variable will have a value 
that is less than or equal to the function’s argument.

Data Coding: The process of obtaining data. In meta-anal-
ysis it consists of reading studies and recording relevant 
information on data collection forms.

Data Coding Protocol: A manual of instruction for data 
coders that explains how to code data items, how to handle 
exceptions, and when to consult the project manager to 
resolve unexpected situations.

Data Entry: The process of transferring information from 
data collection forms into a database, requiring clerical skills.

Data Reduction: The process of combining data items in 
a database to produce a cases-by-variables file for statisti-
cal analysis.

Data Sharing: Allowing researchers not involved in the 
original collection of data access to it for purposes of 
reanalysis and /or integration with other data sets.

Density Function: A mathematical function that defines the 
probability of occurrence of values of a random variable.

Descriptive Analysis: Descriptive statistics that charac-
terize the results and attributes of a collection of research 
studies in an synthesis.

Descriptors: In literature searching, refers to subject 
headings used to identify important concepts included in a 
document. In data coding, refers to variables that identify 
characteristics of studies included in a research synthesis.

Disattenuation: The process of correcting for the reduction 
or downward bias in an effect size produced by attenuation.

Double Coding: A method of having two or more inde-
pendent coders code studies to enhance and assess reliabil-
ity of the coding process.

Effect Size: A generic term that refers to the magnitude of 
an effect or more generally to the size of the relation 
between two variables. Special cases include standardized 
mean difference, correlation coefficient, odds ratio, and the 
raw mean difference.

Effect Size Items (Coding): Items related to an effect 
size. Can include the nature and score reliability of out-
come and predictor measures, sample size(s), means and 
standard deviations, and indices of association.

Eligibility Criteria: Conditions that must be met by a pri-
mary study in order for it to be included in the research 
synthesis. Also called “inclusion criteria.”

EM Algorithm: An iterative estimation procedure that 
cycles between estimation of the posterior expectation (E) 
of a random variable (or collection of variables) and the 
maximization (M) of its posterior likelihood. Useful for 
maximum likelihood estimation with missing data.

Error of Measurement: Random errors in the scores pro-
duced by a measuring instrument.

Estimation Variance, vi: The variance of the effect size 
estimator given a fixed true effect size. The same as Condi-
tional Variance.

Evidence-Based Practices: Programs, products, and poli-
cies that are believed to be effective based on high-quality 
research designs and methods.

Exclusion Criteria: See Ineligibility Criteria.
Experiment: An investigation of the effects of manipulat-
ing a variable.

Experimental Research: Research in which both the 
introduction of the event and who is exposed to it are con-
trolled by the researcher. The researcher uses a random pro-
cedure to assign students to conditions, essentially leaving 
the assignment to chance.

Experimental Units: The smallest division of the experi-
mental (or observational) material such that any two units 
may receive different treatments.
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Explicit Truncation: A process by which all scores in a dis-
tribution in a certain range (for example, all scores below  
z = –0.10) are eliminated from the data used in the data  
analysis. See Range Restriction.

Exploding Subject Headings: Offered in many databases, 
“exploding” subject index terms will automatically include 
any more specific terms in the search. In the Ovid interface 
in PsycINFO, exploding “short term memory” will also 
retrieve records for “iconic memory.”

Exploratory Data Analysis: A descriptive (as opposed to 
inferential) analysis of data that often supplements numeri-
cal summaries with visual displays.

External Validity: The value of a study or set of studies for 
generalizing to individuals, settings, or procedures. Studies 
with high external validity can be generalized to a larger num-
ber of individuals, settings, or procedures than can studies 
with lower external validity. Largely determined by the sam-
pling of individuals, settings, or procedures employed in the 
investigations from which generalizations are to be drawn.

Extrinsic Factors: The characteristics of research other 
than the phenomenon under investigation or the methods 
used to study that phenomenon, for example, the date of 
publication and the gender of the author.

Falsificationist Approach: A framework that stresses how 
secure knowledge depends on identifying and ruling out 
plausible alternative interpretation.

File-Drawer Problem: The situation in which study results 
go unreported (and thus are left in file drawers) when tests of 
hypotheses do not show statistically significant results.

Fixed Effects: Effects (effect sizes or components of a 
model for effect size parameters) that are unknown con-
stants. Compare with Random Effects.

Fixed Effects Model: A model for combining effect sizes 
that assumes all effect sizes are fixed effects (that is con-
stants as opposed to random quantities). If all the effect 
sizes estimate a common population parameter, so that the 
observed effect sizes differ from that parameter only by vir-
tue of sampling error, this is sometimes called the fixed 
effect (singular) model or the common effect model.

Flat-File: In data management, a file that constitutes a col-
lection of records of the same type that do not contain 
repeating items. Can be represented by two-dimensional 
array of data items, that is, a case-by variables data matrix.

Footnote Chasing: A technique for discovering relevant 
documents by tracing authors’ footnotes (more broadly, their 
references) to earlier documents. Also known as the “ancestry 
approach.” See also Forward Citation Searching.

