Software Reliability Measurement Base
on Failure Intensity

By Bambang Krismono Triwijoyo

2017 3rd International Conference on Science in Information Technology (ICSITech)

Software Reliability Measurement
Base on Failure Intensity

Bambang Krismonﬂ'riwijoyo, Ford Lumban Gaol, Benfano Soewito, Harco Leslie Hendric Spits Warnars
Binus Graduate Program Bina Nusantara University, JI. Kebon Jeruk No27
Jakarta, Indonesia
? STMIK Bumigora Mataram Indonesia
bambang. triwijoyo(@binus.ac.id, fgaol@binus.edu, bsoewito @binus.edu, shendric(@binus.edu

Abstract—Software reliability is an important factor in
software quality measurement, which is measured by the
probability of an error-free software within the operating period
within a given time period and e nment. Software reliability
measurements are performed at every of software
development process to evaluate whether the software reliability
requirements has been fulfilled. In this paper proposed the new
methods to measuring the software reliability based on categorize
faults. We use J.D Musa-III failure datasets are divided into 5
modules to measure software reliability using our method. Base
on J.D Musa-IIT datasets we got the value of reliability is 0.7416
or 74%. The software reliability can be measured using this
method and the future work is to categorize the failure of the
software based on the source of its failure.

Keywords—software reliability; matrix; measured; fault

L

The most important thing in the effectiveness of software
project management is the accuracy in estimating software
development efforts [1]. Flexibility of service, end-user
personalities and shorter software development time is a major
challenge in software project management [2]. Software failure
is critical in software development, where the failure is
independent of the hardware specifications used for execution.
Software failure is caused by the occurrence of design errors
that occur when given input into code during execution [3].
Software reliability is a measure of software quality and can
provide feedback to the software development team for
evaluation tools. Software reliability model is generally divided
into two categories, namely black-box model and white-box
model [4]. The distinguished between the two models is in
estimating software reliability, the white-box model considers
the structure of the software while the black-box model does
not consider the software structure [5].

INTRODUCTION

One of the most common things in the software
development process is the number of design emrors or defects
known as bugs. Software errors occur when given certain
inputs resulting in software behavior deviations from an
estimated failure rate. Software errors are assumed to be
completely fixed if they can be detected through the testing
process. If a new error does not arise during the fixing process,
then the reliability of the software can improved. Estimates of
software reliability can be performed using statistia models
for software failure identification by counting the number of
failures per specific time period and the length of time between

978-1-5090-5864-8/17/$31.00 ©2017 IEEE

176

failures. In applications that are very critical of the safety level,
then software reliability becomes very impor It is
important to determine the time and resources used n software
testing, to achieve the expected level of reliability. Models
depicting the growth of software reliability have been proposed
by [3].

II. SOFTWARE RELIABILITY GROWTH MODELS (SGRM)

Prediction of software reliability is very important,
Statistical models can be used to aid in performing reliability
predictions. Initially, the model that can describe the growth
rate of reliability is used on hardware, it is then applied to the
software. One of the differences between hardware and
software is that hardware may be aging while software does
not. Limitations in predicting software reliability is made by
reference to the production of the software, it is impossible to
estimate the consequences of such errors, either the failure or
the failure resulting from software period of usage [6-8]. The
"bathtub" curve describes the standard behavior in the
software. (see Fig. 1, and 2).

A MO

Update

Update
Update

Wear-out
period
t

Early Period Period of usage

L

Fig. 1. Bathtub curve of default behavior (software) [3].

The curve has the following 3 periods:

o Early period (early failures),

e Period of usage (failure during usage),
e Wear-out period (late failures).

Early failures
Failure in the early stages of software implementation can
be eliminated by the testing process. On the other hand

2017 3rd International Conference on Science in Information Technology (ICSITech)

hardware failures may occur in the production process or
malfunctions of materials and hardware operations. While the
failure in the software occurs due to errors in software
programming. The software is an integral part of the hardware,
so errors that occur in hardware cause software failure. So
transition failures can happen from hardware to software. [6,
9].

» Wt)
p=1 p=1 B
Wear-out
Early Period Period of usage period
T
Fig. 2. Bathtub curve of hardware behavior [3].
Failures during usage:

In hardware there is almost no natural use during the
implementation phase, so the failure rate almost constant. The
cause of failure on pure hardware occurs by chance, whereas
software failure rates during the usage stage increase and
decrease over time because of the continuous updates during
the use of the software.

