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Abstract—Student graduation accuracy is one of the 

indicators of the success of higher education institutions in 

carrying out the teaching and learning process and as a 

component of higher education accreditation. So it is not 

surprising that building a system that can predict or classify 

students graduating on time or not on time is necessary for 

universities to monitor the exact number of students graduating 

on time using educational technology. Unfortunately, 

educational technology or machine learning with data mining 

approaches is less accurate in classifying classes with 

unbalanced data. Therefore, this research purpose is to build a 

machine learning system that can improve classification 

performance on unbalanced class data between students who 

graduate on time and graduate late. This study applies the 

Synthetic Minority Oversampling Technique (SMOTE) method 

to improve the classifying performance of the Support Vector 

Machine (SVM) data mining method. The results of the study 

concluded that using the Smote method increased the accuracy, 

precision, and sensitivity of the SVM method in classifying class 

data of unbalanced student graduation times. The SVM 

performance score rises to 3% for classification accuracy, 8% 

for classification precision, and 25% for classification 

sensitivity. 

 
Index Terms—Classification, educational technology, 

machine learning, data mining, SVM, SMOTE. 

 

I. INTRODUCTION 

Although educational information technology supports 

learning today [1]-[4], graduation and timeliness of 

graduation are different achievements for all students [5]. 

Many factors affect the timely completion of studies for 

students [6]-[8]. Statistics show that the average 

speed/punctuality of student graduation is not the same time 

[9]; specifically, there is an imbalance between students who 

are on time or graduating quickly and those who are not on 

time or late for graduation [8]. Meanwhile, the graduation 

rate on time is one indicator of the success of learning in 

higher education [6], [10] and is one of the elements of the 

assessment of higher education accreditation in Indonesia 

[10], in addition to other elements that indicate the success of 

higher education [11]-[13]. Therefore, building a system that 

can predict or classify the accuracy of student graduation is 

one way for universities to monitor the certainty of student 

graduation precisely and not on time [10]. However, there are 
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obstacles encountered in building an application system in 

classifying the accuracy of graduation, namely the accuracy 

of the system constructed especially on unbalanced class data 

between the number of students who graduate on time and do 

not graduate on time. 

According to information from the Ministry of Higher 

Classifying, unbalanced class data is a significant problem in 

machine learning and data mining. Because, after all, causes 

inaccuracy in classification is the imbalance of class data [14], 

[15]. It happened because the imbalance distribution of class 

data causes biased classifier performance due to 

misclassifying the minority class or minority classes not 

being considered in the overall classification results [16]. 

Worse, machine learning methods ignore unbalanced data, so 

machine learning training with unbalanced class data 

negatively impacts machine learning performance [17]. As a 

result, machine learning models perform poorly in the 

minority class [18]. In other words, the classification method 

does not achieve maximum performance when applied to 

unbalanced class data [18], [19]. That is why the problem of 

unbalanced data sets gets special attention in machine 

learning and research related to machine learning [14], [16] 

and has become a hot issue in data mining [20], [21]. In short, 

classification research on unbalanced classes is essential; 

moreover, a class imbalance is inherent in much of the natural 

world [22] and not just in machine learning [17]. 

 In essence, the classification model is a popular data 

mining or machine learning model [23]-[25] and has its 

application in various fields of science [26]. The 

classification model is a predictive learning model through 

training data on the data set to identify the pattern of 

relationships between attributes and classes in the data set 

[27], [28]. Predicting is not an easy task [13], [29]; 

difficulties arise due to considering several criteria as the 

basis for prediction or decision-making  [13], [30]. Therefore, 

previous researchers emphasized that what often happens is 

inaccuracy in making decisions [29]. That is why there is a 

need for a system that can assist in predicting with reasonable 

accuracy the results. Machine learning can predict accurately 

[25]. Machine learning has artificial intelligence in carrying 

out its jobs. Artificial intelligence [25], [31] is today's 

learning technology widely used for various roles [31]. 

Through machine learning, it is possible to uncover hidden 

patterns in big data and classify them [32].  

Although there are several classification methods: SVM, 

Random Forest, Naive Bayes, Decision Tree, and others [2], 

[27], [33], however, SVM is a widely known method used for 

classification [34]. Each classification method has a different 

classification accuracy level. At the same time, inaccurate 

classifying of events results in errors in identifying particular 

patterns from the data set. SVM is a classification method 

used as a training system for linear learning machines [35]. 
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As a result, machine learning can accurately perform 

classification [25]. However, according to Lopez et al., SVM 

machine learning and decision trees are unsuitable for 

producing good performance on unbalanced class data [36]; 

therefore, it is not surprising that the imbalance of data on 

class attributes encourages many researchers to study it [19], 

[37], [38]. For this reason, this study aims to improve the 

performance of predictions or classification of the timeliness 

of graduating students by using SMOTE and SVM methods. 

Furthermore, to prove an increase in the accuracy of 

classifying or predicting classes on time for graduation, this 

study compared the performance results between the  SVM 

method combined with the  SMOTE method and the SVM 

method without the combination with the SMOTE method. 

SMOTE is a resampling method [39] that can improve 

classification performance on unbalanced data, especially 

when combined with other methods [40]. However, the 

question is whether the application of SMOTE can improve 

the predictive performance of SVM data mining methods on 

unbalanced class data on the student graduation timeliness 

dataset? Also, how much precision/accuracy/sensitivity is the 

application of SMOTE in improving the classification or 

predictive performance of the SVM data mining method on 

unbalanced data from the class on the timeliness of 

graduation students? This research proves it. 

Further discussion in this manuscript is as follows. The 

second subsection deals with related work. The third 

subsection describes the research methodology. The fourth 

sub-section explains the results and discussion of the research. 

Finally, the fifth sub-section is a sub-section of Conclusions 

that discusses conclusions, updates, and suggestions for 

further investigation. 

 

II. RELATED WORK 

Some of the latest related works of previous research are as 

follows. 

Bartosz Krawczyk discusses the challenges open to 

researchers and future research directions for unbalanced 

data class [14]. The previous research differs from the 

research in this article not only in the research method but 

also in the research objectives. The previous research was a 

literature study review paper on unbalanced data classes. In 

contrast, the research in this article is an experimental study 

to improve the prediction performance of unbalanced class 

data from data on student graduation timeliness.  

 Dina Elreedy et al. presented an analysis of the SMOTE 

method [41]. This last study introduced how to overcome the 

classification problem of unbalanced data in the minority 

class by generating additional data from the minority class 

using SMOTE. So this previous research has a different 

objective (focus) compared to the research in this article. The 

previous research describes how SMOTE makes unbalanced 

class data into balance class data. In contrast, this article's 

research improves the SVM method's performance in 

classifying unbalanced data from student graduation 

accuracy data. In the meantime, Justin M. Johnson et al. 

surveyed the literature on using deep learning methods to 

address class data unbalances [22]. The previous research 

was survey research to overcome unbalanced class data with 

deep learning methods. In contrast to the research in this 

article is a trial study of the application of the SMOTE 

method to improve the accuracy of the SVM method 

classification in dealing with unbalanced class data. 

Harshita Patel et al. reviewed the classification of 

unbalanced data on wireless sensor networks [16]. However, 

this previous research has different objectives, objects, and 

methods compared to the study conducted in this article. 

Pradeep Kumar, Roheet Bhatnagar, Kuntal Gaur, and Anurag 

Bhatnagar presented various approaches to classifying 

unbalanced data sets [17]. The main difference lies in the 

research methods and objectives between the previous 

research and the research in this article. The previous 

research was a review study related to the unbalanced class 

data classification approach. In contrast, the research in this 

article is an experimental study to improve the classification 

performance of the SVM data mining method. 

Meanwhile, Shujuan Wang et al. proposed the use of the 

SMOTE method to improve the classification results of the 

Random Forest classification method for several data sets 

[20]. However, this previous study focused on enhancing 

classification performance using SMOTE on the Random 

Forest data mining method and not on student pass accuracy 

data. In contrast, this research focused on improving 

classification performance with SMOTE on the SVM data 

mining method on unbalanced student pass accuracy data. 

Cui Yin Huang et al. reviewed the class data imbalance in 

the Decision Tree method [26]. The difference with this 

article is in the research objectives and research methods. 

Previous research focused on discussing unbalanced class 

data on the Decision Tree method. In contrast, the research in 

this article focuses on testing classification performance to 

unbalanced class data on the student graduation timeliness 

data set on the SVM method.  

In contrast, Lixu Wang et al. proposed a scheme that can 

decide the composition of the training data for federated 

learning to reduce the impact of class data imbalance [42]. 

This previous study proposed a method for detecting class 

data imbalances in federated learning and reducing the effect 

of class data imbalance, in contrast to the research in this 

article, which focuses on applying the SMOTE method to 

improve prediction accuracy on unbalanced class data in the 

SVM method. 

Wanwan Zheng et al. investigated the performance effect 

of unbalanced class data and training data measures for 

classifiers [43]. This previous research is an empirical study 

on the Naive Bayes, logistic regression, and Tree methods. 