Forward Citation Searching: A way of discovering rele-
vant documents by looking up a known document in a cita-

tion index and finding the later documents that have cited 
it. See also Footnote Chasing.

Fourfold Table: A table that reports data concerning the 
relationship between two dichotomous factors. See Odds 
Ratio, Log Odds Ratio, and Rate Difference.

Free-Text Terms: Words in an information source record 
other than the indexing terms. Free text terms are usually 
those in the title and abstract of a database record.

Fugitive Literature: Papers or articles produced in 
small quantities, not widely distributed, and usually not 
listed in commonly used abstracts and indexes. See also 
Grey Literature.

Full-Text Database: A machine-readable file that consists 
of the complete texts of documents as opposed to merely 
citations and abstracts.

Funnel Plot: A graphic display of sample size plotted 
against effect size. When many studies come from the same 
population, each estimating the same underlying parame-
ter, the graph should resemble a funnel with a single spout.

Generalization: Important purpose and promise of a 
meta-analysis. Refers to empirical knowledge about a gen-
eral association. It can involve identifying whether an asso-
ciation (1) holds with specific populations of persons, 
settings, times, and ways of varying the cause or measuring 
the effect; (2) holds across different populations of people, 
settings, times, and ways of operationalizing a cause and 
effect; and (3) can even be extrapolated to other popula-
tions of people, settings, times, causes, and effects than 
those that have been studied to date.

Generalized Least Squares (GLS) Estimation: An esti-
mation procedure similar to the more familiar ordinary 
least squares method. A sum of squared deviations between 
parameters and data is minimized, but GLS allows the data 
points for which parameters are being estimated to have 
unequal population variances and nonzero covariances 
(that is, to be dependent).

Grey Literature: Literature that is produced on all levels 
of government, academia, business, and industry in print 
and electronic formats, but that is not controlled by com-
mercial publishers. See also Fugitive Literature.

Hand Searching: Searching the contents of a journal by 
looking at each article in sequence and making an assess-
ment of the relevance of the article to the synthesis ques-
tion. Handsearching may also be undertaken for sections of 
databases or websites.

Heterogeneity: The extent to which observed effect sizes 
differ from one another. In meta-analysis, statistical tests 
allow for the assessment of whether the variability in 
observed effect sizes is greater than would be expected 
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given chance (that is, sampling error alone). If so, then the 
observed effects are said to be heterogeneous.

Heterogeneity/Homogeneity of Classes: The range/ 
similarity of classes of persons, treatments, outcomes, set-
tings, and times included in the studies that have been 
reviewed.

Hierarchical Data Structure: In data management, a 
nested set of separate data files that each contain different 
coded information. This data structure allows for hierarchi-
cal data structures, such as multiple effect sizes for indi-
vidual studies. Each data file can have a different number 
of rows per individual study.

High Inference Codes: Codes that involve attempting to 
infer how a contextual aspect of the studies might have 
been interpreted by participants.

Homogeneity: A condition under which the variability in 
observed effect sizes is not greater than would be expected 
given sampling error.

Homogeneity Test: A test that a collection of effect size esti-
mates exhibit greater variability than would be expected if 
their corresponding effect size parameters were identical.

Hypothesis: A research problem containing a prediction 
about a particular link between the variables—based on 
theory or previous observation.

Identification Items (Coding): The category of coded 
items that document the research reports that are synthe-
sized. Author, coder, country, and year and source of publi-
cation are typical items.

Ignorable Response Mechanism: When data are either 
missing completely at random (MCAR) or are missing at 
random (MAR), the mechanism that causes missing data is 
called ignorable because the response mechanism does not 
have to be modeled when using maximum likelihood or 
multiple imputation for missing data.

Indexing: The addition of indexing terms to database 
records, to provide standardized search terms for concepts 
that might be expressed by authors in various ways.

Indexing Language: A controlled vocabulary used to 
index records in a database to enhance consistent retrieval 
of records.

Indexing Term: A word or phrase from an indexing 
language.

Inclusion Criteria: See Eligibility Criteria.
Indirect Relation: A relationship between two variables 
where a third (or more) variable intervenes. A variable can 
have both direct and indirect relations to an outcome; its 
indirect relations are achieved by way of one more interme-
diate (mediator) variables. See Mediator Variable.

Ineligibility Criteria: Conditions or characteristics that 
render a primary study ineligible for inclusion in the 
research synthesis. The same as Exclusion Criteria.

Information Source: A database, website, or library that 
provides access to research evidence and other documents.

Information Specialist: An information scientist or librar-
ian who has extensive experience of searching for research 
evidence from a variety of information sources.

Intercoder Correlation: An index of interrater reliability 
for continuous variables, based on the Pearson correlation 
coefficient. Used in research synthesis to estimate interrater 
reliability, analogous to its use in education to estimate test 
reliabilities when parallel forms are available.