Late failures:

Hardware failure occurs due to obsolescence but upgrades
may be available during its service life. Failures occurs mostly
due to the natural aging process as well as signs of fatigue
resulting in increased hardware failure rates. In software the
fact that the failure rate due to the aging process as well as
fatigue does not occur so it remains constant. Some commonly
used terms associated with Software Reliability Growth
Models (SGRM) are presented in Table 1.

TABLE L TERMINOLOGY COMMON TO SRGMS [6]

Explanation

The number of failures experienced by time t.

Average Function for SRGM. This is the expected number
pt) of failure times as predicted by the model, where p (t) = E
[M (1)].
The intensity of failure, the representative of the mean,
where A (t) = p '(1).
Software hazard level, is the probability density probability
at ti.1 + At for noise failure (i-1) in tii.
The danger level per error, is the probability of an error,
(1) which has not been activated so far, will cause instantaneous
failure when enabled. This is assumed to be constant ().

At)

Z(At/tiq)

N Initiate the number of errors in the software before testing.

In general the data is supplied to Software Reliability
Growth Models (SGRM) are either times between failures /A,

Aty Atz ...} or the times at which failure occurred {#, £, t3,
..4. The model presented here generally assumes the
independence between failures [6]. This model implies that the
hazard level can be reduced by correcting any errors that occur
of the new time between failures by a constant A > 0. This idea
is depicted in Fig 3.

Hazard l A
rate
I :
_I’;
| | |
T | |
0 X, X, X, Time

Fig. 3. Hazard rate [10].

III. METHODS AND RESULTS

We implemented the Krini approach [10] and the Chwala
algorithm [8] to measure the reliability of the software. Fig. 4,
shows an approach for a procedure to predicting software
reliability.

nth data packet
g >

: (nth+1) data packet
=
]
'

-

Complete default data

Data processing

- -

szm| > DuunalrscIJ

Fig. 4. The approach for a predicting reliability models [10].

Data processing blocks are used as the basis for measuring
data values. We recommend that not all available data be
evaluated at the same time. After the first data has been
analyzed, the data can be compared with the actual second
data. Model validity can be determined by analysis by
comparing several different models [11-13]. In this model
approach the longer errors in the system have not been found
ther more dangerous. An unlikely error may be harmless,
but ¥45 necessary to use an appropriate distribution model to
predict reliability in a practical and realistic way.

This is an improvement of the reliability prediction model
if the source of error can be considered (see Fig. 5).

2017 3rd International Conference on Science in Information Technology (ICSITech)

Determination of each source of software reliability error can
be done. This is an advantage by doing the appropriate
distribution by selecting a software failure group. After that
prediction can be done with the help of a single prediction [10].

Many different probabilities concerning every failure group
may be made. This approach may lead to a more exact
prediction of reliability [14-15]. Software reliability for a
software system depends on following attributes [16-17].

Separation block

—= | Improvement for

Datasnalyshs || preateting reabisi

Fig. 5. Improvement for Prediction of reliability [10].

Type of fault

Software fault itself divided under different categories
based on the influence of fault on software system. A fault can
be warning, bug or the failure.

Application Type

The type of application affected due to software failure,
determine the software failure level. If affected is a game app,
then the system criticality level is low, but if the affected due to
a software failure is a business application or a real time
application, then obviously the criticality level of software
failure is high.

Associated Module

The linkage between software modules and software errors
is also the reason for identifying software errors. The entire
system will be severely affected in the event of a high critical
condition in the module associated with the system.

Identification and categorization of errors based on the
severity of errors is required in designing reliable software. In
doing the first job analysis done is to divide the module related
to the software system into several module groups. Initially the
errors of each module are identified, then lists the test cases
relating to each error in the module. We apply the priority
metric approach recommended by Chawla [16]. Table II shows
Indicates several types of software failures along with their
respective priorities used in this work.

178

TABLE IL PRIORITY OF FAULT [16]
Module ID Function Priority
1. Graphical Evaluation Low
2 Backup Database High
3 Data Recovery High

Algorithm of associated faults

We use algorithms to define software failures related to
each module, as recommended by [16] with the following
process Stage&

Determine the software system associated with the sofiware module.
Determine the faihore associated with each sofiware modude.
Determine the category of sofiware failure based on the crificality level of
sofivare failure.
Specify the priovity of each module based on the criticality level of sofiware
Jailure.
Reliability:=1;
Fori:=1 1o Length (Modules)
{ Forj:=1to Length (Faulls)
{ If (Associated (Module (i), Fault ()):=True)
{ K:=Criticality (Fault (j));
Reliabilitv=Reliabilit-K;

}

jt

i
!
Retun Reliahility;