Previous research compared balanced and unbalanced data to 

measure the accuracy of data mining methods; in contrast to 

this article's research, the mining method improves 

performance (accuracy, precision, and sensitivity) by 

applying the SMOTE method to the mining method. The 

research in this article then compares the performance of the 

data mining method between those implementing the 

SMOTE method and those not using the SMOTE method. 

The review of several prior research-related works 

confirms that the study of this article differs from previous 

associated works. The findings of this study help reveal the 

impact of increasing classification accuracy arising from the 

application of the SMOTE method to the data set on the 

imbalance in the timeliness of students' graduation in the 

SVM method. The novelty of this study lies in improving the 



  

classification performance or prediction of unbalanced class 

data on student graduation timeliness which previous 

researchers have never done. 

 

TABLE I: COMPARISON OF THIS ARTICLE'S WORK WITH SOME PREVIOUS RELATED WORKS 

Research By 
Type of 

Research 

Method 

Used 
Performance Testing 

Research Object 
Research Data / 

Data Set 

SVM SMOTE Accuracy Precision Sensitivity 

Bartosz Krawczyk [14] Review No No Yes Yes Yes 

Reviewing methods for dealing 

with unbalanced class data 

problems  on the Decision Tree 

method 

Various data sets 

depending on the reviewed 

article, for example, 

Behavior, Cancer 

malignancy grading, 

Hyperspectral data, and 

others 

Dina Elreedy et al.[41] 
Theoretical and 

experimental 
No Yes Yes No No 

Test the classification accuracy 

using SMOTE on K-nearest 

neighbors (KNN) method 

Multivariate Gaussian 

distribution data 

Justin M. Johnson et al. 

[22] 
Survey No No No No No 

Surveying existing deep 

learning techniques to overcome 

unbalanced class data 

Various data sets 

depending on the surveyed 

article, for example, 

CIFAR-10, Public cameras, 

Building changes, and 

others 

Harshita Patel et al. [16] Review No No No No No 
Troubleshooting data imbalance 

issues of a wireless sensor 

network on the KNN method 

No specifically mention 

 

Pradeep Kumar et al. 

[17] 
Review Yes No No No No 

Reviewing various data 

imbalance issues and learning 

strategies and algorithms from 

the Random Forest, KNN, 

Decision Tree, Neural Network, 

Naive Bayes, and SVM 

classification techniques. 

No specifically mention 

(except imbalanced data) 

Shujuan Wang et al. [20] Experimental No Yes Yes No No 
Improving classification results 

Random Forest method for 

multiple data sets 

Pima, WDBC, WPBC, 

Ionosphere, and 

Breast-cancer-Wisconsin 

Cui Yin Huang et al.[26] Experimental No Yes Yes Yes Yes 

Reviewing the class data 

imbalance in the Decision Tree 

method 

Yeast, Glass, Cleveland, 

and Vehicle 

Lixu Wang et al. [40] Experimental No No No No No 

Propose a scheme to decide the 

composition of training data to 

reduce the impact of class data 

imbalance 

Clients or server data 

Wanwan Zheng et al. 

[41] 
Experimental No No No No No 

Investigating the performance 

effects of unbalanced class data 

and training data measures for 

classifiers in the Naive Bayes, 

logistic regression, and Tree 

methods 

Ozone. Kc1, Scene, 

Gesture, Cpu_act, 

Waveform-5000, 

Spambase, and Madelone 

Our/this  research Experimental Yes Yes Yes Yes Yes 

Test the performance of the 

SVM method classification on 

the timeliness of graduating 

students 

Student Graduation Data 

 

 

In other words, the advantage of this research is that it is an 

experimental study on the imbalance of data on student 

graduation timeliness with SMOTE in SVM that other 

researchers have not studied. Table Ⅰ shows the comparison 

between the previous related studies and this article. 

 

III. RESEARCH METHODOLOGY 

This study uses data mining stages, as shown in Fig. 1. 

A. Data Collection 

Data collection was carried out at Bumigora University. 

The data set was taken from graduation data for 

undergraduate students for the 2019-2021 academic years, 

totaling 265 data and having eight attributes. The attributes of 

this research data set are shown in Table Ⅱ. The data used as 

machine learning training data in this study is the 

achievement index (IP) data from student graduation data for 

six semesters who have completed their studies. Machine 

learning is helpful for systematically predicting which 

students will graduate on time and who will be late for 

graduation based on variations in the 6-semester achievement 

index value, which has a decimal value variation of 0.0 to 4.0. 

Students with a good to excellent achievement index have a 

minimum achievement index of 2.0. Research data shows 

that not always students who excel and are very good will 

definitely graduate on time (see the data set in Table Ⅲ). 

Machine learning that implements data mining methods has 

intelligence that can reveal hidden patterns in big data [32] 

and can predict with high accuracy [25]. In other words, 

machine learning has the intelligence to predict students who 

have completed their studies up to semester six whether these 

students will graduate on time or not. The sample data for 

students' graduation is shown in Table Ⅲ. 



  

 
Fig. 1. Research stages. 

 

TABLE II: STUDENT GRADUATION DATASET ATTRIBUTES 

No Attribute Name Information Data Type 

1 JK Gender Nominal (Male, Female) 

2 IPS 1 Semester 1 IP Numerical 

3. IPS 2 Semester 2 IP Numerical 

4. IPS 3 Semester 3 IP Numerical 

5. IPS 4 Semester 4 IP Numerical 

6. IPS 5 Semester 5 IP Numerical 

7. IPS 6 Semester 6 IP Numerical 

8. Graduation Status Class 
Nominal 

(On Time, Not On Time) 

  

TABLE III: STUDENT GRADUATION DATASET 

No JK IPS1 IPS2 … IPS6 Status Graduation 

1 F 3.06 3.16 … 3.17 On-Time 

2 F 3.41 3.43 … 3.44 On-Time 

3 M 2.43 2.61 … 2.67 Not On Time 

4 F 3.5 3.53 ... 3.53 On-Time 

5 M 2.07 2.22 … 2.32 Not On Time 

6 F 3.42 2.85 … 3.5 On-Time 

7 M 3.33 3.28 … 3.15 Not On Time 

8 F 2.83 2.05 … 2.66 Not On Time 

9 M 2.94 2.21 … 3.1 Not On Time 

10 M 2.56 2.0 … 2.68 Not On Time 

.. ... …… …… … ….. …………… 

264 M 2.69 1.85 … 2.5 Not On Time 

265 F 2.22 1.83 … 2.21 Not On Time 

 

B. Data Pre-processing 

Data Pre-processing is one of the crucial stages in data 

mining to improve the quality of data sets. This study deals 

with unbalanced data contained in student graduation data 

sets. The dataset used has 171 data classes that are not on 

time and 94 data on time. The algorithm used to handle 

unbalanced data in the dataset is SMOTE (Synthetic Minority 

Oversampling Technique). 

Attributes with categorical data types are converted to 

numeric data types before the oversampling process using 

SMOTE. The gender attribute has a categorical data type 

with categories 'L' and 'P', so the category 'L' becomes 0, and 

'P' becomes 1. 

SMOTE is one of the most commonly used oversampling 

methods to solve the problem of data distribution imbalance 

in machine learning modeling. SMOTE aims to balance the 

distribution of classes by increasing the number of minority 

classes by synthesizing data for oversampling purposes [29]. 

Creating new data for the minority class uses equation (1). 

                          (1) 

  : is to hold the result of the new data. : represents the 

minority class. : is a randomly selected value from the 

k-nearest neighbors of the minority class  , and : is a 

randomly selected value in a random vector with a range of 0 

to 1 [44]. SMOTE generates new synthesis training data by 

linear interpolation for the minority class. Synthesis training 

data is generated by randomly selecting one or more of the 

k-nearest neighbors for each sample in the minority class, as 

shown in Fig. 2. 
 

 
Fig. 2. Synthetic minority oversampling technique (SMOTE) algorithm 

working process [45]. 

 

C. Classification Method 

The realization of classification data mining using data 

mining methods or machine learning algorithms involves two 

data sets: the first is the dataset for training, and the second is 

for testing. Each item set involves the attributes and 

categories of each training attribute with a specific target 

value. 

This study uses the SVM data mining method to classify 

student graduation. Before classification, the dataset is first 

divided into training and testing data using 10-fold 

cross-validation, divided into 10 data groups using python 

tools.  

The SVM data mining method is a supervised learning 

classification method aiming to find the optimal hyperplane 

by maximizing the distance or margin between data classes 

using equation (2) [46]. 

h(x) = wT•x + b                             (2) 

wT•xi +b ≥ +1 when yi =+1                  (3) 

wT•xi +b ≤ -1 when yi = –1                  (4) 

w is a weight vector; x is the input vector; b is biased. 