Interface: This is a set of options or facilities that are 
available for searching a database. Options may include 
ways to combine sets of search results, including Boolean 
operators and proximity operators, ways to search for word 
variants (truncation, stemming, and wildcards) and the 
ability to restrict searches to specific fields such as the title.

Interjudge Reliability: The degree of agreement between 
judges or observers who are rating or observing the same 
events. Agreement can be expressed in numerous different 
ways (for example, percentage of cases for which ratings 
agreed, kappa).

Internal Validity: The value of a study or set of studies 
for concluding that a causal relationship exists between 
variables, that is, that one variable affects another. Studies 
with high internal validity provide a strong basis for mak-
ing a causal inference. Largely determined by the control of 
alternative variables that could explain the relationship 
found within a study.

Inter-rater Reliability: The extent to which different rat-
ers rating the same studies assign the same rating to the 
coded variables.

Intraclass Correlation: Computed as the ratio of the vari-
ance of interest over the sum of the variance of interest plus 
error, the intraclass correlation is a family of indicies of 
agreement (or consistency) for continuous variables. The 
intraclass correlation can be used to isolate different sources 
of variation in measurement and to estimate their magnitude 
using the analysis of variance. The intraclass correlation is 
also used to describe the amount of clustering in a popula-
tion in clustered or multilevel samples where it is the ratio 
of between-cluster variance to total variance.

Invisible College: A geographically dispersed network of 
scientists or scholars who share information in a particular 
research area through personal communication.

Kappa: A versatile family of indices of interrater reliabil-
ity for categorical data, defined as the proportion of the best 
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possible improvement over chance that is actually obtained 
by the raters. Generally superior to other indices designed 
to remove the effects of chance agreement, kappa is a 
“true” reliability statistic that in large samples is equivalent 
to the intraclass correlation coefficient.

Knapp-Hartung Adjustment: An empirical adjustment 
to the variance or standard error of means or meta-regres-
sion coefficients in random effects meta-analyses. The 
Knapp-Hartung correction leads to larger but more accu-
rate variance estimates.

Large-Sample Approximation: The statistical theory 
that is valid when each study has a “large” (within-study) 
sample size. The exact number of cases required to quality 
as “large” depends on the effect size index used. In meta- 
analysis, most statistical theory is based on large-sample 
approximations.

Listwise Deletion: A method for analyzing data with 
missing observations by analyzing only those cases with 
complete data; also termed complete case analysis.

Log Odds: See Logit.
Log Odds Ratio: The sample statistic, l, population 
parameter l . Computed as the natural logarithm of the 
odds ratio ln(o). See Fourfold Table.

Logistic Regression: A statistical model in which the logit 
of a probability is postulated to be a linear function of a set 
of independent variables.

Logit: The logarithm of the odds value associated with a 
probability. If Π is a probability, the logit is ln Π/(1 – Π), 
where ln denotes natural logarithm.

Logit Transformation: A transformation commonly used 
with proportions or other numbers that have values between 
zero and one. The logit is the logarithmic transformation of 
the ratio [p/(1 – p)], that is, ln [p/(1 – p)].

Low Inference Codes: Codes of study characteristics that 
require the synthesists only to locate the needed informa-
tion in the research report and transfer it to the synthesis 
database.

Mantel-Haenszel Statistics: A set of statistics for com-
bining odds ratios and testing the statistical significance of 
the resulting average odds ratio.

Maximum Likelihood: A commonly used method for 
obtaining an estimate for an unknown parameter from a 
population distribution.

Maximum Likelihood Methods for Missing Data: Meth-
ods for analysis of data with missing observations that pro-
vide maximum likelihood estimates of model parameters.

Mean of Random Effects: The mean of the true effect 
sizes in the random effects model.

Measurement Error: Random departure of an observed 
score of an individual from his/her actual (true) score. 

Sources of measurement error include random response 
error, transient error, and specific factor error.

Mediating Variable: Third variables or sets of variables 
that provide a causal account of the mechanisms underly-
ing the relationship between other variables. Transmits a 
cause-effect relationship in the sense that it is a conse-
quence of a more distal cause and a cause of more distal 
measured effects. A fundamental property of a mediator is 
that it is related to both a precursor and an outcome, while 
the precursor may show only an indirect relation to the out-
come via the mediator.

Meta-Analysis: The statistical analysis of a collection of 
analysis results from individual studies for the purpose of 
integrating the findings.

Meta-Regression: The use of regression models to assess 
the influence of variation in contextual, methodological, par-
ticipant, and program attributes on effect size estimates.

Method of Maximum Likelihood: A method of statistical 
estimation in which one chooses as the point estimates of a 
set of parameters values that maximize the likelihood of 
observing the data in the sample.

Method of Moments: A method of statistical estimation 
in which the sample moments are equated to their expecta-
tions and the resulting set of equations solved for the 
parameters of interest.

Missing at Random: Observations that are missing for 
reasons related to completely observed variables that are 
included in the model and not to the value of the missing 
observation.