To implement the algorithm of associated faults with each
module we used J.D Musa-III failure dataset [18] it contains
164 values fault time series in seconds. In this case we divided
faults base on categories by randomly into five modules to
measure software reliability. Tables III to Table VIII shows the
fault data series, it contains Fault Number (FN), Fault Time in
seconds during period of usage (FT), Inter Fault Time (IFT)
and Total Inter Fault (T1F) where:

IFT =| FTi — FTi (1)
TIF= X, IFT @)
and Mean Absolute Error (MAE) [19] are given below:

MAE = (2, (| FT; = FTii[)) /n (3

TABLE I1I. FAULT OF MODULE #1

FN FT IFT
1 640 0
2 640 2240
3 2880 2770
4 110 | 21970 |
5 22080 | 38574
6 60654 | 8401
7 52163 | 39617
8 12546 11762
9 784 9409
10 10193 2352
11 7841 23524
12 31365 7052
13 24313 274577

2017 3rd International Conference on Science in Information Technology (ICSITech)

FN FT IFT
14 298890 | 297610
15 1280 20819
16 22099 2949
17 19150 16539
18 2611 36559
19 39170 16624
20 55794 13162
21 42632 224968
22 267600 180526
23 87074 62532
24 149606 135206
25 14400 20160
26 34560 | 5040
27 39600 294795
28 334395 38380
29 296015 118620
30 177395 37227
31 214622 58222
32 156400 155760
TIF 2178036
MAE 68063.63

TABLEIV. FAULT OF MODULE #2

FN FT IFT
1 320 1o
2 1439 7561
3 G000 6120
4 2880 2820
5 5700 16100
6 21800 5000
7 26800 86740
8 113540 1403
9 112137 | 111477
10 Ho0 2040
11 2700 26093
12 28703 26620
13 2173 5090
14 7263 3602
15 10865 6635
16 4230 4230
17 8460 6345
18 14805 2961
19 11844 6483
20 5361 1192
21 6553 | 54
22 6499 3375
23 3124 48199
24 51323 34313
25 17010 15120
26 1890 3510
27 5400 56913
28 62313 37487
29 24826 1529
30 26355 25992
31 363 13626
32 13989 1069
33 15058 17319
34 32377 9255
35 41632 37472
36 4160 TTER0
37 82040 68851
38 13189 9763
19 3426 2407
40 5833 5513
TIF 799278
MAE 19981.95

TABLE V. FAULT OF MODULE #3
FN FT IFT

1 10506 166734
2 177240 64247
3 241487 98459
4 143028 130536
5 273564 84173
6 189391 16591
7 172800 151200
8 21600 | 43200
9 64800 237600
10 302400 449788
11 752188 665788
12 86400 14400
13 100800 81360
14 19440 95760
15 115200 50400
16 64800 61200
17 3600 226800
18 230400 352800
19 583200 324000
20 259200 75600
21 183600 180000
22 3600 140400
23 144000 129600
24 14400 3894
TIF 3844530
MAE 160188.75

TABLE V1. FAULT OF MODULE #4

FN FT IFT

1 166800 156000
2 10800 256200
3 267000 232487
4 34513 26833
5 7680 29987
6 37667 | 26567
7 11100 176100
8 187200 169200
9 18000 160200
10 178200 34200
11 144000 495200
12 639200 552800
13 86400 201600
14 288000 287680
15 320 57280
16 57600 28800
17 28800 10800
18 18000 70640
19 88640 343360
20 432000 427840
21 4160 960
22 3200 39600
23 42800 800
24 43600 33040
25 10560 104640
26 115200 28800
27 86400 28800
28 57600 28500
29 28800 403200
30 432000 86400
31 345600 | 230400
32 115200 70706
33 44494 122306

2017 3rd International Conference on Science in Information Technology (ICSITech)

FN FT IFT
TIF 4922226
MAE 149158.36
TABLE VII. FAULT OF MODULE #5
FN FT IFT
1 86400 23700
2 110100 81300
3 28800 14400
4 43200 14400
5 57600 410400
6 468000 482400
7 950400 550000
8 400400 483400
9 883800 610200
10 273600 158400
1 432000 432000
12 864000 661400
13 202600 800
14 203400 74280
15 277680 172680
16 105000 475080
17 580080 3053880
18 4533960 4101960
19 432000 979200
20 1411200 1238400
21 172800 86400
22 86400 1036800
23 1123200 432000
24 1555200 777600
25 777600 518400
26 1296000 576000
27 1872000 1536400
28 335600 586000
29 921600 625585
30 296015 740785
31 1036800 691200
32 1728000 950400
33 777600 720000
34 57600 40320
35 17280 69120
TIF | 24305290
MAE | 694436.86