The SVM method works not only on linear but also on 

nonlinear data. The technique uses two approaches to 

transform nonlinear data into linear data: soft margin 

hyperplane and feature space. The soft margin hyperplane 

approach in converting nonlinear data into linear ones is with 

the slack ξ variable formulation, as shown in equations (5) 

and (6). The parameters used in the SVM method are kernel 

RBF, C = 5, gamma = 2, and toll = 0.0001. The use of these 

parameters is the best combination of parameters for the 

SVM method on the dataset used based on the results of 

hyperparameter tuning using the Grid search technique to 

improve accuracy. 

xi. wi + b ≥ 1 – ξ for yi = class 1                  (5) 

xi. wi + b ≤ - 1 + ξ for yi = class 24                (6) 

D. Performance Evaluation 

Evaluation (testing) of performance uses a confusion 

matrix. The Confusion Matrix helps calculate the amount of 

data classified as true and false, as shown in Table Ⅳ. 

' ( )*i j iY Y Y Y   

iY

jY
iY 



  

TABLE IV: CONFUSION MATRIX 

Actual 
Prediction 

On-time Not on time 

On-time TP FN 

Not On time FP TN 

 

The formula for calculating accuracy, precision, and 

sensitivity is as follows: [28], [47] 

         
       

                 
                       (7) 

          
  

       
                             (8) 

            
  

       
                            (9) 

True Positive (TP) is a class on time that is correctly 

predicted. False Positive (FP) is a class that is not on time but 

is predicted to be on time. True Negative (TN) is an 

incorrectly predicted class on time. False Negative (FN) is a 

class that is on time but is predicted not to be on time. 

Accuracy states the closeness of the measurement results 

to the actual value, while precision shows how close the 

difference in the measurement results is on repeated 

measurements. On the other hand, sensitivity states the level 

of success in retrieving information. The accuracy 

measurement is based on the ratio between the correct 

predictions (positive and negative) with the overall data. In 

contrast, precision measurements are based on the percentage 

of true positive predictions compared to overall positive 

predicted outcomes. Meanwhile, the recall measurement is 

based on the ratio of true positive predictions compared to the 

general actual positive data. 

 

IV. RESULT AND DISCUSSION 

This research starts from the stages of data collection, data 

pre-processing, classification, and performance testing. The 

data used in this study is the graduation data of students. 

Pre-processing this research uses the Smote algorithm to deal 

with class imbalances in the graduation data used. The results 

of comparing the original data with the data from Smote are 

shown in Fig. 3. 
 

 
Fig. 3. The results of the comparison of  the original data with the data from the 

Smote. 

 

TABLE V: CONFUSION MATRIX RESULT OF SVM METHOD 

Actual 
Predicted 

On-Time Not On Time 

On-Time 50 44 

Not On Time 23 148 

 

Table Ⅴ shows the results of testing the SVM method with 

a confusion matrix using 10-fold cross-validation. 

Meanwhile, Table Ⅵ shows the results of the Confusion 

Matrix with the SVM method and the SMOTE method. 
 

TABLE VI: CONFUSION MATRIX RESULT OF SVM AND SMOTE METHODS 

Actual 
Predicted 

On-Time Not On Time 

On-Time 134 37 

Not On Time 43 128 

 

Table Ⅶ and Fig. 2 show an increase in the performance 

of the SVM method with Smote based on accuracy, precision, 

and sensitivity. Without Smote, the SVM method has 74% 

accuracy, 68% precision, and 53% sensitivity. While using 

Smote, the SVM method has an accuracy of 77%, 76% 

precision, and a sensitivity of 78%. In other words, the SVM 

performance score using Smote for accuracy increased by 3%, 

precision increased by 8%, and sensitivity increased by 25%. 

Thus, this study concludes that using the Smote method 

improves the accuracy, precision, and sensitivity of the SVM 

method in managing unbalanced class category data. 

Furthermore, using Smote sampling reduces the skewness of 

the data distribution to improve the performance of the 

classification method used [48], [49]. 
 

TABLE VII: PERFORMANCE RESULT OF CLASSIFICATION METHOD 

Method Accuracy Precision Sensitivity 

SVM 74% 68% 53% 

SVM with SMOTE 77% 76% 78% 

 

 
Fig. 4. Performance result of classification method. 

 

V. CONCLUSION 

The results of this study prove that the SMOTE method 

helps improve the performance of the accuracy, precision, 

and sensitivity of the SVM data mining method or the SVM 

machine learning algorithm in managing unbalanced student 

graduation time data. Furthermore, the results show the 

novelty of the discovery, namely the SVM performance score 

using SMOTE to reach 3% for the accuracy of the 

classification results of unbalanced class data on student 

graduation timeliness and up to 25% for the sensitivity of the 

classification results of unbalanced class data on student 

graduation timeliness. Meanwhile, using SMOTE, the SVM 

performance score increased its precision by 8% in predicting 

students' on-time and not on-time graduation. 

Further research needs to conduct SMOTE testing for 

other machine learning algorithms and research with more 

complex data sets to meet SMOTE needs. In addition, it is 

necessary to further develop the results of this research by 

building a Web or Cloud-based application program and 
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testing its implementation on users. Finally, further research 

can also combine several ensemble learning-based methods 

with smote to get better accuracy with other datasets. 
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Abstract—Student graduation accuracy is one of the indicators of 

the success of higher education institutions in carrying out the 

teaching and learning process and as a component of higher 

education accreditation. So it is not surprising that building a 

system that can predict or classify students graduating on time or 

not on time is necessary for universities to monitor the exact 

number of students graduating on time using educational 

technology. Unfortunately, educational technology or machine 

learning with data mining approaches is less accurate in 

classifying classes with unbalanced data. Therefore, this research 

purpose is to build a machine learning system that can improve 

classification performance on unbalanced class data between 

students who graduate on time and graduate late. This study 

applies the Synthetic Minority Oversampling Technique 

(SMOTE) method to improve the classifying performance of the 

Support Vector Machine (SVM) data mining method. The results 

of the study concluded that using the Smote method increased the 

accuracy, precision, and sensitivity of the SVM method in 

classifying class data of unbalanced student graduation times. 

The SVM performance score rises to 3% for classification 

accuracy, 8% for classification precision, and 25% for 

classification sensitivity.  

 

Index Terms—classification, educational technology, 

machine learning, data mining, SVM, SMOTE 

 
I. INTRODUCTION 

Although educational information technology supports 

learning today [1][2][3][4], graduation and timeliness of 

graduation are different achievements for all students [5]. 

Many factors affect the timely completion of studies for 

students [6][7][8]. Statistics show that the average 

speed/punctuality of student graduation is not the same time 

[9]; specifically, there is an imbalance between students who 

are on time or graduating quickly and those who are not on 

time or late for graduation [8]. Meanwhile, the graduation 

rate on time is one indicator of the success of learning in 

higher education [6][10] and is one of the elements of the 

assessment of higher education accreditation in Indonesia 

[10], in addition to other elements that indicate the success 

of higher education [11][12][13]. Therefore, building a 

system that can predict or classify the accuracy of student 

graduation is one way for universities to monitor the 

certainty of student graduation precisely and not on time 

[10]. However, there are obstacles encountered in building 

an application system in classifying the accuracy of 

graduation, namely the accuracy of the system constructed 

especially on unbalanced class data between the number of 

students who graduate on time and those who do not 

graduate on time.   
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According to information from the Ministry of Higher 

Classifying, unbalanced class data is a significant problem in 

machine learning and data mining. Because, after all, causes 

inaccuracy in classification is the imbalance of class data 

[14][15]. It happened because the imbalance distribution of 

class data causes biased classifier performance due to 

misclassifying the minority class or minority classes not 

being considered in the overall classification results [16]. 

Worse, machine learning methods ignore unbalanced data, 

so machine learning training with unbalanced class data 

negatively impacts machine learning performance [17]. As a 

result, machine learning models perform poorly in the 

minority class [18]. In other words, the classification method 

does not achieve maximum performance when applied to 

unbalanced class data  [18][19]. That is why the problem of 

unbalanced data sets gets special attention in machine 

learning and research related to machine learning [14][16] 

and has become a hot issue in data mining [20][21]. In short, 

classification research on unbalanced classes is essential; 

moreover, a class imbalance is inherent in much of the 

natural world [22] and not just in machine learning [17]. 

 In essence, the classification model is a popular data 

mining or machine learning model [23][24][25] and has its 

application in various fields of science [26]. The 

classification model is a predictive learning model through 

training data on the data set to identify the pattern of 

relationships between attributes and classes in the data set 

[27][28]. Predicting is not an easy task [29] [13]; difficulties 

arise due to considering several criteria as the basis for 

prediction or decision-making [30] [13]. Therefore, previous 

researchers emphasized that what often happens is 

inaccuracy in making decisions [29]. That is why there is a 

need for a system that can assist in predicting with 

reasonable accuracy the results. Machine learning can 

predict accurately [25]. Machine learning has artificial 

intelligence in carrying out its jobs. Artificial intelligence 

[31][25] is today's learning technology widely used for 

various roles [31]. Through machine learning, it is possible 

to uncover hidden patterns in big data and classify them 

[32].  