Missing Completely at Random: Observations that are 
missing for reasons unrelated to any variables in the data. 
Missing observations occur as if they were deleted at 
random.

Missing Data: Data representing either study outcomes or 
study characteristics that are unavailable to the synthesist.

Model-Based Meta-Analysis: A meta-analysis that ana-
lyzes complex chains of events such as the prediction of 
behaviors based on a set of variables, and models the inter-
correlations among variables.

Moderator Variable: A variable or set of variables that 
affect the direction or magnitude of relations between other 
variables. Variables such as gender, type of outcome, and 
other study features are often identified as moderator 
variables.

Multinomial Distribution: A probability distribution 
associated with the independent classification of a sample 
of subjects into a series of mutually exclusive and exhaus-
tive categories. When the number of categories is two, the 
distribution is a binomial distribution.
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Multiple Imputation: A method for data analysis with 
missing observations that generates several possible substi-
tutes for each missing data point based on models for the 
reasons for the missing data.

Nonignorable Response Mechanism: A term that describes 
observations that are missing for reasons related to unob-
served variables. Occurs when observations are missing 
because of their unknown values or because of other 
unknown variables.

Nonparametric Statistical Procedures: Statistical proce-
dures (tests or estimators) whose distributions do not require 
knowledge of the functional form of the probability distribu-
tion of the data. Also called “distribution free statistics.”

Normal Deviate: The location on a standard normal curve 
given in Z-score form.

Normal Distribution: A bell-shaped curve that is com-
pletely described by its mean and standard deviation.

Not Missing at Random (NMAR): A type of missing 
data where the probability of observing a value depends on 
the value itself; occurs in censoring mechanisms when, for 
example, high values on a variable are more likely to be 
missing than moderate or low values.

Odds Ratio: The odds for the outcome event of interest 
being positive, conditional on the exposure (interven-
tion) being positive, are equal to the probability of the out-
come being observed (in the intervention group), divided by 
one minus the probability of the outcome being observed in 
the intervention group. The odds for the outcome event 
being positive, conditional on the exposure (intervention) 
being absent, can be defined similarly. The odds ratio is 
simply the ratio of these two odds values. The underlying 
assumption is that fixed numbers of exposed and of unex-
posed individuals are sampled, and the probability of the 
outcome is observed. A unique property of the odds ratio is 
that it can be calculated from a study in which pre-specified 
numbers of units positive on the outcome and negative on 
the outcome are selected for a determination of their status 
on the exposure variable. Because the two study designs cor-
respond to prospective and retrospective sampling, it is clear 
that the odds ratio is estimable using data from either of 
these two designs (as well as from a cross-sectional study).

Odds Value: A probability divided by its complement. If 
Π is a probability, its associated odds value is Π(1–Π).

Omnibus Tests of Significance: Significance tests that 
address unfocused questions, as in F tests with more than 1 
degree of freedom (df) for the numerator or in chi-square 
tests with more than 1 df.

Operational Definition: A definition of a concept that 
relates the concept to observable events.

Operational Effect Size: The effect size actually esti-
mated in the study as conducted; for example, the (attenu-
ated) effect size computed using an unreliable outcome 
measure. Compare with Theoretical Effect Size.

p-Value: The probability associated with a statistical 
hypothesis test. The p value is the probability of obtaining 
a sample result at least as large as the one obtained given a 
true null hypothesis (that is, given the hypothesis that sam-
pling error is the only reason that the observed result devi-
ates from the hypothesized parameter value).

Pairwise Deletion: A method for missing data analysis 
that uses all available data to estimate parameters in a dis-
tribution so that, for example, all available pairs of values 
for two variables are used to estimate a correlation; also 
called available case analysis.

Parameter: The population value of a statistic.
Partial Effect Sizes: Partial effect sizes are effect sizes 
that represent the association between two variables adjust-
ing for the effect of one or more variables on the focal pre-
dictor and outcome, depending on which index is used.

Partial Relations: Relationships between two variables 
where a third (or more) variable has been statistically con-
trolled, such as in a multiple regression equation.

Partial Truncation: A process by which the frequencies of 
scores in certain parts of the range are reduced without com-
pletely eliminating scores in these ranges. For example, if 
one limits the data to high school graduates and above, the 
frequency of people with IQs below 85 will be reduced  
relative to the entire population. See Range Restriction.

Pearson Correlation: See Correlation Coefficient.
Peer Review: The review of research by an investigator’s 
peers, usually conducted at the request of a journal editor 
prior to publication of the research and for purposes of 
evaluation to ensure that the research meets generally 
accepted standards of the research community.

Phi Coefficient (i): A measure of association between two 
binary variables that cross-classified against each other. The 
phi coefficient is calculated as the product moment correla-
tion coefficient between a pair of binary random variables.

Placebo: A pseudo-treatment administered to subjects in a 
control group.

Planned Tests: Tests that are planned before the examina-
tion of the results of the data under analysis. The same as  
A Priori Tests.