Fig. 6, illustrated the fluctuation of IFT module 1 to module
5. Base on this graph module 1 is have most high IFT
fluctuations occurs between fault number 17 and fault number
21

4500000
4000000
3500000
3000000
2500000
1000000
1500000
1000000

500000

Inter FaultTime (IFT) in seconds

1 3 5 7 911131517 19 21 23 35 27 29 31 33 35 37 3 41
N* Fault

B

Fig. 6. Graph Inter Fault Time module | to module 5.

le 1 ==Nodule2 == Module3 Module 4 == NModule 5

The next step is determined the priority value of each
module in interval value 0 to 1. The priority value is
determined by how big the impact of errors on the system
software. Table VIII shows the matrix of reliability under the
fault based prioritization, in this case the data recovery
functions have the high priority (0.3), database backup (0.2)
and evaluation of graphical windows have lowest priority (0.1).
The total of priority value for all module is should be 1.00. In
the actual case the priority value of each function types are
determined by the software developer, because they are most
know exactly the priority of each type of function.

TABLE VIII. MATRIX OF RELIABILITY BASED ON PRIORITY [16]
Module Type of Prio- = Number MAE F.‘a.ult
1D Function rity of fault Critically

Evaluation

1 of Graphical 0.1 32 08063.63 0.0062
Window |

2 Datahase 02 40 1998195 0.0037
Backup

3 Data 03 24 160188.75 0.0440
Recovery
Evaluation

4 of Graphical 0.1 33 14915836 0.0137
Window

5 Data 03 35 694436.85 0.1908
Recovery

1091829 .54 0.2584

Finally we calculated the Fault Criticality (FC) of each
module is given below:

FC = (MAE * TF)/ TMAE @)

FC is fault criticality of each module, MAE is mean
absolute error of each module, TF is type of function of each
module, TMAE is the total of mean absolute error and TFC is
the total of fault criticality.

Base on Algorithm to define Reliability of the software
from associated faults of each module [16], the value of
Reliability (R) of that case is:

2017 3rd International Conference on Science in Information Technology (ICSITech)

R=1-TFC)

Then the Reliability of software base on prioritization is 1 —
0.2584 = 0.7416 or 74%, it means that the reliability of
software in this case is 74% (in 100% scale) or we can
categorize in Good enough.

IV. CONCLUSION

The software reliability measurement model is one of the
key components of software security functions, so research in
this area is important to continue to develop better models. We
has been proposed a new approach of software reliability
matrix models base on fault analysis. We divided the failure
data into three groups and five modules, once group for once
type of module functions. Base on J.D. Musa-III datasets we
got R=0.7416 or 74%, it means that the reliability of software
in this case is 74%. The software reliability can be measured
using this matrix. Our future work is categorize software
failure based on the source, so expect to apply the appropriate
model for each source of failure.

REFERENCES

[1] Suharjito, S. @aﬂdﬂ and B. Scewito, "Modeling software effort
estimation using hybrid PSO-ANFIS". 2016 Intermational Seminar on
Intelligent Technology and Its Applications (ISITI4), Lombok, 2016, pp.
219-224.

Rahmansyah, Ryan, and F.L. Gaol. "Service oriented architecture
governance implementation in a software development project as an
enterprise solutions". Jowrnal of Computer Science 9, no. 12 (2013):
1638.

[J. Borcsok. “Electronic Safety Systems, Hardware Concepts, Models,

and Calculation™. Heil , Germany, 2004.

Pai, and I. Ganesh. survey of software reliability models." arXiv

print arXiv:1304.4539 , 2013,

. Iskandar, F.L. Gaol, B. Soewito, and H.L. Hendric Spits Warnars.
“Software size measurement of knowledge management portal with use
case point”. The intemational conference on Computer, Control
Informatics, and its Applicaions (IC3INA 2016), 3-5 Oct 2016,
Tangerang, hgiesia_
1D, Musa. “More Reliable Software Faster and Cheaper”. Sofiware
Reliability Engﬁneerﬁyﬂ.‘niled States of America, 2004.

NF. Schneidewind. “Minimizing risk in Applying Metrics on Multiple

Projects™, Proc. IEEE Ini. Symp, 1992, pp. 173-179.

1. Boresok, and O. Krni. “Principle Software Reliability Analysis with

different Failure Rate Models™. IEEE fnt. Symp. ICAT, 2009.

B. Lindgvist, and A. Doksum. “Mathematical and Statistical Method in

Reliability”. Covent Garden, on 2003,

[10] J. Krini, and J. Béresok. “Basic concept for the selection of an
approprate Software Failure Prediction Model”. University of Kassel,
if’ifhefm.\'h.-)'gé 2015

[11] M. Lyu *“IEEE Recommended Practice on Software Reliability™.
Standards Committee of the IEEE Reliability Society, 2008.