Although there are several classification methods: SVM, 

Random Forest, Naive Bayes, Decision Tree, and others 

[2][33][27], however, SVM is a widely known method used 

for classification [34]. Each classification method has a 

different classification accuracy level. At the same time, 

inaccurate classifying of events results in errors in 

identifying particular patterns from the data set. SVM is a 

classification method used as a training system for linear 

learning machines [35]. As a result, machine learning can 

accurately perform classification [25]. However, according 

to Lopez et al. (2013), SVM machine learning and decision 

trees are unsuitable for producing good performance on 

unbalanced class data [36];  therefore, it is not surprising 

that the imbalance of data on class attributes encourages
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many researchers to study it [19][37][38]. For this reason, 

this study aims to improve the performance of predictions 

or classification of the timeliness of graduating students 

by using SMOTE and SVM methods. Furthermore, to 

prove an increase in the accuracy of   

classifying or predicting classes on time for graduation, 

this study compared the performance results between the  

SVM   method combined with the  SMOTE method and 

the SVM method without the combination with the 

SMOTE method.  

SMOTE is a resampling method [39] that can improve 

classification performance on unbalanced data, especially 

when combined with other methods [40]. However, the 

question is whether the application of SMOTE can 

improve the predictive performance of SVM data mining 

methods on unbalanced class data on the student 

graduation timeliness dataset? Also, how much 

precision/accuracy/sensitivity is the application of 

SMOTE in improving the classification or predictive 

performance of the SVM data mining method on 

unbalanced data from the class on the timeliness of 

graduation students? This research proves it. 

Further discussion in this manuscript is as follows. The 

second subsection deals with related work. The third 

subsection describes the research methodology. The fourth 

sub-section explains the results and discussion of the 

research. Finally, the fifth sub-section is a sub-section of 

Conclusions that discusses conclusions, updates, and 

suggestions for further investigation. 

 
 

II. RELATED WORK 

Some of the latest related works of previous research are 

as follows. 

Bartosz Krawczyk (2016) discusses the challenges open 

to researchers and future research directions for unbalanced 

data class [14]. The previous research differs from the 

research in this article not only in the research method but 

also in the research objectives. The previous research was a 

literature study review paper on unbalanced data classes. In 

contrast, the research in this article is an experimental 

study to improve the prediction performance of unbalanced 

class data from data on student graduation timeliness.  

 Dina Elreedy and Amir F. (2019) presented an analysis 

of the SMOTE method [41]. This last study introduced 

how to overcome the classification problem of unbalanced 

data in the minority class by generating additional data 

from the minority class using SMOTE. So this previous 

research has a different objective (focus) compared to the 

research in this article. The previous research describes 

how SMOTE makes unbalanced class data into balance 

class data. In contrast, this article's research improves the 

SVM method's performance in classifying unbalanced data 

from student graduation accuracy data. In the meantime, 

Justin M. Johnson and Taghi M. Khoshgoftaar (2019) 

surveyed the literature on using deep learning methods to 

address class data unbalances [22]. The previous research 

was survey research to overcome unbalanced class data 

with deep learning methods. In contrast to the research in 

this article is a trial study of the application of the SMOTE 

method to improve the accuracy of the SVM method 

classification in dealing with unbalanced class data. 

Harshita Patel et al. (2020) reviewed the classification of 

unbalanced data on wireless sensor networks [16]. 

However, this previous research has different objectives, 

objects, and methods compared to the study conducted in this 

article. Pradeep Kumar, Roheet Bhatnagar, Kuntal Gaur, and 

Anurag Bhatnagar (2021) presented various approaches to 

classifying unbalanced data sets [17]. The main difference 

lies in the research methods and objectives between the 

previous research and the research in this article. The 

previous research was a review study related to the 

unbalanced class data classification approach. In contrast, the 

research in this article is an experimental study to improve 

the classification performance of the SVM data mining 

method.  

Meanwhile,    Shujuan Wang, Yuntao Dai, Jihong Shen, 

and Jingxue Xuan (2021) proposed the use of the SMOTE 

method to improve the classification results of the Random 

Forest classification method for several data sets [20]. 

However, this previous study focused on enhancing 

classification performance using SMOTE on the Random 

Forest data mining method and not on student pass 

accuracy data. In contrast, this research focused on 

improving classification performance with SMOTE on the 

SVM data mining method on unbalanced student pass 

accuracy data. 

Cui Yin Huang and Hong Liang Dai (2021) reviewed the 

class data imbalance in the Decision Tree method [26]. The 

difference with this article is in the research objectives and 

research methods. Previous research focused on discussing 

unbalanced class data on the Decision Tree method. In 

contrast, the research in this article focuses on testing 

classification performance to unbalanced class data on the 

student graduation timeliness data set on the SVM method.  

In contrast, Lixu Wang, Shichao Xu, Xiao Wang, and Qi 

Zhu (2021) proposed a scheme that can decide the 

composition of the training data for federated learning to 

reduce the impact of class data imbalance [42]. This 

previous study proposed a method for detecting class data 

imbalances in federated learning and reducing the effect of 

class data imbalance, in contrast to the research in this 

article, which focuses on applying the SMOTE method to 

improve prediction accuracy on unbalanced class data in 

the SVM method. 

Wanwan Zheng and  Mingzhe Jin (2022) investigated the 

performance effect of unbalanced class data and training 

data measures for classifiers [43]. This previous research is 

an empirical study on the Naive Bayes, logistic regression, 

and Tree methods. Previous research compared balanced 

and unbalanced data to measure the accuracy of data 

mining methods; in contrast to this article's research, the 

mining method improves performance (accuracy, precision, 

and sensitivity) by applying the SMOTE method to the 

mining method. The research in this article then compares 

the performance of the data mining method between those 

implementing the SMOTE method and those not using the 

SMOTE method. 

The review of several prior research-related works 

confirms that the study of this article differs from previous 

associated works. The findings of this study help reveal the 

impact of increasing classification accuracy arising from the 

application of the SMOTE method to the data set on the 

imbalance in the timeliness of students' graduation in the 

SVM method. The novelty of this study lies in improving 

the classification performance or prediction of unbalanced 

class data on student graduation timeliness which previous 

researchers have never done. In other words, the advantage 

of this research is that this research is an experimental study 
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TABLE I. COMPARISON OF THIS ARTICLE'S WORK WITH SOME PREVIOUS RELATED WORKS 

 

Research By 

Type of 

Research 

Method 

Used 

Performance Testing Research Object Research Data / 

Data Set  

SVM SMOTE Accuracy Precision Sensitivity 

Bartosz Krawczyk 

(2016) [14]  

Review  No No Yes Yes Yes Reviewing methods for dealing 
with unbalanced class data 

problems  on the Decision Tree 

method 

Various data sets 
depending on the reviewed 

article, for example, 

Behavior, Cancer 

malignancy grading, 

Hyperspectral data, and 
others  

Dina Elreedy and Amir 

F. (2019) [41] 

Theoretical and 
experimental  

No Yes Yes No No Test the classification accuracy 
using SMOTE on K-nearest 

neighbors (KNN) method  

Multivariate Gaussian 
distribution data 

Justin M. Johnson and 

Taghi M. Khoshgoftaar 

(2019) [22] 

Survey  No No No No No Surveying existing deep 
learning techniques to 

overcome unbalanced class data 

Various data sets 
depending on the surveyed 

article, for example, 

CIFAR-10, Public 
cameras, Building changes, 

and others 

Harshita Patel et al. 

(2020) [16] 

Review  No No No No No Troubleshooting data imbalance 

issues of a wireless sensor 
network on the KNN method 

No specifically mention 

 

Pradeep Kumar et al. 

(2021) [17] 

Review  Yes No No No No Reviewing various data 

imbalance issues and learning 

strategies and algorithms from 
the Random Forest, KNN, 

Decision Tree, Neural Network, 

Naive Bayes, and SVM 
classification techniques. 

No specifically mention 

(except imbalanced data) 

Shujuan Wang et al. 

(2021) [20] 

Experimental No Yes Yes No No Improving classification results 

Random Forest method for 
multiple data sets 

Pima, WDBC, WPBC, 

Ionosphere, and Breast-
cancer-Wisconsin 

Cui Yin Huang and 

Hong Liang Dai (2021) 

[26] 

Experimental No Yes Yes Yes Yes Reviewing the class data 

imbalance in the Decision Tree 

method 

Yeast, Glass, Cleveland, 

and Vehicle 

Lixu Wang et al.  (2021) 

[40] 

Experimental No No No No No Propose a scheme to decide the 
composition of training data to 

reduce the impact of class data 
imbalance 

Clients or server data 

Wanwan Zheng and  

Mingzhe Jin (2022) [41] 

Experimental No No No No No Investigating the performance 

effects of unbalanced class data 

and training data measures for 
classifiers in the Naive Bayes, 

logistic regression, and Tree 

methods 

Ozone. Kc1, Scene, 

Gesture, Cpu_act, 

Waveform-5000, 
Spambase, and Madelone  

Our/this  research Experimental Yes Yes Yes Yes Yes Test the performance of the 

SVM method classification on 

the timeliness of graduating 
students 

Student Graduation Data 

 

 
on unbalanced data of student graduation timeliness with 

SMOTE on the SVM classification method that has not been 

carried out by previous research. Table 1 shows the 

comparison between the previous related studies and this 

article. 
 