Pooling Results: Using data or results from several primary 
studies to compute a combined significance test or estimate.

Post Hoc Matching: A procedure whereby participants in 
different conditions of a study are identified as having the 
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same or similar scores on critical baseline variables. Partic-
ipants without matches are removed from the pertinent 
analysis.

Post Hoc Tests: Tests that are conducted after examination 
of the data to explore patterns that seem to be emerging in 
the data. The same as A Posteriori Tests.

Posterior Distribution: An updated prior distribution that 
incorporates observed data (also posterior mean, posterior 
variance, and so on)

Power: See Statistical Power.
Power Analysis: See Statistical Power Analysis.
Precision: A measure used in evaluating literature searches. 

The ratio of documents retrieved and deemed relevant to 
total documents retrieved. Also known as specificity.

Precision of Estimation: Computationally, the inverse of 
the variance of an estimator. Conceptually, larger samples 
estimate population parameters more precisely than smaller 
samples. Results from larger samples will have smaller 
confidence intervals compared to results from smaller sam-
ples, all else being equal.

Pretest-Posttest Design: A study in which participants are 
tested on the outcome variable, exposed to an intervention, 
and tested again on the outcome variable. Often this design 
leaves so many validity threats plausible that it is difficult 
to interpret the results.

Primary Study: A report of original research, usually 
published in a technical journal or appearing as a thesis or 
dissertation; refers to the original research reports collected 
for a research synthesis.

Prior Distribution: An expression of the uncertainty of 
parameter values as a statistical distribution before observ-
ing the data (also prior mean, prior variance, and so on)

Prior Odds: The relative prior likelihood of pairs of 
parameter values.

Progressive Paradigm Shift: A fundamental change in 
the framework of science that results in the explanation of 
more natural phenomena or the conduct of empirical studies 
that are more in line with the rules of science. The term 
paradigm shift in science is attributed to Thomas Kuhn.

Prospective Registration: The compilation and collation 
of intended research projects before the projects formally 
start. See Retrospective Registration.

Proximal Similarity: The similarity in manifest charac-
teristics (for example, prototypical attributes) between 
samples of persons, treatments, outcomes, settings, and 
times and their corresponding universes.

Proximity Operators: Search operators that specify that a 
search term can be retrieved when it occurs within a certain 
distance from another search term. The distance can usu-
ally be varied.

Proxy Variables: Variables, such as year of study publica-
tion, that serve as surrogates for the true, causal variables, 
such as developments in research methods or changes in 
data-reporting practices.

Publication Bias: The tendency for studies with statistically 
significant results to have a greater chance of being published 
than studies with non-statistically significant results. Because 
of this, research syntheses that fail to include unpublished 
studies may overestimate the true effect of an intervention.

Quasi-Experiment: An experiment in which the method 
of allocation of observations to study conditions is not done 
by chance. See Randomized Experiment.

Random Assignment: The allocation of individuals, 
communities, groups, or other units of study to an experi-
mental intervention, using a method that assures that 
assignment to any particular group is by chance.

Random Effects: Effects that are assumed to be sampled 
from a distribution of effects. Compare with Fixed Effects.

Random Effects in a Regression Model for Predicting 
Effect Size: The deviation of Study i’s true effect size from 
the value predicted on the basis of the regression model.

Random Effects Model: A model for combining effect 
sizes under which observed effect sizes may differ from 
each other both due to sampling error and due to true vari-
ability in population parameters.

Random Effects Variance Component: A variance of the 
true effect size viewed as either (a) the variance of true effect 
sizes in a population of studies from which the synthesized 
studies constitute a random sample or (b) the degree of the 
investigator’s uncertainty about the proposition that the true 
effect size of a particular study is near a predicted value.

Random Sampling: The allocation of individuals, com-
munities, groups, or other units in a population to a sample, 
using a method that assures that assignment to the sample 
is by chance.

Randomized Experiment: An experiment that employs 
random assignment of observations to study conditions. 
See Quasi-Experiment.

Range Restriction: A situation in a data set in which a 
pre-selection process causes certain scores or ranges of 
scores to be missing from the data. For example, all people 
with scores below the mean may have been excluded from 
the data. Range restriction is produced by both Explicit 
Truncation and Partial Truncation.

Rank Correlation Test: A nonparametric statistical test in 
which the correlation between two factors is assessed by 
comparing the ranking of the two samples.

Rapid Review Search: A search undertaken for a synthe-
sis conducted under a very short timeframe. These searches 
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usually involve a few selected databases and therefore are 
less likely to minimize publication bias.

Rate Difference: See Fourfold Table.
Rate Ratio / Risk Ratio: The ratio of two probabilities, 
RR, is a popular measure of the effect of an intervention. 
The names given to this measure in the health sciences, the 
risk ratio or relative risk, reflect the fact that the measure is 
not symmetric, but is the ratio of the first group’s probability 
of an undesirable outcome to the second’s probability (rec-
ognizing that the ratio could also be expressed in terms of 
the favorable outcome, at least in theory). (In fact, in the 
health sciences, the term “rate” is often reserved for quanti-
ties involving the use of “person-time,” that is, the product 
of the number of individuals and their length of follow-up.)