[12] X. Zhang, X. Teng, and H.Pham: “Considerng Fault Remowval
Efficiency in Software Reliability Assessment”, IEEE vol 33, 2003.

[13] NF. Schneidewind, "Analysis of processes in computer software,"

Sigplan Notices, Vol. 10, 1975. pp.337-346, 1975.

[14] M. Lyu. "Handbook of Software Reliability", MeGraw-Hill, New York,
1996.

[2]

"

[4]
[5]

(6]
|
[8]
91

181

[15] A. Birolini, “Reliability Engineering: Theory and Practice™, Springer
Verlag, Heid g, 2007.

G. Chawla, and SK. Thakur. A Fault Analysis based Model for
Software Reliability Esti | Jownal of Recent
Technology and Engineering, 2013, pp.121-123.

AL Goel, and K. Okumoto. “Time Dependent Error Detection Rate
Model for Software Reliability and Other Performance Measures™, [EEE
Trans. Rel, R-28(3), 1979_pp. 206-211.

1D, Musa, A lannino, and K. Okumoto, “Software Reliability:
Measurement, Pr: ion, Application™ ,McGraw-Hill, 1987,

Ehdich, K. Willa, A. lannino, B.S. Prasanna, J.P. Stampfel, and J.R. Wu.
"How faults cause software failures: implications for software reliability
engineering." In Sofiware Reliability Engineering, 1991, Proceedings.,
1991 International Symposium on, pp. 233-241. IEEE, 1991.

[16]

9

[18]

.o
n”, Intes

(191

Software Reliability Measurement Base on Failure Intensity

ORIGINALITY REPORT

145

SIMILARITY INDEX

PRIMARY SOURCES

Jamal Krini, Josef Borcsok. "Contribution to reducing1 17 words — 3%

the critical faults in critical Software Systems", 2015
XXV International Conference on Information, Communication
and Automation Technologies (ICAT), 2015

Crossref

Ossmane Krini, Josef Borcsok. "New approach to 0

. IIJ.. W pp_ 78words—2/0
determine the critical number of failure in software

systems", 2011 XXIII International Symposium on Information,
Communication and Automation Technologies, 2011

Crossref

Safrizal, Harco Leslie Hendric Spits Warnars, Ford 1 %
. . . 39 words —

Lumban Gaol, Edi Abdurachman. "Use case point as

software size measurement with study case of Academic

Information System", 2017 IEEE International Conference on

Cybernetics and Computational Intelligence (CyberneticsCom),

2017

Crossref

ieeexplore.ieee.org 36 words — 1 %

Internet

www.cse.cuhk.edu.hk

Internet 26 words — 1 %

Lo 0
ljece.laescore.com 25 words — 1 /0

Internet

— I
B B B0 B B

. . . O
ﬁti)rzle?ts.blnus.ac.ld 4 words — 1)0
0
I\fwngvm\é\t/.studymode.com 1 words — 1)0
.o . 0
Igtzeg]té_JtournaI.org -0 words — |)0

. . 0
scholar.binus.ac.id 19 words —] 0

Internet

Krini, Jamal, Abderrahim Krini, Ossmane Kl’ln.l, and16 words — < 1 %
Josef Borcsok. "Extended approach to selecting a

project-specific reliability growth model", 2016 39th

International Convention on Information and Communication
Technology Electronics and Microelectronics (MIPRO), 2016.

Crossref

0
'Fl’.K. Kapur, H(‘)an.g‘ Pham, A, Gupta,‘P.C.Jha. 15 words — < 1 /0
Software Reliability Assessment with OR
Applications", Springer Science and Business Media LLC, 2011

Crossref

N 0
?ﬁm'usr.net 12 words — < 1 /0
. : 0
J“:ﬂelrtr:iia.oulu.ﬂ 11 words — < 1 /0
0
S. CHATTERJEE, R. B. MISRA, S. S. ALAM. 8 words — < 1 /0

"Prediction of software reliability using an auto
regressive process", International Journal of Systems Science,
1997

Crossref

pt.scribd.com

Internet

8 words — < 1%

Krini, ‘Oss-mane, andJosef Bgrcsok. "New scigntific 7 words — < 'I %
contributions to the prediction of the reliability of
critical systems which based on imperfect debugging method
and the increase of quality of service", 2012 IX International
Symposium on Telecommunications (BIHTEL), 2012.

Crossref

OFF OFF
OFF OFF