III. RESEARCH METHODOLOGY 

This study uses data mining stages, as shown in Figure 1.  

 

 

 

 

 

 

 
 

 

 
 

 

 
 

Fig. 1. Research stages 

A. Data Collection 

Data collection was carried out at Bumigora University. 

The data set was taken from graduation data for 

undergraduate students for the 2019-2021 academic years, 

totaling 265 data and having eight attributes. The attributes of 

this research data set are shown in Table 1. The data used as 

machine learning training data in this study is the 

achievement index (IP) data from student graduation data for 

six semesters who have completed their studies. Machine 

learning is helpful for systematically predicting which 

students will graduate on time and who will be late for 

graduation based on variations in the 6-semester achievement 

index value, which has a decimal value variation of 0.0 to 4.0. 

Students with a good to very good achievement index have a 

minimum achievement index of 2.0. Research data shows that 

not always students who excel and are very good will 

definitely graduate on time (see the data set in Table 2). 

Machine learning that implements data mining methods has 

intelligence that can reveal hidden patterns in big data [32] 

and can predict with high accuracy [25]. In other words, 

machine learning has the intelligence to predict students who 

 Data Collection: 

Student Graduation Data 

 

Data Pre-Processing: SMOTE 

 

Classification Method SVM 

 

Performance Evaluation: 

Accuracy, Precision, and Sensitivity 
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have completed their studies up to semester six whether 

these students will graduate on time or not. The sample data 

for students' graduation is shown in Table II. 
 

TABLE I: STUDENT GRADUATION DATASET ATTRIBUTES 

No Attribute Name Information Data Type 

1 JK Gender Nominal (Male, Female) 

2 IPS 1 Semester 1 IP Numerical 

3. IPS 2 Semester 2 IP Numerical 

4.  IPS 3 Semester 3 IP Numerical 

5. IPS 4 Semester 4 IP Numerical 

6. IPS 5 Semester 5 IP Numerical 

7. IPS 6 Semester 6 IP Numerical 

8. Graduation Status Class 
Nominal  

(On Time, Not On Time) 

  
TABLE II: STUDENT GRADUATION DATASET 

No JK IPS1 IPS2 … IPS6 Status Graduation 

1 F 3.06 3.16 … 3.17 On-Time 

2 F 3.41 3.43 … 3.44 On-Time 

3 M 2.43 2.61 … 2.67 Not On Time 

4 F 3.5 3.53 ... 3.53 On-Time 

5 M 2.07 2.22 … 2.32 Not On Time 

6 F 3.42 2.85 … 3.5 On-Time 

7 M 3.33 3.28 … 3.15 Not On Time 

8 F 2.83 2.05 … 2.66 Not On Time 

9 M 2.94 2.21 … 3.1 Not On Time 

10 M 2.56 2.0 … 2.68 Not On Time 

.. ... …… …… … ….. …………… 

264 M 2.69 1.85 … 2.5 Not On Time 

265 F 2.22 1.83 … 2.21 Not On Time 

B. Data Pre-Processing 

Data Pre-processing is one of the crucial stages in data mining to 

improve the quality of data sets. This study focuses on dealing with 

unbalanced data contained in student graduation data sets. The dataset 

used has 171 data classes that are not on time and 94 data on time. 

The algorithm used to handle unbalanced data in the dataset is 

SMOTE (Synthetic Minority Oversampling Technique). 

Attributes with categorical data types are converted to numeric data 

types before the oversampling process using SMOTE. The gender 

attribute has a categorical data type with categories 'L' and 'P', so the 

category 'L' becomes 0 and 'P' becomes 1. 

SMOTE is one of the most commonly used oversampling 

methods to solve the problem of data distribution imbalance in 

machine learning modeling. SMOTE aims to balance the distribution 

of classes by increasing the number of minority classes by 

synthesizing data for oversampling purposes [29]. Creating new data 

for the minority class uses equation (1). 

 

                   ' ( )*i j iY Y Y Y                                          (1) 

  : is to hold the result of the new data. 
iY : represents the 

minority class. 
jY : is a randomly selected value from the k-

nearest neighbors of the minority class  
iY , and  :  is a 

randomly selected value in a random vector with a range of 

0 to 1 [44]. SMOTE generates new synthesis training data 

by linear interpolation for the minority class. Synthesis 

training data is generated by randomly selecting one or more 

of the k-nearest neighbors for each sample in the minority 

class, as shown in Figure 2. 

 

 

    Non-Trace data points       Trace data points     Synthetic trace data points 
 

        

 

 

  
      Unbalanced data set             Generating new synthetic data points            SMOTE data set                 

Fig. 2. Synthetic Minority Oversampling Technique (SMOTE) Algorithm 

Working Process [45] 

C. Classification Method 

The realization of classification data mining using data 

mining methods or machine learning algorithms involves two 

data sets: the first is the dataset for training, and the second is 

for testing. Each item set involves the attributes and 

categories of each training attribute with a specific target 

value. 

This study uses the SVM data mining method to classify 

student graduation. Before classification, the dataset is first 

divided into training and testing data using 10-fold cross-

validation, divided into 10 data groups using python tools.  

The SVM data mining method is a supervised learning 

classification method aiming to find the optimal hyperplane 

by maximizing the distance or margin between data classes 

using equation (2) [46]. 

                    h(x) = w
T
x + b                                               (2) 

                        w
T
•xi +b ≥ +1 when yi =+1                          (3) 

                        w
T
•xi +b ≤ -1 when yi = –1                          (4)     

w is a weight vector;  x is the input vector; b is biased. 

 

The SVM method works not only on linear data but also on 

nonlinear data. The technique uses two approaches to 

transform nonlinear data into linear data: soft margin 

hyperplane and feature space. The soft margin hyperplane 

approach in converting nonlinear data into linear ones is with 

the slack ξ variable formulation, as shown in equations (5) 

and (6). The parameters used in the SVM method are kernel 

RBF, C = 5, gamma = 2, and toll = 0.0001. 

          xi. wi + b ≥ 1 – ξ  for yi = class 1                              (5) 

          xi. wi + b ≤ - 1 + ξ for yi = class 233                        (6)     

D.  Performance Evaluation 

Evaluation (testing) of performance uses a confusion 

matrix. The Confusion Matrix helps calculate the amount of 

data classified as true and false, as shown in Table 3. 
 

TABLE 3: CONFUSION MATRIX 

Actual 
Prediction 

On-time Not on time 

On-time TP FN 

Not On time FP TN 

 

The formula for calculating accuracy, precision, and 

sensitivity is as follows: [28] [47] 

 

 
                                 TP + TN 

          Accuracy  =                                                               (7)  

                                 TP + FN + TN + FP 

 

SMOTE 

Training 

Data set 
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                                   TP 

          Precision   =                                                               (8)  

                                      TP + FP 

   

                                    TP  

          Sensitivity  =                                                             (9)  

                                        TP + FN 

 
True Positive (TP) is a class on time that is correctly 

predicted. False Positive (FP) is a class that is not on time 

but is predicted to be on time. True Negative (TN) is an 

incorrectly predicted class on time. False Negative (FN) is a 

class that is on time but is predicted not to be on time. 

Accuracy states the closeness of the measurement results 

to the actual value, while precision shows how close the 

difference in the measurement results is on repeated 

measurements. On the other hand, sensitivity states the 

level of success in retrieving information. The accuracy 

measurement is based on the ratio between the correct 

predictions (positive and negative) with the overall 

data. In contrast, precision measurements are based 

on the percentage of true positive predictions 

compared to overall positive predicted outcomes. 

Meanwhile, the recall measurement is based on the 

ratio of true positive predictions compared to the 

general actual positive data. 
 

 
IV. RESULT AND DISCUSSION 

This research starts from the stages of data collection, 

data pre-processing, classification, and performance testing. 

The data used in this study is the graduation data of 

students. Pre-processing this research uses the Smote 

algorithm to deal with class imbalances in the graduation 

data used. The results of comparing the original data with 

the data from Smote are shown in Figure 3. 

 
 

 
Fig. 3. The results of the comparison of  the original data with the data 

from the Smote 

 

Table 4 shows the results of testing the SVM method 

with a confusion matrix using 10-fold cross-validation. 

Meanwhile, Table 5 shows the results of the Confusion 

Matrix with the SVM method and the SMOTE method. 