Raw Mean Difference: The difference between the means 
of the intervention and comparison groups.

Recall: A measure used in evaluating literature searches. 
The ratio of relevant documents retrieved to total docu-
ments deemed relevant in a collection (for example, the 
total number of relevant reports in existence). Also known 
as sensitivity.

Reduction of Random Effects Variance: The difference 
between the baseline and the residual random effects 
variance.

Reference Database: A repository of citations to docu-
ments, for example, PsycINFO. Also known as biblio-
graphic database.

Regression Discontinuity Design: The allocation of indi-
viduals, communities, groups, or other units of study to 
intervention conditions, using a specific cutoff score on an 
assignment variable

Regression Imputation: Also called Buck’s (1960) method 
or regression imputation. A method for missing data imputa-
tion that replaces missing observations with the predicted 
value from a regression of the missing variable on the com-
pletely observed variable; first suggested by Buck (1960).

Relative Risk: See Rate Ratio.
Relevance: The use of construct and external validity as 
entry criteria for selecting studies for a synthesis.

Relevant Document: A document that matches a research-
er’s broad inclusion criteria (for example, is topically rele-
vant) and possibly meets additional criteria for inclusion.

Reliability: Generally, the repeatability of measurement. 
More specifically, the proportion of observed variance of 
scores on a measuring scale that is not due to the variance of 
random measurement errors; or the proportion of observed 
variance of scores that is due to variance of true scores. 
Higher values indicate less measurement error and vice versa.

Replication: The repetition of a previously conducted 
study. Replications are sometimes referred to as “direct” 
(or sometimes, “statistical”) when the researchers attempt 
to employ the same methods that were used in the original 
study, and as “conceptual” when researchers use different 
operations to test the same conceptual variables and 
hypotheses. Direct replications are often conceived of as 
attempts to assess whether the replication will achieve 
results similar to what was reported in an original study, 
assuming that the study conditions are similar. Conceptual 
replications are often undertaken to test whether the repli-
cation will achieve results similar to what was reported in 
the original despite intentional variations in the operations 
used to test the hypotheses.

Research Problem: A statement of (a) what variables are 
to be related to one another and (b) an implication of how 
the relationship can be tested empirically.

Research Quality: Factors such as study design or imple-
mentation features that affect the validity of a study or set 
of studies.

Research Register: A database of research studies 
(planned, active, and/or completed), usually oriented 
around a common feature of the studies such as subject 
matter, funding source, or design.

Research Synthesis: A review of a clearly formulated 
question that uses systematic and explicit methods to iden-
tify, select, and critically appraise relevant research, and to 
collect and analyze data from the studies that are included 
in the synthesis. Statistical methods (meta-analysis) may or 
may not be used to analyze and summarize the results of 
the included studies. Systematic review is a synonym of 
research synthesis.

Residual Random Effects Variance: The residual vari-
ance of the true random effects after taking into account a 
set of between-studies predictors.

Response Mechanism: Term used to describe the hypo-
thetical reasons for missing data

Retrieved Studies: Primary studies identified in the liter-
ature search phase of a research synthesis and whose 
research report is obtained in full by the research synthesis 
investigators.

Review Generated Evidence: In a meta-analysis, evi-
dence that arises from studies that do not directly test the 
relation being considered. Compare with Study Generated 
Evidence.

Robust Methods: Techniques that are not overly sensitive 
to the choice of a prior or sampling distribution or to outliers 
in the data.
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Robust Variance Estimate: A technique used to produce 
variances and standard errors of coefficients in meta- 
regression using empirical as opposed to purely theoretical 
methods. Robust variance estimates are particularly useful 
when there are multiple correlated effect sizes in some 
studies.

Robustness: Consistency in the direction and/or magni-
tude of effect size for studies involving different classes of 
persons, treatments, settings, outcomes, or times.

Samples: Constituents or members of a universe, class, 
population, category, type, or entity.

Sampling Error: The difference between an effect size 
statistic and the population parameter that it estimates that 
occurs due to employing a sample instead of the entire 
population.

Scoping Search: A search undertaken to understand the 
scale, scope, and coverage of the literature. A scoping 
search can be used to identify which databases should be 
included in a systematic search, to help synthesists estimate 
the total number of records that might be retrieved in a sys-
tematic search, and to identify key search terms. Synthe-
sists undertaking scoping searches may or may not intend 
these searches to be exhaustive.

Search Filters: A collection of search terms that identifies 
records about a specific population, study design or other 
issue; ideally derived by research.

Search Strategy: A collection of search terms that is used 
to interrogate a database to identify records relevant to a 
research synthesis question.

Search Terms: Words used to identify the key aspects of a 
subject for use in searching for relevant documents.

Second-Order Meta-Analysis: A meta-analysis conducted 
on multiple statistically independent and methodologically 
comparable mean true effect sizes in relevant primary 
meta-analyses (that is, meta-analyses conducted on pri-
mary studies) examining ostensibly the same relationship. 
Second-order meta-analysis addresses the problem of sec-
ond-order sampling error still remaining in input the pri-
mary meta-analyses. Also known as umbrella review, 
meta-meta-analysis, and meta-analysis of meta-analyses.

Second-Order Sampling Error: The sampling error of 
primary meta-analytic estimates of mean and standard 
deviation of true effect sizes. This error still remains in pri-
mary meta-analyses because the number of studies in each 
primary meta-analysis is not infinite.

Selection Bias: An error produced by systematic differ-
ences between individuals, entities, or studies selected for 
analysis and those not selected.

Sensitivity: A measure used in evaluating literature 
searches. The ratio of relevant documents retrieved to total 

documents deemed relevant in a collection. Also known as 
recall. See Precision.

Sensitivity Analysis: An analysis used to determine 
whether and how sensitive the conclusions of the analysis 
are violations of assumptions or decision rules used by the 
synthesist. For example, a sensitivity analysis may involve 
eliminating dependent effect sizes to see if the average 
effect size changes.

Significance Level: See p-Value.
Significance Test: See Statistical Significance Test.
Single-Case Research: Research that studies how indi-
vidual units change over time, and what causes this change.

Single-Value Imputation: A method for missing data 
analysis that replaces missing observations with one value 
such as the complete case mean or the predicted value from 
a regression of variables with missing data on variables 
completely observed.

Standardized Mean Difference: An effect size that 
expresses the difference (in standard deviation units) 
between the means of two groups. The d-index is one stan-
dardized mean difference effect size.

Statistical Power: The probability that a statistical test 
will correctly reject a false null hypothesis.

Statistical Power Analysis: A statistical analysis that esti-
mates the likelihood of obtaining a statistically significant 
hypothesis test, given assumptions about the sample size 
employed, the desired Type I error rate, and the true magni-
tude of the relationship.

Stem-and-Leaf Display: A histogram in which the data 
values themselves are used to characterize the distribution 
of a variable. Useful for describing the center, spread, and 
shape of a distribution.

Study Descriptors: Coded variables that describe the 
characteristics of research studies other than their results or 
outcomes. For example, the nature of the research design 
and procedures used, attributes of the subject sample, and 
features of the setting are all study descriptors.

Study Protocol: A written document that defines the con-
cepts used in the research and that describes study procedures 
in as much detail as possible before the research begins.

Study Generated Evidence: In a meta-analysis, evidence 
that arises from studies that directly test the relation being 
considered. For example, several studies might compare 
the relative effects of attending summer school (compared 
to control students) on boys versus girls. A meta-analysis of 
these comparisons is considered study generated evidence. 
Compare with Synthesis Generated Evidence.

Subject Subsamples: Groupings of a subject sample by 
some characteristic—for example, gender or research site.
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Substantive Factors: Characteristics of research studies 
that represent aspects of the phenomenon under investigation, 
for example, the nature of the treatment conditions applied 
and the personal characteristics of the subjects treated.

Substantively Irrelevant Study Characteristic: Charac-
teristics of studies that are irrelevant to the major hypo-
theses under study, but are inevitably incorporated into 
research operations to make them feasible. The analyst’s 
goal is to show that tests of the hypothesis are not con-
founded with such substantive irrelevancies.

Sufficient Statistics: Term used for the statistics needed to 
estimate a parameter; the sum of the values of a variable is the 
sufficient statistic for computing the mean of a distribution.

Synthesis-Generated Evidence: In a meta-analysis, evi-
dence that arises from studies that do not directly test the 
relation being considered. For example, some studies might 
examine the effect of attending summer school for low-
SES students, while others might examine this relation for 
middle-SES students. A meta-analysis of the differential 
effectiveness of summer school for low versus middle- 
SES students is considered synthesis-generated evidence 
because the studies do not directly test this relation. Com-
pare with Study Generated Evidence.

Synthetic Correlation Matrix: A matrix of correlations, 
each synthesized from one or more studies.

Systematic Artifacts: Statistical and measurement imper-
fections that bias observed statistics (statistical estimates) 
in a systematic direction (either upward or downward). See 
Artifacts.

Test of Significance: See Statistical Significance Test.
Text Mining: The use of software to analyze unstructured 
text and identify patterns and derive information about a 
body of literature. In the searching context, text mining can 
be used to identify terms, phrases, and collocated terms that 
might be used in search strategies. Text mining also has 
applications in record selection.

Theoretical Effect Size: The effect size that would be 
obtained in a study that differs in some theoretically defined 
way from one that is actually conducted. Typically, theoret-
ical effect sizes are estimated from operational effect sizes 
with the aid of auxiliary information about study designs or 
measurement methods. For example, the (disattenuated) 
correlation coefficient corrected for the effects of measure-
ment unreliability is a theoretical effect size. Compare to 
Operational Effect Size.