 
TABLE 4: CONFUSION MATRIX RESULT OF SVM METHOD 

Actual 
Predicted 

On-Time Not On Time 

On-Time 50 44 

Not On Time 23 148 

 

 

TABLE 5: CONFUSION MATRIX RESULT OF SVM AND SMOTE METHODS 

Actual 
Predicted 

On-Time Not On Time 

On-Time 134 37 

Not On Time 43 128 

 

Table 6 and Figure 2 show an increase in the performance 

of the SVM method with Smote based on accuracy, precision, 

and sensitivity. Without Smote, the SVM method has 74% 

accuracy, 68% precision, and 53% sensitivity. While using 

Smote, the SVM method has an accuracy of 77%, 76% 

precision, and a sensitivity of 78%. In other words, the SVM 

performance score using Smote for accuracy increased by 

3%, precision increased by 8%, and sensitivity increased by 

25%. Thus, this study concludes that using the Smote method 

improves the accuracy, precision, and sensitivity of the SVM 

method in managing unbalanced class category data. The use 

of Smote sampling reduces the skewness of the data 

distribution so that it can improve the performance of the 

classification method used [48] [49]. 

 
TABLE 6: PERFORMANCE RESULT OF CLASSIFICATION METHOD 

Method Accuracy Precision Sensitivity 

SVM 74% 68% 53% 

SVM with SMOTE 77% 76% 78% 

 

 
Fig. 4. Performance result of classification Method 

 

V. CONCLUSION 

The results of this study prove that the SMOTE method 

helps improve the performance of the accuracy, precision, and 

sensitivity of the SVM data mining method or the SVM 

machine learning algorithm in managing unbalanced student 

graduation time data. Furthermore, the results show the 

novelty of the discovery, namely the SVM performance score 

using SMOTE to reach 3% for the accuracy of the 

classification results of unbalanced class data on student 

graduation timeliness and up to 25% for the sensitivity of the 

classification results of unbalanced class data on student 

graduation timeliness. Meanwhile, using SMOTE, the SVM 

performance score increased its precision by 8% in predicting 

students' on-time and not on-time graduation. 

Further research needs to conduct SMOTE testing for 

other machine learning algorithms and research with more 

complex data sets to meet SMOTE needs. In addition, it is 

necessary to further develop the results of this research by 

building a Web or Cloud-based application program and 

testing its implementation on users. Finally, further research 

can also combine several ensemble learning-based methods 
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with smote to get better accuracy with other datasets. 
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Improving SVM Classification Performance on 

Unbalanced Student Graduation Time Data Using SMOTE 

 
Anthony Anggrawan, Hairani Hairani, and Christofer Satria  

 

Abstract—Student graduation accuracy is one of the 

indicators of the success of higher education institutions in 

carrying out the teaching and learning process and as a 

component of higher education accreditation. So it is not 

surprising that building a system that can predict or classify 

students graduating on time or not on time is necessary for 

universities to monitor the exact number of students graduating 

on time using educational technology. Unfortunately, 

educational technology or machine learning with data mining 

approaches is less accurate in classifying classes with 

unbalanced data. Therefore, this research purpose is to build a 

machine learning system that can improve classification 

performance on unbalanced class data between students who 

graduate on time and graduate late. This study applies the 

Synthetic Minority Oversampling Technique (SMOTE) method 

to improve the classifying performance of the Support Vector 

Machine (SVM) data mining method. The results of the study 

concluded that using the Smote method increased the accuracy, 

precision, and sensitivity of the SVM method in classifying class 

data of unbalanced student graduation times. The SVM 

performance score rises to 3% for classification accuracy, 8% 

for classification precision, and 25% for classification 

sensitivity.  

 

Index Terms—classification, educational technology, 

machine learning, data mining, SVM, SMOTE 

 
I. INTRODUCTION 

Although educational information technology supports 

learning today [1]-[4], graduation and timeliness of 

graduation are different achievements for all students [5]. 

Many factors affect the timely completion of studies for 

students [6]-[8]. Statistics show that the average 

speed/punctuality of student graduation is not the same time 

[9]; specifically, there is an imbalance between students who 

are on time or graduating quickly and those who are not on 

time or late for graduation [8]. Meanwhile, the graduation 

rate on time is one indicator of the success of learning in 

higher education [6], [10] and is one of the elements of the 

assessment of higher education accreditation in Indonesia 

[10], in addition to other elements that indicate the success 

of higher education [11]-[13]. Therefore, building a system 

that can predict or classify the accuracy of student 

graduation is one way for universities to monitor the 

certainty of student graduation precisely and not on time 

[10]. However, there are obstacles encountered in building 

an application system in classifying the accuracy of 

graduation, namely the accuracy of the system constructed 

especially on unbalanced class data between the number of 

students who graduate on time and do not graduate on time.    
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According to information from the Ministry of Higher 

Classifying, unbalanced class data is a significant problem in 

machine learning and data mining. Because, after all, causes 

inaccuracy in classification is the imbalance of class data 

[14], [15]. It happened because the imbalance distribution of 

class data causes biased classifier performance due to 

misclassifying the minority class or minority classes not being 

considered in the overall classification results [16]. Worse, 

machine learning methods ignore unbalanced data, so 

machine learning training with unbalanced class data 

negatively impacts machine learning performance [17]. As a 

result, machine learning models perform poorly in the 

minority class [18]. In other words, the classification method 

does not achieve maximum performance when applied to 

unbalanced class data  [18], [19]. That is why the problem of 

unbalanced data sets gets special attention in machine 

learning and research related to machine learning [14], [16] 

and has become a hot issue in data mining [20], [21]. In short, 

classification research on unbalanced classes is essential; 

moreover, a class imbalance is inherent in much of the natural 

world [22] and not just in machine learning [17]. 

 In essence, the classification model is a popular data 

mining or machine learning model [23]-[25] and has its 

application in various fields of science [26]. The 

classification model is a predictive learning model through 

training data on the data set to identify the pattern of 

relationships between attributes and classes in the data set 

[27], [28]. Predicting is not an easy task [29], [13]; 

difficulties arise due to considering several criteria as the 

basis for prediction or decision-making [30], [13]. 

Therefore, previous researchers emphasized that what often 

happens is inaccuracy in making decisions [29]. That is why 

there is a need for a system that can assist in predicting with 

reasonable accuracy the results. Machine learning can 

predict accurately [25]. Machine learning has artificial 

intelligence in carrying out its jobs. Artificial intelligence 

[31], [25] is today's learning technology widely used for 

various roles [31]. Through machine learning, it is possible 

to uncover hidden patterns in big data and classify them 

[32].  

Although there are several classification methods: SVM, 

Random Forest, Naive Bayes, Decision Tree, and others [2], 

[33], [27], however, SVM is a widely known method used 

for classification [34]. Each classification method has a 

different classification accuracy level. At the same time, 

inaccurate classifying of events results in errors in 

identifying particular patterns from the data set. SVM is a 

classification method used as a training system for linear 

learning machines [35]. As a result, machine learning can 

accurately perform classification [25]. However, according 

to Lopez et al. (2013), SVM machine learning and decision 

trees are unsuitable for producing good performance on 

unbalanced class data [36];  therefore, it is not surprising 

that the imbalance of data on class attributes encourages

mailto:prashantfpc@gmail.com


International Journal of Information and Education Technology, Vol. xx, No. x, xxxxy 20xx 

xx

xx

 

 

many researchers to study it [19], [37]-[38]. For this 

reason, this study aims to improve the performance of 

predictions or classification of the timeliness of 

graduating students by using SMOTE and SVM methods. 

Furthermore, to prove an increase in the accuracy of 

classifying or predicting classes on time for graduation, 

this study compared the performance results between the  

SVM   method combined with the  SMOTE method and 

the SVM method without the combination with the 

SMOTE method.  

SMOTE is a resampling method [39] that can improve 

classification performance on unbalanced data, especially 

when combined with other methods [40]. However, the 

question is whether the application of SMOTE can 

improve the predictive performance of SVM data mining 

methods on unbalanced class data on the student 

graduation timeliness dataset? Also, how much 

precision/accuracy/sensitivity is the application of 

SMOTE in improving the classification or predictive 

performance of the SVM data mining method on 

unbalanced data from the class on the timeliness of 

graduation students? This research proves it. 

Further discussion in this manuscript is as follows. The 

second subsection deals with related work. The third 

subsection describes the research methodology. The fourth 

sub-section explains the results and discussion of the 

research. Finally, the fifth sub-section is a sub-section of 

Conclusions that discusses conclusions, updates, and 

suggestions for further investigation. 

 
 

II. RELATED WORK 

Some of the latest related works of previous research are 

as follows. 

Bartosz Krawczyk (2016) discusses the challenges open 

to researchers and future research directions for unbalanced 

data class [14]. The previous research differs from the 

research in this article not only in the research method but 

also in the research objectives. The previous research was a 

literature study review paper on unbalanced data classes. In 

contrast, the research in this article is an experimental 

study to improve the prediction performance of unbalanced 

class data from data on student graduation timeliness.  

 Dina Elreedy and Amir F. (2019) presented an analysis 

of the SMOTE method [41]. This last study introduced 

how to overcome the classification problem of unbalanced 

data in the minority class by generating additional data 

from the minority class using SMOTE. So this previous 

research has a different objective (focus) compared to the 

research in this article. The previous research describes 

how SMOTE makes unbalanced class data into balance 

class data. In contrast, this article's research improves the 

SVM method's performance in classifying unbalanced data 

from student graduation accuracy data. In the meantime, 

Justin M. Johnson and Taghi M. Khoshgoftaar (2019) 

surveyed the literature on using deep learning methods to 

address class data unbalances [22]. The previous research 

was survey research to overcome unbalanced class data 

with deep learning methods. In contrast to the research in 

this article is a trial study of the application of the SMOTE 

method to improve the accuracy of the SVM method 

classification in dealing with unbalanced class data. 

Harshita Patel et al. (2020) reviewed the classification of 

unbalanced data on wireless sensor networks [16]. 

However, this previous research has different objectives, 

objects, and methods compared to the study conducted in this 

article. Pradeep Kumar, Roheet Bhatnagar, Kuntal Gaur, and 

Anurag Bhatnagar (2021) presented various approaches to 

classifying unbalanced data sets [17]. The main difference 

lies in the research methods and objectives between the 

previous research and the research in this article. The 

previous research was a review study related to the 

unbalanced class data classification approach. In contrast, the 

research in this article is an experimental study to improve 

the classification performance of the SVM data mining 

method.  

Meanwhile,    Shujuan Wang, Yuntao Dai, Jihong Shen, 

and Jingxue Xuan (2021) proposed the use of the SMOTE 

method to improve the classification results of the Random 

Forest classification method for several data sets [20]. 

However, this previous study focused on enhancing 

classification performance using SMOTE on the Random 

Forest data mining method and not on student pass 

accuracy data. In contrast, this research focused on 

improving classification performance with SMOTE on the 

SVM data mining method on unbalanced student pass 

accuracy data. 

Cui Yin Huang and Hong Liang Dai (2021) reviewed the 

class data imbalance in the Decision Tree method [26]. The 

difference with this article is in the research objectives and 

research methods. Previous research focused on discussing 

unbalanced class data on the Decision Tree method. In 

contrast, the research in this article focuses on testing 

classification performance to unbalanced class data on the 

student graduation timeliness data set on the SVM method.  

In contrast, Lixu Wang, Shichao Xu, Xiao Wang, and Qi 

Zhu (2021) proposed a scheme that can decide the 

composition of the training data for federated learning to 

reduce the impact of class data imbalance [42]. This 

previous study proposed a method for detecting class data 

imbalances in federated learning and reducing the effect of 

class data imbalance, in contrast to the research in this 

article, which focuses on applying the SMOTE method to 

improve prediction accuracy on unbalanced class data in 

the SVM method. 

Wanwan Zheng and  Mingzhe Jin (2022) investigated the 

performance effect of unbalanced class data and training 

data measures for classifiers [43]. This previous research is 

an empirical study on the Naive Bayes, logistic regression, 

and Tree methods. Previous research compared balanced 

and unbalanced data to measure the accuracy of data 

mining methods; in contrast to this article's research, the 

mining method improves performance (accuracy, precision, 

and sensitivity) by applying the SMOTE method to the 

mining method. The research in this article then compares 

the performance of the data mining method between those 

implementing the SMOTE method and those not using the 

SMOTE method. 

The review of several prior research-related works 

confirms that the study of this article differs from previous 

associated works. The findings of this study help reveal the 

impact of increasing classification accuracy arising from the 

application of the SMOTE method to the data set on the 

imbalance in the timeliness of students' graduation in the 

SVM method. The novelty of this study lies in improving 

the classification performance or prediction of unbalanced 

class data on student graduation timeliness which previous 

researchers have never done.  
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TABLE I. COMPARISON OF THIS ARTICLE'S WORK WITH SOME PREVIOUS RELATED WORKS 

 

Research By 

Type of 

Research 

Method 

Used 

Performance Testing Research Object Research Data / 

Data Set  

SVM SMOTE Accuracy Precision Sensitivity 

Bartosz Krawczyk 

(2016) [14]  

Review  No No Yes Yes Yes Reviewing methods for dealing 
with unbalanced class data 

problems  on the Decision Tree 

method 

Various data sets 
depending on the reviewed 

article, for example, 

Behavior, Cancer 

malignancy grading, 

Hyperspectral data, and 
others  

Dina Elreedy and Amir 

F. (2019) [41] 

Theoretical and 
experimental  

No Yes Yes No No Test the classification accuracy 
using SMOTE on K-nearest 

neighbors (KNN) method  

Multivariate Gaussian 
distribution data 

Justin M. Johnson and 

Taghi M. Khoshgoftaar 

(2019) [22] 

Survey  No No No No No Surveying existing deep 
learning techniques to 

overcome unbalanced class data 

Various data sets 
depending on the surveyed 

article, for example, 

CIFAR-10, Public 
cameras, Building changes, 

and others 

Harshita Patel et al. 

(2020) [16] 

Review  No No No No No Troubleshooting data imbalance 

issues of a wireless sensor 
network on the KNN method 

No specifically mention 

 

Pradeep Kumar et al. 

(2021) [17] 

Review  Yes No No No No Reviewing various data 

imbalance issues and learning 

strategies and algorithms from 
the Random Forest, KNN, 

Decision Tree, Neural Network, 

Naive Bayes, and SVM 
classification techniques. 

No specifically mention 

(except imbalanced data) 

Shujuan Wang et al. 

(2021) [20] 

Experimental No Yes Yes No No Improving classification results 

Random Forest method for 
multiple data sets 

Pima, WDBC, WPBC, 

Ionosphere, and Breast-
cancer-Wisconsin 

Cui Yin Huang and 

Hong Liang Dai (2021) 

[26] 

Experimental No Yes Yes Yes Yes Reviewing the class data 

imbalance in the Decision Tree 

method 

Yeast, Glass, Cleveland, 

and Vehicle 

Lixu Wang et al.  (2021) 

[40] 

Experimental No No No No No Propose a scheme to decide the 
composition of training data to 

reduce the impact of class data 
imbalance 

Clients or server data 

Wanwan Zheng and  

Mingzhe Jin (2022) [41] 

Experimental No No No No No Investigating the performance 

effects of unbalanced class data 

and training data measures for 
classifiers in the Naive Bayes, 

logistic regression, and Tree 

methods 

Ozone. Kc1, Scene, 

Gesture, Cpu_act, 

Waveform-5000, 
Spambase, and Madelone  

Our/this  research Experimental Yes Yes Yes Yes Yes Test the performance of the 

SVM method classification on 

the timeliness of graduating 
students 

Student Graduation Data 

 

 
In other words, the advantage of this research is that it is an 

experimental study on the imbalance of data on student 

graduation timeliness with SMOTE in SVM that other 

researchers have not studied. Table 1 shows the comparison 

between the previous related studies and this article. 
 

III. RESEARCH METHODOLOGY 

This study uses data mining stages, as shown in Figure 1.  

 

 

 

 

 

 

 
 

 

 
 

 

 
 

Fig. 1. Research stages 

A. Data Collection 

Data collection was carried out at Bumigora University. 

The data set was taken from graduation data for 

undergraduate students for the 2019-2021 academic years, 

totaling 265 data and having eight attributes. The attributes of 

this research data set are shown in Table 1. The data used as 

machine learning training data in this study is the 

achievement index (IP) data from student graduation data for 

six semesters who have completed their studies. Machine 

learning is helpful for systematically predicting which 

students will graduate on time and who will be late for 

graduation based on variations in the 6-semester achievement 

index value, which has a decimal value variation of 0.0 to 4.0. 

Students with a good to excellent achievement index have a 

minimum achievement index of 2.0. Research data shows that 

not always students who excel and are very good will 

definitely graduate on time (see the data set in Table 2). 

Machine learning that implements data mining methods has 

intelligence that can reveal hidden patterns in big data [32] 

and can predict with high accuracy [25]. In other words, 

machine learning has the intelligence to predict students who 

 Data Collection: 

Student Graduation Data 

 

Data Pre-Processing: SMOTE 

 

Classification Method SVM 

 

Performance Evaluation: 

Accuracy, Precision, and Sensitivity 
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have completed their studies up to semester six whether 

these students will graduate on time or not. The sample data 

for students' graduation is shown in Table II. 
 