Theory Testing: The empirical validation of hypothesized 
relationships, which may involve the validation of a single 
relationship between two variables or a network of rela-
tions between several variables. Often validation depends 

on observing the consequences implied by, but far removed 
from, the basic elements of the theory.

Thesaurus: A list of subject terms in the controlled vocab-
ulary authorized by subject experts to index the subject 
content of documents in a database.

Threat to Validity: A likely source of bias, alternative 
explanation, or “plausible rival hypothesis” for the research 
findings.

Time Series Design: Research design in which units are 
tested at different times, typically equal intervals, during 
the course of a study.

Total Variance of an Effect Size Estimate: The sum of 
the random effects variance and the estimation (or fixed 
effects) variance. The same as Unconditional Variance.

Transformation: The application of some arithmetic prin-
ciple to a set of observations to convert the scale of mea-
surement to one with more desirable characteristics, for 
example, normality, homogeneity, or linearity.

Treatment-by-Studies Interaction: The varying effect of 
a treatment across different studies; equivalently, the effect 
of moderators on the true effect size in a set of studies of 
treatment efficacy.

Trial Register: A database of research studies, planned, 
active or completed, usually oriented around a common 
feature of the studies such as the subject matter, funding 
source, or design.

Trim and Fill Method: A funnel-plot-based method that 
attempts to test and adjust for publication bias in meta- 
analysis.

True Effect Size: The effect magnitude that an investiga-
tor seeks to estimate when planning a study.

True Score: Conceptually, the score an individual would 
obtain in the complete absence of measurement error. A 
true score is defined as the average score that a particular 
individual would obtain if he/she could be independently 
measured with an infinite number of equivalent measures, 
with random measurement error being eliminated by the 
averaging process.

Truncation: Used to specify different word endings to a 
word root. The specific methods of truncation vary across 
databases. In the Ovid interface, “random$” will retrieve 
all terms with the stem “random” (examples include ran-
domized, randomised, randomization, and randomness).

Unconditional Mean Imputation: Also called mean 
imputation, a method for missing data analysis that replaces 
missing observations with the complete case mean for that 
variable.

Unconditional Variance: An estimate of the total vari-
ability of a set of observed effect sizes, presumed to be due 
to both within-study and between-study variance.
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Unit of Analysis: The study unit that contributes to the 
calculation of an effect size and its standard error within a 
study. This unit may be a single individual or a collection of 
individuals, like a classroom or dyad.

Universe: The population (or hyperpopulation) of studies 
to which one wishes to generalize.

Unpublished Literature: Papers or articles not made avail-
able to the public through the action of a publisher.

Unsystematic Artifacts: Statistical imperfections, such as 
sampling error, which cause statistical estimates to depart 
randomly from the population parameters that a researcher 
intends to estimate. See Artifacts.

Validity threat: See Threat to Validity.
Variance Components: The sources into which the vari-
ance of effect sizes is partitioned. Also, the random variables 
whose variances are the summands for the total variance.

Variance-Covariance Matrix: A matrix (rectangular list-
ing arrangement) that contains the variances and covari-
ances for a set of p variables. Within a single study the 
diagonal elements of the covariance matrix are the vari-
ances S2

ii for variables 1 to p. The covariances S2
ij for i, j = 1 

to p, i ≠ j, are the off-diagonal elements of the matrix.
Vote-Counting Procedure: A procedure in which one 
simply tabulates the number of studies with significant pos-
itive results, the number with significant negative results, 
and the number with nonsignificant results. The category 
with the most votes presumably provides the best guess 

about the direction of the population effect size. More mod-
ern vote-counting procedures provide an effect size estimate 
and confidence interval.

Weighted Least Squares Regression in Research Syn-
thesis: A technique for estimating the parameters of a mul-
tiple regression model wherein each study’s contribution  
to the sum of products of the measured variables is weighted 
by the precision of that study’s effect size estimator.

Weighting: The process of allowing observations with 
certain desirable characteristics to contribute more to the 
estimation of a parameter. In meta-analysis, each study’s 
contribution is often weighted by the precision of that 
study’s effect size estimator.

Wildcards: In literature searching, wildcards are used to 
account for internal spelling variations. The specific meth-
ods for identifying wildcards vary across databases. In the 
Ovid interface, “randomi?ed” will identify records contain-
ing the word “randomized” and the word “randomised.”

Within-Study Moderators: Moderators are identified 
on a within-study basis when two or more levels of the 
moderator are present in individual reviewed studies. See 
Between-Studies Moderators.

Within-Study Sample Size: The number of units within a 
primary study.

Z-Transformed Correlation Coefficient: The sample 
statistic z, population parameter ζ,. The Fisher Z transfor-
mation of a correlation r is .5 ln[(1 + r)/(1 – r)].
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