TABLE I: STUDENT GRADUATION DATASET ATTRIBUTES 

No Attribute Name Information Data Type 

1 JK Gender Nominal (Male, Female) 

2 IPS 1 Semester 1 IP Numerical 

3. IPS 2 Semester 2 IP Numerical 

4.  IPS 3 Semester 3 IP Numerical 

5. IPS 4 Semester 4 IP Numerical 

6. IPS 5 Semester 5 IP Numerical 

7. IPS 6 Semester 6 IP Numerical 

8. Graduation Status Class 
Nominal  

(On Time, Not On Time) 

  
TABLE II: STUDENT GRADUATION DATASET 

No JK IPS1 IPS2 … IPS6 Status Graduation 

1 F 3.06 3.16 … 3.17 On-Time 

2 F 3.41 3.43 … 3.44 On-Time 

3 M 2.43 2.61 … 2.67 Not On Time 

4 F 3.5 3.53 ... 3.53 On-Time 

5 M 2.07 2.22 … 2.32 Not On Time 

6 F 3.42 2.85 … 3.5 On-Time 

7 M 3.33 3.28 … 3.15 Not On Time 

8 F 2.83 2.05 … 2.66 Not On Time 

9 M 2.94 2.21 … 3.1 Not On Time 

10 M 2.56 2.0 … 2.68 Not On Time 

.. ... …… …… … ….. …………… 

264 M 2.69 1.85 … 2.5 Not On Time 

265 F 2.22 1.83 … 2.21 Not On Time 

B. Data Pre-Processing 

Data Pre-processing is one of the crucial stages in data mining to 

improve the quality of data sets. This study deals with unbalanced 

data contained in student graduation data sets. The dataset used has 

171 data classes that are not on time and 94 data on time. The 

algorithm used to handle unbalanced data in the dataset is SMOTE 

(Synthetic Minority Oversampling Technique). 

Attributes with categorical data types are converted to numeric data 

types before the oversampling process using SMOTE. The gender 

attribute has a categorical data type with categories 'L' and 'P', so the 

category 'L' becomes 0, and 'P' becomes 1. 

SMOTE is one of the most commonly used oversampling 

methods to solve the problem of data distribution imbalance in 

machine learning modeling. SMOTE aims to balance the distribution 

of classes by increasing the number of minority classes by 

synthesizing data for oversampling purposes [29]. Creating new data 

for the minority class uses equation (1). 

 

                   ' ( )*i j iY Y Y Y                                          (1) 

  : is to hold the result of the new data. 
iY : represents the 

minority class. 
jY : is a randomly selected value from the k-

nearest neighbors of the minority class  
iY , and  :  is a 

randomly selected value in a random vector with a range of 

0 to 1 [44]. SMOTE generates new synthesis training data 

by linear interpolation for the minority class. Synthesis 

training data is generated by randomly selecting one or more 

of the k-nearest neighbors for each sample in the minority 

class, as shown in Figure 2. 

 

 

    Non-Trace data points       Trace data points     Synthetic trace data points 
 

        

 

 

  
      Unbalanced data set             Generating new synthetic data points            SMOTE data set                 

Fig. 2. Synthetic Minority Oversampling Technique (SMOTE) Algorithm 

Working Process [45] 

C. Classification Method 

The realization of classification data mining using data 

mining methods or machine learning algorithms involves two 

data sets: the first is the dataset for training, and the second is 

for testing. Each item set involves the attributes and 

categories of each training attribute with a specific target 

value. 

This study uses the SVM data mining method to classify 

student graduation. Before classification, the dataset is first 

divided into training and testing data using 10-fold cross-

validation, divided into 10 data groups using python tools.  

The SVM data mining method is a supervised learning 

classification method aiming to find the optimal hyperplane 

by maximizing the distance or margin between data classes 

using equation (2) [46]. 

                    h(x) = w
T
•x + b                                            (2) 

                        w
T
•xi +b ≥ +1 when yi =+1                          (3) 

                        w
T
•xi +b ≤ -1 when yi = –1                          (4)     

w is a weight vector;  x is the input vector; b is biased. 

The SVM method works not only on linear but also on 

nonlinear data. The technique uses two approaches to 

transform nonlinear data into linear data: soft margin 

hyperplane and feature space. The soft margin hyperplane 

approach in converting nonlinear data into linear ones is with 

the slack ξ variable formulation, as shown in equations (5) 

and (6). The parameters used in the SVM method are kernel 

RBF, C = 5, gamma = 2, and toll = 0.0001. The use of these 

parameters is the best combination of parameters for the SVM 

method on the dataset used based on the results of 

hyperparameter tuning using the Grid search technique to 

improve accuracy. 

          xi. wi + b ≥ 1 – ξ  for yi = class 1                              (5) 

          xi. wi + b ≤ - 1 + ξ for yi = class 233                        (6)     

D.  Performance Evaluation 

Evaluation (testing) of performance uses a confusion 

matrix. The Confusion Matrix helps calculate the amount of 

data classified as true and false, as shown in Table 3. 
 

TABLE 3: CONFUSION MATRIX 

Actual 
Prediction 

On-time Not on time 

On-time TP FN 

Not On time FP TN 

 

The formula for calculating accuracy, precision, and 

sensitivity is as follows: [28],  [47] 

 

 

 

SMOTE 

Training 

Data set 

Comment [AA1]: Why chose those 
SVM hyperparameter ? why not try other 
combination of hyperparameters to improve 

accuracy ? 
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                                 TP + TN 

          Accuracy  =                                                               (7)  

                                 TP + FN + TN + FP 

 

                                   TP 

          Precision   =                                                               (8) 

                                      TP + FP 

   

                                    TP  

          Sensitivity  =                                                             (9)  

                                        TP + FN 

 
True Positive (TP) is a class on time that is correctly 

predicted. False Positive (FP) is a class that is not on time 

but is predicted to be on time. True Negative (TN) is an 

incorrectly predicted class on time. False Negative (FN) is a 

class that is on time but is predicted not to be on time. 

Accuracy states the closeness of the measurement results 

to the actual value, while precision shows how close the 

difference in the measurement results is on repeated 

measurements. On the other hand, sensitivity states the 

level of success in retrieving information. The accuracy 

measurement is based on the ratio between the correct 

predictions (positive and negative) with the overall 

data. In contrast, precision measurements are based 

on the percentage of true positive predictions 

compared to overall positive predicted outcomes. 

Meanwhile, the recall measurement is based on the 

ratio of true positive predictions compared to the 

general actual positive data. 

 

 
IV. RESULT AND DISCUSSION 

This research starts from the stages of data collection, 

data pre-processing, classification, and performance testing. 

The data used in this study is the graduation data of 

students. Pre-processing this research uses the Smote 

algorithm to deal with class imbalances in the graduation 

data used. The results of comparing the original data with 

the data from Smote are shown in Figure 3. 
 

 
Fig. 3. The results of the comparison of  the original data with the data 

from the Smote 

 

Table 4 shows the results of testing the SVM method 

with a confusion matrix using 10-fold cross-validation. 

Meanwhile, Table 5 shows the results of the Confusion 

Matrix with the SVM method and the SMOTE method. 
 

TABLE 4: CONFUSION MATRIX RESULT OF SVM METHOD 

Actual 
Predicted 

On-Time Not On Time 

On-Time 50 44 

Not On Time 23 148 

 

TABLE 5: CONFUSION MATRIX RESULT OF SVM AND SMOTE METHODS 

Actual 
Predicted 

On-Time Not On Time 

On-Time 134 37 

Not On Time 43 128 

 

Table 6 and Figure 2 show an increase in the performance 

of the SVM method with Smote based on accuracy, precision, 

and sensitivity. Without Smote, the SVM method has 74% 

accuracy, 68% precision, and 53% sensitivity. While using 

Smote, the SVM method has an accuracy of 77%, 76% 

precision, and a sensitivity of 78%. In other words, the SVM 

performance score using Smote for accuracy increased by 

3%, precision increased by 8%, and sensitivity increased by 

25%. Thus, this study concludes that using the Smote method 

improves the accuracy, precision, and sensitivity of the SVM 

method in managing unbalanced class category data. 

Furthermore, using Smote sampling reduces the skewness of 

the data distribution to improve the performance of the 

classification method used [48], [49]. 

 
TABLE 6: PERFORMANCE RESULT OF CLASSIFICATION METHOD 

Method Accuracy Precision Sensitivity 

SVM 74% 68% 53% 

SVM with SMOTE 77% 76% 78% 

 

 
Fig. 4. Performance result of classification Method 

 

V. CONCLUSION 

The results of this study prove that the SMOTE method 

helps improve the performance of the accuracy, precision, and 

sensitivity of the SVM data mining method or the SVM 

machine learning algorithm in managing unbalanced student 

graduation time data. Furthermore, the results show the 

novelty of the discovery, namely the SVM performance score 

using SMOTE to reach 3% for the accuracy of the 

classification results of unbalanced class data on student 

graduation timeliness and up to 25% for the sensitivity of the 

classification results of unbalanced class data on student 

graduation timeliness. Meanwhile, using SMOTE, the SVM 

performance score increased its precision by 8% in predicting 

students' on-time and not on-time graduation. 

Further research needs to conduct SMOTE testing for 

other machine learning algorithms and research with more 

complex data sets to meet SMOTE needs. In addition, it is 

necessary to further develop the results of this research by 

building a Web or Cloud-based application program and 

testing its implementation on users. Finally, further research 

can also combine several ensemble learning-based methods 
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with smote to get better accuracy with other datasets. 
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